1
|
Liu Y, Zhang R, Velkov T, Shen J, Tang S, Dai C. Corynoxeine Supplementation Ameliorates Colistin-Induced Kidney Oxidative Stress and Inflammation in Mice. Antioxidants (Basel) 2025; 14:593. [PMID: 40427475 PMCID: PMC12108663 DOI: 10.3390/antiox14050593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 05/09/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
This study investigated the protective effects of corynoxeine, a natural alkaline compound, on colistin-caused nephrotoxicity using a murine model. Forty mice were divided randomly into control, corynoxeine-only (20 mg/kg/day, intraperitoneal injection), colistin-only (20 mg/kg/day, intraperitoneal injection), and colistin (20 mg/kg/day) + corynoxeine (5 and 20 mg/kg/day) groups (8 mice in each group). All treatments were maintained for seven consecutive days. Results showed that colistin treatment at 20 mg/kg/day for seven days significantly increased serum urea nitrogen and creatinine levels and induced the loss and degeneration of renal tubular epithelial cells, which were markedly ameliorated by corynoxeine co-treatment at 5 or 20 mg/kg/day. Corynoxeine supplementation also markedly attenuated colistin-induced increases in malondialdehyde levels and decreases in reduced glutathione levels and superoxide dismutase and catalase activities in the kidneys. Furthermore, corynoxeine supplementation significantly decreased the expression of transforming growth factor β (TGF-β) and nicotinamide adenine dinucleotide phosphate hydrogen oxidase 4 (NOX4) proteins and nuclear factor kappa B (NF-κB), interleukin-1beta (IL-1β), IL-6, and tumor necrosis factor-α mRNAs, while it significantly increased the expression of erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) proteins in the kidneys. In conclusion, these results reveal that corynoxeine can protect against colistin-induced nephrotoxicity in mice by inhibiting oxidative stress and inflammation, which may partly be attributed to its ability on the activation of the Nrf2/HO-1 pathway and the inhibition of the TGF-β/NOX4 and NF-κB pathways.
Collapse
Affiliation(s)
- Yue Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Ruichen Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Tony Velkov
- Department of Pharmacology, Biodiscovery Institute, Monash University, Parkville, VIC 3052, Australia
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Shusheng Tang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, China
| |
Collapse
|
2
|
Guzman L, Parcerisas A, Cano A, Sánchez-López E, Verdaguer E, Auladell C, Cajal Y, Barenys M, Camins A, Rabanal F, Ettcheto M. Colistin treatment causes neuronal loss and cognitive impairment via ros accumulation and neuronal plasticity alterations. Biomed Pharmacother 2025; 183:117839. [PMID: 39823721 DOI: 10.1016/j.biopha.2025.117839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/31/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025] Open
Abstract
The rise of antimicrobial resistance has made necessary the increase of the antibacterial arsenal against multidrug-resistant bacteria. In this context, colistin has re-emerged as a first-line antibiotic in critical situations despite its nephro- and neuro- toxicity at peripheral level. However, the mechanism underlying its toxicity remains unknown, particularly in relation to the central nervous system (CNS). Therefore, this study aimed to characterize the molecular mechanisms underlying colistin-induced neurotoxicity in the CNS through a combination of in vitro and in vivo molecular studies along with several in vivo behavioral tests. Following colistin treatment, mice exhibited a significant reduction in body weight together with renal impairment, and locomotor dysfunction. Moreover, our results demonstrated that colistin disrupted the blood-brain barrier, inducing astrogliosis, and triggering apoptosis-related processes probably through the accumulation of reactive oxygen species (ROS) and mitochondrial dysfunction. Further analysis on mice and primary neuronal cultures revealed that colistin administration altered neuronal plasticity by reducing the number of immature neurons in adult neurogenesis and altering the synaptic function through a reduction of the post-synaptic protein PSD95. All these alterations together finally lead to cognitive impairment and depression-like symptoms in mice. These findings provide novel insights into the mechanisms of colistin-induced neurotoxicity in the CNS, highlighting the need for careful monitoring of cognitive function in patients undergoing colistin treatment.
Collapse
Affiliation(s)
- Laura Guzman
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Av. de Joan XXIII, 27-31, Barcelona 08028, Spain; Institut de Neurociències, Universitat de Barcelona (UB), Passeig de la Vall d'Hebron, 171, Barcelona 08035, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Carlos III, Av. Monforte de Lemos, 3-5, Madrid 28029, Spain
| | - Antoni Parcerisas
- Tissue Repair and Regeneration Laboratory (TR2Lab), Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central (IRIS-CC) Ctra. de Roda, 70, Vic 08500, Spain; Universitat de Vic - Universitat Central de Catalunya (UVic-UCC), Sagrada Família, 7, Vic 08500, Spain; Facultat de Ciències, Tecnologia i Enginyeria, Sagrada Família, 7, Vic 08500, Spain; Departament de Biociències, Sagrada Família, 7, Vic 08500, Spain
| | - Amanda Cano
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Carlos III, Av. Monforte de Lemos, 3-5, Madrid 28029, Spain; Ace Alzheimer Center Barcelona, C/Marquès de Sentmenat, 57, Barcelona 08029, Spain
| | - Elena Sánchez-López
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Carlos III, Av. Monforte de Lemos, 3-5, Madrid 28029, Spain; Departament de Farmàcia, Tecnologia Farmacèutica i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Av. de Joan XXIII, 27-31, Barcelona 08028, Spain; Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), Av. Diagonal, 64, Barcelona 08028, Spain
| | - Ester Verdaguer
- Institut de Neurociències, Universitat de Barcelona (UB), Passeig de la Vall d'Hebron, 171, Barcelona 08035, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Carlos III, Av. Monforte de Lemos, 3-5, Madrid 28029, Spain; Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona (UB), Av. de Joan XXIII, 27-31, Barcelona 08028, Spain
| | - Carme Auladell
- Institut de Neurociències, Universitat de Barcelona (UB), Passeig de la Vall d'Hebron, 171, Barcelona 08035, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Carlos III, Av. Monforte de Lemos, 3-5, Madrid 28029, Spain; Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona (UB), Av. de Joan XXIII, 27-31, Barcelona 08028, Spain
| | - Yolanda Cajal
- Departament de Farmàcia, Tecnologia Farmacèutica i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Av. de Joan XXIII, 27-31, Barcelona 08028, Spain; Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona (UB), Av. Diagonal, 64, Barcelona 08028, Spain
| | - Marta Barenys
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Av. de Joan XXIII, 27-31, Barcelona 08028, Spain; Institut de Recerca en Nutrició i Seguretat Alimentària (INSA), Universitat de Barcelona (UB), Av. Prat de la Riba, 171, Barcelona 08921, Spain; German Centre for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Germany
| | - Antoni Camins
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Av. de Joan XXIII, 27-31, Barcelona 08028, Spain; Institut de Neurociències, Universitat de Barcelona (UB), Passeig de la Vall d'Hebron, 171, Barcelona 08035, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Carlos III, Av. Monforte de Lemos, 3-5, Madrid 28029, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari Sant Joan de Reus, Av. Josep Laporte, 2, Reus 43204, Spain
| | - Francesc Rabanal
- Secció de Química Orgànica, Departament de Química Inorgànica i Orgànica, Facultat de Química, Universitat de Barcelona (UB), C/Martí i Franquès, 1-11, Barcelona 08028, Spain
| | - Miren Ettcheto
- Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), Av. de Joan XXIII, 27-31, Barcelona 08028, Spain; Institut de Neurociències, Universitat de Barcelona (UB), Passeig de la Vall d'Hebron, 171, Barcelona 08035, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Instituto de Carlos III, Av. Monforte de Lemos, 3-5, Madrid 28029, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari Sant Joan de Reus, Av. Josep Laporte, 2, Reus 43204, Spain.
| |
Collapse
|
3
|
Shen YJ, Huang YC, Cheng YC. Advancements in Antioxidant-Based Therapeutics for Spinal Cord Injury: A Critical Review of Strategies and Combination Approaches. Antioxidants (Basel) 2024; 14:17. [PMID: 39857350 PMCID: PMC11763222 DOI: 10.3390/antiox14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Spinal cord injury (SCI) initiates a cascade of secondary damage driven by oxidative stress, characterized by the excessive production of reactive oxygen species and other reactive molecules, which exacerbate cellular and tissue damage through the activation of deleterious signaling pathways. This review provides a comprehensive and critical evaluation of recent advancements in antioxidant-based therapeutic strategies for SCI, including natural compounds, RNA-based therapies, stem cell interventions, and biomaterial applications. It emphasizes the limitations of single-regimen approaches, particularly their limited efficacy and suboptimal delivery to injured spinal cord tissue, while highlighting the synergistic potential of combination therapies that integrate multiple modalities to address the multifaceted pathophysiology of SCI. By analyzing emerging trends and current limitations, this review identifies key challenges and proposes future directions, including the refinement of antioxidant delivery systems, the development of multi-targeted approaches, and strategies to overcome the structural complexities of the spinal cord. This work underscores the pressing need for innovative and integrative therapeutic approaches to advance the clinical translation of antioxidant-based interventions and improve outcomes for SCI patients.
Collapse
Affiliation(s)
- Yang-Jin Shen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yin-Cheng Huang
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou Medical Center, Taoyuan 333423, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Chuan Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan
| |
Collapse
|
4
|
Payasi A, Yadav MK, Chaudhary S, Aggarwal A. Evaluating nephrotoxicity reduction in a novel polymyxin B formulation: insights from a 3D kidney-on-a-chip model. Antimicrob Agents Chemother 2024; 68:e0021924. [PMID: 39225483 PMCID: PMC11459911 DOI: 10.1128/aac.00219-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
This study aimed to assess the nephrotoxicity associated with VRP-034 (novel formulation of polymyxin B [PMB]) compared to marketed PMB in a three-dimensional (3D) kidney-on-a-chip model. To model the human kidney proximal tubule for analysis, tubular structures were established using 23 triple-channel chips seeded with RPTEC/hTERT1 cells. These cells were exposed to VRP-034 or PMB at seven concentrations (1-200 µM) over 12, 24, and 48 h. A suite of novel kidney injury biomarkers, cell health, and inflammatory markers were quantitatively assessed in the effluent. Additionally, caspase and cytochrome C levels were measured, and cell viability was evaluated using calcein AM and ethidium homodimer-1 (EthD-1). Exposure to marketed PMB resulted in significantly elevated levels (P < 0.05) of four key biomarkers (KIM-1, cystatin C, clusterin, and OPN) compared to VRP-034, particularly at clinically relevant concentrations of ≥10 µM. At 25 µM, all biomarkers demonstrated a significant increase (P < 0.05) with marketed PMB exposure compared to VRP-034. Inflammatory markers (interleukin-6 and interleukin-8) increased significantly (P < 0.05) with marketed PMB at concentrations of ≥5 µM, relative to VRP-034. VRP-034 displayed superior cell health outcomes, exhibiting lower lactate dehydrogenase release, while ATP levels remained comparable. Morphological analysis revealed that marketed PMB induced more severe damage, disrupting tubular integrity. Both treatments activated cytochrome C, caspase-3, caspase-8, caspase-9, and caspase-12 in a concentration-dependent manner; however, caspase activation was significantly reduced (P < 0.05) with VRP-034. This study demonstrates that VRP-034 significantly reduces nephrotoxicity compared to marketed PMB within a 3D microphysiological system, suggesting its potential to enable the use of full therapeutic doses of PMB with an improved safety profile, addressing the need for less nephrotoxic polymyxin antibiotics.
Collapse
Affiliation(s)
- Anurag Payasi
- Department of Cell Culture, Venus Medicine Research Centre, Baddi, Himachal Pradesh, India
| | - Manoj Kumar Yadav
- Department of Cell Culture, Venus Medicine Research Centre, Baddi, Himachal Pradesh, India
| | | | - Anmol Aggarwal
- Department of Pipeline Strategy, Venus Medicine Research Centre, Baddi, Himachal Pradesh, India
| |
Collapse
|
5
|
Gholami M, Ghelichkhani Z, Aghakhani R, Klionsky DJ, Motaghinejad O, Motaghinejad M, Koohi MK, Hassan J. Minocycline Acts as a Neuroprotective Agent Against Tramadol-Induced Neurodegeneration: Behavioral and Molecular Evidence. Int J Prev Med 2024; 15:47. [PMID: 39539580 PMCID: PMC11559692 DOI: 10.4103/ijpvm.ijpvm_10_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/04/2024] [Indexed: 11/16/2024] Open
Abstract
Background Previous evidence indicates that tramadol (TRA) can lead to neurodegenerative events and minocycline (MIN) has neuroprotective properties. Aim of the Study The current research evaluated the neuroprotective effects of MIN for TRA-promoted neurodegeneration. Methods Sixty adult male rats were placed into the following groups: 1 (received 0.7 ml/rat of normal saline, IP), 2 (received 50 mg/kg of TRA, i.p.), 3, 4, 5 (administered TRA as 50 mg/kg simultaneously with MIN at 20, 40, and 60 mg/kg, IP, respectively), and 6 (received MIN alone as 60 mg/kg, IP). The treatment procedure was 21 days. An open field test (OFT) was used to measure motor activity and anxiety-related behavior. Furthermore, oxidative stress; hippocampal inflammation; apoptotic parameters as well as activity of mitochondrial complexes I, II, III, and IV; ATP levels; and mitochondrial membrane potential (MMP) were evaluated. In addition, histomorphological alteration was assessed in two regions of the hippocampus: Cornu Ammonis (CA1) and dentate gyrus (DG). Results MIN treatment could inhibit TRA-induced anxiety and motor activity disturbances (P < 0.05). In addition, MIN could attenuate reactive oxygen species (ROS), H2O2, oxidized glutathione (GSSG), and malondialdehyde (MDA) level (P < 0.05), while there was increased reduced glutathione (GSH), total antioxidant capacity (TAC), ATP, MMP, and BCL2 levels (P < 0.05) and also elevation of SOD, GPX, GSR (P < 0.05), and mitochondrial complexes I, II, III, and IV activity (P < 0.05) in TRA-treated rats. In consistence with these findings, MIN could reduce TNF/TNF-α, IL1B/IL1-β, BAX, and CASP3 levels (P < 0.05) in TRA-treated rats. MIN also restored the quantitative (P < 0.05) and qualitative histomorphological sequels of TRA in both CA1 and DG areas of the hippocampus. Conclusions MIN probably has repositioning capability for inhibition of TRA-induced neurodegeneration via modulation of inflammation, oxidative stress, apoptosis, and mitochondrial disorders.
Collapse
Affiliation(s)
- Mina Gholami
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Reza Aghakhani
- Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| | | | - Ozra Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Kazem Koohi
- Department of Comparative Bioscience, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jalal Hassan
- Division of Toxicology, Department of Comparative Bioscience, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
6
|
Shi Y, Chen Y, Pan Y, Chen G, Xiao Z, Chen X, Wang M, Liang D. Minocycline prevents photoreceptor degeneration in Retinitis pigmentosa through modulating mitochondrial homeostasis. Int Immunopharmacol 2024; 139:112703. [PMID: 39018687 DOI: 10.1016/j.intimp.2024.112703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/11/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Minocycline, a broad-spectrum tetracycline antibiotic, has been shown to possess anti-inflammatory and antioxidative effects in various neurodegenerative diseases. However, its specific effects on retinitis pigmentosa (RP) have not been thoroughly investigated. Therefore, the objective of this study was to explore the potential role of minocycline in treating RP. In this investigation, we used rd1 to explore the antioxidant effect of minocycline in RP. Minocycline therapy effectively restored retinal function and structure in rd1 mice at 14 days postnatal. Additionally, minocycline inhibited the activation of microglia. Moreover, RNA sequencing analysis revealed a significant downregulation in the expression of mitochondrial genes within the retina of rd1 mice. Further KEGG and GO pathway analysis indicated impaired oxidative phosphorylation and electron transport chain processes. TEM confirmed the presence of damaged mitochondria in photoreceptors, while JC-1 staining demonstrated a decrease in mitochondrial membrane potential, accompanied by an increase in mitochondrial reactive oxygen species (ROS) levels. However, treatment with minocycline successfully reversed the abnormal expression of mitochondrial genes and reduced the levels of mitochondrial ROS, thereby providing protection against photoreceptor degeneration. Collectively, minocycline demonstrated the ability to rescue photoreceptor cells in RP by effectively modulating mitochondrial homeostasis and subsequently inflammation. These findings hold significant implications for the development of potential therapeutic strategies for RP.
Collapse
Affiliation(s)
- Yuxun Shi
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Yuxi Chen
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Yuan Pan
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Guanyu Chen
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Zhiqiang Xiao
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Xiaoqing Chen
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Minzhen Wang
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Dan Liang
- Department of Ocular Immunology, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
| |
Collapse
|
7
|
Soroudi S, Mousavi G, Jafari F, Elyasi S. Prevention of colistin-induced neurotoxicity: a narrative review of preclinical data. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3709-3727. [PMID: 38091077 DOI: 10.1007/s00210-023-02884-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/01/2023] [Indexed: 05/23/2024]
Abstract
Polymyxin E or colistin is an effective antibiotic against MDR Gram-negative bacteria. Due to unwanted side effects, the use of this antibiotic has been limited for a long time, but in recent years, the widespread of MDR Gram-negative bacteria infections has led to its reintroduction. Neurotoxicity and nephrotoxicity are the significant dose-limiting adverse effects of colistin. Several agents with anti-inflammatory and antioxidant properties have been used for the prevention of colistin-induced neurotoxicity. This study aims to review the preclinical studies in this field to prepare guidance for future human studies. The data was achieved by searching PubMed, Scopus, and Google Scholar databases. All eligible pre-clinical studies performed on neuroprotective agents against colistin-induced neurotoxicity, which were published up to September 2023, were included. Finally, 16 studies (ten in vitro and eight in vivo) are reviewed. Apoptosis (in 13 studies), inflammatory (in four studies), and oxidative stress (in 14 studies) pathways are the most commonly reported pathways involved in colistin-induced neurotoxicity. The assessed compounds include non-herbal (e.g., ascorbic acid, rapamycin, and minocycline) and herbal (e.g., curcumin, rutin, baicalein, salidroside, and ginsenoside) agents. Besides these compounds, some other measures like transplantation of mitochondria and the use of nerve growth factor and mesenchymal stem cells could be motivating subjects for future research. Based on the data from experimental (in vitro and animal) studies, a combination of colistin with neuroprotective agents could prevent or decrease colistin-induced neurotoxicity. However, well-designed randomized clinical trials and human studies are essential for demonstrating efficacy.
Collapse
Affiliation(s)
- Setareh Soroudi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box, Mashhad, 91775-1365, Iran
| | - Ghazal Mousavi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box, Mashhad, 91775-1365, Iran
| | - Fatemeh Jafari
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box, Mashhad, 91775-1365, Iran
| | - Sepideh Elyasi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box, Mashhad, 91775-1365, Iran.
| |
Collapse
|
8
|
Slingerland C, Martin NI. Recent Advances in the Development of Polymyxin Antibiotics: 2010-2023. ACS Infect Dis 2024; 10:1056-1079. [PMID: 38470446 PMCID: PMC11019560 DOI: 10.1021/acsinfecdis.3c00630] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 03/13/2024]
Abstract
The polymyxins are nonribosomal lipopeptides produced by Paenibacillus polymyxa and are potent antibiotics with activity specifically directed against Gram-negative bacteria. While the clinical use of polymyxins has historically been limited due to their toxicity, their use is on the rise given the lack of alternative treatment options for infections due to multidrug resistant Gram-negative pathogens. The Gram-negative specificity of the polymyxins is due to their ability to target lipid A, the membrane embedded LPS anchor that decorates the cell surface of Gram-negative bacteria. Notably, the mechanisms responsible for polymyxin toxicity, and in particular their nephrotoxicity, are only partially understood with most insights coming from studies carried out in the past decade. In parallel, many synthetic and semisynthetic polymyxin analogues have been developed in recent years in an attempt to mitigate the nephrotoxicity of the natural products. Despite these efforts, to date, no polymyxin analogues have gained clinical approval. This may soon change, however, as at the moment there are three novel polymyxin analogues in clinical trials. In this context, this review provides an update of the most recent insights with regard to the structure-activity relationships and nephrotoxicity of new polymyxin variants reported since 2010. We also discuss advances in the synthetic methods used to generate new polymyxin analogues, both via total synthesis and semisynthesis.
Collapse
Affiliation(s)
- Cornelis
J. Slingerland
- Biological
Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Nathaniel I. Martin
- Biological
Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
9
|
Olsson A, Malmberg C, Zhao C, Friberg LE, Nielsen EI, Lagerbäck P, Tängdén T. Synergy of polymyxin B and minocycline against KPC-3- and OXA-48-producing Klebsiella pneumoniae in dynamic time-kill experiments: agreement with in silico predictions. J Antimicrob Chemother 2024; 79:391-402. [PMID: 38158772 PMCID: PMC10832586 DOI: 10.1093/jac/dkad394] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024] Open
Abstract
OBJECTIVES Combination therapy is often used for carbapenem-resistant Gram-negative bacteria. We previously demonstrated synergy of polymyxin B and minocycline against carbapenem-resistant Klebsiella pneumoniae in static time-kill experiments and developed an in silico pharmacokinetic/pharmacodynamic (PK/PD) model. The present study assessed the synergistic potential of this antibiotic combination in dynamic experiments. METHODS Two clinical K. pneumoniae isolates producing KPC-3 and OXA-48 (polymyxin B MICs 0.5 and 8 mg/L, and minocycline MICs 1 and 8 mg/L, respectively) were included. Activities of the single drugs and the combination were assessed in 72 h dynamic time-kill experiments mimicking patient pharmacokinetics. Population analysis was performed every 12 h using plates containing antibiotics at 4× and 8× MIC. WGS was applied to reveal resistance genes and mutations. RESULTS The combination showed synergistic and bactericidal effects against the KPC-3-producing strain from 12 h onwards. Subpopulations with decreased susceptibility to polymyxin B were frequently detected after single-drug exposures but not with the combination. Against the OXA-48-producing strain, synergy was observed between 4 and 8 h and was followed by regrowth. Subpopulations with decreased susceptibility to polymyxin B and minocycline were detected throughout experiments. For both strains, the observed antibacterial activities showed overall agreement with the in silico predictions. CONCLUSIONS Polymyxin B and minocycline in combination showed synergistic effects, mainly against the KPC-3-producing K. pneumoniae. The agreement between the experimental results and in silico predictions supports the use of PK/PD models based on static time-kill data to predict the activity of antibiotic combinations at dynamic drug concentrations.
Collapse
Affiliation(s)
- Anna Olsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Chenyan Zhao
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Lena E Friberg
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | | | | | - Thomas Tängdén
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Iglesias LP, Soares N, Asth L, Moreira FA, Aguiar DC. Minocycline as a potential anxiolytic drug: systematic review and meta-analysis of evidence in murine models. Behav Pharmacol 2024; 35:4-13. [PMID: 38375658 DOI: 10.1097/fbp.0000000000000754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Minocycline is a tetracycline antibiotic with off-label use as an anti-inflammatory drug. Because it can cross the blood-brain barrier, minocycline has been proposed as an alternative treatment for psychiatric disorders, in which inflammation plays an important role. However, its beneficial effects on anxiety disorders are unclear. Therefore, we performed a systematic review and meta-analysis to evaluate the efficacy of minocycline as an anxiolytic drug in preclinical models. We performed a PubMed search according to the PRISMA guidelines and PICOS strategy. The risk of bias was evaluated using the SYRCLE tool. We included studies that determined the efficacy of minocycline in animal models of anxiety that may involve exposures (e.g. stressors, immunomodulators, injury). Data extracted included treatment effect, dose range, route of administration, and potential mechanisms for the anxiolytic effect. Meta-analysis of twenty studies showed that minocycline reduced anxiety-like behavior in rodents previously exposed to stress or immunostimulants but not in exposure-naïve animals. This effect was not associated with the dose administered or treatment duration. The mechanism for the anxiolytic activity of minocycline may depend on its anti-inflammatory effects in the brain regions involving anxiety. These suggest that minocycline could be repurposed as a treatment for anxiety and related disorders and warrants further evaluation.
Collapse
Affiliation(s)
- Lia P Iglesias
- Graduate School in Neuroscience, Universidade Federal de Minas Gerais (UFMG)
| | - Nicia Soares
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Laila Asth
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Fabricio A Moreira
- Graduate School in Neuroscience, Universidade Federal de Minas Gerais (UFMG)
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Daniele C Aguiar
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
11
|
Olsson A, Allander L, Shams A, Al-Farsi H, Lagerbäck P, Tängdén T. Activity of polymyxin B combinations against genetically well-characterised Klebsiella pneumoniae producing NDM-1 and OXA-48-like carbapenemases. Int J Antimicrob Agents 2023; 62:106967. [PMID: 37716575 DOI: 10.1016/j.ijantimicag.2023.106967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND Combination therapy can enhance the activity of available antibiotics against multidrug-resistant Gram-negative bacteria. This study assessed the effects of polymyxin B combinations against carbapenemase-producing Klebsiella pneumoniae (K. pneumoniae). METHODS Twenty clinical K. pneumoniae strains producing NDM-1 (n = 8), OXA-48-like (n = 10), or both NDM-1 and OXA-48-like (n = 2) carbapenemases were used. Whole-genome sequencing was applied to detect resistance genes (e.g. encoding antibiotic-degrading enzymes) and sequence alterations influencing permeability or efflux. The activity of polymyxin B in combination with aztreonam, fosfomycin, meropenem, minocycline, or rifampicin was investigated in 24-hour time-lapse microscopy experiments. Endpoint samples were spotted on plates with and without polymyxin B at 4 x MIC to assess resistance development. Finally, associations between synergy and bacterial genetic traits were explored. RESULTS Synergistic and bactericidal effects were observed with polymyxin B in combination with all other antibiotics: aztreonam (11 of 20 strains), fosfomycin (16 of 20), meropenem (10 of 20), minocycline (18 of 20), and rifampicin (15 of 20). Synergy was found with polymyxin B in combination with fosfomycin, minocycline, or rifampicin against all nine polymyxin-resistant strains. Wildtype mgrB was associated with polymyxin B and aztreonam synergy (P = 0.0499). An absence of arr-2 and arr-3 was associated with synergy of polymyxin B and rifampicin (P = 0.0260). Emergence of populations with reduced polymyxin B susceptibility was most frequently observed with aztreonam and meropenem. CONCLUSION Combinations of polymyxin B and minocycline or rifampicin were most active against the tested NDM-1 and OXA-48-like-producing K. pneumoniae. Biologically plausible genotype-phenotype associations were found. Such information might accelerate the search for promising combinations and guide individualised treatment.
Collapse
Affiliation(s)
- Anna Olsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Lisa Allander
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Ayda Shams
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Hissa Al-Farsi
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institute, Stockholm, Sweden
| | | | - Thomas Tängdén
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
12
|
Cai J, Shi J, Chen C, He M, Wang Z, Liu Y. Structural-Activity Relationship-Inspired the Discovery of Saturated Fatty Acids as Novel Colistin Enhancers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302182. [PMID: 37552809 PMCID: PMC10582468 DOI: 10.1002/advs.202302182] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/19/2023] [Indexed: 08/10/2023]
Abstract
The emergence and prevalence of mobile colistin resistance gene mcr have dramatically compromised the clinical efficacy of colistin, a cyclopeptide antibiotic considered to be the last option for treating different-to-treat infections. The combination strategy provides a productive and cost-effective strategy to expand the lifespan of existing antibiotics. Structural-activity relationship analysis of polymyxins indicates that the fatty acyl chain plays an indispensable role in their antibacterial activity. Herein, it is revealed that three saturated fatty acids (SFAs), especially sodium caprate (SC), substantially potentiate the antibacterial activity of colistin against mcr-positive bacteria. The combination of SFAs and colistin effectively inhibits biofilm formation and eliminates matured biofilms, and is capable of preventing the emergence and spread of mobile colistin resistance. Mechanistically, the addition of SFAs reduces lipopolysaccharide (LPS) modification by simultaneously promoting LPS biosynthesis and inhibiting the activity of MCR enzyme, enhance bacterial membrane damage, and impair the proton motive force-dependent efflux pump, thereby boosting the action of colistin. In three animal models of infection by mcr-positive pathogens, SC combined with colistin exhibit an excellent therapeutic effect. These findings indicate the therapeutic potential of SFAs as novel antibiotic adjuvants for the treatment of infections caused by multidrug-resistant bacteria in combination with colistin.
Collapse
Affiliation(s)
- Jinju Cai
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesCollege of Veterinary MedicineYangzhou UniversityYangzhou225009China
| | - Jingru Shi
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesCollege of Veterinary MedicineYangzhou UniversityYangzhou225009China
| | - Chen Chen
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesCollege of Veterinary MedicineYangzhou UniversityYangzhou225009China
| | - Mengping He
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesCollege of Veterinary MedicineYangzhou UniversityYangzhou225009China
| | - Zhiqiang Wang
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesCollege of Veterinary MedicineYangzhou UniversityYangzhou225009China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safetythe Ministry of Education of ChinaYangzhou UniversityYangzhou225009China
- Institute of Comparative MedicineYangzhou UniversityYangzhou225009China
| | - Yuan Liu
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesCollege of Veterinary MedicineYangzhou UniversityYangzhou225009China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safetythe Ministry of Education of ChinaYangzhou UniversityYangzhou225009China
- Institute of Comparative MedicineYangzhou UniversityYangzhou225009China
| |
Collapse
|
13
|
Delghandi PS, Soleimani V, Fazly Bazzaz BS, Hosseinzadeh H. A review on oxidant and antioxidant effects of antibacterial agents: impacts on bacterial cell death and division and therapeutic effects or adverse reactions in humans. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2667-2686. [PMID: 37083711 DOI: 10.1007/s00210-023-02490-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/11/2023] [Indexed: 04/22/2023]
Abstract
Reactive oxygen species (ROS) are produced in the mitochondrial respiratory pathway and cellular metabolism. They are responsible for creating oxidative stress and lipid peroxidation. In living organisms, there is a balance between oxidative stress and the antioxidant system, but some factors such as medicines disturb the balance and cause many problems. These effects can impact bacterial death and division and also in humans can induce therapeutic or adverse reactions. Web of Science and Pubmed databases were used for searching. This review focuses on the oxidant and antioxidant effects of different classes of antibacterial agents and the mechanisms of oxidative stress. Some of these agents have beneficial effects on killing bacteria due to their antioxidant or oxidant effects. However, some of their side effects may be due to their oxidative effects. Based on the results of this review, minocycline is an antioxidant, but aminoglycosides, chloramphenicol, glycopeptides, antituberculosis drugs, fluoroquinolones, and sulfamethoxazole agents have oxidant effects. Furthermore, cephalosporins, penicillins, metronidazole, and macrolides have both oxidant and antioxidant effects in different studies. It is concluded that some antibacterial agents have oxidant and other antioxidant effects. These activities may affect their therapeutic effects or side effects. Some antioxidants can prevent the adverse effects of antibacterial agents. Clarifying the exact oxidant and antioxidant effects of some antimicrobial agents needs more research projects.
Collapse
Affiliation(s)
| | - Vahid Soleimani
- School of Pharmacy, Mashhad University of Medical Science, Mashhad, IR, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, IR, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, IR, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, IR, Iran.
| |
Collapse
|
14
|
Lu J, Zhu Y, Parkington HC, Hussein M, Zhao J, Bergen P, Rudd D, Deane MA, Oberrauch S, Cornthwaite-Duncan L, Allobawi R, Sharma R, Rao G, Li J, Velkov T. Transcriptomic Mapping of Neurotoxicity Pathways in the Rat Brain in Response to Intraventricular Polymyxin B. Mol Neurobiol 2023; 60:1317-1330. [PMID: 36443617 DOI: 10.1007/s12035-022-03140-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022]
Abstract
Intraventricular or intrathecal administration of polymyxins are increasingly used to treat multidrug-resistant (MDR) Gram-negative bacteria caused infections in the central nervous system (CNS). However, our limited knowledge of the mechanisms underpinning polymyxin-induced neurotoxicity significantly hinders the development of safe and efficacious polymyxin dosing regimens. To this end, we conducted transcriptomic analyses of the rat brain and spinal cord 1 h following intracerebroventricular administration of polymyxin B into rat lateral ventricle at a clinically relevant dose (0.5 mg/kg). Following the treatment, 66 differentially expressed genes (DEGs) were identified in the brain transcriptome while none for the spinal cord (FDR ≤ 0.05, fold-change ≥ 1.5). DEGs were enriched in signaling pathways associated with hormones and neurotransmitters, including dopamine and (nor)epinephrine. Notably, the expression levels of Slc6a3 and Gabra6 were decreased by 20-fold and 4.3-fold, respectively, likely resulting in major perturbations of dopamine and γ-aminobutyric acid signaling in the brain. Mass spectrometry imaging of brain sections revealed a distinct pattern of polymyxin B distribution with the majority accumulating in the injection-side lateral ventricle and subsequently into third and fourth ventricles. Polymyxin B was not detectable in the left lateral ventricle or brain tissue. Electrophysiological measurements on primary cultured rat neurons revealed a large inward current and significant membrane leakage following polymyxin B treatment. Our work demonstrates, for the first time, the key CNS signaling pathways associated with polymyxin neurotoxicity. This mechanistic insight combined with pharmacokinetic/pharmacodynamic dosing strategies will help guide the design of safe and effective intraventricular/intrathecal polymyxin treatment regimens for CNS infections caused by MDR Gram-negative pathogens.
Collapse
Affiliation(s)
- Jing Lu
- Department of Pharmacology & Biochemistry, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Yan Zhu
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Helena C Parkington
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Maytham Hussein
- Department of Pharmacology & Biochemistry, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Jinxin Zhao
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Phillip Bergen
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - David Rudd
- Drug Delivery, Disposition and Dynamics, Faculty of Pharmacy and Pharmaceutical Sciences, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, 3010, Australia
| | - Mary A Deane
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Sara Oberrauch
- Department of Pharmacology & Biochemistry, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Linda Cornthwaite-Duncan
- Department of Pharmacology & Biochemistry, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Rafah Allobawi
- Department of Pharmacology & Biochemistry, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Rajnikant Sharma
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Gauri Rao
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27514, USA.
| | - Jian Li
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.
| | - Tony Velkov
- Department of Pharmacology & Biochemistry, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia. .,Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
15
|
Eshaghi Ghalibaf MH, Rajabian A, Parviz M, Akbarian M, Amirahmadi S, Vafaee F, Hosseini M. Minocycline alleviated scopolamine-induced amnesia by regulating antioxidant and cholinergic function. Heliyon 2023; 9:e13452. [PMID: 36816250 PMCID: PMC9929315 DOI: 10.1016/j.heliyon.2023.e13452] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 12/16/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND AND AIM Minocycline, a tetracycline derivative, has been found to exert neuroprotective properties. The current project aimed to assess the antioxidant status and cholinergic function in the amnesia induced by scopolamine. METHODS We evaluated the passive avoidance performance, acetylcholine esterase (AChE) enzyme activity, and the oxidative stress indicators in the following groups: Normal control, scopolamine, and the treatment groups (the animals were given minocycline (10-30 mg/kg)). RESULTS Scopolamine (intraperitoneal) injection was associated with impairment of passive avoidance performance and neurotoxicity. Minocycline pronouncedly ameliorated scopolamine injury as presented by the increased latency time to darkness and stay time in lightness along with the decreased darkness entry. Moreover, minocycline decreased lipid peroxidation, while it elevated the levels of superoxide dismutase, AChE enzymes, and thiol groups in both the cortex and hippocampus. CONCLUSION Our data suggested that minocycline modulated the antioxidant status and AChE in the brains, which may contribute to its protective effects against scopolamine-induced amnesia.
Collapse
Affiliation(s)
- Mohammad Hosein Eshaghi Ghalibaf
- Department of Physiology, School of Medicine, Medical Department of Physiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezoo Rajabian
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Parviz
- Department of Physiology, School of Medicine, Medical Department of Physiology, Tehran University of Medical Sciences, Tehran, Iran
- Basic Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsan Akbarian
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sabiheh Amirahmadi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Öz Gergin Ö, Gergin İŞ, Pehlivan SS, Cengiz Mat O, Turan IT, Bayram A, Gönen ZB, Korkmaz Ş, Bıcer C, Yildiz K, Yay AH. The neuroprotective effect of mesenchymal stem cells in colistin-induced neurotoxicity. Toxicol Mech Methods 2023; 33:95-103. [PMID: 35702031 DOI: 10.1080/15376516.2022.2090303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Colistin is an effective antibiotic against multidrug-resistant gram-negative bacterial infections; however, neurotoxic effects are fundamental dose-limiting factors for this treatment. Stem cell therapy is a promising method for treating neuronal diseases. Multipotent mesenchymal stromal cells (MSC) represent a promising source for regenerative medicine. Identification of neuroprotective agents that can be co-administered with colistin has the potential to allow the clinical application of this essential drug. This study was conducted to assess the potential protective effects of MSC, against colistin-induced neurotoxicity, and the possible mechanisms underlying any effect. Forty adult female albino rats were randomly classified into four equal groups; the control group, the MSC-treated group (A single dose of 1 × 106/mL MSCs through the tail vein), the colistin-treated group (36 mg/kg/d colistin was given for 7 d) and the colistin and MSC treated group (36 mg/kg/d colistin was administered for 7 d, and 1 × 106/mL MSCs). Colistin administration significantly increased GFAP, NGF, Beclin-1, IL-6, and TNF-α immunreactivity intensity. MSC administration in colistin-treated rats partially restored each of these markers. Histopathological changes in brain tissues were also alleviated by MSC co-treatment. Our study reveals a critical role of inflammation, autophagy, and apoptosis in colistin-induced neurotoxicity and showed that they were markedly ameliorated by MSC co-administration. Therefore, MSC could represent a promising agent for prevention of colistin-induced neurotoxicity.
Collapse
Affiliation(s)
- Özlem Öz Gergin
- Department of Anesthesiology and Reanimation, Medical Faculty, Erciyes University, Kayseri, Turkey
| | | | - Sibel Seckin Pehlivan
- Department of Anesthesiology and Reanimation, Medical Faculty, Erciyes University, Kayseri, Turkey
| | - Ozge Cengiz Mat
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Işıl Tuğçe Turan
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Adnan Bayram
- Department of Anesthesiology and Reanimation, Medical Faculty, Erciyes University, Kayseri, Turkey
| | | | - Şeyda Korkmaz
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Cihangir Bıcer
- Department of Anesthesiology and Reanimation, Medical Faculty, Erciyes University, Kayseri, Turkey
| | - Karamehmet Yildiz
- Department of Anesthesiology and Reanimation, Medical Faculty, Erciyes University, Kayseri, Turkey
| | - Arzu Hanım Yay
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.,Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| |
Collapse
|
17
|
de Medeiros Borges H, Dagostin CS, Córneo E, Dondossola ER, Bernardo HT, Pickler KDP, da Costa Pereira B, de Oliveira MA, Scussel R, Michels M, Machado-de-Ávila RA, Dal-Pizzol F, Rico EP. Zebrafish as a potential model for stroke: A comparative study with standardized models. Life Sci 2022; 312:121200. [PMID: 36435227 DOI: 10.1016/j.lfs.2022.121200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/25/2022]
Abstract
Animal models of cerebral ischemia have improved our understanding of the pathophysiology and mechanisms involved in stroke, as well as the investigation of potential therapies. The potential of zebrafish to model human diseases has become increasingly evident. The availability of these models allows for an increased understanding of the role of chemical exposure in human conditions and provides essential tools for mechanistic studies of disease. To evaluate the potential neuroprotective properties of minocycline against ischemia and reperfusion injury in zebrafish and compare them with other standardized models. In vitro studies with BV-2 cells were performed, and mammalian transient middle cerebral artery occlusion (tMCAO) was used as a comparative standard with the zebrafish stroke model. Animals were subjected to ischemia and reperfusion injury protocols and treated with minocycline. Infarction size, cytokine levels, oxidative stress, glutamate toxicity, and immunofluorescence for microglial activation, and behavioral test results were determined and compared. Administration of minocycline provided significant protection in the three stroke models in different parameters analyzed. Both experimental models complement each other in their particularities. The proposal also strengthens the findings in the literature in rodent models and allows the validation of alternative models so that they can be used in further research involving diseases with ischemia and reperfusion injury.
Collapse
Affiliation(s)
- Heloisa de Medeiros Borges
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil; Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Caroline Serafim Dagostin
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Emily Córneo
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Eduardo Ronconi Dondossola
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Henrique Teza Bernardo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Karolyne De Pieri Pickler
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Bárbara da Costa Pereira
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Mariane Amanda de Oliveira
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Rahisa Scussel
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Monique Michels
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil; Gabbia Biotechnology Company, Barra Velha, Santa Catarina, Brazil
| | - Ricardo Andrez Machado-de-Ávila
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Eduardo Pacheco Rico
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
18
|
Hussein M, Oberrauch S, Allobawi R, Cornthwaite-Duncan L, Lu J, Sharma R, Baker M, Li J, Rao GG, Velkov T. Untargeted Metabolomics to Evaluate Polymyxin B Toxicodynamics following Direct Intracerebroventricular Administration into the Rat Brain. Comput Struct Biotechnol J 2022; 20:6067-6077. [DOI: 10.1016/j.csbj.2022.10.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
|
19
|
Bian X, Qu X, Zhang J, Nang SC, Bergen PJ, Tony Zhou Q, Chan HK, Feng M, Li J. Pharmacokinetics and pharmacodynamics of peptide antibiotics. Adv Drug Deliv Rev 2022; 183:114171. [PMID: 35189264 PMCID: PMC10019944 DOI: 10.1016/j.addr.2022.114171] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/23/2022] [Accepted: 02/16/2022] [Indexed: 01/05/2023]
Abstract
Antimicrobial resistance is a major global health challenge. As few new efficacious antibiotics will become available in the near future, peptide antibiotics continue to be major therapeutic options for treating infections caused by multidrug-resistant pathogens. Rational use of antibiotics requires optimisation of the pharmacokinetics and pharmacodynamics for the treatment of different types of infections. Toxicodynamics must also be considered to improve the safety of antibiotic use and, where appropriate, to guide therapeutic drug monitoring. This review focuses on the pharmacokinetics/pharmacodynamics/toxicodynamics of peptide antibiotics against multidrug-resistant Gram-negative and Gram-positive pathogens. Optimising antibiotic exposure at the infection site is essential for improving their efficacy and minimising emergence of resistance.
Collapse
Affiliation(s)
- Xingchen Bian
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China; National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; School of Pharmacy, Fudan University, Shanghai, China
| | - Xingyi Qu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China; National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; School of Pharmacy, Fudan University, Shanghai, China; Phase I Unit, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jing Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China; National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Phase I Unit, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Sue C Nang
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Phillip J Bergen
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Meiqing Feng
- School of Pharmacy, Fudan University, Shanghai, China
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Australia.
| |
Collapse
|
20
|
Parvardeh S, Sheikholeslami MA, Ghafghazi S, Pouriran R, Mortazavi SE. Minocycline Improves Memory by Enhancing Hippocampal Synaptic Plasticity and Restoring Antioxidant Enzyme Activity in a Rat Model of Cerebral Ischemia-Reperfusion. Basic Clin Neurosci 2022; 13:225-235. [PMID: 36425949 PMCID: PMC9682322 DOI: 10.32598/bcn.12.6.2062.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/23/2021] [Accepted: 12/26/2021] [Indexed: 06/16/2023] Open
Abstract
INTRODUCTION Oxidative stress plays a crucial role in the impairment of synaptic plasticity following cerebral ischemia, ultimately resulting in memory dysfunction. Hence, the applying antioxidant agents could be beneficial in managing memory deficits after brain ischemia. Minocycline is a tetracycline antibiotic with antioxidant effect. The main objective of this work was to assess the minocycline effect on the impairment of synaptic plasticity and memory after cerebral ischemia-reperfusion in rats. METHODS Transient occlusion of common carotid arteries was used to induce ischemiareperfusion injury in rats. Single or multiple (once daily for 7 days) dose(s) of minocycline were administered before (pretreatment) or after (treatment) brain ischemia. Seven days after ischemia-reperfusion, passive avoidance performance, long-term hippocampal potentiation, and the activity of antioxidant enzymes were assessed. RESULTS The passive avoidance test showed that minocycline (20 and 40 mg/kg) significantly increased step-through latency while reducing the duration of staying in a dark chamber in the treatment (but not pretreatment) group. In electrophysiological experiments, the rats treated (but not pretreated) with minocycline (40 mg/kg) showed a significant increase in the amplitude of the field excitatory postsynaptic potentials in the dentate gyrus area of the hippocampus. The treatment (but not pretreatment) with minocycline (20 and 40 mg/kg) resulted in a significant increase in the activity of catalase, glutathione peroxidase, and superoxide dismutase in the hippocampus. CONCLUSION It was determined that minocycline attenuates memory dysfunction after cerebral ischemia-reperfusion in rats by improving hippocampal synaptic plasticity and restoring antioxidant enzyme activity. HIGHLIGHTS Minocycline enhances passive avoidance memory after cerebral ischemia-reperfusion.Minocycline increases enzymatic antioxidant capacity in hippocampal formation.Minocycline improves synaptic plasticity in perforant path-granule cell synapse. PLAIN LANGUAGE SUMMARY Stroke is a common neurological disease with a relatively high mortality rate and disabilities worldwide. More than half of the patients who have had an episode of stroke suffer from the impairment of sensorimotor function and language problems as well as learning and memory disorders. Oxidative stress plays an important role in memory impairment following brain ischemia. Hence, the application of antioxidant agents could be beneficial in managing memory deficits after stroke. Minocycline is a tetracycline antibiotic that is used for the treatment of infectious diseases; it can also function as a potent antioxidant medication. Hence, we hypothesized that minocycline could attenuate memory impairment after brain ischemia. We examined this hypothesis in a rat model of brain ischemia. In this model, the main arteries that supply the brain with oxygenated blood were occluded to induce brain ischemia in the rats. Then, minocycline was administered to the rats, which were subjected to brain ischemia. Seven days later, memory function in the rats was evaluated. The results showed that minocycline could enhance the activity of antioxidant enzymes in the brain, which physiologically fight off oxidative stress. This property of minocycline protects brain cells against ischemic injury and thereby increases the transmission of neuronal signals from one cell to another cell in the memory centers in the brain. These effects ultimately increase the memory function of rats, which was evident in the behavioral memory test. Overall, the study results suggest that minocycline can be considered a memory enhancer drug in patients who suffer from learning and memory disorders following a stroke.
Collapse
Affiliation(s)
- Siavash Parvardeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Shiva Ghafghazi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Pouriran
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Erfan Mortazavi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Qu X, Bian X, Chen Y, Hu J, Huang X, Wang Y, Fan Y, Wu H, Li X, Li Y, Guo B, Liu X, Zhang J. Polymyxin B Combined with Minocycline: A Potentially Effective Combination against blaOXA-23-harboring CRAB in In Vitro PK/PD Model. Molecules 2022; 27:molecules27031085. [PMID: 35164349 PMCID: PMC8840471 DOI: 10.3390/molecules27031085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 12/15/2022] Open
Abstract
Polymyxin-based combination therapy is commonly used to treat carbapenem-resistant Acinetobacter baumannii (CRAB) infections. In the present study, the bactericidal effect of polymyxin B and minocycline combination was tested in three CRAB strains containing blaOXA-23 by the checkerboard assay and in vitro dynamic pharmacokinetics/pharmacodynamics (PK/PD) model. The combination showed synergistic or partial synergistic effect (fractional inhibitory concentration index ≤0.56) on the tested strains in checkboard assays. The antibacterial activity was enhanced in the combination group compared with either monotherapy in in vitro PK/PD model. The combination regimen (simultaneous infusion of 0.75 mg/kg polymyxin B and 100 mg minocycline via 2 h infusion) reduced bacterial colony counts by 0.9–3.5 log10 colony forming units per milliliter (CFU/mL) compared with either drug alone at 24 h. In conclusion, 0.75 mg/kg polymyxin B combined with 100 mg minocycline via 2 h infusion could be a promising treatment option for CRAB bloodstream infections.
Collapse
Affiliation(s)
- Xingyi Qu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.Q.); (X.B.); (J.H.); (X.H.); (Y.W.); (Y.F.); (H.W.); (X.L.); (Y.L.); (B.G.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai 200040, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China;
- Phase I Unit, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xingchen Bian
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.Q.); (X.B.); (J.H.); (X.H.); (Y.W.); (Y.F.); (H.W.); (X.L.); (Y.L.); (B.G.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai 200040, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China;
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yuancheng Chen
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China;
- Phase I Unit, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jiali Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.Q.); (X.B.); (J.H.); (X.H.); (Y.W.); (Y.F.); (H.W.); (X.L.); (Y.L.); (B.G.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai 200040, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China;
| | - Xiaolan Huang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.Q.); (X.B.); (J.H.); (X.H.); (Y.W.); (Y.F.); (H.W.); (X.L.); (Y.L.); (B.G.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai 200040, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China;
| | - Yu Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.Q.); (X.B.); (J.H.); (X.H.); (Y.W.); (Y.F.); (H.W.); (X.L.); (Y.L.); (B.G.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai 200040, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China;
| | - Yaxin Fan
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.Q.); (X.B.); (J.H.); (X.H.); (Y.W.); (Y.F.); (H.W.); (X.L.); (Y.L.); (B.G.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai 200040, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China;
| | - Hailan Wu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.Q.); (X.B.); (J.H.); (X.H.); (Y.W.); (Y.F.); (H.W.); (X.L.); (Y.L.); (B.G.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai 200040, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China;
| | - Xin Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.Q.); (X.B.); (J.H.); (X.H.); (Y.W.); (Y.F.); (H.W.); (X.L.); (Y.L.); (B.G.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai 200040, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China;
| | - Yi Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.Q.); (X.B.); (J.H.); (X.H.); (Y.W.); (Y.F.); (H.W.); (X.L.); (Y.L.); (B.G.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai 200040, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China;
| | - Beining Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.Q.); (X.B.); (J.H.); (X.H.); (Y.W.); (Y.F.); (H.W.); (X.L.); (Y.L.); (B.G.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai 200040, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China;
| | - Xiaofen Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.Q.); (X.B.); (J.H.); (X.H.); (Y.W.); (Y.F.); (H.W.); (X.L.); (Y.L.); (B.G.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai 200040, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China;
- Correspondence: (X.L.); (J.Z.); Tel.: +86-21-52888190 (J.Z.)
| | - Jing Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China; (X.Q.); (X.B.); (J.H.); (X.H.); (Y.W.); (Y.F.); (H.W.); (X.L.); (Y.L.); (B.G.)
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai 200040, China
- National Health Commission & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China;
- Phase I Unit, Huashan Hospital, Fudan University, Shanghai 200040, China
- Correspondence: (X.L.); (J.Z.); Tel.: +86-21-52888190 (J.Z.)
| |
Collapse
|
22
|
Delineation of the molecular mechanisms underlying Colistin-mediated toxicity using metabolomic and transcriptomic analyses. Toxicol Appl Pharmacol 2022; 439:115928. [DOI: 10.1016/j.taap.2022.115928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/02/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023]
|
23
|
Interactions of Polymyxin B in Combination with Aztreonam, Minocycline, Meropenem, and Rifampin against Escherichia coli Producing NDM and OXA-48-Group Carbapenemases. Antimicrob Agents Chemother 2021; 65:e0106521. [PMID: 34516251 PMCID: PMC8597741 DOI: 10.1128/aac.01065-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Carbapenemase-producing Enterobacterales pose an increasing medical threat. Combination therapy is often used for severe infections; however, there is little evidence supporting the optimal selection of drugs. This study aimed to determine the in vitro effects of polymyxin B combinations against carbapenemase-producing Escherichia coli. The interactions of polymyxin B in combination with aztreonam, meropenem, minocycline or rifampin against 20 clinical isolates of NDM and OXA-48-group-producing E. coli were evaluated using time-lapse microscopy; 24-h samples were spotted on plates with and without 4× MIC polymyxin B for viable counts. Whole-genome sequencing was applied to identify resistance genes and mutations. Finally, potential associations between combination effects and bacterial genotypes were assessed using Fisher's exact test. Synergistic and bactericidal effects were observed with polymyxin B and minocycline against 11/20 strains and with polymyxin B and rifampin against 9/20 strains. The combinations of polymyxin B and aztreonam or meropenem showed synergy against 2/20 strains. Negligible resistance development against polymyxin B was detected. Synergy with polymyxin B and minocycline was associated with genes involved in efflux (presence of tet[B], wild-type soxR, and the marB mutation H44Q) and lipopolysaccharide synthesis (eptA C27Y, lpxB mutations, and lpxK L323S). Synergy with polymyxin B and rifampin was associated with sequence variations in arnT, which plays a role in lipid A modification. Polymyxin B in combination with minocycline or rifampin frequently showed positive interactions against NDM- and OXA-48-group-producing E. coli. Synergy was associated with genes encoding efflux and components of the bacterial outer membrane.
Collapse
|
24
|
Mohapatra A, Bohara VS, Kumar S, Chaudhary N. Polymyxin B accelerates the α-synuclein aggregation. Biophys Chem 2021; 277:106628. [PMID: 34118773 DOI: 10.1016/j.bpc.2021.106628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by the loss of dopaminergic neurons. It is characterised by the deposition of insoluble α-synuclein aggregates in the brain. Constipation is a common PD-associated condition, and the treatment of constipation with certain antibiotics seem to improve the PD symptoms. Polymyxin B, a last resort drug in treating the life-threatening Gram-negative bacterial infections, is one such antibiotic. The administration of polymyxin B in PD patients is known to alleviate the movement disorder symptoms; the mechanism of action, however, remains unclear. We, therefore, wondered if polymyxin B could modulate the aggregation of α-synuclein. We find that the polymyxin B catalyses the aggregation of α-synuclein into amyloid fibrils. At equimolar polymyxin B concentration, the lag phase was reduced to around one-third of that in the absence of polymyxin B.
Collapse
Affiliation(s)
- Anshuman Mohapatra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India
| | - Vijay Singh Bohara
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India
| | - Nitin Chaudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781 039, India.
| |
Collapse
|
25
|
Cui N, Liang Y, Wang J, Liu B, Wei B, Zhao Y. Minocycline attenuates oxidative and inflammatory injury in a intestinal perforation induced septic lung injury model via down-regulating lncRNA MALAT1 expression. Int Immunopharmacol 2021; 100:108115. [PMID: 34562841 DOI: 10.1016/j.intimp.2021.108115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/19/2021] [Accepted: 08/28/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Oxidative stress and inflammatory responses play an important role in acute lung injury (ALI). Although minocycline (MINO) has anti-inflammatory effects and is a promising candidate in treating inflammatory diseases, the effect of MINO on ALI during sepsis is still unclear. METHODS In the present study, a mouse model with intestinal perforation was established. C57BL/6 mice received cecal ligation and puncture (CLP) to induce sepsis-associated ALI. MINO was used to treat the mice via intraperitoneal injection at different doses (negative control, 20 mg/kg, 50 mg/kg and 100 mg/kg, respectively) 24 h after CLP. The severity of lung injury was evaluated by pathological examination, and lung wet / dry weight ratio was calculated to evaluate the severity of pulmonary edema. The changes of TNF-α, IL-1β, IL-6, PGE2, MDA, NF-κB, Nrf2, Keap1 and lncRNA MALAT1 levels in lung tissues of the mice were detected with ELISA, chemical colorimetry, Western blot or qRT-PCR. RESULTS MINO ameliorated the lung edema and lung injury of the mice induced by CLP in a dose-dependent manner. MINO administration could significantly down-regulate expressions of TNF-α, IL-6, IL-1β, PGE2 and MDA in lung tissues of the mice. Mechanistically, MINO exerted the effects of anti-inflammation and anti-oxidative stress through down-regulating the expression of MALAT1 and regulating Nrf2/Keap1 and NF-κB signaling pathways. CONCLUSION MINO represses oxidative stress and inflammatory response during sepsis-induced ALI via down-regulating MALAT1 expression, and it has the potential to treat septic ALI.
Collapse
Affiliation(s)
- Ning Cui
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430070, China
| | - Yong Liang
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University & Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing 100043, China
| | - Junyu Wang
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University & Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing 100043, China
| | - Bo Liu
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University & Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing 100043, China
| | - Bing Wei
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University & Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing 100043, China
| | - Yu Zhao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430070, China.
| |
Collapse
|
26
|
Li Y, Deng Y, Zhu ZY, Liu YP, Xu P, Li X, Xie YL, Yao HC, Yang L, Zhang BK, Zhou YG. Population Pharmacokinetics of Polymyxin B and Dosage Optimization in Renal Transplant Patients. Front Pharmacol 2021; 12:727170. [PMID: 34512352 PMCID: PMC8424097 DOI: 10.3389/fphar.2021.727170] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022] Open
Abstract
Currently, polymyxin B has been widely used in the treatment of multidrug-resistant Gram-negative pathogen infections. Due to the limited pharmacokinetic/pharmacodynamic data, the optimal dosage regimen for the recently proposed therapeutic target of the area under the concentration-time curve over 24 h in steady state divided by the minimum inhibitory concentration 50–100 mg⋅h/L has not yet been established. Moreover, most studies have focused on critically ill patients, yet there have been no studies in the field of renal transplantation. To optimize the dosage strategy and reduce the risk of toxicity, a population pharmacokinetics model of polymyxin B with the Phoenix NLME program was developed in our study. A total of 151 plasma samples from 50 patients were collected in the present study. Polymyxin B plasma concentrations were measured by high-performance liquid chromatography-tandem mass spectrometry. A one-compartment model adequately described the data, and the clearance and volume of distribution were 1.18 L/h and 12.09 L, respectively. A larger creatinine clearance was associated with increased clearance of polymyxin B (p < 0.01). Monte Carlo simulation showed that a regimen of a 75 mg loading dose with a 50 mg maintenance dose was a better option to achieve an optimal therapeutic effect (minimum inhibitory concentration ≤1 mg/L) and to reduce the incidence of side effects for patients with renal impairments. The developed model suggested that dosing adjustment should be based on renal function in renal transplant patients.
Collapse
Affiliation(s)
- Ying Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China.,School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yang Deng
- Department of Pharmacy, Third Hospital of Changsha, Changsha, China
| | - Zhen-Yu Zhu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Yi-Ping Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Ping Xu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xin Li
- Department of Pharmacy, Third Hospital of Changsha, Changsha, China
| | - Yue-Liang Xie
- Department of Pharmacy, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Heng-Chang Yao
- Department of Urological Organ Transplantation, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Liu Yang
- Hubei Institute of Land Surveying and Mapping, Wuhan, China
| | - Bi-Kui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China.,School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yan-Gang Zhou
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
27
|
Samaiya PK, Krishnamurthy S, Kumar A. Mitochondrial dysfunction in perinatal asphyxia: role in pathogenesis and potential therapeutic interventions. Mol Cell Biochem 2021; 476:4421-4434. [PMID: 34472002 DOI: 10.1007/s11010-021-04253-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 08/20/2021] [Indexed: 01/13/2023]
Abstract
Perinatal asphyxia (PA)-induced brain injury may present as hypoxic-ischemic encephalopathy in the neonatal period, and long-term sequelae such as spastic motor deficits, intellectual disability, seizure disorders and learning disabilities. The brain injury is secondary to both the hypoxic-ischemic event and oxygenation-reperfusion following resuscitation. Following PA, a time-dependent progression of neuronal insult takes place in terms of transition of cell death from necrosis to apoptosis. This transition is the result of time-dependent progression of pathomechanisms which involve excitotoxicity, oxidative stress, and ultimately mitochondrial dysfunction in developing brain. More precisely mitochondrial respiration is suppressed and calcium signalling is dysregulated. Consequently, Bax-dependent mitochondrial permeabilization occurs leading to release of cytochrome c and activation of caspases leading to transition of cell death in developing brain. The therapeutic window lies within this transition process. At present, therapeutic hypothermia (TH) is the only clinical treatment available for treating moderate as well as severe asphyxia in new-born as it attenuates secondary loss of high-energy phosphates (ATP) (Solevåg et al. in Free Radic Biol Med 142:113-122, 2019; Gunn et al. in Pediatr Res 81:202-209, 2017), improving both short- and long-term outcomes. Mitoprotective therapies can offer a new avenue of intervention alone or in combination with therapeutic hypothermia for babies with birth asphyxia. This review will explore these mitochondrial pathways, and finally will summarize past and current efforts in targeting these pathways after PA, as a means of identifying new avenues of therapeutic intervention.
Collapse
Affiliation(s)
- Puneet K Samaiya
- Department of Pharmacy, Shri G.S. Institute of Technology and Science, Indore, MP, 452003, India.
| | - Sairam Krishnamurthy
- Neurotherapeutics Lab, Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ashok Kumar
- Department of Pediatrics, Institute of Medical Sciences, BHU, Varanasi, UP, India
| |
Collapse
|
28
|
Wang B, Lin W, Zhu H. Minocycline improves the recovery of nerve function and alleviates blood-brain barrier damage by inhibiting endoplasmic reticulum in traumatic brain injury mice model. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211010898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is a clinical emergency with a very high incidence, disability, and fatality rate. Minocycline, a widely used semisynthetic second-generation tetracycline antibiotic, has anti-inflammatory and bactericidal effects. However, minocycline has not been explored as a therapeutic drug in TBI and if effective, the related molecular mechanism is also unclear. In this study, we examined the neuroprotective effect and possible mechanism of minocycline, in mice TBI model by studying the trauma-related functional and morphological changes. Also, in vitro cell studies were carried out to verify the animal model data. We found that minocycline significantly improved the neurobehavioral score, inhibited apoptosis, repaired the blood-brain barrier, and reduced the levels of inflammatory factors Interleukin-6 and tumor necrosis factor-α in TBI mice. In vitro, upon oxygen and glucose deprivation, minocycline reduced the levels of cellular inflammatory factors and increased the levels of tight junction and adherens junction proteins, thereby significantly improving the cell viability. Moreover, Mino treatment prevented the loss of tight junction and adherens junction proteins which were markedly reversed by an ER stress activator (tunicamycin) both in vivo and in vitro. Our findings set an effective basis for the clinical use of Mino to treat Traumatic brain injury-induced neurological deficits.
Collapse
Affiliation(s)
- Bingbin Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou
| | - Wendong Lin
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou
| | - Haiping Zhu
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou
| |
Collapse
|
29
|
Liu L, Wu FY, Zhu CY, Zou HY, Kong RQ, Ma YK, Su D, Song GQ, Zhang Y, Liu KC. Involvement of dopamine signaling pathway in neurodevelopmental toxicity induced by isoniazid in zebrafish. CHEMOSPHERE 2021; 265:129109. [PMID: 33280847 DOI: 10.1016/j.chemosphere.2020.129109] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/02/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
AIMS This study evaluated the neurodevelopmental toxicity of isoniazid (INH) in zebrafish embryos and the underlying mechanism. METHODS Zebrafish embryos were exposed to different concentrations (2 mM, 4 mM, 8 mM, 16 mM, 32 mM) INH for 120 hpf. During the exposure period, the percentage of embryo/larva mortality, hatching, and morphological malformation were checked every 24 h until 120 hpf. The development of blood vessels in the brain was observed at 72 hpf and 120 hpf, and behavioral capacity and acridine orange (AO) staining were measured at 120 hpf. Alterations in the mRNA expression of apoptosis and dopamine signaling pathway related genes were assessed by real-time quantitative PCR (qPCR). RESULTS INH considerably inhibited zebrafish embryo hatching and caused zebrafish larval malformation (such as brain malformation, delayed yolk sac absorption, spinal curvature, pericardial edema, and swim bladder defects). High concentration of INH (16 mM, 32 mM) even induced death of zebrafish. In addition, INH exposure markedly restrained the ability of the zebrafish autonomous movement, shortened the length of dopamine neurons and inhibited vascular development in the brain. No obvious apoptotic cells were observed in the control group, whereas considerable numbers of apoptotic cells appeared in the head of INH-treated larvae at 120 hpf. PCR results indicated that INH significantly raised the transcription levels of caspase-3, -8, -9, and bax and significantly decreased bcl-2 and bcl-2/bax in the zebrafish apoptotic signaling pathway. INH also markedly decreased the genes related to dopamine signaling pathway (th1, dat, drd1, drd2a, drd3, and drd4b). CONCLUSIONS Experimental results indicated that INH had obvious neurodevelopmental toxicity in zebrafish. Persistent exposure to INH for 120 h caused apoptosis, decreased dopaminergic gene expression, altered vasculature, and reduced behaviors.
Collapse
Affiliation(s)
- Li Liu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, PR China
| | - Fang-Yan Wu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, PR China; Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China
| | - Cheng-Yue Zhu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China
| | - Hong-Yuan Zou
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China
| | - Rui-Qi Kong
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China
| | - Yu-Kui Ma
- Shandong Academy of Pharmaceutical Sciences, Jinan, Shandong Province, PR China
| | - Dan Su
- Department of Pharmacy, Changzhou No.2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, PR China
| | - Guo-Qiang Song
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, PR China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China.
| | - Ke-Chun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, Shandong Province, PR China.
| |
Collapse
|
30
|
Aksu EH, Kandemir FM, Küçükler S. The effects of hesperidin on colistin-induced reproductive damage, autophagy, and apoptosis by reducing oxidative stress. Andrologia 2020; 53:e13900. [PMID: 33263200 DOI: 10.1111/and.13900] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/18/2022] Open
Abstract
This study has been conducted to investigate the effect of hesperidin on colistin-induced reproductive damage in male rats. Twenty-four adult male Sprague Dawley rats were used as animal material. They were divided into four groups: control group, received physiological saline for 7 days by oral gavage; hesperidin group, received 300 mg/kg day hesperidin for 7 days; colistin group, received 73 mg/kg (total dose) colistin during 7 days; and colistin + hesperidin group, received 300 mg/kg day hesperidin following the colistin treatment. At the end of the study, routine spermatological parameters and biochemical evaluations were assayed. Also, apoptosis and autophagy biomarkers in testes were evaluated. Colistin increased oxidative stress, apoptosis and autophagy expression levels in testis. Hesperidin supplementation significantly decreased the oxidative stress levels in the testes of the colistin + hesperidin group when compared to the colistin group. The highest apoptosis and autophagy expression levels were detected in the colistin group. These values were statistically lower in the colistin + hesperidin group when compared to the colistin group. Colistin treatment decreased the percentage of sperm motility and increased sperm abnormality. Hesperidin supplementation mitigated significantly mentioned side effects compared to the colistin group. In conclusion, hesperidin supplementation can be a good strategy to mitigate colistin-induced testicular toxicity.
Collapse
Affiliation(s)
- Emrah Hicazi Aksu
- Veterinary Medicine Faculty, Department of Reproduction and Artificial Insemination, Atatürk University, Erzurum, Turkey
| | - Fatih Mehmet Kandemir
- Veterinary Medicine Faculty, Department of Biochemistry, Atatürk University, Erzurum, Turkey
| | - Sefa Küçükler
- Veterinary Medicine Faculty, Department of Biochemistry, Atatürk University, Erzurum, Turkey
| |
Collapse
|
31
|
Liu Y, Jia Y, Yang K, Tong Z, Shi J, Li R, Xiao X, Ren W, Hardeland R, Reiter RJ, Wang Z. Melatonin overcomes MCR-mediated colistin resistance in Gram-negative pathogens. Am J Cancer Res 2020; 10:10697-10711. [PMID: 32929375 PMCID: PMC7482817 DOI: 10.7150/thno.45951] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Emergence, prevalence and widely spread of plasmid-mediated colistin resistance in Enterobacteriaceae strongly impairs the clinical efficacy of colistin against life-threatening bacterial infections. Combinations of antibiotics and FDA-approved non-antibiotic agents represent a promising means to address the widespread emergence of antibiotic-resistant pathogens. Methods: Herein, we investigated the synergistic activity between melatonin and antibiotics against MCR (mobilized colistin resistance)-positive Gram-negative pathogens through checkerboard assay and time-killing curve. Molecular mechanisms underlying its mode of action were elucidated. Finally, we assessed the in vivo efficacy of melatonin in combination with colistin against drug-resistant Gram-negative bacteria. Results: Melatonin, which has been approved for treating sleep disturbances and circadian disorders, substantially potentiates the activity of three antibiotics, particularly colistin, against MCR-expressing pathogens without enhancing its toxicity. This is evidence that the combination of colistin with melatonin enhances bacterial outer membrane permeability, promotes oxidative damage and inhibits the effect of efflux pumps. In three animal models infected by mcr-1-carrying E. coli, melatonin dramatically rescues colistin efficacy. Conclusion: Our findings revealed that melatonin serves as a promising colistin adjuvant against MCR-positive Gram-negative pathogens.
Collapse
|
32
|
Ayoub Moubareck C. Polymyxins and Bacterial Membranes: A Review of Antibacterial Activity and Mechanisms of Resistance. MEMBRANES 2020; 10:membranes10080181. [PMID: 32784516 PMCID: PMC7463838 DOI: 10.3390/membranes10080181] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/19/2022]
Abstract
Following their initial discovery in the 1940s, polymyxin antibiotics fell into disfavor due to their potential clinical toxicity, especially nephrotoxicity. However, the dry antibiotic development pipeline, together with the rising global prevalence of infections caused by multidrug-resistant (MDR) Gram-negative bacteria have both rejuvenated clinical interest in these polypeptide antibiotics. Parallel to the revival of their use, investigations into the mechanisms of action and resistance to polymyxins have intensified. With an initial known effect on biological membranes, research has uncovered the detailed molecular and chemical interactions that polymyxins have with Gram-negative outer membranes and lipopolysaccharide structure. In addition, genetic and epidemiological studies have revealed the basis of resistance to these agents. Nowadays, resistance to polymyxins in MDR Gram-negative pathogens is well elucidated, with chromosomal as well as plasmid-encoded, transferrable pathways. The aims of the current review are to highlight the important chemical, microbiological, and pharmacological properties of polymyxins, to discuss their mechanistic effects on bacterial membranes, and to revise the current knowledge about Gram-negative acquired resistance to these agents. Finally, recent research, directed towards new perspectives for improving these old agents utilized in the 21st century, to combat drug-resistant pathogens, is summarized.
Collapse
|
33
|
Azarabadi M, Heidari F, Khaki AA, Kaka G, Ghadian A. Minocycline attenuates testicular damages in a rat model of ischaemia/reperfusion (I/R) injury. Andrologia 2020; 52:e13704. [PMID: 32542686 DOI: 10.1111/and.13704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/30/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023] Open
Abstract
Testicular torsion is a serious urological disease leading to testicular damage. This study aimed to assess the effect of minocycline on testicular ischaemia/reperfusion (I/R) injury caused by testicular torsion/detorsion. Male adult Wistar rats (n = 32) were assigned into four groups of sham, I/R, I/R + minocycline and minocycline. I/R injury was induced by two sets of surgical operations, including the rotation of the left testis (720°, counterclockwise), followed by detorsion after 4 hr. The administration of minocycline was carried out 30 min before detorsion and then continued for 8 weeks. At the end of the 8th week, rats were killed and sampling was done. Johnson's score, the height of seminiferous tubule epithelium, the mean seminiferous tubule diameter, as well as biochemical parameters, SOD, GPx and CAT, were significantly enhanced in the I/R + minocycline group compared with the I/R group. The administration of minocycline led to a marked decrease in expression levels of Caspase-3, Bax, IL-1β and TNF-α genes, and a remarkable increase in expression levels of Bcl-2, 3β-HSD and 17β-HSD3 genes compared with the I/R group. Administration of minocycline could also reduce the rate of germ cell apoptosis (TUNEL staining). Hence, minocycline was useful in the management of testicular torsion/detorsion.
Collapse
Affiliation(s)
- Mahdi Azarabadi
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Fatemeh Heidari
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Afshin Khaki
- Department of Obstetrics and Gynecology, Universitätsklinikum Schleswig-Holstein Campus Lübeck, Lübeck, Germany.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Kaka
- Department of Anatomical Sciences, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Ghadian
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Dai C, Xiong J, Wang Y, Shen J, Velkov T, Xiao X. Nerve Growth Factor Confers Neuroprotection against Colistin-Induced Peripheral Neurotoxicity. ACS Infect Dis 2020; 6:1451-1459. [PMID: 32422040 DOI: 10.1021/acsinfecdis.0c00107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neurotoxicity is an unwanted side effect for patients when receiving parenteral colistin therapy. The development of effective neuroprotective agents that can be coadministered during colistin therapy remains a priority area in antimicrobial chemotherapy. The present study aimed to investigate the protective effect of nerve growth factor (NGF) against colistin-induced peripheral neurotoxicity using a murine model. C57BL/6 mice were randomly divided into the following 6 groups: (i) untreated control, (ii) NGF alone (36 μg/kg/day administered intraperitoneally), (iii) colistin alone (18 mg/kg/day administered intraperitoneally), and (iv-vi) colistin (18 mg/kg/day) plus NGF (9, 18, and 36 μg/kg/day). After treatment for 7 days, neurobehavioral and electrophysiology changes, histopathological assessments of sciatic nerve damage, and oxidative stress biomarkers were examined. The mRNA expression levels of Nrf2, HO-1, Akt, Bax, and caspase-3 and -9 were assessed using quantitative RT-PCR. The results showed that, across all the groups wherein NGF was coadministered with colistin, a marked attenuation of colistin-induced sciatic nerve damage and improved sensory and motor function were observed. In comparison to the colistin only treatment group, animals that received NGF displayed upregulated Nrf2 and HO-1 mRNA expression levels and downregulated Bax and caspase-3 and -9 mRNA expression levels. In summary, our study reveals that NGF coadministration protects against colistin-induced peripheral neurotoxicity via the activation of Akt and Nrf2/HO-1 pathways and inhibition of oxidative stress. This study highlights the potential clinical application of NGF as a neuroprotective agent for coadministration during colistin therapy.
Collapse
Affiliation(s)
- Chongshan Dai
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Jianli Xiong
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, P. R. China
| | - Yang Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Xilong Xiao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
35
|
Dai C, Wang Y, Sharma G, Shen J, Velkov T, Xiao X. Polymyxins-Curcumin Combination Antimicrobial Therapy: Safety Implications and Efficacy for Infection Treatment. Antioxidants (Basel) 2020; 9:antiox9060506. [PMID: 32526966 PMCID: PMC7346118 DOI: 10.3390/antiox9060506] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
The emergence of antimicrobial resistance in Gram-negative bacteria poses a huge health challenge. The therapeutic use of polymyxins (i.e., colistin and polymyxin B) is commonplace due to high efficacy and limiting treatment options for multidrug-resistant Gram-negative bacterial infections. Nephrotoxicity and neurotoxicity are the major dose-limiting factors that limit the therapeutic window of polymyxins; nephrotoxicity is a complication in up to ~60% of patients. The emergence of polymyxin-resistant strains or polymyxin heteroresistance is also a limiting factor. These caveats have catalyzed the search for polymyxin combinations that synergistically kill polymyxin-susceptible and resistant organisms and/or minimize the unwanted side effects. Curcumin—an FDA-approved natural product—exerts many pharmacological activities. Recent studies showed that polymyxins–curcumin combinations showed a synergistically inhibitory effect on the growth of bacteria (e.g., Gram-positive and Gram-negative bacteria) in vitro. Moreover, curcumin co-administration ameliorated colistin-induced nephrotoxicity and neurotoxicity by inhibiting oxidative stress, mitochondrial dysfunction, inflammation and apoptosis. In this review, we summarize the current knowledge-base of polymyxins–curcumin combination therapy and discuss the underlying mechanisms. For the clinical translation of this combination to become a reality, further research is required to develop novel polymyxins–curcumin formulations with optimized pharmacokinetics and dosage regimens.
Collapse
Affiliation(s)
- Chongshan Dai
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China; (Y.W.); (J.S.)
- Correspondence: (C.D.); (X.X.); Tel.: +86-156-5282-6026 (C.D.); +86-010-6273-3377 (X.X.)
| | - Yang Wang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China; (Y.W.); (J.S.)
| | - Gaurav Sharma
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Jianzhong Shen
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China; (Y.W.); (J.S.)
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, Faculty of Medicine, School of Biomedical Sciences, Dentistry and Health Sciences, the University of Melbourne, Parkville 3052, Australia;
| | - Xilong Xiao
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, China; (Y.W.); (J.S.)
- Correspondence: (C.D.); (X.X.); Tel.: +86-156-5282-6026 (C.D.); +86-010-6273-3377 (X.X.)
| |
Collapse
|
36
|
Dai C, Xiao X, Zhang Y, Xiang B, Hoyer D, Shen J, Velkov T, Tang S. Curcumin Attenuates Colistin-Induced Peripheral Neurotoxicity in Mice. ACS Infect Dis 2020; 6:715-724. [PMID: 32037797 DOI: 10.1021/acsinfecdis.9b00341] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Peripheral neurotoxicity often occurs in patients receiving parenteral polymyxin therapy (i.e., colistin methanesulfonate or polymyxin B). The present study aimed to investigate the protective effect of curcumin on colistin-induced peripheral neurotoxicity using a murine model. Female C57BL/6 mice (n = 10 in each group) were randomly divided into the following: (1) control group (saline), (2) curcumin only group (200 mg/kg/day; orally), (3) colistin only group (18 mg/kg/day; i.p.), (4) colistin (18 mg/kg/day) plus curcumin 50 mg/kg/day group, (5) colistin (18 mg/kg/day) plus curcumin 100 mg/kg/day group, (6) colistin (18 mg/kg/day) plus curcumin 200 mg/kg/day group; all mice were treated for 7 days. Orally applied curcumin was detected in the brain, cerebellum, and sciatic nerve. Co-administration of oral curcumin markedly improved colistin-induced impaired sensory and motor dysfunctions in a dose-dependent manner. Curcumin supplementation at 100 and 200 mg/kg significantly decreased lipid peroxidation and upregulated catalase (CAT) and superoxide dismutase (SOD) activities, ATP levels, and Na+/K+-ATPase activity in sciatic nerve tissue, compared to the colistin alone group. Curcumin supplementation at 200 mg/kg upregulated the levels of AKT, NGF, mTOR, Nrf2, and HO-1 mRNA and concomitantly downregulated Bax, caspases-3, and -9 mRNA; it also decreased caspase-3 and caspase-9 activity. In summary, for the first time, our study reveals that the protective effect of oral curcumin on colistin induced peripheral neurotoxicity is associated with the activation of NGF/Akt and Nrf2/HO-1 pathways and inhibition of oxidative stress. This study highlights the potential clinical application of curcumin as an oral neuroprotective agent coadministered during colistin therapy.
Collapse
Affiliation(s)
- Chongshan Dai
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Xilong Xiao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Yuan Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Biao Xiang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Daniel Hoyer
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shusheng Tang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
37
|
Zhao C, Wistrand-Yuen P, Lagerbäck P, Tängdén T, Nielsen EI, Friberg LE. Combination of polymyxin B and minocycline against multidrug-resistant Klebsiella pneumoniae: interaction quantified by pharmacokinetic/pharmacodynamic modelling from in vitro data. Int J Antimicrob Agents 2020; 55:105941. [PMID: 32171741 DOI: 10.1016/j.ijantimicag.2020.105941] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/31/2020] [Accepted: 03/05/2020] [Indexed: 01/03/2023]
Abstract
Lack of effective treatment for multidrug-resistant Klebsiella pneumoniae (MDR-Kp) necessitates finding and optimising combination therapies of old antibiotics. The aims of this study were to quantify the combined effect of polymyxin B and minocycline by building an in silico semi-mechanistic pharmacokinetic/pharmacodynamic (PKPD) model and to predict bacterial kinetics when exposed to the drugs alone and in combination at clinically achievable unbound drug concentration-time profiles. A clinical K. pneumoniae strain resistant to polymyxin B [minimum inhibitory concentration (MIC) = 16 mg/L] and minocycline (MIC = 16 mg/L) was selected for extensive in vitro static time-kill experiments. The strain was exposed to concentrations of 0.0625-48 × MIC, with seven samples taken per experiment for viable counts during 0-28 h. These observations allowed the development of the PKPD model. The final PKPD model included drug-induced adaptive resistance for both drugs. Both the minocycline-induced bacterial killing and resistance onset rate constants were increased when polymyxin B was co-administered, whereas polymyxin B parameters were unaffected. Predictions at clinically used dosages from the developed PKPD model showed no or limited antibacterial effect with monotherapy, whilst combination therapy kept bacteria below the starting inoculum for >20 h at high dosages [polymyxin B 2.5 mg/kg + 1.5 mg/kg every 12 h (q12h); minocycline 400 mg + 200 mg q12h, loading + maintenance doses]. This study suggests that polymyxin B and minocycline in combination may be of clinical benefit in the treatment of infections by MDR-Kp and for isolates that are non-susceptible to either drug alone.
Collapse
Affiliation(s)
- Chenyan Zhao
- Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Pikkei Wistrand-Yuen
- Department of Medical Sciences, Section of Infectious Diseases, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Pernilla Lagerbäck
- Department of Medical Sciences, Section of Infectious Diseases, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Thomas Tängdén
- Department of Medical Sciences, Section of Infectious Diseases, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Elisabet I Nielsen
- Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Lena E Friberg
- Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden.
| |
Collapse
|
38
|
Naderi Y, Panahi Y, Barreto GE, Sahebkar A. Neuroprotective effects of minocycline on focal cerebral ischemia injury: a systematic review. Neural Regen Res 2020; 15:773-782. [PMID: 31719236 PMCID: PMC6990777 DOI: 10.4103/1673-5374.268898] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
To review the neuroprotective effects of minocycline in focal cerebral ischemia in animal models. By searching in the databases of PubMed, ScienceDirect, and Scopus, and considering the inclusion and exclusion criteria of the study. Studies were included if focal cerebral ischemia model was performed in mammals and including a control group that has been compared with a minocycline group. Written in languages other than English; duplicate data; in vitro studies and combination of minocycline with other neuroprotective agents were excluded. Neurological function of patients was assessed by National Institute of Health Stroke Scale, modified Rankin Scale, and modified Barthel Index. Neuroprotective effects were assessed by detecting the expression of inflammatory cytokines. We examined 35 papers concerning the protective effects of minocycline in focal cerebral ischemia in animal models and 6 clinical trials which had evaluated the neuroprotective effects of minocycline in ischemic stroke. These studies revealed that minocycline increases the viability of neurons and decreases the infarct volume following cerebral ischemia. The mechanisms that were reported in these studies included anti-inflammatory, antioxidant, as well as anti-apoptotic effects. Minocycline also increases the neuronal regeneration following cerebral ischemia. Minocycline has considerable neuroprotective effects against cerebral ischemia-induced neuronal damages. However, larger clinical trials may be required before using minocycline as a neuroprotective drug in ischemic stroke.
Collapse
Affiliation(s)
- Yazdan Naderi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Yunes Panahi
- Pharmacotherapy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Amirhosein Sahebkar
- Halal Research Center of IRI, FDA, Tehran; Biotechnology Research Center, Pharmaceutical Technology Institute; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
39
|
Protective effect of minocycline on LPS-induced mitochondrial dysfunction and decreased seizure threshold through nitric oxide pathway. Eur J Pharmacol 2019; 858:172446. [DOI: 10.1016/j.ejphar.2019.172446] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 12/21/2022]
|
40
|
Polymyxin Acute Kidney Injury: Dosing and Other Strategies to Reduce Toxicity. Antibiotics (Basel) 2019; 8:antibiotics8010024. [PMID: 30875778 PMCID: PMC6466603 DOI: 10.3390/antibiotics8010024] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 12/20/2022] Open
Abstract
Polymyxins are valuable antimicrobials for the management of multidrug-resistant Gram-negative bacteria; however, nephrotoxicity associated with these drugs is a very common side effect that occurs during treatment. This article briefly reviews nephrotoxic mechanisms and risk factors for polymyxin-associated acute kidney injury (AKI) and discusses dosing strategies that may mitigate kidney damage without compromising antimicrobial activity. Polymyxins have a very narrow therapeutic window and patients requiring treatment with these drugs are frequently severely ill and have multiple comorbidities, which increases the risk of AKI. Notably, there is a significant overlap between therapeutic and toxic plasma polymyxin concentrations that substantially complicates dose selection. Recent dosing protocols for both colistin and polymyxin B have been developed and may help fine tune dose adjustment of these antibiotics. Minimizing exposure to modifiable risk factors, such as other nephrotoxic agents, is strongly recommended. The dose should be carefully selected, particularly in high-risk patients. The administration of oxidative stress-reducing drugs is a promising strategy to ameliorate polymyxin-associated AKI, but still requires support from clinical studies.
Collapse
|
41
|
Dai C, Tang S, Biao X, Xiao X, Chen C, Li J. Colistin induced peripheral neurotoxicity involves mitochondrial dysfunction and oxidative stress in mice. Mol Biol Rep 2019; 46:1963-1972. [PMID: 30783935 DOI: 10.1007/s11033-019-04646-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/24/2019] [Indexed: 01/08/2023]
Abstract
Polymyxin is a critical antibiotic against the infection caused by multidrug-resistant gram-negative bacteria. Neurotoxicity is one of main dose-limiting factors. The present study aimed to investigate the underlying molecular mechanism on colistin induced peripheral neurotoxicity using a mouse model. Forty mice were divided into control, colistin 1-, 3- and 7-day groups, the mice were intravenously injected with saline or colistin (sulfate) at the dose of 15 mg/kg/day for 1, 3 and 7 days, respectively. The results showed that, colistin treatment for 7 days markedly resulted in the demyelination, axonal degeneration and mitochondria swelling in the mice's sciatic tissues. Colistin treatment induces oxidative stress as well as the increases of mitochondrial permeability transition, decreases of membrane potential (ΔΨm) and activities of mitochondrial respiratory chain in the mice's sciatic nerve tissues. Furthermore, in the colistin-7 day group, adenosine-triphosphate (ATP) level Na+/K+-ATPase activity decreased to 75.2% (p < 0.01) and 80.1% (p < 0.01), respectively. Meanwhile, colistin treatment down-regulates the expression of protein kinase B (Akt) and mammalian target of rapamycin (mTOR) mRNAs and up-regulates the expression of Bax and caspase-3 mRNAs. Our results reveal that colistin induced sciatic nerves damage involves oxidative stress, mitochondrial dysfunction and the inhibition of Akt/mTOR pathway.
Collapse
Affiliation(s)
- Chongshan Dai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.,College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Shusheng Tang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xiang Biao
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xilong Xiao
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Chunli Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
42
|
Dai C, Xiao X, Li J, Ciccotosto GD, Cappai R, Tang S, Schneider-Futschik EK, Hoyer D, Velkov T, Shen J. Molecular Mechanisms of Neurotoxicity Induced by Polymyxins and Chemoprevention. ACS Chem Neurosci 2019; 10:120-131. [PMID: 30362702 DOI: 10.1021/acschemneuro.8b00300] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neurotoxicity is one major unwanted side-effects associated with polymyxin (i.e., colistin and polymyxin B) therapy. Clinically, colistin neurotoxicity is characterized by neurological symptoms including dizziness, visual disturbances, vertigo, confusion, hallucinations, seizures, ataxia, and facial and peripheral paresthesias. Pathologically, colistin-induced neurotoxicity is characterized by cell injury and death in neuronal cell. This Review covers our current understanding of polymyxin-induced neurotoxicity, its underlying mechanisms, and the discovery of novel neuroprotective agents to limit this neurotoxicity. In recent years, an increasing body of literature supports the notion that polymyxin-induced nerve damage is largely related to oxidative stress and mitochondrial dysfunction. P53, PI3K/Akt, and MAPK pathways are also involved in colistin-induced neuronal cell death. The activation of the redox homeostasis pathways such as Nrf2/HO-1 and autophagy have also been shown to play protective roles against polymyxin-induced neurotoxicity. These pathways have been demonstrated to be upregulated by neuroprotective agents including curcumin, rapamycin and minocycline. Further research is needed toward the development of novel polymyxin formulations in combination with neuroprotective agents to ameliorate this unwanted adverse effect during polymyxins therapy in patients.
Collapse
Affiliation(s)
- Chongshan Dai
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Xilong Xiao
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Jichang Li
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, P. R. China
| | - Giuseppe D. Ciccotosto
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Roberto Cappai
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shusheng Tang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Elena K. Schneider-Futschik
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Daniel Hoyer
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Tony Velkov
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150000, P. R. China
| | - Jianzhong Shen
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| |
Collapse
|
43
|
Li K, Wang D, Zhou X, Shao J, Li Y, Liu X, Zhang C, Zuo E, Shi X, Piao F, Li S. Taurine Protects Against Arsenic-Induced Apoptosis Via PI3K/Akt Pathway in Primary Cortical Neurons. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1155:747-754. [PMID: 31468445 DOI: 10.1007/978-981-13-8023-5_65] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Arsenate, a well known toxicant, can induce injury in nerve system via oxidative stress and apoptosis. This study was designed to explore the protective effect of taurine against arsenite-induced neurotoxicity and its related mechanism in primary cortical neurons. The cells were treated with arsenite with or without taurine. Twenty-Four hours later, cell viability was examined using the MTT assay. The activity of caspase-3 was analyzed and the level of Akt and p-Akt were examined by western blot. The results show that taurine treatment significantly attenuates the decrease in cell viability of arsenite-exposed primary cortical neurons. Taurine also reversed the arsenite-induced increase in caspase-3 activity. The decrease in p-Akt levels induced by arsenite exposure was prevented by taurine treatment. Thus, taurine attenuated the effect of arsenite on primary cortical neurons, an effect that may involve the Akt pathway.
Collapse
Affiliation(s)
- Kaixin Li
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, Liaoning, China
| | - Dunjia Wang
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, Liaoning, China
| | - Xueying Zhou
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, Liaoning, China
| | - Jing Shao
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, Liaoning, China
| | - Yachen Li
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, Liaoning, China
| | - Xiaohui Liu
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, Liaoning, China
| | - Cong Zhang
- Department of Nutrition and Food Safety, Dalian Medical University, Dalian, Liaoning, China
| | - Enjun Zuo
- College of Stomatology, Dalian Medical University, Dalian, Liaoning, China
| | - Xiaoxia Shi
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, Liaoning, China
| | - Fengyuan Piao
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, Liaoning, China
| | - Shuangyue Li
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
44
|
Minocycline prevents peroxidative permeabilization of cardiolipin-containing bilayer lipid membranes mediated by cytochrome c. Biochem Biophys Res Commun 2018; 507:510-513. [DOI: 10.1016/j.bbrc.2018.11.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022]
|
45
|
Edrees NE, Galal AA, Abdel Monaem AR, Beheiry RR, Metwally MM. Curcumin alleviates colistin-induced nephrotoxicity and neurotoxicity in rats via attenuation of oxidative stress, inflammation and apoptosis. Chem Biol Interact 2018; 294:56-64. [DOI: 10.1016/j.cbi.2018.08.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/13/2018] [Accepted: 08/15/2018] [Indexed: 12/29/2022]
|
46
|
Aksu EH, Kandemir FM, Küçükler S, Mahamadu A. Improvement in colistin-induced reproductive damage, apoptosis, and autophagy in testes via reducing oxidative stress by chrysin. J Biochem Mol Toxicol 2018; 32:e22201. [DOI: 10.1002/jbt.22201] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/28/2018] [Accepted: 07/06/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Emrah Hicazi Aksu
- Department of Reproduction and Artificial Insemination, Veterinary Medicine Faculty; Atatürk University; Erzurum Turkey
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Veterinary Medicine Faculty; Atatürk University; Erzurum Turkey
| | - Sefa Küçükler
- Department of Biochemistry, Veterinary Medicine Faculty; Atatürk University; Erzurum Turkey
| | - Amdia Mahamadu
- Department of Biochemistry, Veterinary Medicine Faculty; Atatürk University; Erzurum Turkey
| |
Collapse
|
47
|
Dai C, Ciccotosto GD, Cappai R, Wang Y, Tang S, Hoyer D, Schneider EK, Velkov T, Xiao X. Rapamycin Confers Neuroprotection against Colistin-Induced Oxidative Stress, Mitochondria Dysfunction, and Apoptosis through the Activation of Autophagy and mTOR/Akt/CREB Signaling Pathways. ACS Chem Neurosci 2018; 9:824-837. [PMID: 29257864 DOI: 10.1021/acschemneuro.7b00323] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Our previous studies showed that colistin-induced neurotoxicity involves apoptosis and oxidative damage. The present study demonstrates a neuroprotective effect of rapamycin against colistin-induced neurotoxicity in vitro and in vivo. In a mouse model, colistin treatment (18 mg/kg/d; 14 days) produced marked neuronal mitochondria damage in the cerebral cortex and increased activation of caspase-9 and -3. Rapamycin cotreatment (2.5 mg/kg/d) effectively reduced this neurotoxic effect. In an in vitro mouse neuroblastoma-2a (N2a) cell culture model, rapamycin pretreatment (500 nM) reduced colistin (200 μM) induced cell death from ∼50% to 72%. Moreover, rapamycin showed a marked neuroprotective effect in the N2a cells by decreasing intracellular reactive oxygen species (ROS) production and by up-regulating the activities of the anti-ROS enzymes superoxide dismutase and catalase and recovering glutathione (GSH) levels to normal. Moreover, rapamycin pretreatment protected against colistin-induced mitochondrial dysfunction, caspase activation, and subsequent apoptosis by up-regulating autophagy and activating the Akt/CREB, NGF, and Nrf2 pathways, while inhibiting p53 signaling. Taken together, this is the first study to demonstrate that rapamycin protects against colistin-induced neurotoxicity by activating autophagy, inhibiting oxidative stress, mitochondria dysfunction, and apoptosis. Our data highlight that regulating autophagy to rescue neurons from apoptosis may become a new targeted therapy to relieve the adverse neurotoxic effects associated with colistin therapy.
Collapse
Affiliation(s)
- Chongshan Dai
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Giuseppe D. Ciccotosto
- Department of Pathology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Roberto Cappai
- Department of Pathology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Yang Wang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Shusheng Tang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Daniel Hoyer
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Elena K. Schneider
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Tony Velkov
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Xilong Xiao
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| |
Collapse
|
48
|
Intravenous minocycline in multidrug-resistant infections: a profile of its use in the USA with a focus on Acinetobacter infections. DRUGS & THERAPY PERSPECTIVES 2017. [DOI: 10.1007/s40267-017-0453-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Velkov T, Dai C, Ciccotosto GD, Cappai R, Hoyer D, Li J. Polymyxins for CNS infections: Pharmacology and neurotoxicity. Pharmacol Ther 2017; 181:85-90. [PMID: 28750947 DOI: 10.1016/j.pharmthera.2017.07.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Central nervous system (CNS) infections caused by multi-drug resistant (MDR) Gram-negative bacteria present a major health and economic burden worldwide. Due to the nearly empty antibiotic discovery pipeline, polymyxins (i.e. polymyxin B and colistin) are used as the last-line therapy against Gram-negative 'superbugs' when all other treatment modalities have failed. The treatment of CNS infections due to multi-drug resistant Gram-negative bacteria is problematic and associated with high mortality rates. Colistin shows significant efficacy for the treatment of CNS infections caused by MDR Gram-negative bacteria that are resistant to all other antibiotics. In particular, MDR Acinetobacter baumannii, Pseudomonas aeruginosa and Klebsiella pneumoniae which are resistant to expanded-spectrum and fourth-generation cephalosporins, carbapenems and aminoglycosides, represent a major therapeutic challenge, although they can be treated with colistin or polymyxin B. However, current dosing recommendations of intrathecal/intraventricular polymyxins are largely empirical, as we have little understanding of the pharmacokinetics/pharmacodynamics and, importantly, we are only starting to understand the mechanisms of potential neurotoxicity. This review covers the current knowledge-base on the mechanisms of disposition and potential neurotoxicity of polymyxins as well as the combined use of neuroprotective agents to alleviate polymyxins-related neurotoxicity. Progress in this field will provide the urgently needed pharmacological information for safer and more efficacious intrathecal/intraventricular polymyxin therapy against life-threatening CNS infections caused by Gram-negative 'superbugs'.
Collapse
Affiliation(s)
- Tony Velkov
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Chongshan Dai
- College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road, Beijing 100193, PR China
| | - Giuseppe D Ciccotosto
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Roberto Cappai
- Department of Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel Hoyer
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, Victoria 3052, Australia; Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|