1
|
Li Y, Jiang T, Mao J, Xu F, Zhang R, Yan J, Cai J, Xie Y. Prevalence and genetic diversity of optrA-positive enterococci isolated from patients in an anorectal surgery ward of a Chinese hospital. Front Microbiol 2024; 15:1481162. [PMID: 39583545 PMCID: PMC11581948 DOI: 10.3389/fmicb.2024.1481162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/09/2024] [Indexed: 11/26/2024] Open
Abstract
Linezolid-resistant enterococci have increased in recent years due to the worldwide spread of acquired resistance genes (cfr, optrA, and poxtA) in clinical, animal, and environmental settings. This study investigated the carriage of optrA-positive enterococci among patients in the anorectal surgery ward in Hangzhou, China, and characterized the genetic context of optrA. A total of 173 wound secretion samples were obtained to screen optrA-positive enterococci. Of the 173 samples, 15 (8.67%) were positive for optrA, including 12 Enterococcus faecalis, two E. faecium, and one E. hirae. Multilocus sequence type analysis revealed that 12 optrA-positive E. faecalis isolates belonged to eight different sequence types (STs), of which ST16 was the main type. Eight optrA variants were identified, whose optrA flanking regions with a fexA gene downstream were bounded by different mobile genetic elements. Furthermore, the optrA gene in 8 out of 15 optrA-positive enterococci could be successfully transferred through conjugation. The findings revealed a high carriage rate of optrA in enterococci from one anorectal surgery ward in China. The dissemination of optrA-positive enterococci isolates in clinical settings should be continually monitored.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Tao Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Jianfeng Mao
- Department of Clinical Laboratory, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Fangyi Xu
- Department of Clinical Laboratory, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Rong Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Jing Yan
- Department of Clinical Laboratory, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Jiachang Cai
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Yanjun Xie
- Department of Clinical Laboratory, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
2
|
Yang P, Li J, Lv M, He P, Song G, Shan B, Yang X. Molecular Epidemiology and Horizontal Transfer Mechanism of optrA-Carrying Linezolid-Resistant Enterococcus faecalis. Pol J Microbiol 2024; 73:349-362. [PMID: 39268957 PMCID: PMC11395433 DOI: 10.33073/pjm-2024-031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/06/2024] [Indexed: 09/15/2024] Open
Abstract
The aim of this work was to provide a theoretical and scientific basis for the treatment, prevention, and control of clinical drug-resistant bacterial infections by studying the molecular epidemiology and horizontal transfer mechanism of optrA-carrying linezolid-resistant Enterococcus faecalis strains (LREfs) that were clinically isolated in a tertiary hospital in Kunming, China. Non-repetitive LREfs retained in a tertiary A hospital in Kunming, China. The strains were identified by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The transferability and horizontal transfer mechanism of optrA gene were analyzed using polymerase chain reaction (PCR), whole-genome sequencing (WGS), and conjugation experiments. A total of 39 LREfs strains were collected, and all of them were multi-drug resistant. There were 30 LREfs strains (76.9%) carrying the optrA gene, The cfr, poxtA genes and mutations in the 23S rRNA gene were not detected. The conjugation experiments showed that only three of 10 randomly selected optrA-carrying LREfs were successfully conjugated with JH2-2. Further analysis of one successfully conjugated strain revealed that the optrA gene, located in the donor bacterium, formed the IS1216E-erm(A)-optrA-fexA-IS1216E transferable fragment under the mediation of the mobile genetic element (MGE) IS1216E, which was then transferred to the recipient bacterium via horizontal plasmid transfer. Carrying the optrA gene is the primary resistance mechanism of LREfs strains. The optrA gene could carry the erm(A) and fexA genes to co-transfer among E. faecalis. MGEs such as insertion sequence IS1216E play an important role in the horizontal transfer of the optrA gene.
Collapse
Affiliation(s)
- Peini Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jiang Li
- Department of Blood Transfusion, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Mei Lv
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Pingan He
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Guibo Song
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Bin Shan
- Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xu Yang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
3
|
Gharbi M, Tiss R, Hamdi C, Hamrouni S, Maaroufi A. Occurrence of Florfenicol and Linezolid Resistance and Emergence of optrA Gene in Campylobacter coli Isolates from Tunisian Avian Farms. Int J Microbiol 2024; 2024:1694745. [PMID: 39135629 PMCID: PMC11319055 DOI: 10.1155/2024/1694745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Campylobacter species, especially C. coli and C. jejuni, have been associated with a range of human gastrointestinal diseases. During the last two decades, due to the irrational use of antibiotics in poultry farms, high rates of antimicrobial resistance have been globally reported in C. coli and C. jejuni isolates. Recently, acquired linezolid-resistance mechanisms have been reported in Campylobacter spp. isolates, which is a cause of concern to human health. In this study, we performed a retrospective analysis of 139 C. coli isolates previously collected from broilers (n = 41), laying hens (n = 53), eggs (n = 4), and environment (n = 41) to detect acquired genes implicated in linezolid resistance. Isolates were tested for their susceptibility to antimicrobial agents using the Kirby-Bauer disk diffusion assay. Chloramphenicol- and linezolid-resistant isolates were subjected to PCR screening for the following genes: fexA, fexB, floR, RE-cmeABC, cfrA, and optrA. The genetic relatedness of eight multidrug-resistant isolates was determined by multilocus sequence typing (MLST). Among the 139 C. coli isolates, high rates of resistance (57.55%-100%) were detected toward nalidixic acid, ciprofloxacin, erythromycin, azithromycin, ampicillin, chloramphenicol, linezolid, and kanamycin. Among 135 chloramphenicol-resistant isolates, the optrA, cfr, fexA floR, RE-cmeABC, and fexB genes were detected in 124 (124/135, 91.85%), 108 (80%), 105 (77.7%), 64 (47.4%), 56 (41, 48%), and 27 (20%) isolates, respectively. In addition, the majority of isolates harbored more than one of these genes. The selected eight isolates belonged to the same sequence type ST13450, which is a new sequence type (ST), not belonging to ST828 and ST1150 complexes. In conclusion, the emergence of optrA gene in Campylobacter spp. isolates makes this genus an optrA reservoir and vector to other pathogens such as Staphylococcus aureus and Enterococcus spp., which is a cause of concern for human and animal health.
Collapse
Affiliation(s)
- Manel Gharbi
- Group of Bacteriology and Biotechnology DevelopmentLaboratory of Epidemiology and Veterinary MicrobiologyInstitut Pasteur de TunisUniversity of Tunis El Manar (UTM), Tunis 1002, Tunisia
| | - Rihab Tiss
- Group of Bacteriology and Biotechnology DevelopmentLaboratory of Epidemiology and Veterinary MicrobiologyInstitut Pasteur de TunisUniversity of Tunis El Manar (UTM), Tunis 1002, Tunisia
| | - Chadlia Hamdi
- Group of Bacteriology and Biotechnology DevelopmentLaboratory of Epidemiology and Veterinary MicrobiologyInstitut Pasteur de TunisUniversity of Tunis El Manar (UTM), Tunis 1002, Tunisia
| | - Safa Hamrouni
- Group of Bacteriology and Biotechnology DevelopmentLaboratory of Epidemiology and Veterinary MicrobiologyInstitut Pasteur de TunisUniversity of Tunis El Manar (UTM), Tunis 1002, Tunisia
| | - Abderrazak Maaroufi
- Group of Bacteriology and Biotechnology DevelopmentLaboratory of Epidemiology and Veterinary MicrobiologyInstitut Pasteur de TunisUniversity of Tunis El Manar (UTM), Tunis 1002, Tunisia
| |
Collapse
|
4
|
Velazquez-Meza ME, Galarde-López M, Cornejo-Juárez P, Carrillo-Quiroz BA, Velázquez-Acosta C, Bobadilla-del-Valle M, Ponce-de-León A, Alpuche-Aranda CM. Multidrug-Resistant Staphylococcus sp. and Enterococcus sp. in Municipal and Hospital Wastewater: A Longitudinal Study. Microorganisms 2024; 12:645. [PMID: 38674590 PMCID: PMC11051902 DOI: 10.3390/microorganisms12040645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The objective of the study was to detect multidrug-resistant Staphylococcus sp. and Enterococcus sp. isolates in municipal and hospital wastewater and to determine their elimination or persistence after wastewater treatment. Between August 2021 and September 2022, raw and treated wastewater samples were collected at two hospital and two community wastewater treatment plants (WWTPs). In each season of the year, two treated and two raw wastewater samples were collected in duplicate at each of the WWTPs studied. Screening and presumptive identification of staphylococci and enterococci was performed using chromoagars, and identification was performed with the Matrix Assisted Laser Desorption Ionization Time of Flight mass spectrometry (MALDI-TOF MS®). Antimicrobial susceptibility was performed using VITEK 2® automated system. There were 56 wastewater samples obtained during the study period. A total of 182 Staphylococcus sp. and 248 Enterococcus sp. were identified. The highest frequency of Staphylococcus sp. isolation was in spring and summer (n = 129, 70.8%), and for Enterococcus sp. it was in autumn and winter (n = 143, 57.7%). Sixteen isolates of Staphylococcus sp. and sixty-three of Enterococcus sp. persisted during WWTP treatments. Thirteen species of staphylococci and seven species of enterococci were identified. Thirty-one isolates of Staphylococcus sp. and ninety-four of Enterococcus sp. were multidrug-resistant. Resistance to vancomycin (1.1%), linezolid (2.7%), and daptomycin (8.2%/10.9%%), and a lower susceptibility to tigecycline (2.7%), was observed. This study evidences the presence of Staphylococcus sp. and Enterococcus sp. resistant to antibiotics of last choice of clinical treatment, in community and hospital wastewater and their ability to survive WWTP treatment systems.
Collapse
Affiliation(s)
- Maria Elena Velazquez-Meza
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca City 62100, Mexico; (M.E.V.-M.); (M.G.-L.); (B.A.C.-Q.)
| | - Miguel Galarde-López
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca City 62100, Mexico; (M.E.V.-M.); (M.G.-L.); (B.A.C.-Q.)
| | - Patricia Cornejo-Juárez
- Departamento de Infectología, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (P.C.-J.); (C.V.-A.)
| | - Berta Alicia Carrillo-Quiroz
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca City 62100, Mexico; (M.E.V.-M.); (M.G.-L.); (B.A.C.-Q.)
| | - Consuelo Velázquez-Acosta
- Departamento de Infectología, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (P.C.-J.); (C.V.-A.)
| | - Miriam Bobadilla-del-Valle
- Laboratorio Nacional de Máxima Seguridad para el Estudio de Tuberculosis y Enfermedades Emergentes, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (M.B.-d.-V.); (A.P.-d.-L.)
| | - Alfredo Ponce-de-León
- Laboratorio Nacional de Máxima Seguridad para el Estudio de Tuberculosis y Enfermedades Emergentes, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (M.B.-d.-V.); (A.P.-d.-L.)
| | - Celia Mercedes Alpuche-Aranda
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca City 62100, Mexico; (M.E.V.-M.); (M.G.-L.); (B.A.C.-Q.)
| |
Collapse
|
5
|
Chen W, Wang Q, Wu H, Xia P, Tian R, Li R, Xia L. Molecular epidemiology, phenotypic and genomic characterization of antibiotic-resistant enterococcal isolates from diverse farm animals in Xinjiang, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168683. [PMID: 37996027 DOI: 10.1016/j.scitotenv.2023.168683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Multidrug-resistant (MDR) bacteria in farm environments can be transferred to humans through the food chain and occupational exposure. Enterococcus infections caused by linezolid resistant enterococci (LRE) are becoming more challenging to treat as their resistance to antibiotics intensifies. Therefore, this study investigated the molecular epidemiology, phenotypic and genomic characterization of enterococci in seven species of farm animals (sheep, chicken, swine, camel, cattle, equine, pigeon) anal swab from Xinjiang, China by agar dilution method, polymerase chain reaction (PCR), whole-genome sequencing (WGS) and bioinformatics analysis. A total of 771 samples were collected, 599 (78 %) were contaminated with Enterococcus spp., among which Enterococcus faecalis (350/599) was dominant. Antimicrobial susceptibility testing showed that high resistance was observed in rifampicin (80 %), tetracycline (71 %), doxycycline (71 %), and erythromycin (69 %). The results of PCR showed the highest prevalent antibiotic resistance genes (ARGs) were aac(6')-aph(2″) (85 %), followed by tet(M) (73 %), erm(B) (62 %), and aph(3')-IIIa (61 %). Besides, 29 optrA-carrying E. faecalis isolates belonging to 13 STs (including 3 new alleles) were detected, with ST714 (31 %, 9/29) being the dominant ST type. The phylogenetic tree showed that optrA-carrying E. faecalis prevalent in the intensive swine farm is mainly caused by clonal transmission. Notably, optrA gene in Enterococcus spp. isolate from camel was first characterized here. WGS of E. faecalis F109 isolate from camel confirmed the colocalization of optrA with other five ARGs in the same plasmid (pAFL-109F). The optrA-harboring genetic context is IS1216E-fexA-optrA-erm(A)-IS1216E. This study highlights the prevalence of MDR Enterococcus (≥88 %) and four ARGs (≥75 %) in swine (intensive farming), cattle (commercial farming), and chickens (backyard farming) are high and also highlights that optrA-carrying E. faecalis of farm animals incur a transmission risk to humans through environment, food consumption and others. Therefore, antibiotic-resistant bacteria (ARB) monitoring and effective control measures should be strengthened and implemented in diverse animals.
Collapse
Affiliation(s)
- Wanzhao Chen
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of Herbivore Drug Research and Creation, Xinjiang Agricultural University, Urumqi 830052, China
| | - Qiaojun Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Huimin Wu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China
| | - Panpan Xia
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China
| | - Rui Tian
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.
| | - Lining Xia
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; Xinjiang Key Laboratory of Herbivore Drug Research and Creation, Xinjiang Agricultural University, Urumqi 830052, China.
| |
Collapse
|
6
|
Ben Yahia H, Trabelsi I, Arous F, García-Vela S, Torres C, Ben Slama K. Detection of linezolid and vancomycin resistant Enterococcus isolates collected from healthy chicken caecum. J Appl Microbiol 2024; 135:lxae027. [PMID: 38317636 DOI: 10.1093/jambio/lxae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/08/2024] [Accepted: 02/01/2024] [Indexed: 02/07/2024]
Abstract
AIM The poultry industry represents an important economic sector in Tunisia. This study aims to determine the antimicrobial resistance phenotypes and genotypes and virulence factors of enterococci collected from chicken caecum in Tunisia. METHODS AND RESULTS Forty-nine composite chicken caecum samples were recovered in 49 different Tunisian farms (December 2019-March 2020). Each composite sample corresponds to six individual caecum from each farm. Composite samples were plated on Slanetz-Bartley agar both supplemented (SB-Van) and not supplemented (SB) with vancomycin and isolates were identified by matrix-assisted laser desorption/ionization time-of-flight. Antibiotic resistance and virulence genes were tested by Polymerase Chain Reaction (PCR) and sequencing and multilocus-sequence-typing of selected enterococci was performed. One hundred sixty seven enterococci of six different species were recovered. Acquired linezolid resistance was detected in 6 enterococci of 4/49 samples (8.1%): (A) four optrA-carrying Enterococcus faecalis isolates assigned to ST792, ST478, and ST968 lineages; (B) two poxtA-carrying Enterococcus faecium assigned to ST2315 and new ST2330. Plasmid typing highlighted the presence of the rep10, rep14, rep7, rep8, and pLG1 in these strains. One vancomycin-resistant E. faecium isolate (typed as ST1091) with vanA gene (included in Tn1546) was detected in SB-Van plates. The gelE, agg, esp, and hyl virulence genes were found in linezolid- and vancomycin-resistant enterococci. High resistance rates were identified in the enterococci recovered in SB plates: tetracycline [74.8%, tet(M) and tet(L) genes], erythromycin [65.9%, erm(B)], and gentamicin [37.1%, aac(6')-Ie-aph(2″)-Ia]. CONCLUSION The detection of emerging mechanisms of resistance related to linezolid and vancomycin in the fecal enterococci of poultry farms has public health implications, and further surveillance should be carried out to control their dissemination by the food chain.
Collapse
Affiliation(s)
- Houssem Ben Yahia
- Laboratoire Bioressources, Environnement et Biotechnologie (LR22ES04), Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie
| | - Islem Trabelsi
- Laboratoire Bioressources, Environnement et Biotechnologie (LR22ES04), Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie
| | - Fatma Arous
- Laboratoire Bioressources, Environnement et Biotechnologie (LR22ES04), Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie
| | - Sara García-Vela
- Area de Bioquímica y Biología Molecular, Universidad de La Rioja, 26006 Logroño, Spain
- Department of Food Science, University of Laval, QC G1V 0A6 Quebec, Canada
| | - Carmen Torres
- Area de Bioquímica y Biología Molecular, Universidad de La Rioja, 26006 Logroño, Spain
| | - Karim Ben Slama
- Laboratoire Bioressources, Environnement et Biotechnologie (LR22ES04), Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisie
| |
Collapse
|
7
|
Pereira AP, Antunes P, Bierge P, Willems RJL, Corander J, Coque TM, Pich OQ, Peixe L, Freitas AR, Novais C, from the ESCMID Study Group on Food- and Water-borne Infections (EFWISG). Unraveling Enterococcus susceptibility to quaternary ammonium compounds: genes, phenotypes, and the impact of environmental conditions. Microbiol Spectr 2023; 11:e0232423. [PMID: 37737589 PMCID: PMC10581157 DOI: 10.1128/spectrum.02324-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/24/2023] [Indexed: 09/23/2023] Open
Abstract
Quaternary ammonium compounds (QACs) have been extensively used in the community, healthcare facilities, and food chain, in concentrations between 20 and 30,000 mg/L. Enterococcus faecalis and Enterococcus faecium are ubiquitous in these settings and are recognized as nosocomial pathogens worldwide, but QACs' activity against strains from diverse epidemiological and genomic backgrounds remained largely unexplored. We evaluated the role of Enterococcus isolates from different sources, years, and clonal lineages as hosts of QACs tolerance genes and their susceptibility to QACs in optimal, single-stress and cross-stress growth conditions. Only 1% of the Enterococcus isolates included in this study and 0.5% of publicly available Enterococcus genomes carried qacA/B, qacC, qacG, qacJ, qacZ, qrg, bcrABC or oqxAB genes, shared with >60 species of Bacillota, Pseudomonadota, Actinomycetota, or Spirochaetota. These genes were generally found within close proximity of antibiotics and/or metals resistance genes. The minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) of benzalkonium chloride (BC) and didecyldimethylammonium chloride ranged between 0.5 and 4 mg/L (microdilution: 37°C/20 h/pH = 7/aerobiosis) for 210 E. faecalis and E. faecium isolates (two isolates carrying qacZ). Modified growth conditions (e.g., 22°C/pH = 5) increased MICBC/MBCBC (maximum of eightfold and MBCBC = 16 mg/L) and changed bacterial growth kinetics under BC toward later stationary phases in both species, including in isolates without QACs tolerance genes. In conclusion, Enterococcus are susceptible to in-use QACs concentrations and rarely carry QACs tolerance genes. However, their potential gene exchange with different microbiota, the decreased susceptibility to QACs under specific environmental conditions, and the presence of subinhibitory QACs concentrations in various settings may contribute to the selection of particular strains and, thus, require a One Health strategy to maintain QACs effectiveness. IMPORTANCE Despite the increasing use of quaternary ammonium compounds (QACs), the susceptibility of pathogens to these antimicrobials remains largely unknown. Enterococcus faecium and Enterococcus faecalis are susceptible to in-use QACs concentrations and are not main hosts of QACs tolerance genes but participate in gene transfer pathways with diverse bacterial taxa exposed to these biocides. Moreover, QACs tolerance genes often share the same genetic contexts with antibiotics and/or metals resistance genes, raising concerns about potential co-selection events. E. faecium and E. faecalis showed increased tolerance to benzalkonium chloride under specific environmental conditions (22°C, pH = 5), suggesting that strains might be selected in settings where they occur along with subinhibitory QACs concentrations. Transcriptomic studies investigating the cellular mechanisms of Enterococcus adaptation to QACs tolerance, along with longitudinal metadata analysis of tolerant populations dynamics under the influence of diverse environmental factors, are essential and should be prioritized within a One Health strategy.
Collapse
Affiliation(s)
- Ana P. Pereira
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Patrícia Antunes
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| | - Paula Bierge
- Laboratori de Recerca en Microbiologia i Malalties Infeccioses, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Rob J. L. Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jukka Corander
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
- Department of Mathematics and Statistics, Helsinki Institute of Information Technology, University of Helsinki, Helsinki, Finland
| | - Teresa M. Coque
- Servicio de Microbiologia, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Centro de Investigación Biomédica en Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Oscar Q. Pich
- Laboratori de Recerca en Microbiologia i Malalties Infeccioses, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Luisa Peixe
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ana R. Freitas
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- 1H-TOXRUN, One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL., Gandra, Portugal
| | - Carla Novais
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - from the ESCMID Study Group on Food- and Water-borne Infections (EFWISG)
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Laboratory of Microbiology, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
- Laboratori de Recerca en Microbiologia i Malalties Infeccioses, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
- Department of Mathematics and Statistics, Helsinki Institute of Information Technology, University of Helsinki, Helsinki, Finland
- Servicio de Microbiologia, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Centro de Investigación Biomédica en Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
- 1H-TOXRUN, One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL., Gandra, Portugal
| |
Collapse
|
8
|
Ngbede EO, Sy I, Akwuobu CA, Nanven MA, Adikwu AA, Abba PO, Adah MI, Becker SL. Carriage of linezolid-resistant enterococci (LRE) among humans and animals in Nigeria: coexistence of the cfr, optrA, and poxtA genes in Enterococcus faecium of animal origin. J Glob Antimicrob Resist 2023; 34:234-239. [PMID: 37516354 DOI: 10.1016/j.jgar.2023.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/09/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023] Open
Abstract
OBJECTIVES In contrast to increasing reports of the emergence of linezolid-resistant enterococci (LRE) emanating from many countries in Europe, Asia, and North America, data on its status and dissemination from the African continent remain scarce, with the information available limited to countries in North Africa. This study investigated the carriage of LRE and the genetic mechanism of resistance among Enterococcus faecium and Enterococcus faecalis strains recovered from humans and animals in Makurdi, Nigeria. METHODS We conducted a cross-sectional study between June 2020 and July 2021 during which 630 non-duplicate human and animal faecal samples were collected and processed for the recovery of LRE. The genetic mechanisms for resistance were investigated using polymerase chain reaction (PCR) and Sanger sequencing. RESULTS Linezolid-resistant enterococci were recovered from 5.87% (37/630; 95% CI: 4.17-8.00) of the samples, with the prevalence in animals and humans being 6.22% [(28/450); 95% CI: 4.17-8.87] and 5.00% [(9/180); 95% CI: 2.31-9.28], respectively. All isolates remained susceptible to vancomycin. No known point mutation mediating linezolid resistance was detected in the 23S rRNA and ribosomal protein genes; however, acquisition of one or more potentially transferable genes (cfr, optrA, and poxtA) was observed in 26 of the 37 LRE isolates. Co-existence of all three transferable genes in a single isolate was found in four E. faecium strains of animal origin. CONCLUSION This study provides baseline evidence for the emergence and active circulation of LRE driven majorly by the acquisition of the optrA gene in Nigeria. To the best of our knowledge, our study is the first to report a co-carriage of all three transferable linezolid resistance determinants in E. faecium. Active LRE surveillance is urgently required to understand the extent of LRE spread across sub-Saharan Africa and to develop tailored mitigation strategies.
Collapse
Affiliation(s)
- Emmanuel O Ngbede
- Institute of Medical Microbiology and Hygiene, Saarland University, Kirrberger Straße, Gebäude 43D-66421 Homburg/Saar, Germany; Department of Veterinary Microbiology, Federal University of Agriculture, Makurdi, Nigeria; Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany.
| | - Issa Sy
- Institute of Medical Microbiology and Hygiene, Saarland University, Kirrberger Straße, Gebäude 43D-66421 Homburg/Saar, Germany
| | - Chinedu A Akwuobu
- Department of Veterinary Microbiology, Federal University of Agriculture, Makurdi, Nigeria; Amadu Ali Centre for Public Health and Comparative Medicine, Federal University of Agriculture, Makurdi, Nigeria
| | - Maurice A Nanven
- National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Alex A Adikwu
- Department of Veterinary Public Health and Preventive Medicine, Federal University of Agriculture, Makurdi, Nigeria
| | - Paul O Abba
- Department of Medical Microbiology and Parasitology, Benue State University Teaching Hospital, Makurdi, Nigeria
| | - Mohammed I Adah
- Amadu Ali Centre for Public Health and Comparative Medicine, Federal University of Agriculture, Makurdi, Nigeria; Department of Veterinary Medicine, Federal University of Agriculture, Makurdi, Nigeria
| | - Sören L Becker
- Institute of Medical Microbiology and Hygiene, Saarland University, Kirrberger Straße, Gebäude 43D-66421 Homburg/Saar, Germany; Swiss Tropical and Public Health Institute, CH-4002 Allschwil, Switzerland; University of Basel, CH-4003 Basel, Switzerland.
| |
Collapse
|
9
|
Tian T, Yang X, Liu S, Han Z, Qiao W, Li J, Yang M, Zhang Y. Hyper-thermophilic anaerobic pretreatment enhances the removal of transferable oxazolidinone and phenicol cross-resistance gene optrA in enterococci. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 167:92-102. [PMID: 37245400 DOI: 10.1016/j.wasman.2023.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/08/2023] [Accepted: 05/18/2023] [Indexed: 05/30/2023]
Abstract
The extensive use of florfenicol in poultry industry results in the emergence of optrA gene, which also confers resistance to clinically important antibiotic linezolid. This study investigated the occurrence, genetic environments, and removal of optrA in enterococci in mesophilic (37 °C) and thermophilic (55 °C) anaerobic digestion systems, and a hyper-thermophilic (70 °C) anaerobic pretreatment system for chicken waste. A total of 331 enterococci were isolated and analyzed for antibiotic resistance against linezolid and florfenicol. The optrA gene was frequently detected in enterococci from chicken waste (42.7%) and effluents from mesophilic (72%) and thermophilic (56.8%) reactors, but rarely detected in the hyper-thermophilic (5.8%) effluent. Whole-genome sequencing revealed that optrA-carrying Enterococcus faecalis sequence type (ST) 368 and ST631 were the dominant clones in chicken waste, and they remained dominant in mesophilic and thermophilic effluents, respectively. The plasmid-borne IS1216E-fexA-optrA-erm(A)-IS1216E was the core genetic element for optrA in ST368, whereas chromosomal Tn554-fexA-optrA was the key one in ST631. IS1216E might play a key role in horizontal transfer of optrA due to its presence in different clones. Hyper-thermophilic pretreatment removed enterococci with plasmid-borne IS1216E-fexA-optrA-erm(A)-IS1216E. A hyper-thermophilic pretreatment is recommended for chicken waste to mitigate dissemination of optrA from animal waste to the environment.
Collapse
Affiliation(s)
- Tiantian Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxiao Yang
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Shihai Liu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziming Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Qiao
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Jiuyi Li
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Mokni-Tlili S, Hechmi S, Ouzari HI, Mechergui N, Ghorbel M, Jedidi N, Hassen A, Hamdi H. Co-occurrence of antibiotic and metal resistance in long-term sewage sludge-amended soils: influence of application rates and pedo-climatic conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26596-26612. [PMID: 36369449 PMCID: PMC9652132 DOI: 10.1007/s11356-022-23802-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Urban sewage sludge (USS) is increasingly being used as an alternative organic amendment in agriculture. Because USS originates mostly from human excreta, partially metabolized pharmaceuticals have also been considered in risk assessment studies after reuse. In this regard, we investigated the cumulative effect of five annual USS applications on the spread of antibiotic-resistant bacteria (ARB) and their subsequent resistance to toxic metals in two unvegetated soils. Eventually, USS contained bacterial strains resistant to all addressed antibiotics with indices of resistance varying between 0.25 for gentamicin to 38% for ampicillin and azithromycin. Sludge-amended soils showed also the emergence of resistome for all tested antibiotics compared to non-treated controls. In this regard, the increase of sludge dose generally correlated with ARB counts, while soil texture had no influence. On the other hand, the multi-antibiotic resistance (MAR) of 52 isolates selected from USS and different soil treatments was investigated for 10 most prescribed antibiotics. Nine isolates showed significant MAR index (≥ 0.3) and co-resistance to Cd, As and Be as well. However, events including an extreme flash flood and the termination of USS applications significantly disrupted ARB communities in all soil treatments. In any case, this study highlighted the risks of ARB spread in sludge-amended soils and a greater concern with the recent exacerbation of antibiotic overuse following COVID-19 outbreak.
Collapse
Affiliation(s)
- Sonia Mokni-Tlili
- Water Research and Technology Center, University of Carthage, P.O. Box 273, 8020, Soliman, Tunisia
| | - Sarra Hechmi
- Water Research and Technology Center, University of Carthage, P.O. Box 273, 8020, Soliman, Tunisia
| | - Hadda-Imene Ouzari
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, LR03ES03, Tunis, Tunisia
| | - Najet Mechergui
- Water Research and Technology Center, University of Carthage, P.O. Box 273, 8020, Soliman, Tunisia
| | - Manel Ghorbel
- Water Research and Technology Center, University of Carthage, P.O. Box 273, 8020, Soliman, Tunisia
| | - Naceur Jedidi
- Water Research and Technology Center, University of Carthage, P.O. Box 273, 8020, Soliman, Tunisia
| | - Abdennaceur Hassen
- Water Research and Technology Center, University of Carthage, P.O. Box 273, 8020, Soliman, Tunisia
| | - Helmi Hamdi
- Food and Water Security Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
11
|
Rebelo A, Duarte B, Ferreira C, Mourão J, Ribeiro S, Freitas AR, Coque TM, Willems R, Corander J, Peixe L, Antunes P, Novais C. Enterococcus spp. from chicken meat collected 20 years apart overcome multiple stresses occurring in the poultry production chain: Antibiotics, copper and acids. Int J Food Microbiol 2023; 384:109981. [DOI: 10.1016/j.ijfoodmicro.2022.109981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
12
|
State of Knowledge on the Acquisition, Diversity, Interspecies Attribution and Spread of Antimicrobial Resistance between Humans, Animals and the Environment: A Systematic Review. Antibiotics (Basel) 2022; 12:antibiotics12010073. [PMID: 36671275 PMCID: PMC9854550 DOI: 10.3390/antibiotics12010073] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/06/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Resistance to antibiotics is considered one of the most urgent global public health concerns. It has considerable impacts on health and the economy, being responsible for the failure to treat infectious diseases, higher morbidity and mortality rates, and rising health costs. In spite of the joint research efforts between different humans, animals and the environment, the key directions and dynamics of the spread of antimicrobial resistance (AMR) still remain unclear. The aim of this systematic review is to examine the current knowledge of AMR acquisition, diversity and the interspecies spread of disease between humans, animals and the environment. Using a systematic literature review, based on a One Health approach, we examined articles investigating AMR bacteria acquisition, diversity, and the interspecies spread between humans, animals and the environment. Water was the environmental sector most often represented. Samples were derived from 51 defined animal species and/or their products A large majority of studies investigated clinical samples of the human population. A large variety of 15 different bacteria genera in three phyla (Proteobacteria, Firmicutes and Actinobacteria) were investigated. The majority of the publications compared the prevalence of pheno- and/or genotypic antibiotic resistance within the different compartments. There is evidence for a certain host or compartment specificity, regarding the occurrence of ARGs/AMR bacteria. This could indicate the rather limited AMR spread between different compartments. Altogether, there remains a very fragmented and incomplete understanding of AMR acquisition, diversity, and the interspecies spread between humans, animals and the environment. Stringent One Health epidemiological study designs are necessary for elucidating the principal routes and dynamics of the spread of AMR bacteria between humans, animals and the environment. This knowledge is an important prerequisite to develop effective public health measures to tackle the alarming AMR situation.
Collapse
|
13
|
Shen W, Huang Y, Cai J. An Optimized Screening Approach for the Oxazolidinone Resistance Gene optrA Yielded a Higher Fecal Carriage Rate among Healthy Individuals in Hangzhou, China. Microbiol Spectr 2022; 10:e0297422. [PMID: 36377960 PMCID: PMC9769644 DOI: 10.1128/spectrum.02974-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
The linezolid resistance mediated by optrA has exhibited an increasing trend among Gram-positive bacteria, which greatly limits the treatment options for severe bacterial infections. However, the prevalence of optrA was usually underestimated based on the existing screening methods. In this study, we used a traditional method and an improved method that included a high-salinity condition treatment after enrichment to screen for optrA-carrying bacteria from stool samples from 1,018 healthy donors in Hangzhou, China. The fecal carriage rate of optrA-carrying bacteria was 19.25% when screened by the improved method (196/1,018), which was much higher than that of the traditional method at 5.89% (60/1,018). Enterococci were the majority of the optrA-positive isolates, while five nonenterococcal isolates were also obtained, including two Streptococcus gallolyticus, one Vagococcus lutrae, one Lactococcus garvieae, and one Lactococcus formosensis isolate. Whole-genome sequencing analysis identified four novel OptrA variants, IDKKGPM, IDKKGP, KLDK, and EYDDI, in these isolates, whose optrA-flanking regions with a fexA gene downstream were bounded by different insertion sequences. In conclusion, our optimized method displayed high sensitivity in the detection of optrA-positive bacteria in fecal samples and revealed a high carriage rate in a healthy population. Although enterococci are dominant, multiple optrA-carrying Gram-positive bacteria were also found. IMPORTANCE This study represented an optimized screening approach for the optrA gene, which is an important mechanism of antimicrobial resistance to linezolid as a last resort for the treatment of infections caused by multiresistant Gram-positive bacteria. We revealed a high fecal carriage rate of the optrA gene among adults by this method and reported the first identification of optrA in Lactococcus formosensis as well as the identification of this gene in Vagococcus lutrae and of the poxtA gene in Ligilactobacillus salivarius of human origin, suggesting the wide spread of the optrA gene in the Gram-positive bacterial community.
Collapse
Affiliation(s)
- Weiyi Shen
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yonglu Huang
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiachang Cai
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Ogunlaja A, Ogunlaja OO, Olukanni OD, Taylor GO, Olorunnisola CG, Dougnon VT, Mousse W, Fatta-Kassinos D, Msagati TAM, Unuabonah EI. Antibiotic resistomes and their chemical residues in aquatic environments in Africa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:119783. [PMID: 35863703 DOI: 10.1016/j.envpol.2022.119783] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The aquatic environment is a hotspot for the transfer of antibiotic resistance to humans and animals. Several reviews have put together research efforts on the presence and distribution of antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs), and antibiotic chemical residue (ACRs) in food, hospital wastewater, and even in other aquatic environments. However, these reports are largely focused on data from developed countries, while data from developing countries and especially those in Africa, are only marginally discussed. This review is the first effort that distills information on the presence and distribution of ARGs and ACRs in the African aquatic environments (2012-2021). This review provides critical information on efforts put into the study of ARB, ARGs, and ACRs in aquatic environments in Africa through the lens of the different sub-regions in the continent. The picture provided is compared with those from some other continents in the world. It turns out that the large economies in Africa (South Africa, Nigeria, Tunisia, Kenya) all have a few reports of ARB and ARGs in their aquatic environment while smaller economies in the continent could barely provide reports of these in their aquatic environment (in most cases no report was found) even though they have some reports on resistomes from clinical studies. Interestingly, the frequency of these reports of ARB and ARGs in aquatic environments in Africa suggests that the continent is ahead of the South American continent but behind Europe and Asia in relation to providing information on these contaminants. Common ARGs found in African aquatic environment encode resistance to sulfonamide, tetracycline, β-lactam, and macrolide classes of antibiotics. The efforts and studies from African scientists in eliminating ARB and ARGs from the aquatic environment in Africa are also highlighted. Overall, this document is a ready source of credible information for scientists, policy makers, governments, and regional bodies on ARB, ARGs, and ACRs in aquatic environments in Africa. Hopefully, the information provided in this review will inspire some necessary responses from all stakeholders in the water quality sector in Africa to put in more effort into providing more scientific evidence of the presence of ARB, ARGs, and ACRs in their aquatic environment and seek more efficient ways to handle them to curtail the spread of antibiotic resistance among the population in the continent. This will in turn, put the continent on the right path to meeting the United Nations Sustainable Development Goals #3 and #6, which at the moment, appears to be largely missed by most countries in the continent.
Collapse
Affiliation(s)
- Aemere Ogunlaja
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, P.M.B 230, Ede, 232101, Osun State, Nigeria; Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B 230, Ede, Osun State, Nigeria.
| | - Olumuyiwa O Ogunlaja
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, P.M.B 230, Ede, 232101, Osun State, Nigeria; Department of Chemical Sciences, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Olumide D Olukanni
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, P.M.B 230, Ede, 232101, Osun State, Nigeria; Department of Biochemistry, Faculty of Basic Medical Sciences, Redeemer's University, P.M.B. 230, Ede, Nigeria
| | - Gloria O Taylor
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, P.M.B 230, Ede, 232101, Osun State, Nigeria; Department of Biological Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B 230, Ede, Osun State, Nigeria
| | - Chidinma G Olorunnisola
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, P.M.B 230, Ede, 232101, Osun State, Nigeria; Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B 230, Ede, Osun State, Nigeria
| | - Victorien T Dougnon
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Benin
| | - Wassiyath Mousse
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Benin
| | - Despo Fatta-Kassinos
- Department of Civil and Environmental Engineering and Nireas-International Water Research Centre, School of Engineering, University of Cyprus, PO Box 20537, 1678 Nicosia, Cyprus
| | - Titus A M Msagati
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science Engineering and Technology, University of South Africa, South Africa
| | - Emmanuel I Unuabonah
- African Centre of Excellence for Water and Environmental Research (ACEWATER), Redeemer's University, P.M.B 230, Ede, 232101, Osun State, Nigeria; Department of Chemical Sciences, Faculty of Natural Sciences, Redeemer's University, P.M.B 230, Ede, Osun State, Nigeria
| |
Collapse
|
15
|
Sun W, Liu H, Liu J, Jiang Q, Pan Y, Yang Y, Zhu X, Ge J. Detection of optrA and poxtA genes in linezolid resistant Enterococcus isolates from fur animals in China. Lett Appl Microbiol 2022; 75:1590-1595. [PMID: 36056605 DOI: 10.1111/lam.13826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022]
Abstract
The emergence of linezolid-resistant (LR) enterococci found in food of animal origin arouses attention, but little is known about LR enterococci in fur animals. A total of 342 E. faecalis and 265 E. faecium strains isolated from fur animals in China from 2015 to 2017 were investigated to determine if linezolid-resistant (LR) enterococci (≥16 μg ml-1 ) are present. Overall, two E. faecalis and twelve E. faecium among these isolates were resistant to linezolid. In addition, all LR isolates were classified as multidrug-resistant (MDR) isolates. We further explore the resistance genes of the LR enterococci, four E. faecalis and two E. faecium isolates contained optrA gene. Two of them co-harbored optrA and poxtA genes. We detected virulence genes in LR enterococci were the following: asa1, cylA, esp, gelE and hyl, among which the highest carrying rate gene was asa1. Besides, all of the LR enterococci we tested had the biofilm-forming ability. It is worth noting that we detected a novel ST type ST2010 from E. faecium 82-2. These data show LR enterococci exist in fur animals and have unique characteristics.
Collapse
Affiliation(s)
- Weijiao Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Hanghang Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jingjing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Qingqin Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yue Pan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yan Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xinyi Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.,Heilongjiang Provincial Key Laboratory of Zoonosis, Harbin, 150030, China
| |
Collapse
|
16
|
Pereira AP, Antunes P, Willems R, Corander J, Coque TM, Peixe L, Freitas AR, Novais C. Evolution of Chlorhexidine Susceptibility and of the EfrEF Operon among Enterococcus faecalis from Diverse Environments, Clones, and Time Spans. Microbiol Spectr 2022; 10:e0117622. [PMID: 35862993 PMCID: PMC9430118 DOI: 10.1128/spectrum.01176-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/17/2022] [Indexed: 11/20/2022] Open
Abstract
Chlorhexidine (CHX) is widely used to control the spread of pathogens (e.g., human/animal clinical settings, ambulatory care, food industry). Enterococcus faecalis, a major nosocomial pathogen, is broadly distributed in diverse hosts and environments facilitating its exposure to CHX over the years. Nevertheless, CHX activity against E. faecalis is understudied. Our goal was to assess CHX activity and the variability of ChlR-EfrEF proteins (associated with CHX tolerance) among 673 field isolates and 1,784 E. faecalis genomes from the PATRIC database from different sources, time spans, clonal lineages, and antibiotic-resistance profiles. The CHX MIC (MICCHX) and minimum bactericidal concentration (MBCCHX) against E. faecalis presented normal distributions (0.5 to 64 mg/L). However, more CHX-tolerant isolates were detected in the food chain and recent human infections, suggesting an adaptability of E. faecalis populations in settings where CHX is heavily used. Heterogeneity in ChlR-EfrEF sequences was identified, with isolates harboring incomplete ChlR-EfrEF proteins, particularly the EfrE identified in the ST40 clonal lineage, showing low MICCHX (≤1mg/L). Distinct ST40-E. faecalis subpopulations carrying truncated and nontruncated EfrE were detected, with the former being predominant in human isolates. This study provides a new insight about CHX susceptibility and ChlR-EfrEF variability within diverse E. faecalis populations. The MICCHX/MBCCHX of more tolerant E. faecalis (MICCHX = 8 mg/L; MBCCHX = 64 mg/L) remain lower than in-use concentrations of CHX (≥500 mg/L). However, increased CHX use, combined with concentration gradients occurring in diverse environments, potentially selecting multidrug-resistant strains with different CHX susceptibilities, signals the importance of monitoring the trends of E. faecalis CHX tolerance within a One Health approach. IMPORTANCE Chlorhexidine (CHX) is a disinfectant and antiseptic used since the 1950s and included in the World Health Organization's list of essential medicines. It has been widely applied in hospitals, the community, the food industry, animal husbandry and pets. CHX tolerance in Enterococcus faecalis, a ubiquitous bacterium and one of the leading causes of human hospital-acquired infections, remains underexplored. Our study provides novel and comprehensive insights about CHX susceptibility within the E. faecalis population structure context, revealing more CHX-tolerant subpopulations from the food chain and recent human infections. We further show a detailed analysis of the genetic diversity of the efrEF operon (previously associated with E. faecalis CHX tolerance) and its correlation with CHX phenotypes. The recent strains with a higher tolerance to CHX and the multiple sources where bacteria are exposed to this biocide alert us to the need for the continuous monitoring of E. faecalis adaptation toward CHX tolerance within a One Health approach.
Collapse
Affiliation(s)
- Ana P. Pereira
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, REQUIMTE Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Patrícia Antunes
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, REQUIMTE Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| | - Rob Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jukka Corander
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, United Kingdom
- Helsinki Institute of Information Technology, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Teresa M. Coque
- Servicio de Microbiologia, Hospital Universitario Ramón y Cajal, Madrid, Spain
- Centro de Investigación Biomédica en Enfermedades Infecciosas (CIBER-EII), Madrid, Spain
| | - Luísa Peixe
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, REQUIMTE Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ana R. Freitas
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, REQUIMTE Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- TOXRUN, Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Carla Novais
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, REQUIMTE Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
17
|
Brenciani A, Morroni G, Schwarz S, Giovanetti E. Oxazolidinones: mechanisms of resistance and mobile genetic elements involved. J Antimicrob Chemother 2022; 77:2596-2621. [PMID: 35989417 DOI: 10.1093/jac/dkac263] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The oxazolidinones (linezolid and tedizolid) are last-resort antimicrobial agents used for the treatment of severe infections in humans caused by MDR Gram-positive bacteria. They bind to the peptidyl transferase centre of the bacterial ribosome inhibiting protein synthesis. Even if the majority of Gram-positive bacteria remain susceptible to oxazolidinones, resistant isolates have been reported worldwide. Apart from mutations, affecting mostly the 23S rDNA genes and selected ribosomal proteins, acquisition of resistance genes (cfr and cfr-like, optrA and poxtA), often associated with mobile genetic elements [such as non-conjugative and conjugative plasmids, transposons, integrative and conjugative elements (ICEs), prophages and translocatable units], plays a critical role in oxazolidinone resistance. In this review, we briefly summarize the current knowledge on oxazolidinone resistance mechanisms and provide an overview on the diversity of the mobile genetic elements carrying oxazolidinone resistance genes in Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Andrea Brenciani
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Gianluca Morroni
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.,Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China.,Veterinary Centre for Resistance Research (TZR), Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Eleonora Giovanetti
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
18
|
Abbassi MS, Badi S, Lengliz S, Mansouri R, Hammami S, Hynds P. Hiding in plain sight - Wildlife as a neglected reservoir and pathway for the spread of antimicrobial resistance: A narrative review. FEMS Microbiol Ecol 2022; 98:6568898. [DOI: 10.1093/femsec/fiac045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/01/2022] [Accepted: 04/12/2022] [Indexed: 11/14/2022] Open
Abstract
ABSTRACT
Antimicrobial resistance represents a global health problem, with infections due to pathogenic antimicrobial resistant bacteria (ARB) predicted to be the most frequent cause of human mortality by 2050. The phenomenon of antimicrobial resistance has spread to and across all ecological niches, and particularly in livestock used for food production with antimicrobials consumed in high volumes. Similarly, hospitals and other healthcare facilities are recognized as significant “hotspots” of ARB and antimicrobial resistance genes (ARGs); however, over the past decade, new and previously overlooked ecological niches are emerging as hidden reservoirs of ARB/ARGs. Increasingly extensive and intensive industrial activities, degradation of natural environments, burgeoning food requirements, urbanization, and global climatic change have all dramatically affected the evolution and proliferation of ARB/ARGs, which now stand at extremely concerning ecological levels. While antimicrobial resistant bacteria and genes as they originate and emanate from livestock and human hosts have been extensively studied over the past 30 years, numerous ecological niches have received considerably less attention. In the current descriptive review, the authors have sought to highlight the importance of wildlife as sources/reservoirs, pathways and receptors of ARB/ARGs in the environment, thus paving the way for future primary research in these areas.
Collapse
Affiliation(s)
- Mohamed Salah Abbassi
- Université de Tunis El Manar, Institut de la recherche vétérinaire de Tunisie, Tunis, Tunisia
- Université de Tunis El Manar, Faculté de Médecine de Tunis, LR99ES09 Laboratoire de recherche «Résistance aux antimicrobiens» 1007, Tunis, Tunisia
| | - Souhir Badi
- Université de Tunis El Manar, Institut de la recherche vétérinaire de Tunisie, Tunis, Tunisia
| | - Sana Lengliz
- Université de Tunis El Manar, Institut de la recherche vétérinaire de Tunisie, Tunis, Tunisia
| | - Riadh Mansouri
- Université de Tunis El Manar, Institut de la recherche vétérinaire de Tunisie, Tunis, Tunisia
| | - Salah Hammami
- Université Manouba, IRESA, École Nationale de Médecine Vétérinaire de Sidi Thabet, Sidi Thabet 2020, Ariana, Tunisia
| | - Paul Hynds
- Environmental Sustainability and Health Institute (ESHI), Technological University Dublin, Grangegorman, Dublin 7, Dublin, Republic of Ireland
| |
Collapse
|
19
|
Lengliz S, Cheriet S, Raddaoui A, Klibi N, Ben Chehida N, Najar T, Abbassi M. Species distribution and genes encoding antimicrobial resistance in
Enterococcus
spp. isolates from rabbits residing in diverse ecosystems: a new reservoir of linezolid and vancomycin resistance. J Appl Microbiol 2022; 132:2760-2772. [DOI: 10.1111/jam.15461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 12/22/2021] [Accepted: 01/15/2022] [Indexed: 11/29/2022]
Affiliation(s)
- S. Lengliz
- University of Tunis El Manar Institute of Veterinary Research of Tunisia Tunis Tunisia
- University of Carthage Laboratory of Materials, Molecules and Application Preparatory Institute for Scientific and Technical Studies LR11ES22 Tunis Tunisia
| | - S. Cheriet
- University of Tunis El Manar Institute of Veterinary Research of Tunisia Tunis Tunisia
| | - A. Raddaoui
- Laboratory Ward National Bone Marrow Transplant Center 1006, Tunis, Tunisia; University of Tunis El Manar, Faculty of Medicine of Tunis LR18ES39, 1006 Tunis Tunisia
| | - N. Klibi
- University of Tunis El Manar Faculty of Sciences of Tunis Laboratory of Microorganisms and Active Biomolecules Tunis Tunisia
| | - N. Ben Chehida
- University of Tunis El Manar Institute of Veterinary Research of Tunisia Tunis Tunisia
| | - T. Najar
- University of Carthage Laboratory of Materials, Molecules and Application Preparatory Institute for Scientific and Technical Studies LR11ES22 Tunis Tunisia
- University of Carthage Department of Animal Sciences National Institute of Agronomy of Tunisia Tunis Tunisia
| | - M.S. Abbassi
- University of Tunis El Manar Institute of Veterinary Research of Tunisia Tunis Tunisia
- University of Tunis El Manar Faculty of Medicine of Tunis Research Laboratory (Antimicrobial resistance) LR99ES09 Tunis Tunisia
| |
Collapse
|
20
|
Yi M, Zou J, Zhao J, Tang Y, Yuan Y, Yang B, Huang J, Xia P, Xia Y. Emergence of optrA-Mediated Linezolid Resistance in Enterococcus faecium: A Molecular Investigation in a Tertiary Hospital of Southwest China from 2014-2018. Infect Drug Resist 2022; 15:13-20. [PMID: 35018102 PMCID: PMC8742577 DOI: 10.2147/idr.s339761] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/14/2021] [Indexed: 01/06/2023] Open
Abstract
Purpose To investigate the potential mechanism and molecular characteristics of linezolid-non-sensitive Enterococcus faecium from a tertiary hospital in southwest China and characterize the relevant plasmids. Patients and Methods Linezolid-non-sensitive Enterococcus faecium (LNSEFM) isolates collected from January 2014 to December 2018 were screened for resistant genes 23s rRNA, rplC, rplD, rplV, optrA, cfr, poxtA, by PCR. Molecular epidemiological analysis was performed by multilocus sequence typing (MLST). The optrA-and-poxtA co-harboring strain EFM_7150 was subjected to the whole genome sequencing (WGS) by Illumina HiSeq and Oxford Nanopore MinION. Results A total of 15 LNSEFM with linezolid MICs ranging from 4 to 16 mg/L were identified. About 66.7% (10/15) of isolates were linezolid-resistant. About 46.7% (7/15) of strains were positive for optrA. Two types of optrA variants (P and EYDNDM) were identified. About 13.3% (2/15) of isolates had poxtA. 1 harbored a L22 protein alteration (Ser77Thr). One isolate coharbored optrA (EYDNDM variant) and poxtA. There was no mutation in the gene that encoded the ribosomal protein L3/L4 or the domain V of 23S rRNA. No cfr gene was detected. Based on WGS data, optrA was associated with Tn558 inserted to radC gene and poxtA was flanked by IS1216E. Conclusion OptrA is primary mechanism in linezolid-resistant Enterococcus faecium. This is the first report ofoptrA variants P and EYDNDM identified in Enterococcus faecium and optrA-and-poxtA co-harboring Enterococcus faecium clinically in southwest China. Besides, Tn558 and IS1216Es may play an important role in the dissemination of optrA and poxtA, respectively. The findings revealed the potential threat to nosocomial infection by optrA and coexistence of optrA and poxtA in Enterococcus faecium. Thus, clinical surveillance of linezolid-resistant Enterococcus is urgently needed.
Collapse
Affiliation(s)
- Miao Yi
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jiaqi Zou
- Department of Clinical Laboratory, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Jinxin Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yu Tang
- Department of Laboratory Medicine, Chongqing University Three Gorges Hospital, Chongqing, People's Republic of China
| | - Yaling Yuan
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Bingxue Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jinzhu Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Peiwen Xia
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yun Xia
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
21
|
Tang S, Yang R, Wu Q, Ding Y, Wang Z, Zhang J, Lei T, Wu S, Zhang F, Zhang W, Xue L, Zhang Y, Wei X, Pang R, Wang J. First report of the optrA-carrying multidrug resistance genomic island in Campylobacter jejuni isolated from pigeon meat. Int J Food Microbiol 2021; 354:109320. [PMID: 34229231 DOI: 10.1016/j.ijfoodmicro.2021.109320] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/19/2022]
Abstract
Campylobacter spp., such as Campylobacter jejuni and Campylobacter coli, are important zoonotic Gram-negative pathogens that cause acute intestinal diseases in humans. The optrA gene, encoding an ATP-binding cassette F (ABC-F) protein that confers resistance to oxazolidinones and phenicols, has been found in C. coli in China. In this study, the optrA gene was first identified in C. jejuni collected from retail meat in China from 2013 to 2016. Nine strains, isolated from a pigeon meat sample, carry the optrA gene. The molecular characteristics of the optrA-positive strains were determined by whole genome sequencing. Pulsed-field gel electrophoresis, multilocus sequence typing, and single nucleotide polymorphism analyses demonstrated that the nine optrA-positive isolates were genetically homogeneous. Phylogenetic characteristics and sequence comparison revealed that optrA was located on a chromosome-borne multidrug resistance genomic island. The optrA gene along with the tet(O) gene formed two different translocatable units (TUs), thereby supporting the transmission of TU-associated resistance genes. The emergence and spread of such TUs and strains are of great concern in terms of food safety, and measures must be implemented to avoid their dissemination in other Gram-negative bacteria and food chains.
Collapse
Affiliation(s)
- Shengjun Tang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Runshi Yang
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| | - Yu Ding
- Department of Food Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhi Wang
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Tao Lei
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Feng Zhang
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Weipei Zhang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Youxiong Zhang
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xianhu Wei
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.
| |
Collapse
|
22
|
Freitas AR, Tedim AP, Duarte B, Elghaieb H, Abbassi MS, Hassen A, Read A, Alves V, Novais C, Peixe L. Linezolid-resistant (Tn6246::fexB-poxtA) Enterococcus faecium strains colonizing humans and bovines on different continents: similarity without epidemiological link. J Antimicrob Chemother 2021; 75:2416-2423. [PMID: 32607549 DOI: 10.1093/jac/dkaa227] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/09/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES poxtA is the most recently described gene conferring acquired resistance to linezolid, a relevant antibiotic for treating enterococcal infections. We retrospectively screened for poxtA in diverse enterococci and aimed to characterize its genetic/genomic contexts. METHODS poxtA was screened by PCR in 812 enterococci from 458 samples (hospitals/healthy humans/wastewater/animals/retail food) obtained in Portugal/Angola/Tunisia (1996-2019). Antimicrobial susceptibility testing was performed for 13 antibiotics (EUCAST/CLSI). poxtA stability (∼500 generations), transfer (filter mating), clonality (SmaI-PFGE) and location (S1-PFGE/hybridization) were tested. WGS (Illumina-HiSeq) was performed for clonal representatives. RESULTS poxtA was detected in Enterococcus faecium from six samples (1.3%): a healthy human (rectal swab) in Porto, Portugal (ST32/2001); four farm cows (milk) in Mateur, Tunisia (ST1058/2015); and a hospitalized patient (faeces) in Matosinhos, Portugal (ST1058/2015). All expressed resistance to linezolid (MIC = 8 mg/L), chloramphenicol, tetracycline and erythromycin, with variable resistance to ciprofloxacin and streptomycin. ST1058-poxtA-carrying isolates from Tunisia and Portugal differed by two SNPs and had similar plasmid content. poxtA, located in an IS1216-flanked Tn6246-like element, co-hybridized with fexB on one or more plasmids per isolate (one to three plasmids of 30-100 kb), was stable after several generations and transferred only from ST1058. ST1058 strains carried resistance/virulence genes (Efmqnr/acm) possibly induced under selective quinolone treatment. CONCLUSIONS poxtA has been circulating in Portugal since at least 2001, corresponding to the oldest description worldwide to date. We also extend the reservoir of poxtA to bovines. The similar linezolid-resistant poxtA-carrying strains colonizing humans and livestock on different continents, and without a noticeable relationship, suggests a recent transmission event or convergent evolution of E. faecium populations in different hosts and geographic regions.
Collapse
Affiliation(s)
- Ana R Freitas
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Ana P Tedim
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Grupo de Investigación Biomédica en Sepsis - BioSepsis, Hospital Universitario Rio Hortega/Instituto de Investigación Biomédica de Salamanca (IBSAL), Valladolid/Salamanca, Spain
| | - Bárbara Duarte
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Departamento de Ciências Biológicas, Unidade de Análises Clínicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Houyem Elghaieb
- Université de Tunis El Manar, Institut de la Recherche Vétérinaire de Tunisie, 20 rue Jebel Lakhdhar, Bab Saadoun, Tunis, Tunisia
| | - Mohamed S Abbassi
- Université de Tunis El Manar, Institut de la Recherche Vétérinaire de Tunisie, 20 rue Jebel Lakhdhar, Bab Saadoun, Tunis, Tunisia
| | - Abdennaceur Hassen
- Laboratoire de Traitement des Eaux Usées, Centre des Recherches et des Technologies des Eaux (CERTE), Technopole Borj Cédria, Soliman, Tunisia
| | - Antónia Read
- Serviço de Patologia Clínica-Microbiologia, Hospital Pedro Hispano, Matosinhos, Portugal
| | - Valquíria Alves
- Serviço de Patologia Clínica-Microbiologia, Hospital Pedro Hispano, Matosinhos, Portugal
| | - Carla Novais
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Luísa Peixe
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
23
|
Schwarz S, Zhang W, Du XD, Krüger H, Feßler AT, Ma S, Zhu Y, Wu C, Shen J, Wang Y. Mobile Oxazolidinone Resistance Genes in Gram-Positive and Gram-Negative Bacteria. Clin Microbiol Rev 2021; 34:e0018820. [PMID: 34076490 PMCID: PMC8262807 DOI: 10.1128/cmr.00188-20] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Seven mobile oxazolidinone resistance genes, including cfr, cfr(B), cfr(C), cfr(D), cfr(E), optrA, and poxtA, have been identified to date. The cfr genes code for 23S rRNA methylases, which confer a multiresistance phenotype that includes resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A compounds. The optrA and poxtA genes code for ABC-F proteins that protect the bacterial ribosomes from the inhibitory effects of oxazolidinones. The optrA gene confers resistance to oxazolidinones and phenicols, while the poxtA gene confers elevated MICs or resistance to oxazolidinones, phenicols, and tetracycline. These oxazolidinone resistance genes are most frequently found on plasmids, but they are also located on transposons, integrative and conjugative elements (ICEs), genomic islands, and prophages. In these mobile genetic elements (MGEs), insertion sequences (IS) most often flanked the cfr, optrA, and poxtA genes and were able to generate translocatable units (TUs) that comprise the oxazolidinone resistance genes and occasionally also other genes. MGEs and TUs play an important role in the dissemination of oxazolidinone resistance genes across strain, species, and genus boundaries. Most frequently, these MGEs also harbor genes that mediate resistance not only to antimicrobial agents of other classes, but also to metals and biocides. Direct selection pressure by the use of antimicrobial agents to which the oxazolidinone resistance genes confer resistance, but also indirect selection pressure by the use of antimicrobial agents, metals, or biocides (the respective resistance genes against which are colocated on cfr-, optrA-, or poxtA-carrying MGEs) may play a role in the coselection and persistence of oxazolidinone resistance genes.
Collapse
Affiliation(s)
- Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Wanjiang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Xiang-Dang Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, People’s Republic of China
| | - Henrike Krüger
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Andrea T. Feßler
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Shizhen Ma
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yao Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Congming Wu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
24
|
Crowe-McAuliffe C, Murina V, Turnbull KJ, Kasari M, Mohamad M, Polte C, Takada H, Vaitkevicius K, Johansson J, Ignatova Z, Atkinson GC, O'Neill AJ, Hauryliuk V, Wilson DN. Structural basis of ABCF-mediated resistance to pleuromutilin, lincosamide, and streptogramin A antibiotics in Gram-positive pathogens. Nat Commun 2021; 12:3577. [PMID: 34117249 PMCID: PMC8196190 DOI: 10.1038/s41467-021-23753-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/11/2021] [Indexed: 02/05/2023] Open
Abstract
Target protection proteins confer resistance to the host organism by directly binding to the antibiotic target. One class of such proteins are the antibiotic resistance (ARE) ATP-binding cassette (ABC) proteins of the F-subtype (ARE-ABCFs), which are widely distributed throughout Gram-positive bacteria and bind the ribosome to alleviate translational inhibition from antibiotics that target the large ribosomal subunit. Here, we present single-particle cryo-EM structures of ARE-ABCF-ribosome complexes from three Gram-positive pathogens: Enterococcus faecalis LsaA, Staphylococcus haemolyticus VgaALC and Listeria monocytogenes VgaL. Supported by extensive mutagenesis analysis, these structures enable a general model for antibiotic resistance mediated by these ARE-ABCFs to be proposed. In this model, ABCF binding to the antibiotic-stalled ribosome mediates antibiotic release via mechanistically diverse long-range conformational relays that converge on a few conserved ribosomal RNA nucleotides located at the peptidyltransferase center. These insights are important for the future development of antibiotics that overcome such target protection resistance mechanisms.
Collapse
Affiliation(s)
| | - Victoriia Murina
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Kathryn Jane Turnbull
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Marje Kasari
- University of Tartu, Institute of Technology, Tartu, Estonia
| | - Merianne Mohamad
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Christine Polte
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | - Hiraku Takada
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Karolis Vaitkevicius
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Jörgen Johansson
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Zoya Ignatova
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany
| | | | - Alex J O'Neill
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Vasili Hauryliuk
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden.
- University of Tartu, Institute of Technology, Tartu, Estonia.
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
25
|
Rogers LA, Strong K, Cork SC, McAllister TA, Liljebjelke K, Zaheer R, Checkley SL. The Role of Whole Genome Sequencing in the Surveillance of Antimicrobial Resistant Enterococcus spp.: A Scoping Review. Front Public Health 2021; 9:599285. [PMID: 34178909 PMCID: PMC8222819 DOI: 10.3389/fpubh.2021.599285] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 05/04/2021] [Indexed: 12/19/2022] Open
Abstract
Enterococcus spp. have arisen as important nosocomial pathogens and are ubiquitous in the gastrointestinal tracts of animals and the environment. They carry many intrinsic and acquired antimicrobial resistance genes. Because of this, surveillance of Enterococcus spp. has become important with whole genome sequencing emerging as the preferred method for the characterization of enterococci. A scoping review was designed to determine how the use of whole genome sequencing in the surveillance of Enterococcus spp. adds to our knowledge of antimicrobial resistance in Enterococcus spp. Scoping review design was guided by the PRISMA extension and checklist and JBI Reviewer's Guide for scoping reviews. A total of 72 articles were included in the review. Of the 72 articles included, 48.6% did not state an association with a surveillance program and 87.5% of articles identified Enterococcus faecium. The majority of articles included isolates from human clinical or screening samples. Significant findings from the articles included novel sequence types, the increasing prevalence of vancomycin-resistant enterococci in hospitals, and the importance of surveillance or screening for enterococci. The ability of enterococci to adapt and persist within a wide range of environments was also a key finding. These studies emphasize the importance of ongoing surveillance of enterococci from a One Health perspective. More studies are needed to compare the whole genome sequences of human enterococcal isolates to those from food animals, food products, the environment, and companion animals.
Collapse
Affiliation(s)
- Lindsay A. Rogers
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Kayla Strong
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Susan C. Cork
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Tim A. McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Karen Liljebjelke
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Sylvia L. Checkley
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
26
|
Elghaieb H, Tedim AP, Abbassi MS, Novais C, Duarte B, Hassen A, Peixe L, Freitas AR. From farm to fork: identical clones and Tn6674-like elements in linezolid-resistant Enterococcus faecalis from food-producing animals and retail meat. J Antimicrob Chemother 2021; 75:30-35. [PMID: 31605129 DOI: 10.1093/jac/dkz419] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES Increasing numbers of linezolid-resistant Enterococcus carrying optrA are being reported across different niches worldwide. We aimed to characterize the first optrA-carrying Enterococcus faecalis obtained from food-producing animals and retail meat samples in Tunisia. METHODS Seven optrA-carrying E. faecalis obtained from chicken faeces (n=3, August 2017) and retail chicken meat (n=4, August 2017) in Tunisia were analysed. Antimicrobial susceptibility was determined by disc diffusion, broth microdilution and Etest against 13 antibiotics, linezolid and tedizolid, respectively (EUCAST/CLSI). optrA stability (∼600 bacterial generations), transfer (filter mating) and location (S1-PFGE/hybridization) were characterized. WGS (Illumina-HiSeq) was done for four representatives that were analysed through in silico and genomic mapping tools. RESULTS Four MDR clones carrying different virulence genes were identified in chicken faeces (ST476) and retail meat (the same ST476 clone plus ST21 and ST859) samples. MICs of linezolid and tedizolid were stably maintained at 8 and 1-2 mg/L, respectively. optrA was located in the same transferable chromosomal Tn6674-like element in ST476 and ST21 clones, similar to isolates from pigs in Malaysia and humans in China. ST859 carried a non-conjugative plasmid of ∼40 kb with an impB-fexA-optrA segment, similar to plasmids from pigs and humans in China. CONCLUSIONS The same chromosomal and transferable Tn6674-like element was identified in different E. faecalis clones from humans and animals. The finding of retail meat contaminated with the same linezolid-resistant E. faecalis strain obtained from a food-producing animal highlights the potential role of the food chain in the worrisome dissemination of optrA that can be stably maintained without selective pressure over generations.
Collapse
Affiliation(s)
- Houyem Elghaieb
- Université de Tunis El Manar, Institut de la Recherche Vétérinaire de Tunisie, 20 rue Jebel Lakhdhar, Bab Saadoun, Tunis, Tunisia
| | - Ana P Tedim
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Grupo de Investigación Biomédica en Sepsis - BioSepsis, Hospital Universitario Río Hortega, Instituto de Investigación Biomédica de Salamanca (IBSAL), Valladollid, Spain
| | - Mohamed S Abbassi
- Université de Tunis El Manar, Institut de la Recherche Vétérinaire de Tunisie, 20 rue Jebel Lakhdhar, Bab Saadoun, Tunis, Tunisia
| | - Carla Novais
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Bárbara Duarte
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Departamento de Ciências Biológicas, Unidade de Análises Clínicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Abdennaceur Hassen
- Laboratoire de Traitement des Eaux Usées, Centre des Recherches et des Technologies des Eaux (CERTE), Technopole Borj Cédria, Soliman, Tunisia
| | - Luísa Peixe
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Ana R Freitas
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
27
|
Lengliz S, Abbassi MS, Rehaiem A, Ben Chehida N, Najar T. Characterization of bacteriocinogenic Enterococcus isolates from wild and laboratory rabbits for the selection of autochthonous probiotic strains in Tunisia. J Appl Microbiol 2021; 131:1474-1486. [PMID: 33629433 DOI: 10.1111/jam.15047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/06/2021] [Accepted: 02/22/2021] [Indexed: 01/22/2023]
Abstract
AIM The objective of this study was to characterize lactic acid bacteria (LAB) from rabbits to be used as potential autochthonous probiotic. METHODS AND RESULTS Fifteen faecal samples were collected from wild and laboratory rabbits. One hundred and eight isolates were collected and tested for their inhibitory power against eight pathogenic bacteria. Among them, 43 Enterococcus isolates were able to inhibit at least one pathogen. Enterocine genes entA, entB and entP were detected in 14, 17 and 22 isolates, respectively. These isolates were tested for their antibiotic susceptibility and genes encoding virulence factors. Relevant phenotypes of antibiotic resistance were observed especially for ampicillin, vancomycin and linezolid. The following virulence genes were detected (number of positive isolates): hyl (5), esp (8), gelE (30), agg (2), ace (21), efa (6), CylLL/s (5), cob (26), cpd (32) and ccf (33). Five isolates were considered as safe and showed tolerance to both acid and bile salt. CONCLUSION Bacteriocinogenic enterococci isolates from rabbits may show relevant resistance phenotypes and virulence factors. In addition, one Enterococcus durans isolate presents promising autochthonous probiotic candidate. SIGNIFICANCE AND IMPACT OF THE STUDY This study reveals interesting properties for E. durans isolate and supports their utilization as autochthonous probiotic in rabbit husbandry.
Collapse
Affiliation(s)
- S Lengliz
- Laboratory of Materials, Molecules and Application, Preparatory Institute for Scientific and Technical Studies LR11ES22, University of Carthage, Tunis, Tunisia.,Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis, Tunisia
| | - M S Abbassi
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis, Tunisia.,Faculty of Medecine of Tunis, Research Laboratory "Antimicrobial Resistance" LR99ES09, University of Tunis El Manar, Tunis, Tunisia
| | - A Rehaiem
- Faculty of Medecine of Tunis, Research Laboratory "Antimicrobial Resistance" LR99ES09, University of Tunis El Manar, Tunis, Tunisia.,Laboratory of Microbiology, Charles Nicolle Hospital, Tunis, Tunisia
| | - N Ben Chehida
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis, Tunisia
| | - T Najar
- Laboratory of Materials, Molecules and Application, Preparatory Institute for Scientific and Technical Studies LR11ES22, University of Carthage, Tunis, Tunisia.,Department of Animal Sciences, National Institute of Agronomy of Tunisia, University of Carthage, Tunis, Tunisia
| |
Collapse
|
28
|
Jung YH, Cha MH, Woo GJ, Chi YM. Characterization of oxazolidinone and phenicol resistance genes in non-clinical enterococcal isolates from Korea. J Glob Antimicrob Resist 2021; 24:363-369. [PMID: 33515778 DOI: 10.1016/j.jgar.2021.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 11/29/2020] [Accepted: 01/18/2021] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVES To investigate the distribution and genetic characteristics of linezolid-resistant enterococci. METHODS Enterococcus faecalis and Enterococcus faecium strains were isolated from pigs, equipment, grounds, and employees of 19 Korean swine farms in 2017. Antimicrobial susceptibility testing was then performed and linezolid resistance genes were detected via PCR. For genetic epidemiological characterization, multilocus sequence typing and whole-genome sequencing data were analysed. RESULTS Twenty-eightE. faecalis and five E. faecium strains were isolated from 1026 samples obtained from the 19 farms. Ten sequence types were identified among the E. faecalis strains, of which ST256 (42.9%) and ST86 (25%) were the most abundant. The oxazolidinone and phenicol resistance genes poxtA, optrA, and fexA were detected in isolates of E. faecalis (100%, 85.7%, and 67.9%, respectively) and E. faecium (100%, 60%, and 80%, respectively). The minimum inhibitory concentrations of linezolid in these isolates ranged from 2 mg/L to 12 mg/L. The whole-genome sequencing data indicated that fexA was located upstream of poxtA. CONCLUSIONS This is the first study to report the detection of poxtA in isolates that were both susceptible and resistant to linezolid in Korea. These results demonstrate the importance of antimicrobial resistance monitoring programmes, including regular antimicrobial susceptibility testing and resistance gene expression analysis, to facilitate the control of the spread of antibiotic resistance in non-clinical settings in Korea.
Collapse
Affiliation(s)
- Young-Hee Jung
- Division of Biotechnology, College of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Min-Hyeok Cha
- Laboratory of Food Safety and Evaluation, Department of Biotechnology, Korea University Graduate School, Seoul, 02841, Republic of Korea
| | - Gun-Jo Woo
- Laboratory of Food Safety and Evaluation, Department of Biotechnology, Korea University Graduate School, Seoul, 02841, Republic of Korea.
| | - Young-Min Chi
- Division of Biotechnology, College of Life Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
29
|
Hassen B, Abbassi MS, Benlabidi S, Ruiz-Ripa L, Mama OM, Ibrahim C, Hassen A, Hammami S, Torres C. Genetic characterization of ESBL-producing Escherichia coli and Klebsiella pneumoniae isolated from wastewater and river water in Tunisia: predominance of CTX-M-15 and high genetic diversity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44368-44377. [PMID: 32767214 DOI: 10.1007/s11356-020-10326-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Aquatic environments are crucial hotspots for the dissemination of antibiotic resistant microorganisms and resistance genes. Thus, the purpose of this study was to investigate the occurrence and the genetic characterization of cefotaxime-resistant (CTXR) Enterobacteriaceae at a Tunisian semi-industrial pilot plant with biological treatment (WWPP) and its receiving river (Rouriche River, downstream from WWPP) located in Tunis City, during 2017-2018. We collected 105 and 15 water samples from the WWPP and the Rouriche River, respectively. Samples were screened to recover ESBL-producing Enterobacteriaceae (ESBL-E) and isolates were characterized for phenotype/genotype of antimicrobial resistance, integrons, plasmid types and molecular typing (multilocus sequence typing, MLST). Among 120 water samples, 33 and 4 contained ESBL-producing E. coli and K. pneumoniae isolates, respectively. Most isolates were multidrug resistant and produced CTX-M-15 (28 isolates), CTX-M-1 (4 isolates), CTX-M-55 (2 isolates), CTX-M-27 (one isolate), SHV-12 (one isolate) and VEB beta-lactamases (one isolate). All K. pneumoniae were CTX-M-15-positive. Four colistin-resistant isolates were found (MIC 4-8 μg/ml), but they were negative for the mcr genes tested. Class 1 integrons were detected in 21/25 trimethoprim/sulfamethoxazole-resistant isolates, and nine of them carried the gene cassette arrays: aadA2 + dfrA12 (n = 4), aadA1 + dfrA15 (n = 2), aadA5 + dfrA17 (n = 2) and aadA1/2 (n = 1). The IncP and IncFIB plasmids were found in 30 and 16 isolates, respectively. Genetic lineages detected were as follows: E. coli (ST48-ST10 Cplx, ST2499, ST906, ST2973 and ST2142); K. pneumoniae: (ST1540 and ST661). Our findings show a high rate of CTX-M-15 and high genetic diversity of ESBL-E isolates from WWPP and receiving river water.
Collapse
Affiliation(s)
- Bilel Hassen
- Institut de la Recherche Vétérinaire de Tunisie, Université de Tunis El Manar, 20 rue Jebel, Lakhdhar, Bab Saadoun, 1006, Tunis, Tunisia
| | - Mohamed Salah Abbassi
- Institut de la Recherche Vétérinaire de Tunisie, Université de Tunis El Manar, 20 rue Jebel, Lakhdhar, Bab Saadoun, 1006, Tunis, Tunisia
- Faculté de Médecine de Tunis, Laboratoire de résistance aux antibiotiques LR99ES09, Université de Tunis El Manar, Tunis, Tunisia
| | - Saloua Benlabidi
- Institut de la Recherche Vétérinaire de Tunisie, Université de Tunis El Manar, 20 rue Jebel, Lakhdhar, Bab Saadoun, 1006, Tunis, Tunisia
| | - Laura Ruiz-Ripa
- Departamento de Agricultura y Alimentación, Universidad de La Rioja, Madre de Dios, 53, 26006, Logroño, Spain
| | - Olouwafemi M Mama
- Departamento de Agricultura y Alimentación, Universidad de La Rioja, Madre de Dios, 53, 26006, Logroño, Spain
| | - Chourouk Ibrahim
- Laboratoire de Traitement et de Valorisation des Rejets Hydriques, Centre de Recherche et des Technologies des Eaux (CERTE), Technopole Borj-Cédria, BP 273, 8020, Soliman, Tunisia
| | - Abdennaceur Hassen
- Laboratoire de Traitement et de Valorisation des Rejets Hydriques, Centre de Recherche et des Technologies des Eaux (CERTE), Technopole Borj-Cédria, BP 273, 8020, Soliman, Tunisia
| | - Salah Hammami
- IRESA, École Nationale de Médecine Vétérinaire de Sidi Thabet, Université de la Manouba, Sidi Thabet 2020, Sidi Thabet, Ariana, Tunisia
| | - Carmen Torres
- Departamento de Agricultura y Alimentación, Universidad de La Rioja, Madre de Dios, 53, 26006, Logroño, Spain.
| |
Collapse
|
30
|
Yoon S, Son SH, Kim YB, Seo KW, Lee YJ. Molecular characteristics of optrA-carrying Enterococcus faecalis from chicken meat in South Korea. Poult Sci 2020; 99:6990-6996. [PMID: 33248615 PMCID: PMC7704738 DOI: 10.1016/j.psj.2020.08.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023] Open
Abstract
The purpose of this study was to identify the genetic environment of optrA gene in linezolid (LZD)-resistant Enterococcus faecalis from chicken meat and to describe the probable mechanism of dissemination of the optrA gene through plasmid or chromosomal integration. Whole genome sequencing and analysis revealed that all 3 E. faecalis isolates confirmed as LZD- and chloramphenicol-resistant carried fexA adjacent to the optrA gene as well as a variety of resistance genes for macrolides, tetracyclines, and aminoglycosides, simultaneously. But, the other genes conferring LZD resistance, cfr and poxtA, were not detected in those strains. Two isolates harboring the optrA gene in their chromosomal DNA showed >99% similarity in arrangement to the transposon Tn6674 and the transposase genes, tnpA, tnpB, and tnpC and were located in the first open reading frame for transposase. One isolate harboring an optrA-carrying plasmid also showed >99% similarity with the previously reported pE439 plasmid but had 2 amino acid changes (Thr96Lys and Tyr160Asp) and a higher minimum inhibitory concentration against LZD of 16 mg/L than that of pE439 (8 mg/L). Mobile genetic elements such as transposons or plasmids flanking the optrA gene conduct a crucial role in the dissemination of antimicrobial resistance genes. Further investigations are required to identify the way by which optrA is integrated into chromosomal DNA and plasmids.
Collapse
Affiliation(s)
- Sunghyun Yoon
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Se Hyun Son
- Animal Disease Diagnostic Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do 39660, Republic of Korea
| | - Yeong Bin Kim
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kwang Won Seo
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Young Ju Lee
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
31
|
Yang XX, Tian TT, Qiao W, Tian Z, Yang M, Zhang Y, Li JY. Prevalence and characterization of oxazolidinone and phenicol cross-resistance gene optrA in enterococci obtained from anaerobic digestion systems treating swine manure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115540. [PMID: 32898731 DOI: 10.1016/j.envpol.2020.115540] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
The use of the phenicol antibiotic florfenicol in livestock can select for the optrA gene, which also confers resistance to the critically important oxazolidinone antibiotic linezolid. However, the occurrence and dissemination of florfenicol and linezolid cross-resistance genes in anaerobic treatment systems for livestock waste are unknown. Herein, the phenotypes and genotypes (optrA, fexA, fexB, and cfr) of florfenicol and linezolid cross-resistance were investigated in 339 enterococci strains isolated from lab- and full-scale mesophilic anaerobic digestion systems treating swine waste. It was found that optrA, fexA, and fexB were frequently detected in isolated enterococci in both systems by PCR screening, whereas cfr was not detected. The most abundant gene was optrA, which was detected in 73.5% (n = 50) and 38.9% (n = 23) of enterococci isolates in the full-scale influent and effluent, respectively. Most strains carried more than two resistance genes, and the average percentage of co-occurrence of optrA/fexA was 16.6%. Based on minimum inhibitory concentrations of the enterococci strain phenotypes, 85.7%, 77.5%, and 77.5% of strains in influent were resistant to chloramphenicol, florfenicol, and linezolid, respectively, while 56.3%, 65.2%, and 13% in the effluent isolates were found, respectively, which was consistent with the genotype results. The phenotypes and genotypes of florfenicol and linezolid resistance were relative stable in the enterococci isolated from the influent and effluent in lab-scale anaerobic digestion system. The findings signify the enterococci isolates harboring the optrA gene remained in effluents of both full- and lab-scale swine waste anaerobic digestion system; hence, effective management strategies should be implemented to prevent the discharge of antibiotic resistance from the livestock waste treatment systems.
Collapse
Affiliation(s)
- Xiao-Xiao Yang
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing, 100044, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Tian-Tian Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wei Qiao
- College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhe Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Jiu-Yi Li
- Department of Municipal and Environmental Engineering, Beijing Jiaotong University, Beijing, 100044, China.
| |
Collapse
|
32
|
Kerschner H, Rosel AC, Hartl R, Hyden P, Stoeger A, Ruppitsch W, Allerberger F, Apfalter P. Oxazolidinone Resistance Mediated by optrA in Clinical Enterococcus faecalis Isolates in Upper Austria: First Report and Characterization by Whole Genome Sequencing. Microb Drug Resist 2020; 27:685-690. [PMID: 33090061 DOI: 10.1089/mdr.2020.0098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genetic mechanisms associated with acquisition of linezolid (LZD) resistance are diverse, including point mutations in the V domain of the 23S rRNA and the 50S ribosomal proteins as well as cfr, optrA, and/or poxtA genes, which may be plasmid- or chromosomally encoded. The aim of this study was to investigate through Whole Genome Sequencing (WGS)-based typing the presence and location of genes and point mutations associated with LZD resistance in two Enterococcus faecalis isolates from Upper Austrian patients. The isolates were retrieved during screening by LZD disk diffusion test of a total of 911 clinical E. faecalis isolates in 2017. The two E. faecalis isolates had LZD minimum inhibitory concentrations of 8 and 32 mg/L and were optrA-positive (ST476 and ST585). Bioinformatic analysis revealed the presence of optrA located in the chromosome of both isolates. One isolate carried the optrA gene in the transposon 6674, previously reported as chromosomally encoded, and the second isolate in fragments originating from the integrative plasmid pEF10748. Additional mechanisms of LZD resistance on the 23S rRNA and the 50S ribosomal proteins were detected. None of the patients reported travels to geographical areas with high LZD resistance or previous LZD treatments. This is the first report of optrA carrying E. faecalis, including characterization by WGS from Austria. LZD resistance in a low-prevalence setting is of concern and should be further monitored.
Collapse
Affiliation(s)
- Heidrun Kerschner
- National Reference Center for Antimicrobial Resistance and Nosocomial Infections (NRZ), Institute for Hygiene, Microbiology and Tropical Medicine, Ordensklinikum Linz Elisabethinen, Linz, Austria
| | - Adriana Cabal Rosel
- AGES-Austrian Agency for Health and Food Safety, Institute of Medical Microbiology and Hygiene, Vienna, Austria
| | - Rainer Hartl
- National Reference Center for Antimicrobial Resistance and Nosocomial Infections (NRZ), Institute for Hygiene, Microbiology and Tropical Medicine, Ordensklinikum Linz Elisabethinen, Linz, Austria
| | - Patrick Hyden
- CUBE, Division of Computational Systems Biology, University of Vienna, Vienna, Austria
| | - Anna Stoeger
- AGES-Austrian Agency for Health and Food Safety, Institute of Medical Microbiology and Hygiene, Vienna, Austria
| | - Werner Ruppitsch
- AGES-Austrian Agency for Health and Food Safety, Institute of Medical Microbiology and Hygiene, Vienna, Austria
| | - Franz Allerberger
- AGES-Austrian Agency for Health and Food Safety, Institute of Medical Microbiology and Hygiene, Vienna, Austria
| | - Petra Apfalter
- National Reference Center for Antimicrobial Resistance and Nosocomial Infections (NRZ), Institute for Hygiene, Microbiology and Tropical Medicine, Ordensklinikum Linz Elisabethinen, Linz, Austria
| |
Collapse
|
33
|
Almeida LM, Gaca A, Bispo PM, Lebreton F, Saavedra JT, Silva RA, Basílio-Júnior ID, Zorzi FM, Filsner PH, Moreno AM, Gilmore MS. Coexistence of the Oxazolidinone Resistance-Associated Genes cfr and optrA in Enterococcus faecalis From a Healthy Piglet in Brazil. Front Public Health 2020; 8:518. [PMID: 33102417 PMCID: PMC7546817 DOI: 10.3389/fpubh.2020.00518] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
Oxazolidinones are one of the most important antimicrobials potentially active against glycopeptide- and β-lactam-resistant Gram-positive pathogens. Linezolid—the first oxazolidinone to be approved for clinical use in 2000 by the US Food and Drug Administration—and the newer molecule in the class, tedizolid, inhibit protein synthesis by suppressing the formation of the 70S ribosomal complex in bacteria. Over the past two decades, transferable oxazolidinone resistance genes, in particular cfr and optrA, have been identified in Firmicutes isolated from healthcare-related infections, livestock, and the environment. Our goals in this study were to investigate the genetic contexts and the transferability of the cfr and optrA genes and examine genomic features, such as antimicrobial resistance genes, plasmid incompatibility types, and CRISPR-Cas defenses of a linezolid-resistant Enterococcus faecalis isolated in feces from a healthy pig during an antimicrobial surveillance program for animal production in Brazil. The cfr gene was found to be integrated into a transposon-like structure of 7,759 nt flanked by IS1216E and capable of excising and circularizing, distinguishing it from known genetic contexts for cfr in Enterococcus spp., while optrA was inserted into an Inc18 broad host-range plasmid of >58 kb. Conjugal transfer of cfr and optrA was shown by filter mating. The coexistence of cfr and optrA in an E. faecalis isolated from a healthy nursery pig highlights the need for monitoring the use of antibiotics in the Brazilian swine production system for controlling spread and proliferation of antibiotic resistance.
Collapse
Affiliation(s)
- Lara M Almeida
- Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Brazil.,Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Anthony Gaca
- Department of Ophthalmology and Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | - Paulo M Bispo
- Department of Ophthalmology and Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | - François Lebreton
- Department of Ophthalmology and Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | - Jose T Saavedra
- Department of Ophthalmology and Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | - Rafael A Silva
- Institute of Pharmaceutical Sciences, Federal University of Alagoas, Maceió, Brazil
| | | | - Felipe M Zorzi
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Pedro H Filsner
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Andrea M Moreno
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Michael S Gilmore
- Department of Ophthalmology and Department of Microbiology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
34
|
Saavedra SY, Bernal JF, Montilla-Escudero E, Torres G, Rodríguez MK, Hidalgo AM, Ovalle MV, Rivera S, Perez-Gutierrez E, Duarte C. [National surveillance of clinical isolates of Enterococcus faecalis resistant to linezolid carrying the optrA gene in Colombia, 2014-2019]. Rev Panam Salud Publica 2020; 44:e104. [PMID: 32968369 PMCID: PMC7505479 DOI: 10.26633/rpsp.2020.104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 07/16/2020] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE To describe the epidemiological, phenotypical and genetic characteristics of clinical isolates carrying the optrA gene identified in antimicrobial resistance surveillance by the laboratory of the National Institute of Health of Colombia. METHODS Between October 2014 and February 2019, 25 isolates of Enterococcus spp. resistant to linezolid were received. Antimicrobial identification and sensitivity were determined using Vitek 2 and the minimum inhibitory concentration (MIC) to linezolid was established with E-test. The optrA gene was detected by PCR, and the genetic diversity of optrA-positive isolates was tested with Diversilab®. Six isolates were selected to perform whole genome sequencing. RESULTS The optrA gene was confirmed in 23/25 isolates of E. faecalis from seven departments in Colombia. The isolates presented a MIC to linezolid between 8 and >256µg/mL. Typing by Diversilab® showed a wide genetic variability. All the isolates analyzed by whole genome sequencing showed the resistance genes fexA, ermB, lsaA, tet(M), tet(L) and dfrG in addition to optrA and were negative for other mechanisms of resistance to linezolid. Three type sequences and three optrA variants were identified: ST16 (optrA-2), ST476 (optrA-5) and ST618 (optrA-6). The genetic environment of the optrA-2 (ST16) isolates presented the impB, fex, optrA segment, associated with plasmid, while in two isolates (optrA-6 and optrA-5) the transferable chromosomal element Tn6674-like was found. CONCLUSION OptrA-positive clinical isolates present a high genetic diversity, with different optrA clones and variants related to two types of structures and different mobile genetic elements.
Collapse
Affiliation(s)
- Sandra Yamile Saavedra
- Grupo de Microbiología, Dirección Redes en Salud Pública. Instituto Nacional de Salud (INS)BogotáColombiaGrupo de Microbiología, Dirección Redes en Salud Pública. Instituto Nacional de Salud (INS), Bogotá, Colombia
| | - Johan Fabian Bernal
- Grupo de resistencia antimicrobiana, Centro de investigación Tibaitata Corporación colombiana de investigación agropecuaria (AGROSAVIA)BogotáColombiaGrupo de resistencia antimicrobiana, Centro de investigación Tibaitata Corporación colombiana de investigación agropecuaria (AGROSAVIA), Bogotá, Colombia
| | - Efrain Montilla-Escudero
- Grupo de Microbiología, Dirección Redes en Salud Pública. Instituto Nacional de Salud (INS)BogotáColombiaGrupo de Microbiología, Dirección Redes en Salud Pública. Instituto Nacional de Salud (INS), Bogotá, Colombia
| | - German Torres
- Equipo de infecciones asociadas a la atención en salud. Dirección Vigilancia y análisis del Riesgo en Salud Pública. Instituto Nacional de Salud (INS)BogotáColombiaEquipo de infecciones asociadas a la atención en salud. Dirección Vigilancia y análisis del Riesgo en Salud Pública. Instituto Nacional de Salud (INS), Bogotá, Colombia.
| | - Mabel Karina Rodríguez
- Grupo de Microbiología, Dirección Redes en Salud Pública. Instituto Nacional de Salud (INS)BogotáColombiaGrupo de Microbiología, Dirección Redes en Salud Pública. Instituto Nacional de Salud (INS), Bogotá, Colombia
| | - Andrea Melissa Hidalgo
- Grupo de Microbiología, Dirección Redes en Salud Pública. Instituto Nacional de Salud (INS)BogotáColombiaGrupo de Microbiología, Dirección Redes en Salud Pública. Instituto Nacional de Salud (INS), Bogotá, Colombia
| | - María Victoria Ovalle
- Grupo de Microbiología, Dirección Redes en Salud Pública. Instituto Nacional de Salud (INS)BogotáColombiaGrupo de Microbiología, Dirección Redes en Salud Pública. Instituto Nacional de Salud (INS), Bogotá, Colombia
| | - Sandra Rivera
- Equipo de infecciones asociadas a la atención en salud. Dirección Vigilancia y análisis del Riesgo en Salud Pública. Instituto Nacional de Salud (INS)BogotáColombiaEquipo de infecciones asociadas a la atención en salud. Dirección Vigilancia y análisis del Riesgo en Salud Pública. Instituto Nacional de Salud (INS), Bogotá, Colombia.
| | - Enrique Perez-Gutierrez
- Organización Panamericana de la SaludWashington DCEstados Unidos de AméricaOrganización Panamericana de la Salud, Washington DC, Estados Unidos de América
| | - Carolina Duarte
- Grupo de resistencia antimicrobiana, Centro de investigación Tibaitata Corporación colombiana de investigación agropecuaria (AGROSAVIA)BogotáColombiaGrupo de resistencia antimicrobiana, Centro de investigación Tibaitata Corporación colombiana de investigación agropecuaria (AGROSAVIA), Bogotá, Colombia
| |
Collapse
|
35
|
Sassi M, Guérin F, Zouari A, Beyrouthy R, Auzou M, Fines-Guyon M, Potrel S, Dejoies L, Collet A, Boukthir S, Auger G, Bonnet R, Cattoir V. Emergence of optrA-mediated linezolid resistance in enterococci from France, 2006-16. J Antimicrob Chemother 2020; 74:1469-1472. [PMID: 30897199 DOI: 10.1093/jac/dkz097] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/11/2019] [Accepted: 02/18/2019] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES To describe the epidemiological trend of linezolid-resistant enterococci (LRE) collected in France from 2006 to 2016 and to extensively characterize LRE isolates. METHODS The National Reference Center for Enterococci (NRC-Enc) received enterococcal isolates suspected to be VRE and/or LRE from all French hospitals between 2006 and 2016. LRE isolates were phenotypically characterized and their genomes were entirely sequenced by Miseq (Illumina). Transfer of linezolid resistance was attempted by filter mating experiments. RESULTS Out of 3974 clinical isolates of enterococci received at the NRC-Enc over the period, 9 (0.2%) were LRE (MICs 8 to >32 mg/L), including 6 Enterococcus faecium and 3 Enterococcus faecalis. This overall prevalence significantly increased over the study period, reaching 0.8% in 2016. The five LRE isolated before 2016 were vanA-positive E. faecium whereas strains isolated in 2016 (one E. faecium and three E. faecalis) were susceptible to vancomycin. None of these isolates was part of an outbreak, while E. faecium strains were assigned to four different STs [17 (1), 80 (3), 412 (1) and 650 (1)] and all three E. faecalis belonged to ST480. Except for the strain isolated in 2010, all LRE were positive for optrA, which was located on plasmids (5/8) or in the chromosome (3/8). Plasmid transfer of optrA was successful in three cases. CONCLUSIONS There has been a significant increase in the prevalence of LRE in France over time; this is due to the spread of optrA among E. faecium and E. faecalis human clinical isolates (VRE or not).
Collapse
Affiliation(s)
- Mohamed Sassi
- Université de Rennes 1, Inserm U1230, Rennes, France
| | - François Guérin
- CHU de Caen, Service de Microbiologie, Caen, France.,Université de Caen Normandie, EA4655, Caen, France
| | - Asma Zouari
- CNR de la Résistance aux Antibiotiques (laboratoire associé «Entérocoques»), Rennes, France
| | - Racha Beyrouthy
- CHU Clermont-Ferrand, Laboratoire de Bactériologie & CNR de la Résistance aux Antibiotiques, Clermont-Ferrand, France.,CNR de la Résistance aux Antibiotiques (laboratoire associé «Entérobactéries: résistance aux C3G et colistine»), Clermont-Ferrand, France.,Université Clermont Auvergne, UMR INSERM 1071 USC INRA2018, Clermont-Ferrand, France
| | - Michel Auzou
- CHU de Caen, Service de Microbiologie, Caen, France
| | | | - Sophie Potrel
- CNR de la Résistance aux Antibiotiques (laboratoire associé «Entérocoques»), Rennes, France.,CHU de Rennes, Service de Bactériologie-Hygiène hospitalière, Rennes, France
| | - Loren Dejoies
- Université de Rennes 1, Inserm U1230, Rennes, France.,CHU de Rennes, Service de Bactériologie-Hygiène hospitalière, Rennes, France
| | - Anaïs Collet
- CNR de la Résistance aux Antibiotiques (laboratoire associé «Entérocoques»), Rennes, France.,CHU de Rennes, Service de Bactériologie-Hygiène hospitalière, Rennes, France
| | - Sarrah Boukthir
- CHU de Rennes, Service de Bactériologie-Hygiène hospitalière, Rennes, France
| | - Gabriel Auger
- CNR de la Résistance aux Antibiotiques (laboratoire associé «Entérocoques»), Rennes, France.,CHU de Rennes, Service de Bactériologie-Hygiène hospitalière, Rennes, France
| | - Richard Bonnet
- CHU Clermont-Ferrand, Laboratoire de Bactériologie & CNR de la Résistance aux Antibiotiques, Clermont-Ferrand, France.,CNR de la Résistance aux Antibiotiques (laboratoire associé «Entérobactéries: résistance aux C3G et colistine»), Clermont-Ferrand, France.,Université Clermont Auvergne, UMR INSERM 1071 USC INRA2018, Clermont-Ferrand, France
| | - Vincent Cattoir
- Université de Rennes 1, Inserm U1230, Rennes, France.,CNR de la Résistance aux Antibiotiques (laboratoire associé «Entérocoques»), Rennes, France.,CHU de Rennes, Service de Bactériologie-Hygiène hospitalière, Rennes, France
| |
Collapse
|
36
|
Elghaieb H, Freitas AR, Abbassi MS, Novais C, Zouari M, Hassen A, Peixe L. Dispersal of linezolid-resistant enterococci carrying poxtA or optrA in retail meat and food-producing animals from Tunisia. J Antimicrob Chemother 2020; 74:2865-2869. [PMID: 31243458 DOI: 10.1093/jac/dkz263] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/02/2019] [Accepted: 05/23/2019] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES The epidemiology of Enterococcus resistant to priority antibiotics including linezolid has mainly been investigated in developed countries and especially in hospitals. We aimed to evaluate the contribution of different non-human reservoirs for the burden of MDR enterococci in Tunisia, where scarce data are available. METHODS Samples (n = 287) were collected from urban wastewater (n = 57), retail meat (n = 29; poultry/bovine/ovine), milk (n = 89; bovine/ovine), farm animal faeces (n = 80; poultry/bovine/ovine) and pets (n = 32; rabbit/dogs/cats/birds) in different Tunisian regions (2014-17). They were plated onto Slanetz-Bartley agar after pre-enrichment without antibiotics. Standard methods were used for bacterial identification and characterization of antibiotic resistance and virulence genes (PCR), antibiotic susceptibility testing (disc diffusion/broth microdilution; EUCAST/CLSI) and clonality (SmaI-PFGE/MLST). RESULTS All samples carried Enterococcus (n = 377 isolates) resistant to antibiotics considered to be critical or highly important by WHO. Even without antibiotic selection, 38% of Enterococcus faecalis (Efs) and 22% of Enterococcus faecium (Efm) were identified as MDR. Linezolid-resistant isolates (5%; MIC = 8 mg/L) comprised six poxtA-carrying Efm (cow milk), seven optrA-carrying Efs (chicken faeces/meat) and five Efm lacking cfr/optrA/poxtA (poultry/bovine/ovine/wastewater). Clinically relevant Efm clones (clade A1) were identified in animal/meat sources. Ampicillin resistance (1%) was confined to ST18/ST78-like MDR Efm clones from bovine meat/milk samples carrying relevant virulence markers (e.g. ptsD/IS16). CONCLUSIONS This study provides evidence of the contribution of livestock and foodstuffs to the dispersal of acquired linezolid resistance genes including poxtA and optrA. We report the first poxtA-carrying Efm in Tunisia, and for the first time in bovine samples, stressing the urgent need for alternative measures to counteract the spread of linezolid-resistant enterococci globally.
Collapse
Affiliation(s)
- Houyem Elghaieb
- Université de Tunis El Manar, Institut de la Recherche Vétérinaire de Tunisie, Tunis, Tunisia
| | - Ana R Freitas
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Mohamed Salah Abbassi
- Université de Tunis El Manar, Institut de la Recherche Vétérinaire de Tunisie, Tunis, Tunisia
| | - Carla Novais
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | | | - Abdennaceur Hassen
- Laboratoire de Traitement des Eaux Usées, Centre des Recherches et des Technologies des Eaux (CERTE), Technopole Borj Cédria, Hammam-Lif, Tunisia
| | - Luísa Peixe
- UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
37
|
Zou J, Tang Z, Yan J, Liu H, Chen Y, Zhang D, Zhao J, Tang Y, Zhang J, Xia Y. Dissemination of Linezolid Resistance Through Sex Pheromone Plasmid Transfer in Enterococcus faecalis. Front Microbiol 2020; 11:1185. [PMID: 32582110 PMCID: PMC7288747 DOI: 10.3389/fmicb.2020.01185] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022] Open
Abstract
Despite recent recognition of the ATP-binding cassette protein OptrA as an important mediator of linezolid resistance in Enterococcus faecalis worldwide, the mechanisms of optrA gene acquisition and transfer remain poorly understood. In this study, we performed comprehensive molecular and phenotypic profiling of 44 optrA-carrying E. faecalis clinical isolates with linezolid resistance. Pulse-field gel electrophoresis and DNA hybridization revealed the presence of optrA in the plasmid in 26 (59%) isolates and in the chromosome in 18 (41%) isolates. Conjugation experiments showed a successful transfer of optrA in 88.5% (23/26) of isolates carrying optrA in plasmids while no transfer occurred in any isolates carrying optrA in the chromosome (0/18). All 23 transconjugants exhibited in vitro resistance to linezolid and several other antibiotics and were confirmed to contain optrA and other resistance genes. Plasmid typing demonstrated a predominance (18/23,78%) of rep 9-type plasmids (pCF10 prototype) known to be the best studied sex pheromone responsive plasmids. Full plasmid genome sequencing of one isolate revealed the presence of drug resistance genes (optrA and fexA) and multiple sex pheromone response genes in the same plasmid, which represents the first sex pheromone responsive plasmid carrying optrA from a clinical isolate. PCR-based genotyping revealed the presence of three key sex pheromone response genes (prgA, prgB, and prgC) in 23 optrA-carrying isolates. Finally, functional studies of these isolates by clumping induction assay detected different degrees of clumping in 17 isolates. Our analysis suggests that optrA-mediated linezolid resistance can be widely disseminated through sex pheromone plasmid transfer.
Collapse
Affiliation(s)
- Jiaqi Zou
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhaobing Tang
- Department of Urologic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jia Yan
- Department of Laboratory Medicine, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hang Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yingzhu Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dawei Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinxin Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Tang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yun Xia
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
38
|
First description of clinical linezolid resistant Enterococcus sp. in North Africa. J Glob Antimicrob Resist 2020; 21:169-170. [DOI: 10.1016/j.jgar.2020.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/10/2020] [Accepted: 04/05/2020] [Indexed: 11/21/2022] Open
|
39
|
Ekwanzala MD, Dewar JB, Kamika I, Momba MNB. Comparative genomics of vancomycin-resistant Enterococcus spp. revealed common resistome determinants from hospital wastewater to aquatic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137275. [PMID: 32109727 DOI: 10.1016/j.scitotenv.2020.137275] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
The rise of vancomycin-resistant Enterococcus spp. (VRE) has led to treatment challenges in hospital settings worldwide. Hospital wastewater (HW) might disseminate this threat to the aquatic environment. Thus, this study elucidates the VRE resistance quotient (RQ) of different environmental matrixes in wastewater and compares genomic determinants of VRE strains recovered from HW to water resources. Presumptive Enterococcus spp. and VRE were quantified and isolated using standard microbiological procedures. Fourteen VRE genomes were then sequenced using an Illumina HiSeq X™ Ten platform. Subsequently, VRE genomes were compared based on antibiotic resistance genes, plasmids, bacteriophages, insertion sequences, transposons, virulence and pathogenicity. Wastewater effluent showed the highest RQ among all sampled matrixes. The phylogeny of vancomycin-resistant E. faecalis (VREfs) and E. faecium (VREfm) revealed a tree structure based on their respective sequence type. A comparative genomic analysis of 14 genomes highlighted regions encoding phage protein, phage holin, phage integrase, integrase and transposase on both query genomes and the reference genome. Acquired resistance to vancomycin was conferred by vanA, vanN, vanL, vanG and the intrinsic resistance vanC operons. Plasmids were dominated by the presence of conserved areas of the replication initiating genes (rep). The Tn3-like and Tn917 transposons were present in all erythromycin-carrying erm(B) isolated VRE genomes. All VRE genomes expect one were putatively predicted as human pathogens with varying degrees of virulence. The presence of such resistant bacteria in African water resource is of great public health concern. It is, therefore, recommended that these bacteria be tracked and characterised from different environments to contribute to improved epidemiological containment action.
Collapse
Affiliation(s)
- Mutshiene Deogratias Ekwanzala
- Department of Environmental, Water and Earth Sciences, Tshwane University of Technology, Arcadia Campus, Private Bag X680, Pretoria 0001, South Africa.
| | - John Barr Dewar
- Department of Life and Consumer Sciences, University of South Africa, Florida Campus, Johannesburg, South Africa
| | - Ilunga Kamika
- Nanotechnology and Water Sustainability Research Unit; School of Science; College of Science, Engineering and Technology; University of South Africa, Johannesburg, South Africa
| | - Maggy Ndombo Benteke Momba
- Department of Environmental, Water and Earth Sciences, Tshwane University of Technology, Arcadia Campus, Private Bag X680, Pretoria 0001, South Africa.
| |
Collapse
|
40
|
Transferable Resistance Gene optrA in Enterococcus faecalis from Swine in Brazil. Antimicrob Agents Chemother 2020; 64:AAC.00142-20. [PMID: 32253215 DOI: 10.1128/aac.00142-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
OptrA is an ATP-binding cassette (ABC)-F protein that confers resistance to oxazolidinones and phenicols and can be either plasmid-encoded or chromosomally encoded. Here, we isolated 13 Enterococcus faecalis strains possessing a linezolid MIC of ≥4 mg/liter from nursery pigs in swine herds located across Brazil. Genome sequence comparison showed that these strains possess optrA in different genetic contexts occurring in 5 different E. faecalis sequence type backgrounds. The optrA gene invariably occurred in association with an araC regulator and a gene encoding a hypothetical protein. In some contexts, this genetic island was able to excise and form a covalently closed circle within the cell; this circle appeared to occur in high abundance and to be transmissible by coresident plasmids.
Collapse
|
41
|
Freitas AR, Tedim AP, Novais C, Lanza VF, Peixe L. Comparative genomics of global optrA-carrying Enterococcus faecalis uncovers a common chromosomal hotspot for optrA acquisition within a diversity of core and accessory genomes. Microb Genom 2020; 6. [PMID: 32149599 PMCID: PMC7371108 DOI: 10.1099/mgen.0.000350] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Linezolid-resistant Enterococcus faecalis (LREfs) carrying optrA are increasingly reported globally from multiple sources, but we lack a comprehensive analysis of human and animal optrA-LREfs strains. To assess if optrA is dispersed in isolates with varied genetic backgrounds or with common genetic features, we investigated the phylogenetic structure, genetic content [antimicrobial resistance (AMR), virulence, prophages, plasmidome] and optrA-containing platforms of 27 publicly available optrA-positive E. faecalis genomes from different hosts in seven countries. At the genome-level analysis, an in-house database with 64 virulence genes was tested for the first time. Our analysis showed a diversity of clones and adaptive gene sequences related to a wide range of genera from Firmicutes. Phylogenies of core and accessory genomes were not congruent, and at least PAI-associated and prophage genes contribute to such differences. Epidemiologically unrelated clones (ST21, ST476-like and ST489) obtained from human clinical and animal hosts in different continents over eight years (2010–2017) could be phylogenetically related (3–126 SNPs difference). optrA was located on the chromosome within a Tn6674-like element (n=10) or on medium-size plasmids (30–60 kb; n=14) belonging to main plasmid families (RepA_N/Inc18/Rep_3). In most cases, the immediate gene vicinity of optrA was generally identical in chromosomal (Tn6674) or plasmid (impB-fexA-optrA) backbones. Tn6674 was always inserted into the same ∆radC integration site and embedded in a 32 kb chromosomal platform common to strains from different origins (patients, healthy humans, and animals) in Europe, Africa, and Asia during 2012–2017. This platform is conserved among hundreds of E. faecalis genomes and proposed as a chromosomal hotspot for optrA integration. The finding of optrA in strains sharing common adaptive features and genetic backgrounds across different hosts and countries suggests the occurrence of common and independent genetic events occurring in distant regions and might explain the easy de novo generation of optrA-positive strains. It also anticipates a dramatic increase of optrA carriage and spread with a serious impact on the efficacy of linezolid for the treatment of Gram-positive infections.
Collapse
Affiliation(s)
- Ana R Freitas
- UCIBIO/REQUIMTE. Departamento de Ciências Biológicas. Laboratório de Microbiologia. Faculdade de Farmácia. Universidade do Porto. Porto, Porto, Portugal
| | - Ana P Tedim
- Grupo de Investigación Biomédica en Sepsis - BioSepsis. Hospital Universitario Río Hortega, Instituto de Investigación Biomédica de Salamanca (IBSAL), Valladollid, Spain
| | - Carla Novais
- UCIBIO/REQUIMTE. Departamento de Ciências Biológicas. Laboratório de Microbiologia. Faculdade de Farmácia. Universidade do Porto. Porto, Porto, Portugal
| | - Val F Lanza
- Departamento de Bioinformática. Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Luísa Peixe
- UCIBIO/REQUIMTE. Departamento de Ciências Biológicas. Laboratório de Microbiologia. Faculdade de Farmácia. Universidade do Porto. Porto, Porto, Portugal
| |
Collapse
|
42
|
Novais C, Freitas AR, León-Sampedro R, Peixe L, Coque TM. Methods to Quantify DNA Transfer in Enterococcus. Methods Mol Biol 2020; 2075:111-122. [PMID: 31584158 DOI: 10.1007/978-1-4939-9877-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
DNA uptake in Enterococcus normally occurs by conjugation, a natural process that is replicated in biomedical research to assess the transferability of different mobile genetic elements and chromosomal regions as well as to study the host range of plasmids and other conjugative elements. More efficient artificial methods to transform cells with foreign DNA as chemotransformation and electroporation are widely used in molecular genetics. Here, we described conjugation protocols to quantify DNA transfer among Enterococcus and revise current perspectives and lab strains. Protocols of electrotransformation have been previously described in this series.
Collapse
Affiliation(s)
- Carla Novais
- Laboratory of Microbiology, Biological Sciences Department, Faculty of Pharmacy, UCIBIO/REQUIMTE, University of Porto, Porto, Portugal.
| | - Ana R Freitas
- Laboratory of Microbiology, Biological Sciences Department, Faculty of Pharmacy, UCIBIO/REQUIMTE, University of Porto, Porto, Portugal
| | - Ricardo León-Sampedro
- Department of Microbiology, Ramón y Cajal Health Research Institute (IRYCIS), Unidad de Resistencia a Antibióticos y Virulencia Bacteriana (RYC-CSIC), CIBER en Epidemiología y Salud Pública (CIBER-ESP), Ramón y Cajal University Hospital, Madrid, Spain
| | - Luísa Peixe
- Laboratory of Microbiology, Biological Sciences Department, Faculty of Pharmacy, UCIBIO/REQUIMTE, University of Porto, Porto, Portugal
| | - Teresa M Coque
- Department of Microbiology, Ramón y Cajal Research Institute (IRYCIS), Madrid, Spain.
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain.
| |
Collapse
|
43
|
Ruiz-Ripa L, Feßler AT, Hanke D, Sanz S, Olarte C, Eichhorn I, Schwarz S, Torres C. Detection of poxtA- and optrA-carrying E. faecium isolates in air samples of a Spanish swine farm. J Glob Antimicrob Resist 2019; 22:28-31. [PMID: 31884049 DOI: 10.1016/j.jgar.2019.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 12/16/2019] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE Two linezolid-resistant Enterococcus faecium isolates, C10004 and C10009, were recovered from air samples of a Spanish swine farm and comprehensively characterized. METHODS Detection of linezolid resistance mechanisms (mutations and acquisition of resistance genes) was performed by PCR/sequencing. Isolates were characterized by multilocus sequence typing (MLST), antimicrobial susceptibility testing, detection of antimicrobial resistance and virulence genes, and analysis of the genetic environment of the linezolid resistance genes. The characterization of isolate C10009 was performed by Whole-Genome-Sequencing and of isolate C10004 by PCR and amplicon sequencing, where applicable. Conjugation experiments to assess the transferability of the optrA and poxtA genes implicated in linezolid resistance were performed. RESULTS The linezolid-resistant E. faecium isolates C10004 and C10009, assigned to ST128 and ST437, respectively, harbored the optrA and poxtA genes. Neither mutations in the 23S rRNA nor in the genes for the ribosomal proteins L3, L4 and L22 were detected. C10004 and C10009 carried fourteen and thirteen antimicrobial resistance genes, respectively. The sequence alignment indicated that the genetic environment of the poxtA gene was identical in both isolates, with a downstream-located fexB gene. The poxtA gene was transferred by conjugation together with the fexB gene, and also with tet(M) and tet(L) in the case of isolate C10004. The optrA gene could not be transferred. CONCLUSIONS This is the first report of the poxtA gene in Spain. The presence of poxtA- and optrA-carrying E. faecium isolates in air samples represents a public health concern, indicating an involvement of swine farms in the spread of linezolid-resistant bacteria.
Collapse
Affiliation(s)
- Laura Ruiz-Ripa
- Departamento de Agricultura y Alimentación, Universidad de La Rioja, 26006 Logroño, Spain
| | - Andrea T Feßler
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Dennis Hanke
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Susana Sanz
- Departamento de Agricultura y Alimentación, Universidad de La Rioja, 26006 Logroño, Spain
| | - Carmen Olarte
- Departamento de Agricultura y Alimentación, Universidad de La Rioja, 26006 Logroño, Spain
| | - Inga Eichhorn
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Carmen Torres
- Departamento de Agricultura y Alimentación, Universidad de La Rioja, 26006 Logroño, Spain.
| |
Collapse
|
44
|
León-Sampedro R, Del Campo R, Rodriguez-Baños M, Lanza VF, Pozuelo MJ, Francés-Cuesta C, Tedim AP, Freitas AR, Novais C, Peixe L, Willems RJL, Corander J, González Candelas F, Baquero F, Coque TM. Phylogenomics of Enterococcus faecalis from wild birds: new insights into host-associated differences in core and accessory genomes of the species. Environ Microbiol 2019; 21:3046-3062. [PMID: 31162871 DOI: 10.1111/1462-2920.14702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 05/20/2019] [Accepted: 06/01/2019] [Indexed: 11/29/2022]
Abstract
Wild birds have been suggested to be reservoirs of antimicrobial resistant and/or pathogenic Enterococcus faecalis (Efs) strains, but the scarcity of studies and available sequences limit our understanding of the population structure of the species in these hosts. Here, we analysed the clonal and plasmid diversity of 97 Efs isolates from wild migratory birds. We found a high diversity, with most sequence types (STs) being firstly described here, while others were found in other hosts including some predominant in poultry. We found that pheromone-responsive plasmids predominate in wild bird Efs while 35% of the isolates entirely lack plasmids. Then, to better understand the ecology of the species, the whole genome of fivestrains with known STs (ST82, ST170, ST16 and ST55) were sequenced and compared with all the Efs genomes available in public databases. Using several methods to analyse core and accessory genomes (AccNET, PLACNET, hierBAPS and PANINI), we detected differences in the accessory genome of some lineages (e.g. ST82) demonstrating specific associations with birds. Conversely, the genomes of other Efs lineages exhibited divergence in core and accessory genomes, reflecting different adaptive trajectories in various hosts. This pangenome divergence, horizontal gene transfer events and occasional epidemic peaks could explain the population structure of the species.
Collapse
Affiliation(s)
- Ricardo León-Sampedro
- Department of Microbiology, University Hospital Ramón y Cajal, Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain.,Biomedical Research Networking Center for Epidemiology and Public Health (CIBER-ESP), Madrid, Spain
| | - Rosa Del Campo
- Department of Microbiology, University Hospital Ramón y Cajal, Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain.,Spanish Network for Research in Infectious Diseases (REIPI), Health Institute Carlos III, Madrid, Spain
| | - Mercedes Rodriguez-Baños
- Department of Microbiology, University Hospital Ramón y Cajal, Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
| | - Val F Lanza
- Department of Microbiology, University Hospital Ramón y Cajal, Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain.,Biomedical Research Networking Center for Epidemiology and Public Health (CIBER-ESP), Madrid, Spain
| | - María José Pozuelo
- Department of Biology, Pharmacy Faculty, University San Pablo-CEU, Boadilla del Monte, Spain
| | - Carlos Francés-Cuesta
- Infection and Public Health Unit, FISABIO/University of Valencia, Spain.,Institute for Integrative Systems Biology, I2SysBio, CSIC-University of Valencia, Valencia, Spain
| | - Ana P Tedim
- Department of Microbiology, University Hospital Ramón y Cajal, Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain
| | - Ana R Freitas
- UCIBIO/REQUIMTE, Department of Biological Sciences, Microbiology Laboratory, Pharmacy Faculty, University of Porto, Porto, Portugal
| | - Carla Novais
- UCIBIO/REQUIMTE, Department of Biological Sciences, Microbiology Laboratory, Pharmacy Faculty, University of Porto, Porto, Portugal
| | - Luísa Peixe
- UCIBIO/REQUIMTE, Department of Biological Sciences, Microbiology Laboratory, Pharmacy Faculty, University of Porto, Porto, Portugal
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jukka Corander
- Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Fernando González Candelas
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBER-ESP), Madrid, Spain.,Infection and Public Health Unit, FISABIO/University of Valencia, Spain.,Institute for Integrative Systems Biology, I2SysBio, CSIC-University of Valencia, Valencia, Spain
| | - Fernando Baquero
- Department of Microbiology, University Hospital Ramón y Cajal, Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain.,Biomedical Research Networking Center for Epidemiology and Public Health (CIBER-ESP), Madrid, Spain.,Antibiotic Resistance and Bacterial Virulence Unit Associated with the Superior Council of Scientific Investigations (CSIC), Madrid, Spain
| | - Teresa M Coque
- Department of Microbiology, University Hospital Ramón y Cajal, Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain.,Biomedical Research Networking Center for Epidemiology and Public Health (CIBER-ESP), Madrid, Spain.,Antibiotic Resistance and Bacterial Virulence Unit Associated with the Superior Council of Scientific Investigations (CSIC), Madrid, Spain
| |
Collapse
|
45
|
Na SH, Moon DC, Choi MJ, Oh SJ, Jung DY, Kang HY, Hyun BH, Lim SK. Detection of oxazolidinone and phenicol resistant enterococcal isolates from duck feces and carcasses. Int J Food Microbiol 2019; 293:53-59. [DOI: 10.1016/j.ijfoodmicro.2019.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/26/2018] [Accepted: 01/04/2019] [Indexed: 01/08/2023]
|
46
|
Zhou W, Gao S, Xu H, Zhang Z, Chen F, Shen H, Zhang C. Distribution of the optrA gene in Enterococcus isolates at a tertiary care hospital in China. J Glob Antimicrob Resist 2019; 17:180-186. [PMID: 30641287 DOI: 10.1016/j.jgar.2019.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 10/27/2022] Open
Abstract
OBJECTIVES Linezolid-resistant Enterococcus have spread worldwide. This study investigated the prevalence of linezolid-non-susceptible Enterococcus (LNSE) and the potential mechanism and molecular epidemiology of LNSE isolates from Nanjing, China. METHODS Linezolid susceptibility of 2555 Enterococcus was retrospectively determined by Etest. Vancomycin and teicoplanin MICs were determined for LNSE by Etest. PCR and DNA sequencing were used to investigate the potential molecular mechanism. Clonal relatedness between LNSE isolates was analysed by MLST. WGS was also performed. RESULTS A total of 27 Enterococcus isolates (24 Enterococcus faecalis, 3 Enterococcus faecium) with linezolid MICs of 4-48μg/mL were identified, among which 20 E. faecalis and 3 E. faecium were positive for optrA. No mutations were found in genes encoding domain V of 23S rRNA or ribosomal proteins L3/L4; the cfr gene was not found. The 24 linezolid-non-susceptible E. faecalis were classified into eight STs (ST16, ST480, ST476, ST631, ST585, ST428, ST25 and ST689). The three linezolid-non-susceptible E. faecium were classified as ST17, ST400 and ST195. Comparison of the deduced OptrA amino acid sequences of the 23 optrA-positive isolates by PCR-based sequencing and WGS with that of the original OptrA from E. faecalis E349 revealed seven variants (KD, EDP, EDM, D, EDD, RDK and DP) in 16 isolates, with no mutations in the remaining 7 isolates. optrA was found downstream of fexA by searching the pE349 sequence based on WGS data. CONCLUSIONS Emergence of LNSE with optrA-mediated resistance and clonal dissemination of ST16 E. faecalis in our hospital may pose a potential public-health threat.
Collapse
Affiliation(s)
- Wanqing Zhou
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, 321# Zhongshan Road, Gulou District, Nanjing, Jiangsu Province 210008, PR China
| | - Shuo Gao
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, 321# Zhongshan Road, Gulou District, Nanjing, Jiangsu Province 210008, PR China
| | - Hongjing Xu
- Department of Laboratory Medicine, Jiangning District Hospital of Traditional Chinese Medicine, 657# Tianyin Avenue, Jiangning District, Nanjing, Jiangsu Province 211100, PR China
| | - Zhifeng Zhang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, 321# Zhongshan Road, Gulou District, Nanjing, Jiangsu Province 210008, PR China
| | - Fei Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, 321# Zhongshan Road, Gulou District, Nanjing, Jiangsu Province 210008, PR China
| | - Han Shen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, 321# Zhongshan Road, Gulou District, Nanjing, Jiangsu Province 210008, PR China.
| | - Chunni Zhang
- Department of Clinical Laboratory, Jinling Hospital, Nanjing University School of Medicine, Nanjing University, 305# East Zhongshan Road, Qinhuai District, Nanjing, Jiangsu Province 210008, PR China.
| |
Collapse
|
47
|
Linezolid resistance genes and genetic elements enhancing their dissemination in enterococci and streptococci. Plasmid 2018; 99:89-98. [PMID: 30253132 DOI: 10.1016/j.plasmid.2018.09.011] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 09/21/2018] [Accepted: 09/21/2018] [Indexed: 01/08/2023]
Abstract
Linezolid is considered a last resort drug in treatment of severe infections caused by Gram-positive pathogens, resistant to other antibiotics, such as vancomycin-resistant enterococci (VRE), methicillin-resistant staphylococci and multidrug resistant pneumococci. Although the vast majority of Gram-positive pathogenic bacteria remain susceptible to linezolid, resistant isolates of enterococci, staphylococci and streptococci have been reported worldwide. In these bacteria, apart from mutations, affecting mostly the 23S rRNA genes, acquisition of such genes as cfr, cfr(B), optrA and poxtA, often associated with mobile genetic elements (MGE), plays an important role for resistance. The purpose of this paper is to provide an overview on diversity and epidemiology of MGE carrying linezolid-resistance genes among clinically-relevant Gram-positive pathogens such as enterococci and streptococci.
Collapse
|
48
|
Morroni G, Brenciani A, Antonelli A, D'Andrea MM, Di Pilato V, Fioriti S, Mingoia M, Vignaroli C, Cirioni O, Biavasco F, Varaldo PE, Rossolini GM, Giovanetti E. Characterization of a Multiresistance Plasmid Carrying the optrA and cfr Resistance Genes From an Enterococcus faecium Clinical Isolate. Front Microbiol 2018; 9:2189. [PMID: 30271398 PMCID: PMC6142821 DOI: 10.3389/fmicb.2018.02189] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/27/2018] [Indexed: 12/11/2022] Open
Abstract
Enterococcus faecium E35048, a bloodstream isolate from Italy, was the first strain where the oxazolidinone resistance gene optrA was detected outside China. The strain was also positive for the oxazolidinone resistance gene cfr. WGS analysis revealed that the two genes were linked (23.1 kb apart), being co-carried by a 41,816-bp plasmid that was named pE35048-oc. This plasmid also carried the macrolide resistance gene erm(B) and a backbone related to that of the well-known Enterococcus faecalis plasmid pRE25 (identity 96%, coverage 65%). The optrA gene context was original, optrA being part of a composite transposon, named Tn6628, which was integrated into the gene encoding for the ζ toxin protein (orf19 of pRE25). The cfr gene was flanked by two ISEnfa5 insertion sequences and the element was inserted into an lnu(E) gene. Both optrA and cfr contexts were excisable. pE35048-oc could not be transferred to enterococcal recipients by conjugation or transformation. A plasmid-cured derivative of E. faecium E35048 was obtained following growth at 42°C, and the complete loss of pE35048-oc was confirmed by WGS. pE35048-oc exhibited some similarity but also notable differences from pEF12-0805, a recently described enterococcal plasmid from human E. faecium also co-carrying optrA and cfr; conversely it was completely unrelated to other optrA- and cfr-carrying plasmids from Staphylococcus sciuri. The optrA-cfr linkage is a matter of concern since it could herald the possibility of a co-spread of the two genes, both involved in resistance to last resort agents such as the oxazolidinones.
Collapse
Affiliation(s)
- Gianluca Morroni
- Infectious Diseases Clinic, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Andrea Brenciani
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Alberto Antonelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Marco Maria D'Andrea
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Vincenzo Di Pilato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Simona Fioriti
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Marina Mingoia
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Carla Vignaroli
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Oscar Cirioni
- Infectious Diseases Clinic, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Francesca Biavasco
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Pietro E Varaldo
- Unit of Microbiology, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche Medical School, Ancona, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Microbiology and Virology Unit, Florence Careggi University Hospital, Florence, Italy
| | - Eleonora Giovanetti
- Unit of Microbiology, Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
49
|
Càmara J, Camoez M, Tubau F, Pujol M, Ayats J, Ardanuy C, Domínguez MÁ. Detection of the Novel optrA Gene Among Linezolid-Resistant Enterococci in Barcelona, Spain. Microb Drug Resist 2018; 25:87-93. [PMID: 30153086 DOI: 10.1089/mdr.2018.0028] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to describe the presence of the novel optrA gene among clinical isolates of enterococci in a Spanish teaching hospital (May 2016-April 2017). optrA and cfr genes were screened by PCR in all isolates showing linezolid minimal inhibitory concentration (MIC) ≥4 mg/L. The genetic relatedness of the isolates, the presence of resistance and virulence genes, and the genetic environment of optrA were assessed by whole-genome sequencing (WGS). Six of 1,640 enterococci had linezolid MIC ≥4 mg/L. Among them, the optrA gene was detected in five Enterococcus faecalis isolated from unrelated patients. Although none of them had received linezolid or chloramphenicol, all had antecedents of recent quinolone consumption. WGS analysis revealed the existence of two different genotypes: ST585 and ST474. cfr was not detected in any of the isolates. No mutations were detected among the 23S ribosomal RNA and the ribosomal proteins L3, L4, and L22. Both genotypes also carried genes related to aminoglycoside, lincosamide, macrolide, phenicol, and tetracycline resistance. Detection of optrA in a setting with low linezolid consumption and among patients without antecedents of oxazolidinone therapy is of concern.
Collapse
Affiliation(s)
- Jordi Càmara
- 1 Microbiology Department, Hospital Universitari de Bellvitge-Universitat de Barcelona-IDIBELL, L'Hospitalet de Llobregat , Barcelona, Spain
| | - Mariana Camoez
- 1 Microbiology Department, Hospital Universitari de Bellvitge-Universitat de Barcelona-IDIBELL, L'Hospitalet de Llobregat , Barcelona, Spain .,2 Spanish Network for Research in Infectious Diseases (REIPI), Instituto de Salud Carlos III , Madrid, Spain
| | - Fe Tubau
- 1 Microbiology Department, Hospital Universitari de Bellvitge-Universitat de Barcelona-IDIBELL, L'Hospitalet de Llobregat , Barcelona, Spain .,3 CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Miquel Pujol
- 2 Spanish Network for Research in Infectious Diseases (REIPI), Instituto de Salud Carlos III , Madrid, Spain .,4 Infectious Diseases Department, Hospital Universitari de Bellvitge-Universitat de Barcelona-IDIBELL, L'Hospitalet de Llobregat , Barcelona, Spain
| | - Josefina Ayats
- 1 Microbiology Department, Hospital Universitari de Bellvitge-Universitat de Barcelona-IDIBELL, L'Hospitalet de Llobregat , Barcelona, Spain .,3 CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Ardanuy
- 1 Microbiology Department, Hospital Universitari de Bellvitge-Universitat de Barcelona-IDIBELL, L'Hospitalet de Llobregat , Barcelona, Spain .,3 CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - M Ángeles Domínguez
- 1 Microbiology Department, Hospital Universitari de Bellvitge-Universitat de Barcelona-IDIBELL, L'Hospitalet de Llobregat , Barcelona, Spain .,2 Spanish Network for Research in Infectious Diseases (REIPI), Instituto de Salud Carlos III , Madrid, Spain
| |
Collapse
|
50
|
Cai J, Schwarz S, Chi D, Wang Z, Zhang R, Wang Y. Faecal carriage of optrA-positive enterococci in asymptomatic healthy humans in Hangzhou, China. Clin Microbiol Infect 2018; 25:630.e1-630.e6. [PMID: 30076974 DOI: 10.1016/j.cmi.2018.07.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/19/2018] [Accepted: 07/21/2018] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To investigate the faecal carriage of optrA-positive enterococci among asymptomatic healthy humans in Hangzhou, China, and to characterize the genetic context of optrA. METHODS A total of 3458 stool samples from healthy individuals were collected and cultured on a selective medium containing 10 mg/L florfenicol and resulting enterococci were screened for the presence of optrA by PCR. OptrA variants were determined by amino acid sequence comparison with the original OptrA from Enterococcus faecalis E349. Whole genome sequencing and PCR mapping were performed to obtain and analyse the genetic environment of optrA. RESULTS Similar optrA carriage rates (∼3.5%) were detected in samples from adults (55/1558) and children (66/1900). Linezolid resistance rates for E. faecalis, Enterococcus faecium and other Enterococcus species were 58.5% (38/65), 42.3% (11/26) and 0% (0/31), respectively. Nineteen OptrA variants exhibiting different linezolid MICs were identified. Isolates carrying wild-type OptrA and variants RDK, KLDP, KD, D, RDKP, and EDP generally demonstrated linezolid MICs ≥8 mg/L. The OptrA variants, with fexA upstream and erm(A) downstream, were flanked by IS1216E at one or both ends. The fexA-optrA(wild-type) was located downstream of a Tn554 transposon, and was inserted into the radC gene. The EDM variant was detected in 31/73 enterococci with linezolid MICs ≤4 mg/L. Despite the variable genetic context, Tn558-araC-optrA(EDM)-erm(A)-met was the most common gene array. CONCLUSIONS This study revealed a correlation between linezolid MIC, genetic context and OptrA variant. Intestinal colonization of healthy individuals by optrA-positive enterococci is a concern, and active epidemiological surveillance of optrA is warranted.
Collapse
Affiliation(s)
- J Cai
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - S Schwarz
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China; Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - D Chi
- Department of Laboratory, Children's Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Z Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - R Zhang
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| | - Y Wang
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|