1
|
Ghojoghi A, Khodavaisy S, Zarei Mahmoudabadi A, Fatahinia M. Antifungal susceptibility profile of Candida species and uncommon yeasts from drug abusers with oral candidiasis. BMC Oral Health 2024; 24:1555. [PMID: 39725928 DOI: 10.1186/s12903-024-05368-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
In Iran, there is limited information regarding the species distribution and antifungal susceptibility profiles of yeast isolates from drug addicts suffering from oral candidiasis (OC). In this study, 104 yeast isolates, including 98 Candida species and 6 uncommon yeasts, were collected from 71 drug abusers with OC. The susceptibility profiles of Candida spp. and uncommon yeasts to amphotericin B (AMB), itraconazole (ITC), nystatin (NYC), fluconazole (FLC), and caspofungin (CAS) were evaluated using the CLSI broth microdilution method. The prevalence of OC in the sampled population was found to be 29%. The susceptibility profile of Candida spp. revealed remarkable sensitivity, with 100% and 99% of isolates susceptible to NYC and AMB, respectively. However, concerning levels of resistance or non-wild-type minimum inhibitory concentrations (MICs) were observed, with 13.2% of Candida isolates showing resistance to FLC, 13.2% to ITC, and 16.3% to CAS. Notably, 35.2% of patients showed mixed yeast species, while 5.1% of Candida isolates exhibited multidrug resistance. The analysis of the uncommon yeast species showed that the overall frequencies of the highest MICs were observed for CAS. Furthermore, within the six non-Candida species identified, Hanseniaspora opuntiae and one isolate of Pichia kluyveri exhibited resistance to FLC and ITC, respectively, while all non-Candida species were susceptible to AMB and NYC. Additionally, one isolate of Pichia kluyveri exhibited simultaneously high MICs to two drugs ITC and CAS. Furthermore, the Hanseniaspora opuntiae isolate showed high MICs to CAS and FLC. The findings from the present study suggest that AMB and NYC can be suitable choices for empiric treatment of both common Candida species and uncommon yeast infections in substance abuse patients.
Collapse
Affiliation(s)
- Aynaz Ghojoghi
- Department of Medical Mycology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sadegh Khodavaisy
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Zarei Mahmoudabadi
- Department of Medical Mycology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahnaz Fatahinia
- Department of Medical Mycology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
2
|
Pinho S, Miranda IM, Costa-de-Oliveira S. Global Epidemiology of Invasive Infections by Uncommon Candida Species: A Systematic Review. J Fungi (Basel) 2024; 10:558. [PMID: 39194884 DOI: 10.3390/jof10080558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Emerging and uncommon Candida species have been reported as an increasing cause of invasive Candida infections (ICI). We aim to systematize the global epidemiology associated with emergent uncommon Candida species responsible for invasive infections in adult patients. A systematic review (from 1 January 2001 to 28 February 2023) regarding epidemiological, clinical, and microbiological data associated to invasive Candida infections by uncommon Candida spp. were collected. In total, 1567 publications were identified, and 36 were selected according to inclusion criteria (45 cases). The chosen studies covered: C. auris (n = 21), C. haemulonii (n = 6), C. fermentati (n = 4), C. kefyr (n = 4), C. norvegensis (n = 3), C. nivariensis (n = 3), C. bracarensis (n = 1), C. duobushaemulonii (n = 1), C. blankii (n = 1), and C. khanbhai (n = 1). Over the recent years, there has been an increase in the number of invasive infections caused by uncommon Candida spp. Asia and Europe are the continents with the most reported cases. The challenges in strain identification and antifungal susceptibility interpretation were significant. The absence of clinical breakpoints for the susceptibility profile determination for uncommon Candida spp. makes interpretation and treatment options a clinical challenge. It is crucial that we focus on new and accessible microbiology techniques to make fast and accurate diagnostics and treatments.
Collapse
Affiliation(s)
- Sandra Pinho
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Isabel M Miranda
- Cardiovascular R&D Centre UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Sofia Costa-de-Oliveira
- Division of Microbiology, Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Center for Health Technology and Services Research-CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
3
|
Mohamed EA, El-Zahed MM. Anticandidal applications of selenium nanoparticles biosynthesized with Limosilactobacillus fermentum (OR553490). DISCOVER NANO 2024; 19:115. [PMID: 38980559 PMCID: PMC11233486 DOI: 10.1186/s11671-024-04055-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024]
Abstract
Candida albicans is one of the most dangerous pathogenic fungi in the world, according to the classification of the World Health Organization, due to the continued development of its resistance to currently available anticandidal agents. To overcome this problem, the current work provided a simple, one-step, cost-effective, and safe technique for the biosynthesis of new functionalized anticandidal selenium nanoparticles (Se NPs) against C. albicans ATCC10231 using the cell-free supernatant of Limosilactobacillus fermentum (OR553490) strain. The bacterial strain was isolated from yogurt samples available in supermarkets, in Damietta, Egypt. The mixing ratio of 1:9 v/v% between cell-free bacterial metabolites and sodium selenite (5 mM) for 72 h at 37 °C were the optimum conditions for Se NPs biosynthesis. Ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray diffraction (XRD), Zeta analyses, and elemental analysis system (EDS) were used to evaluate the optimized Se NPs. The Se NPs absorption peak appeared at 254 nm. Physicochemical analysis of Se NPs revealed the crystalline-shaped and well-dispersed formation of NPs with an average particle size of 17-30 nm. Se NPs have - 11.8 mV, as seen by the zeta potential graph. FT-IR spectrum displayed bands of symmetric and asymmetric amines at 3279.36 cm-1 and 2928.38 cm-1, aromatic and aliphatic (C-N) at 1393.32 cm-1 and 1237.11.37 cm-1 confirming the presence of proteins as stabilizing and capping agents. Se NPs acted as a superior inhibitor of C. albicans with an inhibition zone of 26 ± 0.03 mm and MIC value of 15 µg/mL compared to one of the traditional anticandidal agent, miconazole, which revealed 18 ± 0.14 mm and 75 µg/mL. The cytotoxicity test shows that Se NPs have a low toxic effect on the normal keratinocyte (IC50 ≈ 41.5 μg/mL). The results indicate that this green synthesis of Se NPs may have a promising potential to provide a new strategy for drug therapy.
Collapse
Affiliation(s)
- Esraa Ali Mohamed
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517, Egypt
| | - Mohamed Marzouk El-Zahed
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta, 34517, Egypt.
| |
Collapse
|
4
|
Micelly-Moreno J, Barreto-Santamaría A, Arévalo-Pinzón G, Firacative C, Gómez BL, Escandón P, Patarroyo MA, Muñoz JE. Therapeutic Use of the Antimicrobial Peptide PNR20 to Resolve Disseminated Candidiasis in a Murine Model. J Fungi (Basel) 2023; 9:1149. [PMID: 38132750 PMCID: PMC10744665 DOI: 10.3390/jof9121149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Invasive fungal infections (IFIs) caused by Candida species are an emerging threat globally, given that patients at-risk and antifungal resistance are increasing. Antimicrobial peptides (AMPs) have shown good therapeutic capacity against different multidrug-resistant (MDR) microorganisms. This study evaluated the activity of the synthetic peptide, PNR20, against Candida albicans ATCC 10231 and a MDR Colombian clinical isolate of Candida auris. Perturbation of yeast cell surface was evaluated using scanning electron microscopy. Cell viability of Vero cells was determined to assess peptide toxicity. Additionally, survival, fungal burden, and histopathology of BALB/c mice infected intravenously with each Candida species and treated with PNR20 were analyzed. Morphological alterations were identified in both species, demonstrating the antifungal effect of PNR20. In vitro, Vero cells' viability was not affected by PNR20. All mice infected with either C. albicans or C. auris and treated with PNR20 survived and had a significant reduction in the fungal burden in the kidney compared to the control group. The histopathological analysis in mice infected and treated with PNR20 showed more preserved tissues, without the presence of yeast, compared to the control groups. This work shows that the utilization of PNR20 is a promising therapeutic alternative against disseminated candidiasis.
Collapse
Affiliation(s)
- Jeisson Micelly-Moreno
- Faculty of Health Sciences, Universidad Colegio Mayor de Cundinamarca, Bogota 110311, Colombia;
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad de Rosario, Bogota 111221, Colombia; (C.F.); (B.L.G.)
| | - Adriana Barreto-Santamaría
- Receptor-Ligand Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogota 111321, Colombia;
| | - Gabriela Arévalo-Pinzón
- Microbiology Department, Faculty of Sciences, Pontificia Universidad Javeriana, Carrera 7 #40–62, Bogota 110231, Colombia;
| | - Carolina Firacative
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad de Rosario, Bogota 111221, Colombia; (C.F.); (B.L.G.)
| | - Beatriz L. Gómez
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad de Rosario, Bogota 111221, Colombia; (C.F.); (B.L.G.)
| | - Patricia Escandón
- Microbiology Group, Instituto Nacional de Salud, Bogota 111321, Colombia;
| | - Manuel A. Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogota 111321, Colombia;
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Bogota 111321, Colombia
| | - Julián E. Muñoz
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad de Rosario, Bogota 111221, Colombia; (C.F.); (B.L.G.)
- Public Health Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogota 111221, Colombia
| |
Collapse
|
5
|
Maani-Shirazi R, Yazdanpanah S, Yazdani M, Zomorodian K, Ayatollah-Mosavi A. Species identification, antifungal susceptibility patterns, and vitamin D3 level in women with vaginal candidiasis: a case-control study in Iran. Women Health 2023; 63:727-735. [PMID: 37771196 DOI: 10.1080/03630242.2023.2262623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023]
Abstract
Vulvovaginal candidiasis (VVC) is a fungal infection that is a global issue of women's health due to its association with morbidity, infertility, and economic costs. This study aimed to compare the vitamin D3 levels between women with VVC to healthy controls and determine the species distribution and susceptibility pattern of isolates. Species identification was performed using sequencing of the ITS-rDNA regions and amplification of the HWP1 gene. Antifungal susceptibility testing was determined by the disk diffusion method. Moreover, serum vitamin D3 levels were measured using a commercial ELISA (enzyme-linked immunosorbent assay) kit. Our results indicated that vitamin D3 level in women with VVC was lower than those of healthy women (p-value < .001). Candida albicans complex (62.8 percent) was the most common species, and most species were susceptible to fluconazole, itraconazole, ketoconazole, and nystatin. In conclusion, our study revealed a potential link between vitamin D3 deficiency and VVC in women. Although our findings showed significantly lower vitamin D3 levels in women with VVC, further research is needed to establish a definitive causative relationship between vitamin D3 deficiency and VVC. Nonetheless, our study highlights the potential importance of maintaining adequate levels of vitamin D3 and the need for further exploration in this area.
Collapse
Affiliation(s)
| | - Somayeh Yazdanpanah
- Department of Medical Mycology and Parasitology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Yazdani
- Department of Obstetrics and Gynecology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamiar Zomorodian
- Department of Medical Mycology and Parasitology, Shiraz University of Medical Sciences, Shiraz, Iran
- Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
6
|
Wang Y, Wan X, Zhao L, Jin P, Zhang J, Zhou X, Ye N, Wang X, Pan Y, Xu L. Clonal aggregation of fluconazole-resistant Candida tropicalis isolated from sterile body fluid specimens from patients in Hefei, China. Med Mycol 2023; 61:myad097. [PMID: 37777835 DOI: 10.1093/mmy/myad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/28/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023] Open
Abstract
Candida tropicalis, a human conditionally pathogenic yeast, is distributed globally, especially in Asia-Pacific. The increasing morbidity and azole resistance of C. tropicalis have made clinical treatment difficult. The correlation between clonality and antifungal susceptibility of clinical C. tropicalis isolates has been reported. To study the putative correlation in C. tropicalis isolated from normally sterile body fluid specimens and explore the distinct clonal complex (CC) in Hefei, 256 clinical C. tropicalis isolates were collected from four teaching hospitals during 2016-2019, of which 30 were fluconazole-resistant (FR). Genetic profiles of 63 isolates, including 30 FR isolates and 33 fluconazole-susceptible (FS) isolates, were characterized using multilocus sequence typing (MLST). Phylogenetic analysis of the data was conducted using UPGMA (unweighted pair group method with arithmetic averages) and the minimum spanning tree algorithm. MLST clonal complexes (CCs) were analyzed using the goeBURST package. Among 35 differentiated diploid sequence types (DSTs), 16 DSTs and 1 genotype were identified as novel. A total of 35 DSTs were assigned to five major CCs based on goeBURST analysis. CC1 (containing DST376, 505, 507, 1221, 1222, 1223, 1226, and 1229) accounted for 86.7% (26/30) of the FR isolates. However, the genetic relationships among the FS isolates were relatively decentralized. The local FR CC1 belongs to a large fluconazole non-susceptible CC8 in global isolates, of which the putative founder genotype was DST225. The putative correlation between MLST types and antifungal susceptibility of clinical C. tropicalis isolates in Hefei showed that DSTs are closely related to FR clones.
Collapse
Affiliation(s)
- Ying Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Hefei, China
| | - Xin Wan
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Hefei, China
| | - Li Zhao
- Department of Urology, Anhui Zhongke Gengjiu Hospital, Hefei, China
| | - Peipei Jin
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Hefei, China
| | - Ju Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Hefei, China
| | - Xin Zhou
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Hefei, China
| | - Naifang Ye
- Department of Clinical Laboratory Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Xiaowei Wang
- Department of Clinical Laboratory Medicine, The First Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Yaping Pan
- Department of Clinical Laboratory Medicine, High Tech Branch of The First Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Liangfei Xu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Hefei, China
| |
Collapse
|
7
|
Hassoun N, Kassem II, Hamze M, El Tom J, Papon N, Osman M. Antifungal Use and Resistance in a Lower-Middle-Income Country: The Case of Lebanon. Antibiotics (Basel) 2023; 12:1413. [PMID: 37760710 PMCID: PMC10525119 DOI: 10.3390/antibiotics12091413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Antimicrobial resistance is a serious threat, particularly in low- and middle-income countries (LMICs). Antifungal resistance is often underestimated in both healthcare and non-clinical settings. In LMICs, it is believed that the inappropriate use of antifungals, limited surveillance systems, and low diagnostic capacities are significant drivers of resistance. Like other LMICs, Lebanon lacks antifungal use and resistance surveillance programs, and the impact of antifungal resistance in the country remains unclear, especially during the unfolding economic crisis that has severely affected medical care and access to safe food and water. Interestingly, the widespread use of antifungals in medicine and agriculture has raised concerns about the development of antifungal resistance in Lebanon. In this light, we aimed to survey available antifungal drugs in the country and evaluate susceptibility patterns of prevalent fungal species to guide empiric treatments and develop antifungal stewardship programs in Lebanon. We noted that the economic crisis resulted in significant increases in antifungal drug prices. Additionally, a comprehensive literature search across PubMed, ScienceDirect, and Google Scholar databases identified 15 studies on fungal infections and antifungal resistance conducted from 1998 to 2023 in Lebanon. While data on antifungal resistance are limited, 87% of available studies in Lebanon focused on candidiasis, while the remaining 13% were on aspergillosis. Overall, we observed a marked antimicrobial resistance among Candida and Aspergillus species. Additionally, incidences of Candida auris infections have increased in Lebanese hospitals during the COVID-19 pandemic, with a uniform resistance to fluconazole and amphotericin-B. Taken together, a One Health approach, reliable diagnostics, and prudent antifungal use are required to control the spread of resistant fungal pathogens in healthcare and agricultural settings.
Collapse
Affiliation(s)
- Nesrine Hassoun
- Faculty of Public Health, Lebanese University, Tripoli 1300, Lebanon;
| | - Issmat I. Kassem
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA;
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli 1300, Lebanon;
| | - Jad El Tom
- School of Pharmacy, Lebanese American University, Byblos 1401, Lebanon;
| | - Nicolas Papon
- University of Angers, University of Brest, IRF, SFR ICAT, F-49000 Angers, France;
| | - Marwan Osman
- Cornell Atkinson Center for Sustainability, Cornell University, Ithaca, NY 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
8
|
Ganeshkumar A, Gonçale JC, Rajaram R, Junqueira JC. Anti-Candidal Marine Natural Products: A Review. J Fungi (Basel) 2023; 9:800. [PMID: 37623571 PMCID: PMC10455659 DOI: 10.3390/jof9080800] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Candida spp. are common opportunistic microorganisms in the human body and can cause mucosal, cutaneous, and systemic infections, mainly in individuals with weakened immune systems. Candida albicans is the most isolated and pathogenic species; however, multi-drug-resistant yeasts like Candida auris have recently been found in many different regions of the world. The increasing development of resistance to common antifungals by Candida species limits the therapeutic options. In light of this, the present review attempts to discuss the significance of marine natural products in controlling the proliferation and metabolism of C. albicans and non-albicans species. Natural compounds produced by sponges, algae, sea cucumber, bacteria, fungi, and other marine organisms have been the subject of numerous studies since the 1980s, with the discovery of several products with different chemical frameworks that can inhibit Candida spp., including antifungal drug-resistant strains. Sponges fall under the topmost category when compared to all other organisms investigated. Terpenoids, sterols, and alkaloids from this group exhibit a wide array of inhibitory activity against different Candida species. Especially, hippolide J, a pair of enantiomeric sesterterpenoids isolated from the marine sponge Hippospongia lachne, exhibited strong activity against Candida albicans, Candida parapsilosis, and Candida glabrata. In addition, a comprehensive analysis was performed to unveil the mechanisms of action and synergistic activity of marine products with conventional antifungals. In general, the results of this review show that the majority of chemicals derived from the marine environment are able to control particular functions of microorganisms belonging to the Candida genus, which can provide insights into designing new anti-candidal therapies.
Collapse
Affiliation(s)
- Arumugam Ganeshkumar
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University (UNESP), Sao Jose dos Campos 12245-000, Brazil;
- Department of Materials Physics, Saveetha School of Engineering, Saveetha Nagar, Thandalam, Chennai 602105, India
| | - Juliana Caparroz Gonçale
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University (UNESP), Sao Jose dos Campos 12245-000, Brazil;
| | - Rajendran Rajaram
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620024, India;
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University (UNESP), Sao Jose dos Campos 12245-000, Brazil;
| |
Collapse
|
9
|
Morovati H, Kord M, Ahmadikia K, Eslami S, Hemmatzadeh M, Kurdestani KM, Khademi M, Darabian S. A Comprehensive Review of Identification Methods for Pathogenic Yeasts: Challenges and Approaches. Adv Biomed Res 2023; 12:187. [PMID: 37694259 PMCID: PMC10492613 DOI: 10.4103/abr.abr_375_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 09/12/2023] Open
Abstract
Given the increasing incidence of yeast infections and the presence of drug-resistant isolates, accurate identification of the pathogenic yeasts is essential for the management of yeast infections. In this review, we tried to introduce the routine and novel techniques applied for yeast identification. Laboratory identification methods of pathogenic yeast are classified into three categories; I. conventional methods, including microscopical and culture-base methods II. biochemical/physiological-processes methods III. molecular methods. While conventional and biochemical methods require more precautions and are not specific in some cases, molecular diagnostic methods are the optimum tools for diagnosing pathogenic yeasts in a short time with high accuracy and specificity, and having various methods that cover different purposes, and affordable costs for researchers. Nucleotide sequencing is a reference or gold standard for identifying pathogenic yeasts. Since it is an expensive method, it is not widely used in developing countries. However, novel identification techniques are constantly updated, and we recommend further studies in this field. The results of this study will guide researchers in finding more accurate diagnostic method(s) for their studies in a short period of time.
Collapse
Affiliation(s)
- Hamid Morovati
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Kord
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kazem Ahmadikia
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Eslami
- Central Research Laboratory, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoumeh Hemmatzadeh
- Department of Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kian M. Kurdestani
- Department of Microbiology, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | | | - Sima Darabian
- Department of Medical Parasitology and Mycology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
10
|
Amran AI, Lim SJ, Muhd Noor ND, Salleh AB, Oslan SN. Enolase in Meyerozyma guilliermondii strain SO: Sequential and structural insights of MgEno4581 as a putative virulence factor and host-fungal interactions through comprehensive in silico approaches. Microb Pathog 2023; 176:106025. [PMID: 36754101 DOI: 10.1016/j.micpath.2023.106025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/31/2022] [Accepted: 02/04/2023] [Indexed: 02/08/2023]
Abstract
Meyerozyma guilliermondii is a rare opportunistic fungal pathogen that causes deadly invasive candidiasis in human. M. guilliermondii strain SO is a local yeast isolate that possesses huge industrial interests but also pathogenic towards zebrafish embryos. Enolases that bind to human extracellular matrix (ECM) proteins are among the fungal virulence factors. To understand its pathogenicity mechanism down to molecular level, especially in the rare M. guilliermondii, this study aimed to identify and characterize the potentially virulence-associated enolase in M. guilliermondii strain SO using bioinformatics approaches. Profile Hidden-Markov model was implemented to identify enolase-related sequences in the fungal proteome. Sequence analysis deciphered only one (MgEno4581) out of nine sequences exhibited potent virulence traits observed similarly in the pathogenic Candida albicans. MgEno4581 structure that was predicted via SWISS-MODEL using C. albicans enolase (CaEno1; PDB ID: 7vrd) as the homology modeling template portrayed a highly identical motif with CaEno1 that facilitates ECM proteins binding. Amino acid substitutions (D234K, K235A, Y238H, K239D, G243K, V248C and Y254F) in ECM-binding motif of Saccharomyces cerevisiae enolase (ScEno) compared to MgEno4581 and CaEno1 caused changes in motif's surface charges. Protein-protein docking indicated F253 in ScEno only interacted hydrophobically with human plasminogen (HPG). Hydrogen linkages were observed for both MgEno4581 and CaEno1, suggesting a stronger interaction with HPG in the hydrophilic host microenvironments. Thus, our in silico characterizations on MgEno4581 provided new perspectives on its potential roles in candidiasis (fungal-host interactions) caused by M. guilliermondii, especially M. guilliermondii strain SO on zebrafish embryos that mimic the immunocompromised individuals as previously evident.
Collapse
Affiliation(s)
- Alia Iwani Amran
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Si Jie Lim
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Noor Dina Muhd Noor
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Siti Nurbaya Oslan
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
11
|
Khan P, Datta A, Basu M, Chatterjee A, Banerjee B, Mitra AK. Lantibiotics in antifungal therapy: a futuristic approach. LANTIBIOTICS AS ALTERNATIVE THERAPEUTICS 2023:205-220. [DOI: 10.1016/b978-0-323-99141-4.00018-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Akwongo B, Katuura E, Nsubuga AM, Tugume P, Andama M, Anywar G, Namaganda M, Asimwe S, Kakudidi EK. Ethnobotanical study of medicinal plants utilized in the management of candidiasis in Northern Uganda. Trop Med Health 2022; 50:78. [PMID: 36242066 PMCID: PMC9569084 DOI: 10.1186/s41182-022-00471-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/09/2022] [Indexed: 11/23/2022] Open
Abstract
Background The emergence of resistant Candida species to antifungal drugs has led to resurgence in herbal usage globally. However, little is known about anti-candida plants. This study explored ethnomedicinal plants as treatment option for candidiasis in Pader, Northern Uganda.
Methods A cross-sectional survey of potential anti-candida plants was conducted using questionnaires, focus group discussions and field observations in March 2022. Sixty-three respondents were selected by snowball technique. The frequencies of respondents/responses were analyzed, associations of respondents’ socio-demographics with indigenous knowledge of herbal usage established by Chi-square (χ2) test using SPSS 27. Informant Consensus Factor was computed to establish level of agreement on herbal usage, and thematic analysis done for focus group discussions. Results Candidiasis is still common and troublesome in Pader. All herbalist had equal chances of receiving and treating candidiasis patients irrespective of herbalist’s gender, age, education level, occupation, marital status and religion (p > 0.05). About 39.7% of herbalists received candidiasis patients weekly (p < 0.01). All herbalists had knowledge on candidiasis. Death (56.8%) and discomfort (36.8%) were the major health risks of oropharyngeal candidiasis (OPC) and vulvovaginal candidiasis (VVC), respectively. A total of 32 potential anti-candida plant species in 18 families were identified. Families of Fabaceae (9 species) and Asteraceae (5 species) had most plant species. Trees (50.0%) and herbs (43.8%) were the dominant life forms. The commonest plants by frequency of mention were: Momordica foetida (26), Sansevieria dawei (20), Khaya anthotheca (15), Piliostigma thonningii (10), Clerodendrum umbellatum (7), Hallea rubrostipulata (5) and unidentified plant, ‘Agaba/daa layata’ in Acholi dialect (5). Plant parts mainly used were roots (56.3%) and stem barks (15.6%) harvested majorly by cutting (46.9%) and uprooting (12.5%). Most respondents (females, 95%) preferred herbal to western medication (p < 0.01) due to its perceived effectiveness. There was high consensus among herbalists on herbal remedies for OPC and VVC (FIC = 0.9). Conclusions Pader communities have diverse indigenous knowledge on candidiasis and prefer herbal medicines to orthodox treatment for candidiasis. However, the herbalists use unsustainable harvesting techniques like uprooting whole plants and cutting main roots. Hence, the need to document such indigenous knowledge before being lost for community usage and scientific validation.
Collapse
Affiliation(s)
- Betty Akwongo
- Department of Plant Science, Microbiology and Biotechnology, School of Biosciences, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda. .,Department of Biology, Faculty of Science, Muni University, P.O. Box 725, Arua, Uganda.
| | - Esther Katuura
- Department of Plant Science, Microbiology and Biotechnology, School of Biosciences, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Anthony M Nsubuga
- Department of Plant Science, Microbiology and Biotechnology, School of Biosciences, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Patience Tugume
- Department of Plant Science, Microbiology and Biotechnology, School of Biosciences, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Morgan Andama
- Department of Biology, Faculty of Science, Muni University, P.O. Box 725, Arua, Uganda
| | - Godwin Anywar
- Department of Plant Science, Microbiology and Biotechnology, School of Biosciences, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Mary Namaganda
- Department of Plant Science, Microbiology and Biotechnology, School of Biosciences, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Savina Asimwe
- Department of Plant Science, Microbiology and Biotechnology, School of Biosciences, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| | - Esezah Kyomugisha Kakudidi
- Department of Plant Science, Microbiology and Biotechnology, School of Biosciences, College of Natural Sciences, Makerere University, P. O. Box 7062, Kampala, Uganda
| |
Collapse
|
13
|
Blass BE, Puri S, Sharma R, Day BM. Antifungal properties of (2S, 4R)-Ketoconazole sulfonamide analogs. FRONTIERS IN DRUG DISCOVERY 2022; 2:1000827. [PMID: 37214226 PMCID: PMC10198183 DOI: 10.3389/fddsv.2022.1000827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Invasive candidiasis remains a significant health concern, as it is associated with a high mortality risk. In addition, the risk of infection is significantly elevated in immunocompromised patients such as those with HIV, cancer, or those taking imcmunosuppressive drugs as a result of organ transplantation. The majority of these cases are caused by C. albicans, and C. glabrata is the second most common cause. These infections are typically treated using approved antifungal agents, but the rise of drug-resistant fungi is a serious concern. As part of our on-going effort to identify novel antifungal agents, we have studied the in vitro antifungal properties of a series of sulfonamide analogs of (2S, 4R)-Ketoconazole. Herein we report on the in vitro activity against the key fungal pathogens C. albicans, and C. glabrata.
Collapse
Affiliation(s)
- Benjamin E. Blass
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, United States
| | - Sumant Puri
- Oral Microbiome Research Laboratory, Kornberg School of Dentistry, Temple University, Philadelphia, PA, United Stated
| | - Rishabh Sharma
- Oral Microbiome Research Laboratory, Kornberg School of Dentistry, Temple University, Philadelphia, PA, United Stated
| | - Brian M. Day
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA, United States
| |
Collapse
|
14
|
Shahi G, Kumar M, Khandelwal NK, Banerjee A, Sarkar P, Kumari S, Esquivel BD, Chauhan N, Chattopadhyay A, White TC, Gaur NA, Singh A, Prasad R. Inositol Phosphoryl Transferase, Ipt1, Is a Critical Determinant of Azole Resistance and Virulence Phenotypes in Candida glabrata. J Fungi (Basel) 2022; 8:jof8070651. [PMID: 35887407 PMCID: PMC9322651 DOI: 10.3390/jof8070651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 12/10/2022] Open
Abstract
In this study, we have specifically blocked a key step of sphingolipid (SL) biosynthesis in Candida glabrata by disruption of the orthologs of ScIpt1 and ScSkn1. Based on their close homology with S. cerevisiae counterparts, the proteins are predicted to catalyze the addition of a phosphorylinositol group onto mannosyl inositolphosphoryl ceramide (MIPC) to form mannosyl diinositolphosphoryl ceramide (M(IP)2C), which accounts for the majority of complex SL structures in S. cerevisiae membranes. High throughput lipidome analysis confirmed the accumulation of MIPC structures in ΔCgipt1 and ΔCgskn1 cells, albeit to lesser extent in the latter. Noticeably, ΔCgipt1 cells showed an increased susceptibility to azoles; however, ΔCgskn1 cells showed no significant changes in the drug susceptibility profiles. Interestingly, the azole susceptible phenotype of ΔCgipt1 cells seems to be independent of the ergosterol content. ΔCgipt1 cells displayed altered lipid homeostasis, increased membrane fluidity as well as high diffusion of radiolabeled fluconazole (3H-FLC), which could together influence the azole susceptibility of C. glabrata. Furthermore, in vivo experiments also confirmed compromised virulence of the ΔCgipt1 strain. Contrarily, specific functions of CgSkn1 remain unclear.
Collapse
Affiliation(s)
- Garima Shahi
- Amity Institute of Biotechnology and Integrative Science and Health, Amity University Gurgaon, Gurgaon 122412, India; (G.S.); (M.K.); (A.B.)
| | - Mohit Kumar
- Amity Institute of Biotechnology and Integrative Science and Health, Amity University Gurgaon, Gurgaon 122412, India; (G.S.); (M.K.); (A.B.)
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India; (S.K.); (N.A.G.)
| | | | - Atanu Banerjee
- Amity Institute of Biotechnology and Integrative Science and Health, Amity University Gurgaon, Gurgaon 122412, India; (G.S.); (M.K.); (A.B.)
| | - Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India; (P.S.); (A.C.)
| | - Sonam Kumari
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India; (S.K.); (N.A.G.)
| | - Brooke D. Esquivel
- School of Biological and Chemical Sciences, University of Missouri at Kansas City, Kansas City, MO 64110, USA; (B.D.E.); (T.C.W.)
| | - Neeraj Chauhan
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA;
| | - Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India; (P.S.); (A.C.)
| | - Theodore C. White
- School of Biological and Chemical Sciences, University of Missouri at Kansas City, Kansas City, MO 64110, USA; (B.D.E.); (T.C.W.)
| | - Naseem A. Gaur
- Yeast Biofuel Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India; (S.K.); (N.A.G.)
| | - Ashutosh Singh
- Department of Biochemistry, University of Lucknow, Lucknow 226007, India
- Correspondence: (A.S.); (R.P.)
| | - Rajendra Prasad
- Amity Institute of Biotechnology and Integrative Science and Health, Amity University Gurgaon, Gurgaon 122412, India; (G.S.); (M.K.); (A.B.)
- Correspondence: (A.S.); (R.P.)
| |
Collapse
|
15
|
Wen SR, Yang ZH, Dong TX, Li YY, Cao YK, Kuang YQ, Li HB. Deep Fungal Infections Among General Hospital Inpatients in Southwestern China: A 5-Year Retrospective Study. Front Public Health 2022; 10:842434. [PMID: 35419337 PMCID: PMC8995797 DOI: 10.3389/fpubh.2022.842434] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Background Deep fungal infection is a type of life-threatening opportunistic infection. Its incidence has been increasing in recent years. This infection can affect the prognosis of patients, prolong hospital stays and raise costs for patients and their families. Objective We aimed to understand the current situation of deep fungal infections in the First Affiliated Hospital of Kunming Medical University and to provide a basis for the clinical diagnosis and treatment of deep fungal infections. Methods This was a retrospective analysis of 528,743 cases in the hospital from 2015 to 2019, including the epidemiological characteristics, treatment and prognosis of deep fungal infections. Results A total of 274 cases (0.05%) with deep fungal infections were identified, accounting for 0.05% of the total number of hospitalizations. The incidence of deep fungal infections in the hospital showed an increasing trend from 2015 to 2019. The most commonly infected site was the respiratory tract (93.07%). Among patients with deep fungal infections, 266 specimens were positive for fungal culture, by which 161 cultured Candida albicans (C. albicans), accounting for 60.53%, the main pathogen causing deep fungal infection. From 2015 to 2019, the percentage of C. albicans cases showed a downward trend, while that of non-C. albicans showed an opposite trend. Antibiotics were the most common predisposing factor for deep fungal infections (97.45%). Among the underlying diseases of patients with deep fungal infections, infectious diseases (59.49%) were the most common. Those with underlying diseases such as renal insufficiency and neurological diseases had a worse prognosis. Indwelling catheters, nervous system disease and tumors were risk factors for a poor prognosis. Conclusions We report for the first time the epidemiological data of deep fungal infections in a general hospital in southwestern China from 2015 to 2019. In the past 5 years, the number of patients with deep fungal infections in the First Affiliated Hospital of Kunming Medical University has been increasing. Although the clinical data are limited, these results can provide references for the diagnosis and treatment of deep fungal infections.
Collapse
Affiliation(s)
- Shu-Ran Wen
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zheng-Hui Yang
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Tian-Xiang Dong
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yu-Ye Li
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, China.,NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China
| | - Ying-Kui Cao
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yi-Qun Kuang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hong-Bin Li
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
16
|
Cid-Chevecich C, Müller-Sepúlveda A, Jara JA, López-Muñoz R, Santander R, Budini M, Escobar A, Quijada R, Criollo A, Díaz-Dosque M, Molina-Berríos A. Origanum vulgare L. essential oil inhibits virulence patterns of Candida spp. and potentiates the effects of fluconazole and nystatin in vitro. BMC Complement Med Ther 2022; 22:39. [PMID: 35139827 PMCID: PMC8827202 DOI: 10.1186/s12906-022-03518-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/17/2022] [Indexed: 12/19/2022] Open
Abstract
Background Recurrence and resistance of Candida spp. infections is associated with the ability of these microorganisms to present several virulence patterns such as morphogenesis, adhesion, and biofilm formation. In the search for agents with antivirulence activity, essential oils could represent a strategy to act against biofilms and to potentiate antifungal drugs. Objective To evaluate the antivirulence effect of Origanum vulgare L. essential oil (O-EO) against Candida spp. and to potentiate the effect of fluconazole and nystatin. Methods The effect of O-EO was evaluated on ATCC reference strains of C. albicans and non-albicans Candida species. Minimum inhibitory concentration (MIC) was determined through broth microdilution assay. Adhesion to microplates was determined by crystal violet (CV) assay. An adapted scratch assay in 24-well was used to determine the effect of essential oil on biofilms proliferation. Viability of biofilms was evaluated by MTT reduction assay and through a checkerboard assay we determined if O-EO could act synergistically with fluconazole and nystatin. Results MIC for C. albicans ATCC-90029 and ATCC-10231 was 0.01 mg/L and 0.97 mg/L, respectively. For non-albicans Candida strains MIC values were 2.6 mg/L for C. dubliniensis ATCC-CD36 and 5.3 mg/L for C. krusei ATCC-6258. By using these concentrations, O-EO inhibited morphogenesis, adhesion, and proliferation at least by 50% for the strains assayed. In formed biofilms O-EO decreased viability in ATCC 90029 and ATCC 10231 strains (IC50 7.4 and 2.8 mg/L respectively). Finally, we show that O-EO interacted synergistically with fluconazole and nystatin. Conclusions This study demonstrate that O-EO could be considered to improve the antifungal treatment against Candida spp. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03518-z.
Collapse
Affiliation(s)
- Camila Cid-Chevecich
- Laboratory of Pharmacology, Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, University of Chile, Olivos 943, Independencia, Santiago, Chile
| | - Andrea Müller-Sepúlveda
- Institute of Agrifood, Animals and Environmental Sciences, Universidad de O'Higgins, San Fernando, Chile
| | - José Antonio Jara
- Laboratory of Pharmacology, Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, University of Chile, Olivos 943, Independencia, Santiago, Chile
| | - Rodrigo López-Muñoz
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Rocío Santander
- Department of Environmental Sciences, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - Mauricio Budini
- Laboratory of Pharmacology, Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, University of Chile, Olivos 943, Independencia, Santiago, Chile
| | - Alejandro Escobar
- Laboratory of Pharmacology, Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, University of Chile, Olivos 943, Independencia, Santiago, Chile
| | - Raúl Quijada
- Faculty of Physical and Mathematical Sciences, Universidad de Chile, Santiago, Chile
| | - Alfredo Criollo
- Laboratory of Pharmacology, Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, University of Chile, Olivos 943, Independencia, Santiago, Chile
| | - Mario Díaz-Dosque
- Laboratory of Pharmacology, Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, University of Chile, Olivos 943, Independencia, Santiago, Chile.
| | - Alfredo Molina-Berríos
- Laboratory of Pharmacology, Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, University of Chile, Olivos 943, Independencia, Santiago, Chile.
| |
Collapse
|
17
|
Hosseini Bafghi M, Zarrinfar H, Darroudi M, Zargar M, Nazari R. Green synthesis of selenium nanoparticles and evaluate their effect on the expression of ERG3, ERG11, and FKS1 antifungal resistance genes in Candida albicans and Candida glabrata. Lett Appl Microbiol 2022; 74:809-819. [PMID: 35138666 DOI: 10.1111/lam.13667] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 11/28/2022]
Abstract
Drug resistance in Candida species has been considerably increased in the last decades. Given the opposition to antifungal agents, toxicity, and interactions of the antimicrobial drugs, identifying new antifungal agents seems essential. This study assessed the antifungal effects of nanoparticles (NPs) on the standard strains of Candida albicans and Candida glabrata and determined the expression genes, including ERG3, ERG11, and FKS1. Selenium nanoparticles (Se-NPs) were biosynthesized with a standard strain of C. albicans and approved by several methods including, UV-Vis spectrophotometer, XRD technique, FTIR analysis, FESEM microscopy, and EDX diagram. The antifungal susceptibility testing performed the minimum inhibitory concentrations (MICs) using the CLSI M27-A3 and M27-S4 broth microdilution method. The expression of the desired genes was examined by the real-time PCR assay between untreated and treated by antifungal drugs and Se-NPs. The MICs of itraconazole, amphotericin B, and anidulafungin against C. albicans and C. glabrata were 64, 16, and 4 µg/ml. In comparison, reduced the MIC values for samples treated with Se-NPs to 1 and 0.5 µg/ml. The results obtained from real-time PCR and analysis of the ∆∆Cq values showed that the expression of ERG3, ERG11, and FKS1 genes was significantly down-regulated in Se-NPs concentrations (P<0.05). This study's evidence implies biosafety Se-NPs have favorable effects on the reducing expression of ERG3, ERG11, and FKS1 antifungal resistance genes in C. albicans and C. glabrata.
Collapse
Affiliation(s)
- Mahdi Hosseini Bafghi
- Department of Laboratory Sciences, Faculty of Paramedical, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Microbiology, Faculty of Science, Qom Branch, Islamic Azad University, Qom, Iran
| | - Hossein Zarrinfar
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Zargar
- Department of Microbiology, Faculty of Science, Qom Branch, Islamic Azad University, Qom, Iran
| | - Razieh Nazari
- Department of Microbiology, Faculty of Science, Qom Branch, Islamic Azad University, Qom, Iran
| |
Collapse
|
18
|
Yaghoobi N, Khozeimeh F, Dehghan P, Maheronnaghsh M, Bazazzadeh M, Noorbakhsh S. Effect of nystatin and licorice on yeasts isolated from the oral lesions of patients with cancer under chemotherapy ( in vitro study). Dent Res J (Isfahan) 2022. [DOI: 10.4103/1735-3327.353830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
19
|
Badaró MM, Bueno FL, Makrakis LR, Araújo CB, Oliveira VDC, Macedo AP, Paranhos HDFO, Watanabe E, Silva-Lovato CH. Action of disinfectant solutions on adaptive capacity and virulence factors of the Candida spp. biofilms formed on acrylic resin. J Appl Oral Sci 2021; 29:e20210024. [PMID: 34495107 PMCID: PMC8425898 DOI: 10.1590/1678-7757-2021-0024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Understanding the behavior of Candida spp. when exposed to denture disinfectants is essential to optimize their effectiveness. Changes in the virulence factors may cause increased resistance of Candida spp. to disinfectant agents. OBJECTIVE To evaluate the microbial load, cellular metabolism, hydrolytic enzyme production, hyphae formation, live cell and biofilm quantification of Candida albicans, Candida tropicalis and Candida glabrata after exposure to disinfectant solutions. METHODOLOGY Simple biofilms were grown on heat-polymerized acrylic resin specimens, and divided into groups according to solutions/strains: distilled water (control); 0.25% sodium hypochlorite (NaOCl 0.25% ); 10% Ricinus communis (RC 10%); and 0.5% Chloramine T (CT 0.5%). The virulence factors were evaluated using the CFU count (microbial load), XTT method (cell metabolism), epifluorescence microscopy (biofilm removal and live or dead cells adhered), protease and phospholipase production and hyphae formation. Data were analyzed (α=0.05) by one-way ANOVA/ Tukey post hoc test, Kruskal-Wallis test and Wilcoxon test. RESULTS NaOCl 0.25% was the most effective solution. CT 0.5% reduced the number of CFUs more than RC 10% and the control. RC 10% was effective only against C. glabrata. RC 10% and CT 0.5% decreased the cellular metabolism of C. albicans and C. glabrata. Enzyme production was not affected. Hyphal growth in the RC 10% and CT 0.5% groups was similar to that of the control. CT 0.5% was better than RC 10% against C. albicans and C. tropicalis when measuring the total amount of biofilm and number of living cells. For C. glabrata, CT 0.5% was equal to RC 10% in the maintenance of living cells; RC 10% was superior for biofilm removal. CONCLUSIONS The CT 0.5% achieved better results than those of Ricinus communis at 10%, favoring the creation of specific products for dentures. Adjustments in the formulations of RC 10% are necessary due to efficacy against C. glabrata. The NaOCl 0.25% is the most effective and could be suitable for use as a positive control.
Collapse
Affiliation(s)
- Mauricio Malheiros Badaró
- Universidade Federal de Santa Catarina (UFSC), Departamento de Odontologia, Florianópolis, SC, Brasil
| | - Frank Lucarini Bueno
- Universidade José do Rosário Vellano (UNIFENAS), Departamento de Odontologia, Alfenas, MG, Brasil
| | - Lais Ranieri Makrakis
- Universidade de São Paulo (USP), Faculdade de Odontologia de Ribeirão Preto, Departamento de Materiais Dentários e Prótese, Ribeirão Preto, SP, Brasil
| | - Camila Borba Araújo
- Universidade de São Paulo (USP), Faculdade de Odontologia de Ribeirão Preto, Departamento de Materiais Dentários e Prótese, Ribeirão Preto, SP, Brasil
| | - Viviane de Cássia Oliveira
- Universidade de São Paulo (USP), Faculdade de Odontologia de Ribeirão Preto, Departamento de Materiais Dentários e Prótese, Ribeirão Preto, SP, Brasil
| | - Ana Paula Macedo
- Universidade de São Paulo (USP), Faculdade de Odontologia de Ribeirão Preto, Departamento de Materiais Dentários e Prótese, Ribeirão Preto, SP, Brasil
| | - Helena de Freitas Oliveira Paranhos
- Universidade de São Paulo (USP), Faculdade de Odontologia de Ribeirão Preto, Departamento de Materiais Dentários e Prótese, Ribeirão Preto, SP, Brasil
| | - Evandro Watanabe
- Universidade de São Paulo (USP), Faculdade de Odontologia de Ribeirão Preto, Departamento de Odontologia Restauradora, Ribeirão Preto, SP, Brasil
| | - Cláudia Helena Silva-Lovato
- Universidade de São Paulo (USP), Faculdade de Odontologia de Ribeirão Preto, Departamento de Materiais Dentários e Prótese, Ribeirão Preto, SP, Brasil
| |
Collapse
|
20
|
Analysis of Volatile Molecules Present in the Secretome of the Fungal Pathogen Candida glabrata. Molecules 2021; 26:molecules26133881. [PMID: 34202061 PMCID: PMC8270331 DOI: 10.3390/molecules26133881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 01/04/2023] Open
Abstract
Candida albicans, Candida glabrata, Candida parapsilosis and Candida tropicalis are the four most common human fungal pathogens isolated that can cause superficial and invasive infections. It has been shown that specific metabolites present in the secretomes of these fungal pathogens are important for their virulence. C. glabrata is the second most common isolate world-wide and has an innate resistance to azoles, xenobiotics and oxidative stress that allows this fungal pathogen to evade the immune response and persist within the host. Here, we analyzed and compared the C. glabrata secretome with those of C. albicans, C. parapsilosis, C. tropicalis and the non-pathogenic yeast Saccharomyces cerevisiae. In C. glabrata, we identified a different number of metabolites depending on the growth media: 12 in synthetic complete media (SC), 27 in SC-glutamic acid and 23 in rich media (YPD). C. glabrata specific metabolites are 1-dodecene (0.09 ± 0.11%), 2,5-dimethylundecane (1.01 ± 0.19%), 3,7-dimethyldecane (0.14 ± 0.15%), and octadecane (0.4 ± 0.53%). The metabolites that are shared with C. albicans, C. glabrata, C. parapsilosis, C. tropicalis and S. cerevisiae are phenylethanol, which is synthesized from phenylalanine, and eicosane and nonanoic acid (identified as trimethylsilyl ester), which are synthesized from fatty acid metabolism. Phenylethanol is the most abundant metabolite in all fungi tested: 26.36 ± 17.42% (C. glabrata), 46.77 ± 15.58% (C. albicans), 49.76 ± 18.43% (C. tropicalis), 5.72 ± 0.66% (C. parapsilosis.) and 44.58 ± 27.91% (S. cerevisiae). The analysis of C. glabrata's secretome will allow us to further our understanding of the possible role these metabolites could play in its virulence.
Collapse
|
21
|
Soulountsi V, Schizodimos T, Kotoulas SC. Deciphering the epidemiology of invasive candidiasis in the intensive care unit: is it possible? Infection 2021; 49:1107-1131. [PMID: 34132989 DOI: 10.1007/s15010-021-01640-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022]
Abstract
Invasive candidiasis (IC) has emerged in the last decades as an important cause of morbidity, mortality, and economic load in the intensive care unit (ICU). The epidemiology of IC is still a difficult and unsolved enigma for the literature. Accurate estimation of the true burden of IC is difficult due to variation in definitions and limitations inherent to available case-finding methodologies. Candidemia and intra-abdominal candidiasis (IAC) are the two predominant types of IC in ICU. During the last two decades, an increase in the incidence of candidemia has been constantly reported particularly in the expanding populations of elderly or immunosuppressed patents, with a parallel change in Candida species (spp.) distribution worldwide. Epidemiological shift in non-albicans spp. has reached worrisome trends. Recently, a novel, multidrug-resistant Candida spp., Candida auris, has globally emerged as a nosocomial pathogen causing a broad range of healthcare-associated invasive infections. Epidemiological profile of IAC remains imprecise. Though antifungal drugs are available for Candida infections, mortality rates continue to be high, estimated to be up to 50%. Increased use of fluconazole and echinocandins has been associated with the emergence of resistance to these drugs, which affects particularly C. albicans and C. glabrata. Crucial priorities for clinicians are to recognize the epidemiological trends of IC as well as the emergence of resistance to antifungal agents to improve diagnostic techniques and strategies, develop international surveillance networks and antifungal stewardship programmes for a better epidemiological control of IC.
Collapse
Affiliation(s)
- Vasiliki Soulountsi
- Department of Intensive Care Medicine, George Papanikolaou General Hospital, Thessaloniki, Greece.
| | - Theodoros Schizodimos
- Department of Intensive Care Medicine, George Papanikolaou General Hospital, Thessaloniki, Greece
| | | |
Collapse
|
22
|
Genetic Manipulation as a Tool to Unravel Candida parapsilosis Species Complex Virulence and Drug Resistance: State of the Art. J Fungi (Basel) 2021; 7:jof7060459. [PMID: 34200514 PMCID: PMC8228522 DOI: 10.3390/jof7060459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 01/12/2023] Open
Abstract
An increase in the rate of isolation of Candida parapsilosis in the past decade, as well as increased identification of azole-resistant strains are concerning, and require better understanding of virulence-like factors and drug-resistant traits of these species. In this regard, the present review “draws a line” on the information acquired, thus far, on virulence determinants and molecular mechanisms of antifungal resistance in these opportunistic pathogens, mainly derived from genetic manipulation studies. This will provide better focus on where we stand in our understanding of the C. parapsilosis species complex–host interaction, and how far we are from defining potential novel targets or therapeutic strategies—key factors to pave the way for a more tailored management of fungal infections caused by these fungal pathogens.
Collapse
|
23
|
Santos FJPDL, García-Ortega LF, Robledo-Márquez K, Guzmán-Moreno J, Riego-Ruiz L. Transcriptome Analysis Unveils Gln3 Role in Amino Acids Assimilation and Fluconazole Resistance in Candida glabrata. J Microbiol Biotechnol 2021; 31:659-666. [PMID: 33879640 PMCID: PMC9705932 DOI: 10.4014/jmb.2012.12034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022]
Abstract
After Candida albicans, Candida glabrata is one of the most common fungal species associated with candidemia in nosocomial infections. Rapid acquisition of nutrients from the host is important for the survival of pathogens which possess the metabolic flexibility to assimilate different carbon and nitrogen compounds. In Saccharomyces cerevisiae, nitrogen assimilation is controlled through a mechanism known as Nitrogen Catabolite Repression (NCR). NCR is coordinated by the action of four GATA factors; two positive regulators, Gat1 and Gln3, and two negative regulators, Gzf3 and Dal80. A mechanism in C. glabrata similar to NCR in S. cerevisiae has not been broadly studied. We previously showed that in C. glabrata, Gln3, and not Gat1, has a major role in nitrogen assimilation as opposed to what has been observed in S. cerevisiae in which both factors regulate NCR-sensitive genes. Here, we expand the knowledge about the role of Gln3 from C. glabrata through the transcriptional analysis of BG14 and gln3Δ strains. Approximately, 53.5% of the detected genes were differentially expressed (DEG). From these DEG, amino acid metabolism and ABC transporters were two of the most enriched KEGG categories in our analysis (Up-DEG and Down-DEG, respectively). Furthermore, a positive role of Gln3 in AAA assimilation was described, as was its role in the transcriptional regulation of ARO8. Finally, an unexpected negative role of Gln3 in the gene regulation of ABC transporters CDR1 and CDR2 and its associated transcriptional regulator PDR1 was found. This observation was confirmed by a decreased susceptibility of the gln3Δ strain to fluconazole.
Collapse
Affiliation(s)
- Francisco J. Pérez-de los Santos
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), CINVESTAV, Mexico,División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A. C. (IPICYT), Mexico
| | - Luis Fernando García-Ortega
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), CINVESTAV, Mexico,Departamento de Ingeniería Genética, Centro de Investigación de Estudios Avanzados del IPN (CINVESTAV), Mexico
| | - Karina Robledo-Márquez
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A. C. (IPICYT), Mexico
| | - Jesús Guzmán-Moreno
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A. C. (IPICYT), Mexico
| | - Lina Riego-Ruiz
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica A. C. (IPICYT), Mexico,Corresponding author Phone: +52 (444) 8342000 Fax: +52 (444) 8342010. E-mail:
| |
Collapse
|
24
|
Ferreira PS, Victorelli FD, Rodero CF, Fortunato GC, Araújo VHS, Fonseca-Santos B, Bauab TM, Van Dijck P, Chorilli M. p-Coumaric acid loaded into liquid crystalline systems as a novel strategy to the treatment of vulvovaginal candidiasis. Int J Pharm 2021; 603:120658. [PMID: 33964336 DOI: 10.1016/j.ijpharm.2021.120658] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/08/2021] [Accepted: 04/25/2021] [Indexed: 12/30/2022]
Abstract
Vulvovaginal candidiasis (VVC) is an extremely common type of vaginal infection, which is mainly caused by Candida albicans. However, non-albicans Candida species are frequently more resistant to conventional antifungal agents and can represent up to 30% of cases. Due to side effects and increasing antifungal resistance presented by standard therapies, phenolic compounds, such as p-coumaric acid (p-CA), have been studied as molecules from natural sources with potential antifungal activity. p-CA is a poorly water-soluble compound, thus loading it into liquid crystals (LCs) may increase its solubility and effectiveness on the vaginal mucosa. Thereby, here we propose the development of mucoadhesive liquid crystalline systems with controlled release of p-CA, for the local treatment of VVC. Developed LCs consisted of fixed oily and aqueous phases (oleic acid and cholesterol (5:1) and poloxamer dispersion 16%, respectively), changing only the surfactant phase components (triethanolamine oleate (TEA-Oleate) or triethanolamine (TEA), the latter producing TEA-Oleate molecules when mixed with oleic acid). Systems were also diluted in artificial vaginal mucus (1:1 ratio) to mimic the vaginal environment and verify possible structural changes on formulations upon exposure to the mucosa. From the characterization assays, p-CA loaded TEA-Oleate systems presented mucoadhesive profile, liquid crystalline mesophases, well-organized structures and pseudoplastic behaviour, which are desirable parameters for topical formulations. Moreover, they were able to control the release of p-CA throughout the 12 h assay, as well as decrease its permeation into the vaginal mucosa. p-CA showed antifungal activity in vitro against reference strains of C. albicans (SC5314), C. glabrata (ATCC 2001) and C. krusei (ATCC 6258), and exhibited higher eradication of mature biofilms than amphotericin B and fluconazole. In vivo experiments demonstrated that the formulations reduced the presence of filamentous forms in the vaginal lavages and provided an improvement in swelling and redness present in the mice vaginal regions. Altogether, here we demonstrated the potential and feasibility of using p-CA loaded liquid crystalline systems as a mucoadhesive drug delivery system for topical treatment of VVC.
Collapse
Affiliation(s)
- P S Ferreira
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil.
| | - F D Victorelli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - C F Rodero
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - G C Fortunato
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - V H S Araújo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - B Fonseca-Santos
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - T M Bauab
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - P Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium; VIB-KU Leuven Center for Microbiology, Flanders, Belgium
| | - M Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
25
|
Ahmad S, Alfouzan W. Candida auris: Epidemiology, Diagnosis, Pathogenesis, Antifungal Susceptibility, and Infection Control Measures to Combat the Spread of Infections in Healthcare Facilities. Microorganisms 2021; 9:microorganisms9040807. [PMID: 33920482 PMCID: PMC8069182 DOI: 10.3390/microorganisms9040807] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
Candida auris, a recently recognized, often multidrug-resistant yeast, has become a significant fungal pathogen due to its ability to cause invasive infections and outbreaks in healthcare facilities which have been difficult to control and treat. The extraordinary abilities of C. auris to easily contaminate the environment around colonized patients and persist for long periods have recently resulted in major outbreaks in many countries. C. auris resists elimination by robust cleaning and other decontamination procedures, likely due to the formation of 'dry' biofilms. Susceptible hospitalized patients, particularly those with multiple comorbidities in intensive care settings, acquire C. auris rather easily from close contact with C. auris-infected patients, their environment, or the equipment used on colonized patients, often with fatal consequences. This review highlights the lessons learned from recent studies on the epidemiology, diagnosis, pathogenesis, susceptibility, and molecular basis of resistance to antifungal drugs and infection control measures to combat the spread of C. auris infections in healthcare facilities. Particular emphasis is given to interventions aiming to prevent new infections in healthcare facilities, including the screening of susceptible patients for colonization; the cleaning and decontamination of the environment, equipment, and colonized patients; and successful approaches to identify and treat infected patients, particularly during outbreaks.
Collapse
|
26
|
Demin KA, Refeld AG, Bogdanova AA, Prazdnova EV, Popov IV, Kutsevalova OY, Ermakov AM, Bren AB, Rudoy DV, Chistyakov VA, Weeks R, Chikindas ML. Mechanisms of Candida Resistance to Antimycotics and Promising Ways to Overcome It: The Role of Probiotics. Probiotics Antimicrob Proteins 2021; 13:926-948. [PMID: 33738706 DOI: 10.1007/s12602-021-09776-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 12/12/2022]
Abstract
Pathogenic Candida and infections caused by those species are now considered as a serious threat to public health. The treatment of candidiasis is significantly complicated by the increasing resistance of pathogenic strains to current treatments and the stagnant development of new antimycotic drugs. Many species, such as Candida auris, have a wide range of resistance mechanisms. Among the currently used synthetic and semi-synthetic antifungal drugs, the most effective are azoles, echinocandins, polyenes, nucleotide analogs, and their combinations. However, the use of probiotic microorganisms and/or the compounds they produce is quite promising, although underestimated by modern pharmacology, to control the spread of pathogenic Candida species.
Collapse
Affiliation(s)
- Konstantin A Demin
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Aleksandr G Refeld
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Anna A Bogdanova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Evgenya V Prazdnova
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Igor V Popov
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | | | - Alexey M Ermakov
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Anzhelica B Bren
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia.,Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Dmitry V Rudoy
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia
| | - Vladimir A Chistyakov
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA
| | - Michael L Chikindas
- Center for Agrobiotechnology, Don State Technical University, Rostov-on-Don, Russia. .,Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA. .,I.M. Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
27
|
Tanaka H, Yanai C, Miura NN, Ishibashi KI, Yamanaka D, Ohnishi H, Ohno N, Adachi Y. Coronary Vasculitis Induced in Mice by Cell Wall Mannoprotein Fractions of Clinically Isolated Candida Species. Med Mycol J 2020; 61:33-48. [PMID: 32863327 DOI: 10.3314/mmj.20-00008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Kawasaki disease (KD) is an inflammatory disease that was identified by Professor Tomisaku Kawasaki in 1961. Candida albicans-derived substances (CADS) such as the hot water extract of C. albicans and Candida water-soluble fractions (CAWS) induce coronary vasculitis similar to KD in mice. An increasing proportion of deep-seated candidiasis cases are caused by non-albicans Candida and are often resistant to antifungal drugs. We herein investigated whether the mannoprotein fractions (MN fractions) of clinically isolated Candida species induce vasculitis in mice. We prepared MN fractions from 26 strains of Candida species by conventional hot water extraction and compared vasculitis in DBA/2 mice. The results obtained revealed that the induction of vasculitis and resulting heart failure were significantly dependent on the species; namely, death rates on day 200 were as follows: Candida krusei (100%), Candida albicans (84%), Candida dubliniensis (47%), Candida parapsilosis (44%), Candida glabrata (32%), Candida guilliermondii (20%), and Candida tropicalis (20%). Even for C. albicans, some strains did not induce vasculitis. The present results suggest that MN-induced vasculitis is strongly dependent on the species and strains of Candida, and also that the MN fractions of some non-albicans Candida induce similar toxicity to those of C. albicans.
Collapse
Affiliation(s)
- Hiroaki Tanaka
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences.,Department of Pharmacy, Kyorin University Hospital
| | - Chiho Yanai
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Noriko N Miura
- Center for Pharmaceutical Education, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Ken-Ichi Ishibashi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Daisuke Yamanaka
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Hiroaki Ohnishi
- Department of Laboratory Medicine, Kyorin University School of Medicine
| | - Naohito Ohno
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Yoshiyuki Adachi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
28
|
Rodrigues LS, Gazara RK, Passarelli-Araujo H, Valengo AE, Pontes PVM, Nunes-da-Fonseca R, de Souza RF, Venancio TM, Dalla-Costa LM. First Genome Sequences of Two Multidrug-Resistant Candida haemulonii var. vulnera Isolates From Pediatric Patients With Candidemia. Front Microbiol 2020; 11:1535. [PMID: 32719671 PMCID: PMC7350289 DOI: 10.3389/fmicb.2020.01535] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022] Open
Abstract
Candida haemulonii is a complex formed by C. haemulonii sensu stricto, C. haemulonii var. vulnera, and C. duobushaemulonii. Members of this complex are opportunistic pathogens closely related to C. pseudohaemulonii, C. lusitaniae, and C. auris, all members of a multidrug-resistant clade. Complete genome sequences for all members of this group are available in the GenBank database, except for C. haemulonii var. vulnera. Here, we report the first draft genomes of two C. haemulonii var. vulnera (isolates K1 and K2) and comparative genome analysis of closely related fungal species. The isolates were biofilm producers and non-susceptible to amphotericin B and fluconazole. The draft genomes comprised 350 and 387 contigs and total genome sizes of 13.21 and 13.26 Mb, with 5,479 and 5,507 protein-coding genes, respectively, allowing the identification of virulence and resistance genes. Comparative analyses of orthologous genes within the multidrug-resistant clade showed a total of 4,015 core clusters, supporting the conservation of 24,654 proteins and 3,849 single-copy gene clusters. Candida haemulonii var. vulnera shared a larger number of clusters with C. haemulonii and C. auris; however, more singletons were identified in C. lusitaniae and C. auris. Additionally, a multiple sequence alignment of Erg11p proteins revealed variants likely involved in reduced susceptibility to azole and polyene antifungal agents. The data presented in this work will, therefore, be of utmost importance for researchers studying the biology of the C. haemulonii complex and related species.
Collapse
Affiliation(s)
- Luiza Souza Rodrigues
- Faculdades Pequeno Príncipe, Curitiba, Brazil.,Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba, Brazil
| | - Rajesh Kumar Gazara
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil.,Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, India.,Department of Electrical Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Hemanoel Passarelli-Araujo
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil.,Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Paula Veronesi Marinho Pontes
- Instituto de Biodiversidade e Sustentabilidade, Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé, Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Rodrigo Nunes-da-Fonseca
- Instituto de Biodiversidade e Sustentabilidade, Núcleo em Ecologia e Desenvolvimento Sócio-Ambiental de Macaé, Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Robson Francisco de Souza
- Laboratório de Estrutura e Evolução de Proteínas, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Thiago Motta Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Libera Maria Dalla-Costa
- Faculdades Pequeno Príncipe, Curitiba, Brazil.,Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba, Brazil
| |
Collapse
|
29
|
Souza JAS, Alves MM, Barbosa DB, Lopes MM, Pinto E, Figueiral MH, Delbem ACB, Mira NP. Study of the activity of Punica granatum-mediated silver nanoparticles against Candida albicans and Candida glabrata, alone or in combination with azoles or polyenes. Med Mycol 2020; 58:564-567. [PMID: 31509195 DOI: 10.1093/mmy/myz094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/21/2019] [Accepted: 09/04/2019] [Indexed: 01/28/2023] Open
Abstract
The continuous emergence of Candida strains resistant to currently used antifungals demands the development of new alternatives that could reduce the burden of candidiasis. In this work silver nanoparticles synthesized using a green route are efficiently used, alone or in combination with fluconazole, amphotericin B or nystatine, to inhibit growth of C. albicans and C. glabrata oral clinical strains, including in strains showing resistance to fluconazole. A potent inhibitory effect over biofilm formation prompted by the two Candida species was also observed, including in mature biofilm cells. These results foster the use of phytotherapeutics as effective treatments in oral candidiasis.
Collapse
Affiliation(s)
- José António Santos Souza
- São Paulo State University (UNESP), School of Dentistry Araçatuba, Department of Pediatric Dentistry and Public Health, Araçatuba, São Paulo, Brazil
| | - Marta M Alves
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Debora Barros Barbosa
- São Paulo State University (UNESP), School of Dentistry Araçatuba, Department of Dental Materials and Prosthodontics, São Paulo, Brazil
| | - Maria Manuel Lopes
- Faculdade de Farmácia da Universidade de Lisboa, Departamento de Microbiologia e Imunologia, Av. Prof. Gama Pinto, 1649-003 Lisbon
| | - Eugénia Pinto
- Laboratory of Microbiology, Biological Sciences Department, Faculty of Pharmacy of University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.,Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal
| | - Maria Helena Figueiral
- Faculty of Dentistry, Porto University, Rua Manuel Pereira da Silva, 4200-392 Porto, Portugal
| | - Alberto Carlos B Delbem
- São Paulo State University (UNESP), School of Dentistry Araçatuba, Department of Pediatric Dentistry and Public Health, Araçatuba, São Paulo, Brazil
| | - Nuno Pereira Mira
- iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico - Department of Bioengineering, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
30
|
Tan X, Baugh K, Bulman ZP, Wenzler E. Review of the Current Management of Urinary Tract Infections due to Fluconazole-Resistant and Non-Albicans Candida Species. CURRENT FUNGAL INFECTION REPORTS 2020. [DOI: 10.1007/s12281-020-00388-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
31
|
Antifungal drug susceptibility, molecular basis of resistance to echinocandins and molecular epidemiology of fluconazole resistance among clinical Candida glabrata isolates in Kuwait. Sci Rep 2020; 10:6238. [PMID: 32277126 PMCID: PMC7148369 DOI: 10.1038/s41598-020-63240-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/17/2020] [Indexed: 12/24/2022] Open
Abstract
Candida glabrata readily develops resistance to echinocandins. Identification, antifungal susceptibility testing (AST) and resistance mechanism to echinocandins among C. glabrata was determined in Kuwait. C. glabrata isolates (n = 75) were tested by Vitek2, multiplex PCR and/or PCR-sequencing of rDNA. AST to fluconazole, caspofungin, micafungin and amphotericin B was determined by Etest and to micafungin by broth microdilution (BMD). Mutations in hotspot-1/hotspot-2 of FKS1/FKS2 and ERG11 were detected by PCR-sequencing. All isolates were identified as C. glabrata sensu stricto. Seventy isolates were susceptible and five were resistant to micafungin by Etest and BMD (essential agreement, 93%; categorical agreement, 100%). Three micafungin-resistant isolates were resistant and two were susceptible dose-dependent to caspofungin. Four and one micafungin-resistant isolate contained S663P and ∆659 F mutation, respectively, in hotspot-1 of FKS2. Micafungin-resistant isolates were genotypically distinct strains. Only one of 36 fluconazole-resistant isolate contained nonsynonymous ERG11 mutations. Thirty-four of 36 fluconazole-resistant isolates were genotypically distinct strains. Our data show that micafungin susceptibility reliably identifies echinocandin-resistant isolates and may serve as a surrogate marker for predicting susceptibility/resistance of C. glabrata to caspofungin. All micafungin-resistant isolates also harbored a nonsynonymous/deletion mutation in hotspot-1 of FKS2. Fingerprinting data showed that echinocandin/fluconazole resistance development in C. glabrata is not clonal.
Collapse
|
32
|
Yanai C, Tanaka H, Miura NN, Ishibashi KI, Yamanaka D, Ohnishi H, Ohno N, Adachi Y. Coronary Vasculitis Induced in Mice by the Cell Wall Mannoprotein of Candida krusei. Biol Pharm Bull 2020; 43:848-858. [PMID: 32161223 DOI: 10.1248/bpb.b19-01060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Kawasaki disease (KD) is an inflammatory disease that was identified by Professor Tomisaku Kawasaki in 1961. Candida albicans-derived substances, such as the hot water extract of C. albicans (CADS) and Candida water-soluble fraction (CAWS), induced coronary vasculitis similar to KD in mice. An increasing proportion of deep-seated candidiasis cases are caused by non-albicans Candida and are often resistant to antifungal drugs. We herein investigated whether the hot water extract of C. krusei, inherently resistant to fluconazole, induces vasculitis in mice. Three strains of C. krusei, NBRC1395, NBRC1162, and NBRC10737, were cultured in natural (Y) and chemically defined (C) media and cell wall mannoprotein (MN) fractions were prepared by autoclaving cells (CKY1395MN, CKC1395MN, CKY1162MN, CKC1162MN, CKY10737MN, and CKC10737MN). All MN fractions reacted strongly with Concanavalin A (Con A) and dectin-2 and induced anaphylactoid shock in ICR mice. MNs induced severe coronary vasculitis in DBA/2 mice, resulting in cardiac hypertrophy. MNs also induced coronary vasculitis in C57Bl/6 mice. These results suggest that the MNs of non-albicans Candida, such as C. krusei, induce similar toxicity to those of C. albicans.
Collapse
Affiliation(s)
- Chiho Yanai
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Hiroaki Tanaka
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences.,Department of Pharmacy, Kyorin University Hospital
| | - Noriko N Miura
- Center for Pharmaceutical Education, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Ken-Ichi Ishibashi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Daisuke Yamanaka
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Hiroaki Ohnishi
- Department of Laboratory Medicine, Kyorin University School of Medicine
| | - Naohito Ohno
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Yoshiyuki Adachi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
33
|
Taei M, Chadeganipour M, Mohammadi R. An alarming rise of non-albicans Candida species and uncommon yeasts in the clinical samples; a combination of various molecular techniques for identification of etiologic agents. BMC Res Notes 2019; 12:779. [PMID: 31783903 PMCID: PMC6883655 DOI: 10.1186/s13104-019-4811-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/14/2019] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE Yeasts are unicellular microorganisms may cause systemic infection in immunocompromised patients. The aim of this study was to identify yeast strains isolated from clinical specimens using molecular techniques. RESULTS A total of 202 yeast strains isolated from 341 clinical samples between February 2017 and May 2019. All clinical isolates were identified using phenotypic and molecular tests including PCR-RFLP, duplex-PCR, multiplex-PCR, and PCR-sequencing. The most yeast fungal isolates were obtained from urine (66.8%), nail (9.4%), skin lesion (7.9%), bronchoalveolar lavage (5.9%), and blood (3.9%). One hundred and twenty-one Candida species were identified as non-albicans versus 76 Candida albicans. Trichosporon asahii, and Pichia terricola were uncommon non-Candida yeasts isolated from urine samples. For the first time, we isolated P. terricola as etiological agent of urinary tract infection in a pregnant female. Since Candida species show different levels of resistance to antifungal agents, precise identification of clinical isolates is critical for better treatment of infection.
Collapse
Affiliation(s)
- Monireh Taei
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mostafa Chadeganipour
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasoul Mohammadi
- Department of Medical Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran. .,Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
34
|
Hassanmoghadam F, Shokohi T, Hedayati MT, Aslani N, Haghani I, Nabili M, Lotfali E, Davari A, Moazeni M. High prevalence of itraconazole resistance among Candida parapsilosis isolated from Iran. Curr Med Mycol 2019; 5:43-46. [PMID: 31850396 PMCID: PMC6910713 DOI: 10.18502/cmm.5.3.1746] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background and Purpose: Candida parapsilosis isolates usually have a low minimum inhibitory concentration (MIC) against azoles. Although Candida parapsilosis isolates usually have low MICs against azoles, recent studies candida invasive infections due to azole resistant-C. parapsilosis isolates . Regarding this, the main aim of this study was to determine the susceptibility pattern of Iranian clinical C. parapsilosis against available azole antifungal drugs. Materials and Methods: This study was conducted on 105 previously-identified isolates of C. parapsilosis sensu stricto. For the purpose of the study, the isolates were subjected to antifungal susceptibility testing against fluconazole (FLZ), itraconazole (ITZ), voriconazole (VRZ), and two new azole drugs, namely luliconazole (LUZU) and lanoconazole (LZN). The broth microdilution reference method adopted in this study was according to the Clinical & Laboratory Standards Institute M27-A3 and M27-S4 documents. Results: According to the results, 89% (n=94) of C. parapsilosis isolates showed a MIC of ≥ 1 µg/ml, indicating resistance against ITZ. Multi-azole resistance was observed in 3.8% of the isolates. In addition, LUZU and LZN demonstrated the highest efficacy with the MIC50 values of 0.5 and 1 µg/ml, respectively. Conclusion: The majority of the isolates showed high MIC values against ITZ. This may have been associated with the long-term ITZ prophylaxis/therapy in patients infected with candidiasis. Hence, the adoption of an appropriate antifungal agent is a crucial step for starting the treatment.
Collapse
Affiliation(s)
| | - Tahereh Shokohi
- Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Taghi Hedayati
- Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Narges Aslani
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Iman Haghani
- Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mojtaba Nabili
- Faculty of Medicine, Sari Branch, Islamic Azad University, Sari, Iran
| | - Ensieh Lotfali
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Davari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Moazeni
- Invasive Fungi Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
35
|
Asadzadeh M, Alanazi AF, Ahmad S, Al-Sweih N, Khan Z. Lack of detection of Candida nivariensis and Candida bracarensis among 440 clinical Candida glabrata sensu lato isolates in Kuwait. PLoS One 2019; 14:e0223920. [PMID: 31618264 PMCID: PMC6795469 DOI: 10.1371/journal.pone.0223920] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/01/2019] [Indexed: 12/12/2022] Open
Abstract
Occurrence of Candida nivariensis and Candida bracarensis, two species phenotypically similar to Candida glabrata sensu stricto, in human clinical samples from different geographical settings remains unknown. This study developed a low-cost multiplex PCR (mPCR) and three species-specific singleplex PCR assays. Reference strains of common Candida species were used during development and the performance of mPCR and singleplex PCR assays was evaluated with 440 clinical C. glabrata sensu lato isolates. The internal transcribed spacer (ITS) region of rDNA was also sequenced from 85 selected isolates and rDNA sequence variations were used for determining genetic relatedness among the isolates by using MEGA X software. Species-specific amplicons for C. glabrata (~360 bp), C. nivariensis (~250 bp) and C. bracarensis (~180 bp) were obtained in mPCR while no amplicon was obtained from other Candida species. The three singleplex PCR assays also yielded expected results with reference strains of Candida species. The mPCR amplified ~360 bp amplicon from all 440 C. glabrata sensu lato isolates thus identifying all clinical isolates in Kuwait as C. glabrata sensu stricto. The results of mPCR were confirmed for all 440 isolates as they yielded an amplicon only in C. glabrata sensu stricto-specific singleplex PCR assay. The rDNA sequence data identified 28 ITS haplotypes among 85 isolates with 18 isolates belonging to unique haplotypes and 67 isolates belonging to 10 cluster haplotypes. In conclusion, we have developed a simple, low-cost mPCR assay for rapid differentiation of C. glabrata sensu stricto from C. nivariensis and C. bracarensis. Our data obtained from a large collection of clinical C. glabrata sensu lato isolates show that C. nivariensis and C. bracarensis are rare pathogens in Kuwait. Considerable genetic diversity among C. glabrata sensu stricto isolates was also indicated by rDNA sequence analyses.
Collapse
Affiliation(s)
- Mohammad Asadzadeh
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Ahlam F. Alanazi
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
- * E-mail: ,
| | - Noura Al-Sweih
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Ziauddin Khan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| |
Collapse
|
36
|
Barbosa AH, Damasceno JL, Casemiro LA, Martins CHG, Pires RH, Candido RC. Susceptibility to Oral Antiseptics and Virulence Factors Ex Vivo Associated with Candida spp. Isolated from Dental Prostheses. J Prosthodont 2019; 28:398-408. [PMID: 30768738 DOI: 10.1111/jopr.13037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2019] [Indexed: 12/16/2022] Open
Abstract
PURPOSE To isolate Candida spp. from dental prosthesis users' saliva and to evaluate the isolates for the presence of several virulence factors. This research also aimed to investigate the antifungal activity of 3 commercial mouthwashes/oral antiseptic formulations containing 0.12% chlorhexidine, 0.07% cetylpyridinium, or 0.075% cetylpyridinium against planktonic and sessile (biofilm mode) yeast cells. MATERIALS AND METHODS Forty-three Candida yeasts were isolated from 32 of 70 selected patients, and the virulence factors of C. albicans, C. krusei, C. glabrata, C. tropicalis, and C. parapsilosis species were investigated by polymerase chain reaction (PCR) and proteinase in plates. Minimum inhibitory concentration (MIC), and in vitro biofilm assay evaluated the antifungal activity of antiseptics. RESULTS C. albicans, C. krusei, C. glabrata, C. tropicalis, and C. parapsilosis were detected in mono and mixed cultures. Only C. albicans displayed genes related to adhesion and proteinases (ALS2, ALS3, SAP1, and SAP3). The aspartate proteinase activity was found in 60.46% of isolates. The tested antiseptic formulations exhibited a MIC less than 1.25% toward yeasts in the planktonic mode. According to XTT ((2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) assay results, most Candida isolates and all mixed cultures formed biofilms within 24 hours. The evaluated antiseptic formulations were also active against biofilms. CONCLUSION Most virulence factors investigated here (ALS2, ALS3, SAP1, and SAP3) occurred in the majority of the Candida spp. isolates, especially in C. albicans. The tested mouthwash formulations were effective against all the yeast isolates in both the planktonic and sessile growth modes. Developing alternative therapies that can avoid or control biofilm formation is necessary to prevent oral candidiasis and other Candida spp. infections.
Collapse
Affiliation(s)
| | | | | | | | - Regina Helena Pires
- Laboratory of Research in Applied Microbiology (LAPEMA), University of Franca, São Paulo, Brazil
| | - Regina Célia Candido
- School of Pharmaceutical Sciences, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
37
|
Salazar SB, Wang C, Münsterkötter M, Okamoto M, Takahashi-Nakaguchi A, Chibana H, Lopes MM, Güldener U, Butler G, Mira NP. Comparative genomic and transcriptomic analyses unveil novel features of azole resistance and adaptation to the human host in Candida glabrata. FEMS Yeast Res 2019; 18:4566518. [PMID: 29087506 DOI: 10.1093/femsyr/fox079] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/24/2017] [Indexed: 11/14/2022] Open
Abstract
The frequent emergence of azole resistance among Candida glabrata strains contributes to increase the incidence of infections caused by this species. Whole-genome sequencing of a fluconazole and voriconazole-resistant clinical isolate (FFUL887) and subsequent comparison with the genome of the susceptible strain CBS138 revealed prominent differences in several genes documented to promote azole resistance in C. glabrata. Among these was the transcriptional regulator CgPdr1. The CgPdr1 FFUL887 allele included a K274Q modification not documented in other azole-resistant strains. Transcriptomic profiling evidenced the upregulation of 92 documented targets of CgPdr1 in the FFUL887 strain, supporting the idea that the K274Q substitution originates a CgPdr1 gain-of-function mutant. The expression of CgPDR1K274Q in the FFUL887 background sensitised the cells against high concentrations of organic acids at a low pH (4.5), but had no detectable effect in tolerance towards other environmental stressors. Comparison of the genome of FFUL887 and CBS138 also revealed prominent differences in the sequence of adhesin-encoding genes, while comparison of the transcriptome of the two strains showed a significant remodelling of the expression of genes involved in metabolism of carbohydrates, nitrogen and sulphur in the FFUL887 strain; these responses likely reflecting adaptive responses evolved by the clinical strain during colonisation of the host.
Collapse
Affiliation(s)
- Sara Barbosa Salazar
- iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico - Department of Bioengineering, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Can Wang
- School of Biomolecular and Biomedical Sciences, Conway Institute, University College of Dublin, Belfield, Dublin 4, Ireland
| | - Martin Münsterkötter
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany
| | - Michiyo Okamoto
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| | | | - Hiroji Chibana
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| | - Maria Manuel Lopes
- Faculdade de Farmácia da Universidade de Lisboa, Departamento de Microbiologia e Imunologia, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Ulrich Güldener
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstrasse 1, D-85764 Neuherberg, Germany.,Chair of Genome-oriented Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Geraldine Butler
- School of Biomolecular and Biomedical Sciences, Conway Institute, University College of Dublin, Belfield, Dublin 4, Ireland
| | - Nuno Pereira Mira
- iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico - Department of Bioengineering, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
38
|
ERG6 and ERG2 Are Major Targets Conferring Reduced Susceptibility to Amphotericin B in Clinical Candida glabrata Isolates in Kuwait. Antimicrob Agents Chemother 2019; 63:AAC.01900-18. [PMID: 30455247 DOI: 10.1128/aac.01900-18] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022] Open
Abstract
Candida glabrata is intrinsically less susceptible to azoles, and resistance to echinocandins and reduced susceptibility (RS) to amphotericin B (AMB) have also been detected. The molecular mechanisms of RS to AMB were investigated in C. glabrata strains in Kuwait by sequence analyses of genes involved in ergosterol biosynthesis. A total of 1,646 C. glabrata isolates were tested by Etest, and results for 12 selected isolates were confirmed by reference broth microdilution. PCR sequencing of three genes (ERG2, ERG6, and ERG11) was performed for all isolates with RS to AMB (RS-AMB isolates) and 5 selected wild-type C. glabrata isolates by using gene-specific primers. The total cell sterol content was analyzed by gas chromatography-mass spectrometry. The phylogenetic relationship among the isolates was investigated by multilocus sequence typing. Wild-type isolates contained only synonymous mutations in ERG2, ERG6, or ERG11, and the total sterol content was similar to that of the reference strains. A nonsynonymous ERG6 mutation (AGA48AAA, R48K) was found in both RS-AMB and wild-type isolates. Four RS-AMB isolates contained novel nonsense mutations at Trp286, Tyr192, and Leu341, and 2 isolates contained a nonsynonymous mutation in ERG6 (V126F or C198F); and the sterol content of these isolates was consistent with ERG6 deficiency. Two other RS-AMB isolates contained a novel nonsynonymous ERG2 mutation (G119S or G122S), and their sterol content was consistent with ERG2 deficiency. Of 8 RS-AMB isolates, 1 fluconazole-resistant isolate also contained nonsynonymous Y141H plus L381M mutations, while 7 isolates contained only synonymous mutations in ERG11 All isolates with ERG6, ERG2, and ERG11 mutations were genotypically distinct strains. Our data show that ERG6 and ERG2 are major targets conferring RS-AMB in clinical C. glabrata isolates.
Collapse
|
39
|
Gizińska M, Staniszewska M, Ochal Z. Novel Sulfones with Antifungal Properties: Antifungal Activities and Interactions with Candida spp. Virulence Factors. Mini Rev Med Chem 2019; 19:12-21. [PMID: 30246638 DOI: 10.2174/1389557518666180924121209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 02/08/2023]
Abstract
Since candidiasis is so difficult to eradicate with an antifungal treatment and the existing antimycotics display many limitations, hopefully new sulfone derivatives may overcome these deficiencies. It is pertinent to study new strategies such as sulfone derivatives targeting the virulence attributes of C. albicans that differentiate them from the host. During infections, the pathogenic potential of C. albicans relies on the virulence factors as follows: hydrolytic enzymes, transcriptional factors, adhesion, and development of biofilms. In the article we explored how the above-presented C. albicans fitness and virulence attributes provided a robust response to the environmental stress exerted by sulfones upon C. albicans; C. albicans fitness and virulence attributes are fungal properties whose inactivation attenuates virulence. Our understanding of how these mechanisms and factors are inhibited by sulfones has increased over the last years. As lack of toxicity is a prerequisite for medical approaches, sulfones (non-toxic as assessed in vitro and in vivo) may prove to be useful for reducing C. albicans pathogenesis in humans. The antifungal activity of sulfones dealing with these multiple virulence factors and fitness attributes is discussed.
Collapse
Affiliation(s)
- Małgorzata Gizińska
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland
| | - Monika Staniszewska
- National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland
| | - Zbigniew Ochal
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
40
|
Tantivitayakul P, Lapirattanakul J, Kaypetch R, Muadcheingka T. Missense mutation in CgPDR1 regulator associated with azole-resistant Candida glabrata recovered from Thai oral candidiasis patients. J Glob Antimicrob Resist 2019; 17:221-226. [PMID: 30658200 DOI: 10.1016/j.jgar.2019.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/19/2018] [Accepted: 01/09/2019] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVES Non-albicans Candida (NAC) species are increasingly identified as pathogens causing oral candidiasis. Incidence rates for azole resistance among NAC species have been continuously reported. This study aimed to evaluate the azole susceptibility profiles and to characterise the azole resistance mechanisms of oral clinical NAC isolates. METHODS In vitro susceptibility patterns of 85 NAC species isolates were determined by the broth microdilution method. Azole resistance-related genes (ERG3, ERG11 and PDR1) of Candida glabrata isolates were sequenced to determine the presence of nucleotide substitutions. Expression levels of various resistance-related genes were also evaluated by RT-qPCR in azole-susceptible, susceptible dose-dependent (SDD) and resistant Candida isolates. RESULTS Two C. glabrata isolates (2.4% of all NAC isolates) were resistant to all three azoles tested (fluconazole, itraconazole and ketoconazole). All clinical isolates of Candida tropicalis and Candida kefyr were susceptible to azoles. Silent mutations were found in the CgERG11 and CgERG3 genes of clinical C. glabrata isolates. Interestingly, two missense mutations in CgPDR1 (N768D and E818K) were identified only in resistant C. glabrata isolates. The presence of a CgPDR1 missense mutation in resistant isolates is associated with overexpression of its own product as well as multidrug transporters including ABC and MFS transporters. CONCLUSION A gain-of-function (GOF) mutation in CgPDR1 is associated with upregulation of various drug transporters, which appears to serve as a primary mechanism for azole resistance in the detected C. glabrata isolates. Therefore, analysis of GOF mutations in the PDR1 regulator provides a better understanding of the development of antifungal resistance.
Collapse
Affiliation(s)
- Pornpen Tantivitayakul
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, 6 Yothi Street, Rajthevi, Bangkok 10400, Thailand.
| | - Jinthana Lapirattanakul
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, 6 Yothi Street, Rajthevi, Bangkok 10400, Thailand
| | - Rattiporn Kaypetch
- Research Office, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Thaniya Muadcheingka
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, 6 Yothi Street, Rajthevi, Bangkok 10400, Thailand
| |
Collapse
|
41
|
de Oliveira Mello É, Taveira GB, de Oliveira Carvalho A, Gomes VM. Improved smallest peptides based on positive charge increase of the γ-core motif from PνD 1 and their mechanism of action against Candida species. Int J Nanomedicine 2019; 14:407-420. [PMID: 30666103 PMCID: PMC6331069 DOI: 10.2147/ijn.s187957] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Plant defensins have a hallmark γ-core motif (GXCX3-9C) that is related to their antimicrobial properties. The aim of this work was to design synthetic peptides based on the region corresponding to the PvD1 defensin γ-core that are the smallest amino acid sequences that bear the strongest biological activity. METHODS We made rational substitutions of negatively charged amino acid residues with positively charged ones, and the reduction in length in the selected PvD1 γ-core sequence to verify whether the increased net positive charges and shortened length are related to the increase in antifungal activity. Herein, we opted to evaluate the action mechanism of γ33-41 PvD1 ++ peptide due to its significant inhibitory effect on tested yeasts. In addition, it is the smallest construct comprising only nine amino acid residues, giving it a better possibility to be a prototype for designing a new antifungal drug, with lower costs to the pharmaceutical industry while still maintaining the strongest antimicrobial properties. RESULTS The γ33-41 PvD1 ++ peptide caused the most toxic effects in the yeast Candida buinensis, leading to membrane permeabilization, viability loss, endogenous reactive oxygen species increase, the activation of metacaspase, and the loss of mitochondrial functionality, suggesting that this peptide triggers cell death via apoptosis. CONCLUSION We observed that the antifungal activity of PvD1 is not strictly localized in the structural domain, which comprises the γ-core region and that the increase in the net positive charge is directly related to the increase in antifungal activity.
Collapse
Affiliation(s)
- Érica de Oliveira Mello
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadualdo Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil, ;
| | - Gabriel Bonan Taveira
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadualdo Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil, ;
| | - André de Oliveira Carvalho
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadualdo Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil, ;
| | - Valdirene Moreira Gomes
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadualdo Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil, ;
| |
Collapse
|
42
|
Małek M, Mrowiec P, Klesiewicz K, Skiba-Kurek I, Szczepański A, Białecka J, Żak I, Bogusz B, Kędzierska J, Budak A, Karczewska E. Prevalence of human pathogens of the clade Nakaseomyces in a culture collection-the first report on Candida bracarensis in Poland. Folia Microbiol (Praha) 2018; 64:307-312. [PMID: 30361876 PMCID: PMC6529382 DOI: 10.1007/s12223-018-0655-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 10/08/2018] [Indexed: 12/11/2022]
Abstract
Human pathogens belonging to the Nakaseomyces clade include Candida glabrata sensu stricto, Candida nivariensis and Candida bracarensis. Their highly similar phenotypic characteristics often lead to misidentification by conventional laboratory methods. Therefore, limited information on the true epidemiology of the Candida glabrata species complex is available. Due to life-threatening infections caused by these species, it is crucial to supplement this knowledge. The aim of the study was to estimate the prevalence of C. bracarensis and C. nivariensis in a culture collection of C. glabrata complex isolates. The study covered 353 isolates identified by biochemical methods as C. glabrata, collected from paediatric and adult patients hospitalised at four medical centres in Southern Poland. The multiplex PCR was used to identify the strains. Further species confirmation was performed via sequencing and matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) analysis. One isolate was recognised as C. bracarensis (0.28%). To our knowledge, it is the first isolate in Poland. C. glabrata sensu stricto species has been confirmed for all the remaining isolates. No C. nivariensis was found. Our study has shown that the prevalence of C. nivariensis and C. bracarensis strains is infrequent. However, it should be emphasised that the incidence of these strains may differ locally and depend on environmental factors and the population.
Collapse
Affiliation(s)
- Marianna Małek
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland.
| | - Paulina Mrowiec
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland.
| | - Karolina Klesiewicz
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Iwona Skiba-Kurek
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Adrian Szczepański
- Department of Microbiology, University Hospital in Kraków, Kraków, Poland
| | - Joanna Białecka
- Centre for Microbiological Research and Autovaccines, Kraków, Poland
| | - Iwona Żak
- Department of Microbiology, University Children's Hospital of Kraków, Kraków, Poland
| | - Bożena Bogusz
- Department of Microbiology, Ludwik Rydygier Memorial Hospital in Kraków, Kraków, Poland
| | - Jolanta Kędzierska
- Department of Microbiology, University Hospital in Kraków, Kraków, Poland
| | - Alicja Budak
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| | - Elżbieta Karczewska
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 St., 30-688, Kraków, Poland
| |
Collapse
|
43
|
da Costa Cordeiro BMP, de Lima Santos ND, Ferreira MRA, de Araújo LCC, Junior ARC, da Conceição Santos AD, de Oliveira AP, da Silva AG, da Silva Falcão EP, dos Santos Correia MT, da Silva Almeida JRG, da Silva LCN, Soares LAL, Napoleão TH, da Silva MV, Paiva PMG. Hexane extract from Spondias tuberosa (Anacardiaceae) leaves has antioxidant activity and is an anti-Candida agent by causing mitochondrial and lysosomal damages. Altern Ther Health Med 2018; 18:284. [PMID: 30340567 PMCID: PMC6194709 DOI: 10.1186/s12906-018-2350-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022]
Abstract
Background Spondias tuberosa is a plant that produces a fruit crop with high economic relevance at Brazilian Caatinga. Its roots and leaves are used in folk medicine. Methods Chemical composition of a hexane extract from S. tuberosa leaves was evaluated by thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC) and 1H nuclear magnetic resonance (NMR). Antioxidant potential was investigated by DPPH and ABTS assays. Antifungal action on Candida species was evaluated determining the minimal inhibitory concentration (MIC50) and putative mechanisms were determined by flow cytometry analysis. In addition, hemolytic activity on human erythrocytes was assessed and the concentration required to promote 50% hemolysis (EC50) was determined. Results Phytochemical analysis by TLC showed the presence of flavonoids, hydrolysable tannins, saponins and terpenes. The HPLC profile of the extract suggested the presence of gallic acid (0.28 ± 0.01 g%) and hyperoside (1.27 ± 0.01 g%). The representative 1H NMR spectrum showed saturated and unsaturated fatty acids among the main components. The extract showed weak and moderate antioxidant activity in DPPH (IC50: 234.00 μg/mL) and ABTS (IC50: 123.33 μg/mL) assays, respectively. It was able to inhibit the growth of C. albicans and C. glabrata with MIC50 of 2.0 and 0.078 mg/mL, respectively. The treatment of C. glabrata cells with the extract increased levels of mitochondrial superoxide anion, caused hyperpolarization of mitochondrial membrane, and compromised the lysosomal membrane. Weak hemolytic activity (EC50: 740.8 μg/mL) was detected. Conclusion The results demonstrate the pharmacological potential of the extract as antioxidant and antifungal agent, aggregating biotechnological value to this plant and stimulating its conservation.
Collapse
|
44
|
Ksiezopolska E, Gabaldón T. Evolutionary Emergence of Drug Resistance in Candida Opportunistic Pathogens. Genes (Basel) 2018; 9:genes9090461. [PMID: 30235884 PMCID: PMC6162425 DOI: 10.3390/genes9090461] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 01/08/2023] Open
Abstract
Fungal infections, such as candidiasis caused by Candida, pose a problem of growing medical concern. In developed countries, the incidence of Candida infections is increasing due to the higher survival of susceptible populations, such as immunocompromised patients or the elderly. Existing treatment options are limited to few antifungal drug families with efficacies that vary depending on the infecting species. In this context, the emergence and spread of resistant Candida isolates are being increasingly reported. Understanding how resistance can evolve within naturally susceptible species is key to developing novel, more effective treatment strategies. However, in contrast to the situation of antibiotic resistance in bacteria, few studies have focused on the evolutionary mechanisms leading to drug resistance in fungal species. In this review, we will survey and discuss current knowledge on the genetic bases of resistance to antifungal drugs in Candida opportunistic pathogens. We will do so from an evolutionary genomics perspective, focusing on the possible evolutionary paths that may lead to the emergence and selection of the resistant phenotype. Finally, we will discuss the potential of future studies enabled by current developments in sequencing technologies, in vitro evolution approaches, and the analysis of serial clinical isolates.
Collapse
Affiliation(s)
- Ewa Ksiezopolska
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.
| |
Collapse
|
45
|
Lee KK, Kubo K, Abdelaziz JA, Cunningham I, de Silva Dantas A, Chen X, Okada H, Ohya Y, Gow NAR. Yeast species-specific, differential inhibition of β-1,3-glucan synthesis by poacic acid and caspofungin. Cell Surf 2018; 3:12-25. [PMID: 30370375 PMCID: PMC6195761 DOI: 10.1016/j.tcsw.2018.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 08/16/2018] [Accepted: 09/04/2018] [Indexed: 01/27/2023] Open
Abstract
Poacic acid antifungal activity is both strains and species dependent for a range of Candida species. The calcineurin pathway regulates poacic acid sensitivity in C. albicans. Point mutations in β-1,3-glucan synthase Fks1 differentially affect poacic acid and echinocandin sensitivity.
The rise of widespread antifungal resistance fuels the need to explore new classes of inhibitory molecules as potential novel inhibitors. Recently a plant natural product poacic acid (PA) was shown to inhibit β-1,3-glucan synthesis, and to have antifungal activity against a range of plant pathogens and against Saccharomyces cerevisiae. As with the echinocandins, such as caspofungin, PA targets the synthesis of cell wall β-1,3-glucan and has potential utility in the treatment of medically important fungi. However, the antifungal activity of PA against human pathogenic Candida species has not been explored and the precise mode of action of this compound is not understood. Here, we show that PA sensitivity is regulated by the calcineurin pathway and that susceptibility to PA varied significantly between Candida species, but did not correlate with in vitro β-glucan synthase activity, cell wall β-glucan content or the sensitivity of the species to caspofungin. Strains with point mutations (S645Y or S645P) in the hotspot1 region of the β-1,3-glucan synthase subunit Fks1, had decreased sensitivity to caspofungin but increased sensitivity to PA. C. guilliermondii, C. orthopsilosis, and C. parapsilosis were more sensitive to PA than C. albicans, C. dubliniensis, C. tropicalis, and C. glabrata. These observations suggest that there are significant differences in the mode of action of PA and caspofungin and that PA or PA analogues are not likely to have broad spectrum activity in the treatment of Candida infections.
Collapse
Affiliation(s)
- Keunsook K Lee
- The Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Karen Kubo
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan.,AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, Chiba, 277-8565, Japan
| | - Jehan Abdelmoneim Abdelaziz
- The Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Iain Cunningham
- The Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Alessandra de Silva Dantas
- The Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Xiaolin Chen
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Hiroki Okada
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan.,AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Kashiwa, Chiba, 277-8565, Japan
| | - Neil A R Gow
- The Aberdeen Fungal Group, MRC Centre for Medical Mycology, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| |
Collapse
|
46
|
Beardsley J, Halliday CL, Chen SCA, Sorrell TC. Responding to the emergence of antifungal drug resistance: perspectives from the bench and the bedside. Future Microbiol 2018; 13:1175-1191. [PMID: 30113223 PMCID: PMC6190174 DOI: 10.2217/fmb-2018-0059] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/01/2018] [Indexed: 12/15/2022] Open
Abstract
The incidence of serious fungal infections is increasing rapidly, and yet the rate of new drugs becoming available to treat them is slow. The limited therapeutic armamentarium is a challenge for clinicians, because the available drugs are often toxic, expensive, difficult to administer, ineffective or a combination of all four. Given this setting, the emergence of resistance is especially concerning, and a review of the topic is timely. Here we discuss antifungal drug resistance in Candida spp. and Aspergillus spp. with reference to the most commonly used first-line antifungal agents - azoles and echinocandins. We review the resistance mechanisms of the leading pathogens, how resistance can be identified in the diagnostic lab and the clinical implications of resistance once detected.
Collapse
Affiliation(s)
- Justin Beardsley
- Marie Bashir Institute for Infectious Diseases & Biosecurity, University of Sydney & Westmead Institute for Medical Research, Westmead, NSW, Australia
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Catriona L Halliday
- The Center for Infectious Diseases & Microbiology Laboratory Services, ICPMR Pathology West, New South Wales Health Pathology, Westmead, NSW, Australia
| | - Sharon C-A Chen
- Marie Bashir Institute for Infectious Diseases & Biosecurity, University of Sydney & Westmead Institute for Medical Research, Westmead, NSW, Australia
- The Center for Infectious Diseases & Microbiology Laboratory Services, ICPMR Pathology West, New South Wales Health Pathology, Westmead, NSW, Australia
| | - Tania C Sorrell
- Marie Bashir Institute for Infectious Diseases & Biosecurity, University of Sydney & Westmead Institute for Medical Research, Westmead, NSW, Australia
| |
Collapse
|
47
|
Ioannidis K, Papachristos A, Skarlatinis I, Kiospe F, Sotiriou S, Papadogeorgaki E, Plakias G, Karalis VD, Markantonis SL. Do we need to adopt antifungal stewardship programmes? Eur J Hosp Pharm 2018; 27:14-18. [PMID: 32064083 DOI: 10.1136/ejhpharm-2017-001467] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/22/2018] [Accepted: 05/22/2018] [Indexed: 12/19/2022] Open
Abstract
Background Although antimicrobial stewardship programmes are one of the highest priorities in healthcare systems and many articles have been published, few refer to the implementation of antifungal stewardship and highlight specific points on which efforts should be focused. Objective To assess the percentage of patients with confirmed candidaemia in whom de-escalation was conducted, and the economic impact of step-down or step-up antifungal therapy. Additionally, we attempted to estimate the potential increase in drug minimum inhibitory concentrations or to detect resistant strains of Candida species. Methods We selected, retrospectively, patients who had received systemic antifungal therapy between 2011 and 2016 for documented candidaemia. Statistical analysis and diagrams were used to assess the results. Results Of 157 patients with confirmed candidaemia, 58 received azoles, 74 echinocandinsand 18 liposomal amphotericin B for empirical therapy. 51 patients were eligible to step-down to fluconazole but only 23 patients did so. Furthermore, in nine patients unjustified step-up from fluconazole to echinocandins or liposomal amphotericin B was carried out. The additional cost incurred bythe healthcare system due to high prices of echinocandins and liposomal amphotericin B in comparison with fluconazole was€211 837. Interestingly, it was found that one strain of C. albicans and two strains of C. glabrata were resistant to echinocandins. Conclusion The presence of a multidisciplinary team, including an infection control specialist and a clinical pharmacist, would limit the prescription of advanced antifungal agents as empirical therapy. Moreover, this team would control the de-escalation process-where applicable-leading to a reduction in costs and, probably, a decrease in the emergence of resistant Candida species. These facts contribute to the broader discussion on the adoption of antifungal stewardship programmes.
Collapse
Affiliation(s)
- Konstantinos Ioannidis
- Department of Clinical Pharmacy, Diagnostiko kai Therapeftiko Kedro Athinas - Hygeia, Athens, Greece
| | - Apostolos Papachristos
- Department of Clinical Pharmacy, Diagnostiko kai Therapeftiko Kedro Athinas - Hygeia, Athens, Greece
| | - Ioannis Skarlatinis
- Department of Clinical Pharmacy, Diagnostiko kai Therapeftiko Kedro Athinas - Hygeia, Athens, Greece
| | - Fevronia Kiospe
- National and Kapodistrian University of Athens Faculty of Pharmacy, Athens, Greece
| | - Sotiria Sotiriou
- National and Kapodistrian University of Athens Faculty of Pharmacy, Athens, Greece
| | - Eleni Papadogeorgaki
- Department of Microbiology, Diagnostiko kai Therapeftiko Kedro Athinas - Hygeia, Athens, Greece
| | - George Plakias
- Department of Microbiology, Diagnostiko kai Therapeftiko Kedro Athinas - Hygeia, Athens, Greece
| | - Vangelis D Karalis
- Faculty of Pharmacy, Laboratory of Biopharmaceutics - Pharmacokinetics, National and Kapodistrian University of Athens, Athens, Greece
| | - Sophia L Markantonis
- National and Kapodistrian University of Athens Faculty of Pharmacy, Athens, Greece
| |
Collapse
|
48
|
Does the use of antifungal agents in agriculture and food foster polyene resistance development? A reason for concern. J Glob Antimicrob Resist 2018; 13:40-48. [DOI: 10.1016/j.jgar.2017.10.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 10/03/2017] [Accepted: 10/30/2017] [Indexed: 01/11/2023] Open
|
49
|
Leiva-Peláez O, Gutiérrez-Escobedo G, López-Fuentes E, Cruz-Mora J, De Las Peñas A, Castaño I. Molecular characterization of the silencing complex SIR in Candida glabrata hyperadherent clinical isolates. Fungal Genet Biol 2018; 118:21-31. [PMID: 29857197 DOI: 10.1016/j.fgb.2018.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/16/2018] [Accepted: 05/28/2018] [Indexed: 11/30/2022]
Abstract
An important virulence factor for the fungal pathogen Candida glabrata is the ability to adhere to the host cells, which is mediated by the expression of adhesins. Epa1 is responsible for ∼95% of the in vitro adherence to epithelial cells and is the founding member of the Epa family of adhesins. The majority of EPA genes are localized close to different telomeres, which causes transcriptional repression due to subtelomeric silencing. In C. glabrata there are three Sir proteins (Sir2, Sir3 and Sir4) that are essential for subtelomeric silencing. Among a collection of 79 clinical isolates, some display a hyperadherent phenotype to epithelial cells compared to our standard laboratory strain, BG14. These isolates also express several subtelomeric EPA genes simultaneously. We cloned the SIR2, SIR3 and SIR4 genes from the hyperadherent isolates and from the BG14 and the sequenced strain CBS138 in a replicative vector to complement null mutants in each of these genes in the BG14 background. All the SIR2 and SIR4 alleles tested from selected hyper-adherent isolates were functional and efficient to silence a URA3 reporter gene inserted in a subtelomeric region. The SIR3 alleles from these isolates were also functional, except the allele from isolate MC2 (sir3-MC2), which was not functional to silence the reporter and did not complement the hyperadherent phenotype of the BG14 sir3Δ. Consistently, sir3-MC2 allele is recessive to the SIR3 allele from BG14. Sir3 and Sir4 alleles from the hyperadherent isolates contain several polymorphisms and two of them are present in all the hyperadherent isolates analyzed. Instead, the Sir3 and Sir4 alleles from the BG14 and another non-adherent isolate do not display these polymorphisms and are identical to each other. The particular combination of polymorphisms in sir3-MC2 and in SIR4-MC2 could explain in part the hyperadherent phenotype displayed by this isolate.
Collapse
Affiliation(s)
- Osney Leiva-Peláez
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, División de Biología Molecular, Camino a la Presa San José #2055, Col. Lomas 4a, San Luis Potosí 78216, Mexico
| | - Guadalupe Gutiérrez-Escobedo
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, División de Biología Molecular, Camino a la Presa San José #2055, Col. Lomas 4a, San Luis Potosí 78216, Mexico
| | - Eunice López-Fuentes
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, División de Biología Molecular, Camino a la Presa San José #2055, Col. Lomas 4a, San Luis Potosí 78216, Mexico
| | - José Cruz-Mora
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, División de Biología Molecular, Camino a la Presa San José #2055, Col. Lomas 4a, San Luis Potosí 78216, Mexico
| | - Alejandro De Las Peñas
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, División de Biología Molecular, Camino a la Presa San José #2055, Col. Lomas 4a, San Luis Potosí 78216, Mexico
| | - Irene Castaño
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica, División de Biología Molecular, Camino a la Presa San José #2055, Col. Lomas 4a, San Luis Potosí 78216, Mexico.
| |
Collapse
|
50
|
In Vitro Antifungal Susceptibility of Candida Species Isolated from Iranian Patients with Denture Stomatitis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3086586. [PMID: 29888258 PMCID: PMC5977002 DOI: 10.1155/2018/3086586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/21/2018] [Accepted: 04/15/2018] [Indexed: 11/17/2022]
Abstract
Background Candida-associated denture stomatitis (CADS) is a common fungal infection in people who wear dentures. The main objective of this study was to make molecular identification of causative agents of CADS and in vitro antifungal susceptibility testing (AFST) in the Iranian patients with denture stomatitis. Methods A total of 134 Candida spp. were obtained from patients with denture stomatitis. The Candida spp. were identified using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) involving the universal internal transcribed spacer (ITS1 and ITS4) primers, which were subjected to digestion with MspI and BlnI restriction enzymes. The in vitro antifungal susceptibility of Candida spp. to fluconazole (FLC), terbinafine (TRB), itraconazole (ITC), voriconazole (VRC), posaconazole (POS), ketoconazole (KET), amphotericin B (AMB), and caspofungin (CAS) was evaluated using the Clinical and Laboratory Standards Institute M27-A3 and M27-S4 guidelines. Results Overall, C. albicans was the most commonly isolated species (n = 84; 62.6%), followed by C. glabrata (n = 23; 17.2%), C. tropicalis (n = 16; 12%), and C. parapsilosis (n = 11; 8.2%). Posaconazole had the lowest geometric mean minimum inhibitory concentration (MIC) (0.03 μg/ml), followed by AMB (0.05 μg/ml), ITC (0.08 μg/ml), VRC (0.11 μg/ml), CAS (0.12 μg/ml), KET (0.15 μg/ml), and FLC (0.26 μg/ml). Discussion Our study showed that C. albicans was most prevalent in Iranian patients with CADS and was susceptible to both azoles and amphotericin B. In addition, POS could be an appropriate alternative to the current antifungal agents used for the treatment of CADS, as well as in the treatment of recurrent candidiasis.
Collapse
|