1
|
Deventer AT, Stevens CE, Stewart A, Hobbs JK. Antibiotic tolerance among clinical isolates: mechanisms, detection, prevalence, and significance. Clin Microbiol Rev 2024; 37:e0010624. [PMID: 39364999 PMCID: PMC11629620 DOI: 10.1128/cmr.00106-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
SUMMARYAntibiotic treatment failures in the absence of resistance are not uncommon. Recently, attention has grown around the phenomenon of antibiotic tolerance, an underappreciated contributor to recalcitrant infections first detected in the 1970s. Tolerance describes the ability of a bacterial population to survive transient exposure to an otherwise lethal concentration of antibiotic without exhibiting resistance. With advances in genomics, we are gaining a better understanding of the molecular mechanisms behind tolerance, and several studies have sought to examine the clinical prevalence of tolerance. Attempts have also been made to assess the clinical significance of tolerance through in vivo infection models and prospective/retrospective clinical studies. Here, we review the data available on the molecular mechanisms, detection, prevalence, and clinical significance of genotypic tolerance that span ~50 years. We discuss the need for standardized methodology and interpretation criteria for tolerance detection and the impact that methodological inconsistencies have on our ability to accurately assess the scale of the problem. In terms of the clinical significance of tolerance, studies suggest that tolerance contributes to worse outcomes for patients (e.g., higher mortality, prolonged hospitalization), but historical data from animal models are varied. Furthermore, we lack the necessary information to effectively treat tolerant infections. Overall, while the tolerance field is gaining much-needed traction, the underlying clinical significance of tolerance that underpins all tolerance research is still far from clear and requires attention.
Collapse
Affiliation(s)
- Ashley T. Deventer
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| | - Claire E. Stevens
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| | - Amy Stewart
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| | - Joanne K. Hobbs
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
2
|
Boeck L. Antibiotic tolerance: targeting bacterial survival. Curr Opin Microbiol 2023; 74:102328. [PMID: 37245488 DOI: 10.1016/j.mib.2023.102328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/22/2023] [Accepted: 04/22/2023] [Indexed: 05/30/2023]
Abstract
Antimicrobial susceptibility testing is the cornerstone of antibiotic treatments. Yet, active drugs are frequently unsuccessful in vivo and most clinical trials investigating antibiotics fail. So far, bacterial survival strategies, other than drug resistance, have been largely ignored. As such, drug tolerance and persisters, allowing bacterial populations to survive during antibiotic treatments, could fill a gap in antibiotic susceptibility testing. Therefore, it remains critical to establish robust and scalable bacterial viability measures and to define the clinical relevance of bacterial survivors across various bacterial infections. If successful, these tools could improve drug design and development to prevent tolerance formation or target bacterial survivors, to ultimately reduce treatment failures and curb resistance evolution.
Collapse
Affiliation(s)
- Lucas Boeck
- Department of Biomedicine, University Basel, Basel, Switzerland; Clinic of Pulmonary Medicine, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
3
|
Ledger EVK, Edwards AM. Growth Arrest of Staphylococcus aureus Induces Daptomycin Tolerance via Cell Wall Remodelling. mBio 2023; 14:e0355822. [PMID: 36722949 PMCID: PMC9973334 DOI: 10.1128/mbio.03558-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 02/02/2023] Open
Abstract
Almost all bactericidal drugs require bacterial replication and/or metabolic activity for their killing activity. When these processes are inhibited by bacteriostatic antibiotics, bacterial killing is significantly reduced. One notable exception is the lipopeptide antibiotic daptomycin, which has been reported to efficiently kill growth-arrested bacteria. However, these studies employed only short periods of growth arrest (<1 h), which may not fully represent the duration of growth arrest that can occur in vivo. We found that a growth inhibitory concentration of the protein synthesis inhibitor tetracycline led to a time-dependent induction of daptomycin tolerance in S. aureus, with an approximately 100,000-fold increase in survival after 16 h of growth arrest, relative to exponential-phase bacteria. Daptomycin tolerance required glucose and was associated with increased production of the cell wall polymers peptidoglycan and wall-teichoic acids. However, while the accumulation of peptidoglycan was required for daptomycin tolerance, only a low abundance of wall teichoic acid was necessary. Therefore, whereas tolerance to most antibiotics occurs passively due to a lack of metabolic activity and/or replication, daptomycin tolerance arises via active cell wall remodelling. IMPORTANCE Understanding why antibiotics sometimes fail to cure infections is fundamental to improving treatment outcomes. This is a major challenge when it comes to Staphylococcus aureus because this pathogen causes several different chronic or recurrent infections. Previous work has shown that a lack of replication, as often occurs during infection, makes bacteria tolerant of most bactericidal antibiotics. However, one antibiotic that has been reported to kill nonreplicating bacteria is daptomycin. In this work, we show that the growth arrest of S. aureus does in fact lead to daptomycin tolerance, but it requires time, nutrients, and biosynthetic pathways, making it distinct from other types of antibiotic tolerance that occur in nonreplicating bacteria.
Collapse
Affiliation(s)
- Elizabeth V. K. Ledger
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Andrew M. Edwards
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| |
Collapse
|
4
|
Parsons JB, Westgeest AC, Conlon BP, Fowler VG. Persistent Methicillin-Resistant Staphylococcus aureus Bacteremia: Host, Pathogen, and Treatment. Antibiotics (Basel) 2023; 12:455. [PMID: 36978320 PMCID: PMC10044482 DOI: 10.3390/antibiotics12030455] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a devastating pathogen responsible for a variety of life-threatening infections. A distinctive characteristic of this pathogen is its ability to persist in the bloodstream for several days despite seemingly appropriate antibiotics. Persistent MRSA bacteremia is common and is associated with poor clinical outcomes. The etiology of persistent MRSA bacteremia is a result of the complex interplay between the host, the pathogen, and the antibiotic used to treat the infection. In this review, we explore the factors related to each component of the host-pathogen interaction and discuss the clinical relevance of each element. Next, we discuss the treatment options and diagnostic approaches for the management of persistent MRSA bacteremia.
Collapse
Affiliation(s)
- Joshua B. Parsons
- Department of Medicine, Division of Infectious Disease, Duke University Medical Center, Durham, NC 27710, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Annette C. Westgeest
- Department of Medicine, Division of Infectious Disease, Duke University Medical Center, Durham, NC 27710, USA
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Brian P. Conlon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Vance G. Fowler
- Department of Medicine, Division of Infectious Disease, Duke University Medical Center, Durham, NC 27710, USA
- Duke Clinical Research Institute, Durham, NC 27710, USA
| |
Collapse
|
5
|
Molecular Characterization of Clinical Rel Mutations and Consequences for Resistance Expression and Fitness in Staphylococcus aureus. Antimicrob Agents Chemother 2022; 66:e0093822. [PMID: 36346240 PMCID: PMC9764984 DOI: 10.1128/aac.00938-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The stringent response (SR) is a universal stress response that acts as a global regulator of bacterial physiology and virulence, and is a contributor to antibiotic tolerance and resistance. In most bacteria, the SR is controlled by a bifunctional enzyme, Rel, which both synthesizes and hydrolyzes the alarmone (p)ppGpp via two distinct catalytic domains. The balance between these antagonistic activities is fine-tuned to the needs of the cell and, in a "relaxed" state, the hydrolase activity of Rel dominates. We have previously shown that two single amino acid substitutions in Rel (that were identified in clinical isolates from persistent infections) confer elevated basal concentrations of (p)ppGpp and consequent multidrug tolerance in Staphylococcus aureus. Here, we explore the molecular details of how these mutations bring about this increase in cellular (p)ppGpp and investigate the wider cellular consequences in terms of resistance expression, resistance development, and bacterial fitness. Using enzyme assays, we show that both these mutations drastically reduce the hydrolase activity of Rel, thereby shifting the balance of Rel activity in favor of (p)ppGpp synthesis. We also demonstrate that these mutations induce high-level, homogeneous expression of β-lactam resistance and confer a significant fitness advantage in the presence of bactericidal antibiotics (but a fitness cost in the absence of antibiotic). In contrast, these mutations do not appear to accelerate the emergence of endogenous resistance mutations in vitro. Overall, our findings reveal the complex nature of Rel regulation and the multifaceted implications of clinical Rel mutations in terms of antibiotic efficacy and bacteria survival.
Collapse
|
6
|
Meredith EM, Harven LT, Berti AD. Antimicrobial Efficacy against Antibiotic-Tolerant Staphylococcus aureus Depends on the Mechanism of Antibiotic Tolerance. Antibiotics (Basel) 2022; 11:antibiotics11121810. [PMID: 36551467 PMCID: PMC9774428 DOI: 10.3390/antibiotics11121810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/22/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Bacteria can adapt to a changing environment by adopting alternate metabolic states favoring small molecule synthesis and resilience over growth. In Staphylococcus aureus, these states are induced by factors present during infection, including nutritional limitations, host responses and competition with other bacteria. Isogenic "tolerant" populations have variable responses to antibiotics and can remain viable. In this study, we compared the capability of antibiotics to reduce the viability of S. aureus made tolerant by different mechanisms. Tolerance was induced with mupirocin, HQNO, peroxynitrite or human serum. Tolerant cultures were exposed to ceftaroline, daptomycin, gentamicin, levofloxacin, oritavancin or vancomycin at physiological concentrations, and the viability was assessed by dilution plating. The minimum duration for 3-log viability reduction and 24 h viability reduction were calculated independently for each of three biological replicates. Each tolerance mechanism rendered at least one antibiotic ineffective, and each antibiotic was rendered ineffective by at least one mechanism of tolerance. Further studies to evaluate additional antibiotics, combination therapy and different tolerance inducers are warranted.
Collapse
Affiliation(s)
- Emily M. Meredith
- Department of Pharmacy Practice, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Lauren T. Harven
- Department of Pharmacy Practice, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Andrew D. Berti
- Department of Pharmacy Practice, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, Wayne State University, Detroit, MI 48201, USA
- Correspondence: ; Tel.: +1-313-577-3565
| |
Collapse
|
7
|
Lazarovits G, Gefen O, Cahanian N, Adler K, Fluss R, Levin-Reisman I, Ronin I, Motro Y, Moran-Gilad J, Balaban NQ, Strahilevitz J. Prevalence of Antibiotic Tolerance and Risk for Reinfection Among Escherichia coli Bloodstream Isolates: A Prospective Cohort Study. Clin Infect Dis 2022; 75:1706-1713. [PMID: 35451002 PMCID: PMC10645045 DOI: 10.1093/cid/ciac281] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Tolerance is the ability of bacteria to survive transient exposure to high concentrations of a bactericidal antibiotic without a change in the minimal inhibitory concentration, thereby limiting the efficacy of antimicrobials. The study sought to determine the prevalence of tolerance in a prospective cohort of E. coli bloodstream infection and to explore the association of tolerance with reinfection risk. METHODS Tolerance, determined by the Tolerance Disk Test (TDtest), was tested in a prospective cohort of consecutive patient-unique E. coli bloodstream isolates and a collection of strains from patients who had recurrent blood cultures with E. coli (cohorts 1 and 2, respectively). Selected isolates were further analyzed using time-dependent killing and typed using whole-genome sequencing. Covariate data were retrieved from electronic medical records. The association between tolerance and reinfection was assessed by the Cox proportional-hazards regression and a Poisson regression models. RESULTS In cohort 1, 8/94 isolates (8.5%) were tolerant. Using multivariate analysis, it was determined that the risk for reinfection in the patients with tolerant index bacteremia was significantly higher than for patients with a nontolerant strain, hazard ratio, 3.98 (95% confidence interval, 1.32-12.01). The prevalence of tolerance among cohort 2 was higher than in cohort 1, 6/21(28.6%) vs 8/94 (8.5%), respectively (P = .02). CONCLUSIONS Tolerant E. coli are frequently encountered among bloodstream isolates and are associated with an increased risk of reinfection. The TDtest appears to be a practicable approach for tolerance detection and could improve future patient management.
Collapse
Affiliation(s)
- Gilad Lazarovits
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Pediatrics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Orit Gefen
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Noga Cahanian
- Department of Clinical Microbiology and Infectious Diseases, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Karen Adler
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ronen Fluss
- The Biostatistical and Biomathematical Unit, Gertner Institute for Epidemiology & Health Policy Research, Sheba Medical Center, Ramat Gan, Israel
| | - Irit Levin-Reisman
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Irine Ronin
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yair Motro
- Department of Health Policy and Management, School of Public Health, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Jacob Moran-Gilad
- Department of Clinical Microbiology and Infectious Diseases, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- Department of Health Policy and Management, School of Public Health, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Nathalie Q Balaban
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jacob Strahilevitz
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Clinical Microbiology and Infectious Diseases, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
8
|
Kobuchi S, Kanda N, Okumi T, Kano Y, Tachi H, Ito Y, Sakaeda T. Comparing the pharmacokinetics and organ/tissue distribution of anti-methicillin-resistant Staphylococcus aureus agents using a rat model of sepsis. Xenobiotica 2022; 52:583-590. [PMID: 35815433 DOI: 10.1080/00498254.2022.2098201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Sepsis is a major cause of death, and sepsis-derived physiological changes complicate the understanding of drug distribution in organs/tissues, which determines the efficacy and toxicity of antimicrobial agents. In this study, we evaluated and compared the pharmacokinetics of methicillin-resistant Staphylococcus aureus treatment agents in sepsis with that of vancomycin, arbekacin, linezolid, and daptomycin.Rat models of sepsis were prepared using cecal ligation puncture. The pharmacokinetics of vancomycin, arbekacin, linezolid, and daptomycin were evaluated using their drug concentration profiles in plasma, kidneys, liver, lungs, skin, and muscles after intravenous administration in normal and septic rats.The kidney/plasma concentration ratio was higher in septic rats than in normal rats for vancomycin, arbekacin, and daptomycin but not for linezolid. The increase in the kidney/plasma concentration ratio for vancomycin was time-dependent, indicating an association between sepsis and stasis of vancomycin in the kidneys. In contrast, the distribution of linezolid from the blood to the organs/tissues in septic rats was comparable to that in normal rats.Sepsis-induced nephrotoxicity results in the stasis of vancomycin in the kidney, suggesting that this exacerbates proximal tubular epithelial cell injury. No dose modification of linezolid may be required for patients with sepsis.
Collapse
Affiliation(s)
- Shinji Kobuchi
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Naoya Kanda
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Taichi Okumi
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Yuma Kano
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Himawari Tachi
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Yukako Ito
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Toshiyuki Sakaeda
- Department of Pharmacokinetics, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| |
Collapse
|
9
|
Zeng J, Hong Y, Zhao N, Liu Q, Zhu W, Xiao L, Wang W, Chen M, Hong S, Wu L, Xue Y, Wang D, Niu J, Drlica K, Zhao X. A broadly applicable, stress-mediated bacterial death pathway regulated by the phosphotransferase system (PTS) and the cAMP-Crp cascade. Proc Natl Acad Sci U S A 2022; 119:e2118566119. [PMID: 35648826 PMCID: PMC9191683 DOI: 10.1073/pnas.2118566119] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 04/22/2022] [Indexed: 12/30/2022] Open
Abstract
Recent work indicates that killing of bacteria by diverse antimicrobial classes can involve reactive oxygen species (ROS), as if a common, self-destructive response to antibiotics occurs. However, the ROS-bacterial death theory has been challenged. To better understand stress-mediated bacterial death, we enriched spontaneous antideath mutants of Escherichia coli that survive treatment by diverse bactericidal agents that include antibiotics, disinfectants, and environmental stressors, without a priori consideration of ROS. The mutants retained bacteriostatic susceptibility, thereby ruling out resistance. Surprisingly, pan-tolerance arose from carbohydrate metabolism deficiencies in ptsI (phosphotransferase) and cyaA (adenyl cyclase); these genes displayed the activity of upstream regulators of a widely shared, stress-mediated death pathway. The antideath effect was reversed by genetic complementation, exogenous cAMP, or a Crp variant that bypasses cAMP binding for activation. Downstream events comprised a metabolic shift from the TCA cycle to glycolysis and to the pentose phosphate pathway, suppression of stress-mediated ATP surges, and reduced accumulation of ROS. These observations reveal how upstream signals from diverse stress-mediated lesions stimulate shared, late-stage, ROS-mediated events. Cultures of these stable, pan-tolerant mutants grew normally and were therefore distinct from tolerance derived from growth defects described previously. Pan-tolerance raises the potential for unrestricted disinfectant use to contribute to antibiotic tolerance and resistance. It also weakens host defenses, because three agents (hypochlorite, hydrogen peroxide, and low pH) affected by pan-tolerance are used by the immune system to fight infections. Understanding and manipulating the PtsI-CyaA-Crp–mediated death process can help better control pathogens and maintain beneficial microbiota during antimicrobial treatment.
Collapse
Affiliation(s)
- Jie Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yuzhi Hong
- Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers University, Newark, NJ 07103
- Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers University, Newark, NJ 07103
- Institute of Molecular Enzymology and School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou 215123, China
| | - Ningqiu Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Qianyu Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Weiwei Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Lisheng Xiao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Weijie Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Miaomiao Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shouqiang Hong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Liwen Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yunxin Xue
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Dai Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jianjun Niu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen 361004, China
| | - Karl Drlica
- Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers University, Newark, NJ 07103
- Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers University, Newark, NJ 07103
| | - Xilin Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
- Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers University, Newark, NJ 07103
- Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Rutgers University, Newark, NJ 07103
| |
Collapse
|
10
|
Miller CR, Monk JM, Szubin R, Berti AD. Rapid resistance development to three antistaphylococcal therapies in antibiotic-tolerant staphylococcus aureus bacteremia. PLoS One 2021; 16:e0258592. [PMID: 34669727 PMCID: PMC8528304 DOI: 10.1371/journal.pone.0258592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/30/2021] [Indexed: 12/27/2022] Open
Abstract
Understating how antibiotic tolerance impacts subsequent resistance development in the clinical setting is important to identifying effective therapeutic interventions and prevention measures. This study describes a patient case of methicillin-resistant Staphylococcus aureus (MRSA) bacteremia which rapidly developed resistance to three primary MRSA therapies and identifies genetic and metabolic changes selected in vivo that are associated with rapid resistance evolution. Index blood cultures displayed susceptibility to all (non-beta-lactam) antibiotics with the exception of trimethoprim/ sulfamethoxazole. One month after initial presentation, during the same encounter, blood cultures were again positive for MRSA, now displaying intermediate resistance to vancomycin and ceftaroline and resistance to daptomycin. Two weeks later, blood cultures were positive for a third time, still intermediate resistant to vancomycin and ceftaroline and resistant to daptomycin. Mutations in mprF and vraT were common to all multidrug resistant isolates whereas mutations in tagH, agrB and saeR and secondary mprF mutation emerged sequentially and transiently resulting in distinct in vitro phenotypes. The baseline mutation rate of the patient isolates was unremarkable ruling out the hypermutator phenotype as a contributor to the rapid emergence of resistance. However, the index isolate demonstrated pronounced tolerance to the antibiotic daptomycin, a phenotype that facilitates the subsequent development of resistance during antibiotic exposure. This study exemplifies the capacity of antibiotic-tolerant pathogens to rapidly develop both stable and transient genetic and phenotypic changes, over the course of a single patient encounter.
Collapse
Affiliation(s)
- Christopher R. Miller
- Department of Pharmacy Practice, Wayne State University College of Pharmacy and Health Sciences, Detroit, MI, United States of America
| | - Jonathan M. Monk
- Department of Bioengineering, University of California at San Diego, La Jolla, CA, United States of America
| | - Richard Szubin
- Department of Bioengineering, University of California at San Diego, La Jolla, CA, United States of America
| | - Andrew D. Berti
- Department of Pharmacy Practice, Wayne State University College of Pharmacy and Health Sciences, Detroit, MI, United States of America
- Department of Biochemistry, Microbiology and Immunology, Wayne State University College of Medicine, Detroit, MI, United States of America
- * E-mail:
| |
Collapse
|
11
|
Liu P, Hao Z, Liu M, Niu M, Sun P, Yan S, Zhao L, Zhao X. Genetic mutations in adaptive evolution of growth-independent vancomycin-tolerant Staphylococcus aureus. J Antimicrob Chemother 2021; 76:2765-2773. [PMID: 34302174 DOI: 10.1093/jac/dkab260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/29/2021] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Antibiotic tolerance allows bacteria to overcome antibiotic treatment transiently and potentially accelerates the emergence of resistance. However, our understanding of antibiotic tolerance at the genetic level during adaptive evolution of Staphylococcus aureus remains incomplete. We sought to identify the mutated genes and verify the role of these genes in the formation of vancomycin tolerance in S. aureus. METHODS Vancomycin-susceptible S. aureus strain Newman was used to induce vancomycin-tolerant isolates in vitro by cyclic exposure under a high concentration of vancomycin (20× MIC). WGS and Sanger sequencing were performed to identify the genetic mutations. The function of mutated genes in vancomycin-tolerant isolates were verified by gene complementation. Other phenotypes of vancomycin-tolerant isolates were also determined, including mutation frequency, autolysis, lysostaphin susceptibility, cell wall thickness and cross-tolerance. RESULTS A series of vancomycin-tolerant S. aureus (VTSA) strains were isolated and 18 mutated genes were identified by WGS. Among these genes, pbp4, htrA, stp1, pth and NWMN_1068 were confirmed to play roles in VTSA formation. Mutation of mutL promoted the emergence of VTSA. All VTSA showed no changes in growth phenotype. Instead, they exhibited reduced autolysis, decreased lysostaphin susceptibility and thickened cell walls. In addition, all VTSA strains were cross-tolerant to antibiotics targeting cell wall synthesis but not to quinolones and lipopeptides. CONCLUSIONS Our results demonstrate that genetic mutations are responsible for emergence of phenotypic tolerance and formation of vancomycin tolerance may lie in cell wall changes in S. aureus.
Collapse
Affiliation(s)
- Pilong Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China.,Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Zehua Hao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Miaomiao Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Mingze Niu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Peng Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Shunhua Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Lixiu Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Xin Zhao
- Department of Animal Science, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| |
Collapse
|
12
|
Berti AD, Harven LT, Bingley V. Distinct Effectiveness of Oritavancin against Tolerance-Induced Staphylococcus aureus. Antibiotics (Basel) 2020; 9:antibiotics9110789. [PMID: 33171631 PMCID: PMC7695155 DOI: 10.3390/antibiotics9110789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 01/08/2023] Open
Abstract
Within a sufficiently large bacterial population, some members will naturally adopt an alternate, metabolically-active state that favors small molecule synthesis over cell division. These isogenic “tolerant” subpopulations have variable responses during antibiotic exposure and can remain viable in the presence of typically bactericidal concentrations. In this study, we determine the ability of typical and atypical antistaphylococcal therapies to reduce the viability of mupirocin-induced tolerant Staphylococcus aureus bacteria. Overall, tolerance-induced staphylococci exhibited a markedly decreased rate and extent of killing following antibiotic exposure. However, oritavancin remained effective at maintaining a similar extent of killing. Further studies to investigate the role of oritavancin against recurrent or relapse staphylococcal infection are warranted.
Collapse
Affiliation(s)
- Andrew D. Berti
- Department of Pharmacy Practice, Wayne State University College of Pharmacy and Health Sciences, Detroit, MI 48201, USA; (L.T.H.); (V.B.)
- Department of Biochemistry, Microbiology and Immunology, Wayne State University College of Medicine, Detroit, MI 48201, USA
- Correspondence: ; Tel.: +1-313-577-3565
| | - Lauren T. Harven
- Department of Pharmacy Practice, Wayne State University College of Pharmacy and Health Sciences, Detroit, MI 48201, USA; (L.T.H.); (V.B.)
| | - Victoria Bingley
- Department of Pharmacy Practice, Wayne State University College of Pharmacy and Health Sciences, Detroit, MI 48201, USA; (L.T.H.); (V.B.)
| |
Collapse
|
13
|
Cafiso V, Stracquadanio S, Lo Verde F, De Guidi I, Zega A, Pigola G, Stefani S. Genomic and Long-Term Transcriptomic Imprints Related to the Daptomycin Mechanism of Action Occurring in Daptomycin- and Methicillin-Resistant Staphylococcus aureus Under Daptomycin Exposure. Front Microbiol 2020; 11:1893. [PMID: 32922373 PMCID: PMC7456847 DOI: 10.3389/fmicb.2020.01893] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/20/2020] [Indexed: 01/06/2023] Open
Abstract
Daptomycin (DAP) is one of the last-resort treatments for heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) and vancomycin-intermediate S. aureus (VISA) infections. DAP resistance (DAP-R) is multifactorial and mainly related to cell-envelope modifications caused by single-nucleotide polymorphisms and/or modulation mechanisms of transcription emerging as result of a self-defense process in response to DAP exposure. Nevertheless, the role of these adaptations remains unclear. We aim to investigate the comparative genomics and late post-exponential growth-phase transcriptomics of two DAP-resistant/DAP-susceptible (DAPR/S) methicillin-resistant S. aureus (MRSA) clinical strain pairs to focalize the genomic and long-term transcriptomic fingerprinting and adaptations related to the DAP mechanism of action acquired in vivo under DAP pressure using Illumina whole-genome sequencing (WGS), RNA-seq, bioinformatics, and real-time qPCR validation. Comparative genomics revealed that membrane protein and transcriptional regulator coding genes emerged as shared functional coding-gene clusters harboring mutational events related to the DAP-R onset in a strain-dependent manner. Pairwise transcriptomic enrichment analysis highlighted common and strain pair-dependent Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, whereas DAPR/S double-pair cross-filtering returned 53 differentially expressed genes (DEGs). A multifactorial long-term transcriptomic-network characterized DAPR MRSA includes alterations in (i) peptidoglycan biosynthesis, cell division, and cell-membrane (CM) organization genes, as well as a cidB/lytS autolysin genes; (ii) ldh2 involved in fermentative metabolism; (iii) CM-potential perturbation genes; and (iv) oxidative and heat/cold stress response-related genes. Moreover, a D-alanyl–D-alanine decrease in cell-wall muropeptide characterized DAP/glycopeptide cross-reduced susceptibility mechanisms in DAPR MRSA. Our data provide a snapshot of DAPR MRSA genomic and long-term transcriptome signatures related to the DAP mechanism of action (MOA) evidencing that a complex network of genomic changes and transcriptomic adaptations is required to acquire DAP-R.
Collapse
Affiliation(s)
- Viviana Cafiso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Stefano Stracquadanio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Flavia Lo Verde
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Irene De Guidi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Alessandra Zega
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Pigola
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
14
|
Kuehl R, Morata L, Meylan S, Mensa J, Soriano A. When antibiotics fail: a clinical and microbiological perspective on antibiotic tolerance and persistence of Staphylococcus aureus. J Antimicrob Chemother 2020; 75:1071-1086. [PMID: 32016348 DOI: 10.1093/jac/dkz559] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen causing a vast array of infections with significant mortality. Its versatile physiology enables it to adapt to various environments. Specific physiological changes are thought to underlie the frequent failure of antimicrobial therapy despite susceptibility in standard microbiological assays. Bacteria capable of surviving high antibiotic concentrations despite having a genetically susceptible background are described as 'antibiotic tolerant'. In this review, we put current knowledge on environmental triggers and molecular mechanisms of increased antibiotic survival of S. aureus into its clinical context. We discuss animal and clinical evidence of its significance and outline strategies to overcome infections with antibiotic-tolerant S. aureus.
Collapse
Affiliation(s)
- Richard Kuehl
- Service of Infectious Diseases, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, Barcelona, Spain
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Laura Morata
- Service of Infectious Diseases, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Sylvain Meylan
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
- Division de Maladies Infectieuses, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Josep Mensa
- Service of Infectious Diseases, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Alex Soriano
- Service of Infectious Diseases, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, Barcelona, Spain
| |
Collapse
|
15
|
Affiliation(s)
- Andrew D Berti
- Department of Pharmacy Practice, Wayne State University, Detroit, MI, USA.
| | - Elizabeth B Hirsch
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
16
|
Britt NS, Hazlett DS, Horvat RT, Liesman RM, Steed ME. Activity of pulmonary vancomycin exposures versus planktonic and biofilm isolates of methicillin-resistant Staphylococcus aureus from cystic fibrosis sputum. Int J Antimicrob Agents 2020; 55:105898. [PMID: 31931147 DOI: 10.1016/j.ijantimicag.2020.105898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/30/2019] [Accepted: 01/04/2020] [Indexed: 11/30/2022]
Abstract
Vancomycin is commonly used to treat methicillin-resistant Staphylococcus aureus (MRSA) infections in patients with cystic fibrosis (CF) lung disease. However, there are limited data to support the in vitro activity of this agent against MRSA isolated from CF sputum. The primary objective of this study was to evaluate the activity of vancomycin at pulmonary concentrations (intravenous and inhaled) against four clinical MRSA CF sputum isolates in planktonic and biofilm time-kill (TK) experiments. Vancomycin minimum inhibitory concentrations (MICs) were determined for these isolates at standard inoculum (SI) (~106 CFU/mL) and high inoculum (HI) (~108 CFU/mL) as well as in biofilms cultivated using physiological medium representing the microenvironment of the CF lung. Vancomycin concentrations of 10, 25, 100 and 275 µg/mL were evaluated in TK experiments against planktonic MRSA at varying inocula and versus biofilm MRSA. Vancomycin MICs increased from 0.5 µg/mL when tested at SI to 8-16 µg/mL at HI. Vancomycin MICs were further increased to 16-32 µg/mL in biofilm studies. In TK experiments, vancomycin displayed bactericidal activity (≥3 log10 killing at 24 h) against 1/4 and 0/4 planktonic MRSA isolates at SI and HI, respectively, whereas vancomycin was bactericidal against 0/4 isolates against MRSA biofilms. Based on these findings, vancomycin monotherapy appears unlikely to eradicate MRSA from the respiratory tract of patients with CF, even at high concentrations similar to those observed with inhaled therapy. Novel vancomycin formulations with enhanced biofilm penetration or combination therapy with other potentially synergistic agents should be explored.
Collapse
Affiliation(s)
- Nicholas S Britt
- Department of Pharmacy Practice, University of Kansas School of Pharmacy, Lawrence, Kansas, USA; Department of Internal Medicine, Division of Infectious Diseases, University of Kansas School of Medicine, Kansas City, Kansas, USA.
| | - Daniel S Hazlett
- Department of Pharmacy Practice, University of Kansas School of Pharmacy, Lawrence, Kansas, USA
| | - Rebecca T Horvat
- Department of Pathology and Laboratory Medicine, University of Kansas School of Medicine, Kansas City, Kansas, USA
| | - Rachael M Liesman
- Department of Pathology and Laboratory Medicine, University of Kansas School of Medicine, Kansas City, Kansas, USA
| | - Molly E Steed
- Department of Pharmacy Practice, University of Kansas School of Pharmacy, Lawrence, Kansas, USA
| |
Collapse
|
17
|
Neo-5,22 E-Cholestadienol Derivatives from Buthus martensii Karsch and Targeted Bactericidal Action Mechanisms. Molecules 2018; 24:molecules24010072. [PMID: 30587799 PMCID: PMC6337218 DOI: 10.3390/molecules24010072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 11/25/2022] Open
Abstract
The discovery and search for new antimicrobial molecules from insects and animals that live in polluted environments is a very important step in the scientific search for solutions to the current problem of antibiotic resistance. Previously, we have reported that the secondary metabolite with the antibacterial action discovered in scorpion. The current study further isolated three new compounds from Buthus martensii karsch, while compounds 1 and 2 possessed 5,22E-cholestadienol derivatives whose structure demonstrated broad spectrum bactericide activities. To explore the antibacterial properties of these new compounds, the result shows that compound 2 inhibited bacterial growth of both S. aureus and P. aeruginosa in a bactericidal rather than a bacteriostatic manner (MBC/MIC ratio ≤ 2). Similarly, with compound 1, a ratio of MBC/MIC ≤ 2 indicates bactericidal activity inhibited bacterial growth of P. aeruginosa. Remarkably, this suggests that two compounds can be classified as bactericidal agents against broad spectrum bactericide activities for 5,22E-cholestadienol derivatives from Buthus martensii karsch. The structures of compounds 1–3 were established by comprehensive spectra analysis including two-dimensional nuclear magnetic resonance (2D-NMR) and high-resolution electrospray ionization-mass spectrometry (HRESI-MS) spectra. The antibacterial mechanism is the specific binding (various of bonding forces between molecules) using compound 1 or 2 as a ligand based on the different receptor proteins’—2XRL or 1Q23—active sites from bacterial ribosome unit A, and thus prevent the synthesis of bacterial proteins. This unique mechanism avoids the cross-resistance issues of other antibacterial drugs.
Collapse
|
18
|
Bouza E, Valerio M, Soriano A, Morata L, Carus EG, Rodríguez-González C, Hidalgo-Tenorio MC, Plata A, Muñoz P, Vena A. Dalbavancin in the treatment of different gram-positive infections: a real-life experience. Int J Antimicrob Agents 2017; 51:571-577. [PMID: 29180276 DOI: 10.1016/j.ijantimicag.2017.11.008] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/30/2017] [Accepted: 11/18/2017] [Indexed: 12/24/2022]
Abstract
Dalbavancin is a lipoglycopeptide with a very prolonged half-life enabling treatment with a single intravenous administration that has been approved to treat complicated skin and soft-tissue infections. Information on the efficacy and safety of dalbavancin in other situations is very scarce. This retrospective study included adult patients who received at least one dose of dalbavancin between 2016 and 2017 in 29 institutions in Spain. The primary objective was to report the use of dalbavancin in clinical practice, including its efficacy and tolerability. The potential impact of dalbavancin on reducing the length of hospital stay and hospital costs was also evaluated. A total of 69 patients received dalbavancin during the study period (58.0% male; median age 63.5 years). Dalbavancin was used to treat prosthetic joint infection (29.0%), acute bacterial skin and skin-structure infection (21.7%), osteomyelitis (17.4%) and catheter-related bacteraemia (11.6%). These infections were mainly caused by Staphylococcus aureus (27 isolates), coagulase-negative staphylococci (24 isolates) and Enterococcus spp. (11 isolates). All but two patients received previous antibiotics for a median of 18 days. Dalbavancin was administered for a median of 21 days (range 7-168 days), and concomitant antimicrobial therapy was prescribed to 25 patients (36.2%). The overall clinical success rate of dalbavancin was 84.1%. Adverse events, mainly mild in intensity, were reported in nine patients. Overall, dalbavancin was estimated to reduce hospitalisation by 1160 days, with an estimated overall cost reduction of €211 481 (€3064 per patient). Dalbavancin appears to be an effective therapy for many serious Gram-positive infections.
Collapse
Affiliation(s)
- Emilio Bouza
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Doctor Esquerdo 46, 28007 Madrid, Spain; Instituto de Investigación Sanitaria Hospital Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Maricela Valerio
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Doctor Esquerdo 46, 28007 Madrid, Spain.
| | - Alex Soriano
- Department of Infectious Diseases, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Laura Morata
- Department of Infectious Diseases, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Enrique García Carus
- Department of Infectious Diseases, Hospital Clinic of Barcelona, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Carmen Rodríguez-González
- Instituto de Investigación Sanitaria Hospital Gregorio Marañón, Madrid, Spain; Pharmacy Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Antonio Plata
- Department of Infectious Diseases, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Patricia Muñoz
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Doctor Esquerdo 46, 28007 Madrid, Spain; Instituto de Investigación Sanitaria Hospital Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain.
| | - Antonio Vena
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Doctor Esquerdo 46, 28007 Madrid, Spain; Instituto de Investigación Sanitaria Hospital Gregorio Marañón, Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|