1
|
Neghabi Hajigha M, Hajikhani B, Vaezjalali M, Samadi Kafil H, Kazemzadeh Anari R, Goudarzi M. Antiviral and antibacterial peptides: Mechanisms of action. Heliyon 2024; 10:e40121. [PMID: 39748995 PMCID: PMC11693924 DOI: 10.1016/j.heliyon.2024.e40121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 01/04/2025] Open
Abstract
Antimicrobial peptides (AMPs) present promising alternatives for addressing bacterial and viral multidrug resistance due to their distinctive properties. Understanding the mechanisms of these compounds is essential for achieving this objective. Therefore, this comprehensive review aims to highlight primary natural sources of AMPs and elucidate various aspects of the modes of action of antiviral and antibacterial peptides (ABPs). It emphasizes that antiviral peptides (AVPs) can disrupt the replication cycle of both enveloped and non-enveloped viruses at several stages, including pre-fusion, fusion, and post-entry into the host cell. Additionally, the review discusses the inhibitory effects of ABPs on bacterial growth, outlining their extracellular actions as well as their intracellular activities following membrane translocation. Factors such as structure, size, electric charge, environmental factors, degrading enzymes, and microbial resistance against AMPs can affect the function of AMPs.
Collapse
Affiliation(s)
- Mahdyeh Neghabi Hajigha
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Vaezjalali
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raana Kazemzadeh Anari
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Tajer L, Paillart JC, Dib H, Sabatier JM, Fajloun Z, Abi Khattar Z. Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides in the Modern Era: An Updated Review. Microorganisms 2024; 12:1259. [PMID: 39065030 PMCID: PMC11279074 DOI: 10.3390/microorganisms12071259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a serious global health concern, resulting in a significant number of deaths annually due to infections that are resistant to treatment. Amidst this crisis, antimicrobial peptides (AMPs) have emerged as promising alternatives to conventional antibiotics (ATBs). These cationic peptides, naturally produced by all kingdoms of life, play a crucial role in the innate immune system of multicellular organisms and in bacterial interspecies competition by exhibiting broad-spectrum activity against bacteria, fungi, viruses, and parasites. AMPs target bacterial pathogens through multiple mechanisms, most importantly by disrupting their membranes, leading to cell lysis. However, bacterial resistance to host AMPs has emerged due to a slow co-evolutionary process between microorganisms and their hosts. Alarmingly, the development of resistance to last-resort AMPs in the treatment of MDR infections, such as colistin, is attributed to the misuse of this peptide and the high rate of horizontal genetic transfer of the corresponding resistance genes. AMP-resistant bacteria employ diverse mechanisms, including but not limited to proteolytic degradation, extracellular trapping and inactivation, active efflux, as well as complex modifications in bacterial cell wall and membrane structures. This review comprehensively examines all constitutive and inducible molecular resistance mechanisms to AMPs supported by experimental evidence described to date in bacterial pathogens. We also explore the specificity of these mechanisms toward structurally diverse AMPs to broaden and enhance their potential in developing and applying them as therapeutics for MDR bacteria. Additionally, we provide insights into the significance of AMP resistance within the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Layla Tajer
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
| | - Jean-Christophe Paillart
- CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, 2 Allée Konrad Roentgen, F-67000 Strasbourg, France;
| | - Hanna Dib
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
- Department of Biology, Faculty of Sciences 3, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Ziad Abi Khattar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, P.O. Box 100, Tripoli, Lebanon
| |
Collapse
|
3
|
García-Romero I, Srivastava M, Monjarás-Feria J, Korankye SO, MacDonald L, Scott NE, Valvano MA. Drug efflux and lipid A modification by 4-L-aminoarabinose are key mechanisms of polymyxin B resistance in the sepsis pathogen Enterobacter bugandensis. J Glob Antimicrob Resist 2024; 37:108-121. [PMID: 38552872 DOI: 10.1016/j.jgar.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/27/2024] [Accepted: 03/14/2024] [Indexed: 04/26/2024] Open
Abstract
OBJECTIVES A concern with the ESKAPE pathogen, Enterobacter bugandensis, and other species of the Enterobacter cloacae complex, is the frequent appearance of multidrug resistance against last-resort antibiotics, such as polymyxins. METHODS Here, we investigated the responses to polymyxin B (PMB) in two PMB-resistant E. bugandensis clinical isolates by global transcriptomics and deletion mutagenesis. RESULTS In both isolates, the genes of the CrrAB-regulated operon, including crrC and kexD, displayed the highest levels of upregulation in response to PMB. ∆crrC and ∆kexD mutants became highly susceptible to PMB and lost the heteroresistant phenotype. Conversely, heterologous expression of CrrC and KexD proteins increased PMB resistance in a sensitive Enterobacter ludwigii clinical isolate and in the Escherichia coli K12 strain, W3110. The efflux pump, AcrABTolC, and the two component regulators, PhoPQ and CrrAB, also contributed to PMB resistance and heteroresistance. Additionally, the lipid A modification with 4-L-aminoarabinose (L-Ara4N), mediated by the arnBCADTEF operon, was critical to determine PMB resistance. Biochemical experiments, supported by mass spectrometry and structural modelling, indicated that CrrC is an inner membrane protein that interacts with the membrane domain of the KexD pump. Similar interactions were modeled for AcrB and AcrD efflux pumps. CONCLUSION Our results support a model where drug efflux potentiated by CrrC interaction with membrane domains of major efflux pumps combined with resistance to PMB entry by the L-Ara4N lipid A modification, under the control of PhoPQ and CrrAB, confers the bacterium high-level resistance and heteroresistance to PMB.
Collapse
Affiliation(s)
- Inmaculada García-Romero
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, United Kingdom; Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Mugdha Srivastava
- Functional Genomics & Systems Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, University of Wuerzburg, Wuerzburg, Germany; Core Unit Systems Medicine, University of Wuerzburg, Wuerzburg, Germany
| | - Julia Monjarás-Feria
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Samuel O Korankye
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Lewis MacDonald
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, United Kingdom
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Miguel A Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, United Kingdom.
| |
Collapse
|
4
|
Duffey M, Jumde RP, da Costa RM, Ropponen HK, Blasco B, Piddock LJ. Extending the Potency and Lifespan of Antibiotics: Inhibitors of Gram-Negative Bacterial Efflux Pumps. ACS Infect Dis 2024; 10:1458-1482. [PMID: 38661541 PMCID: PMC11091901 DOI: 10.1021/acsinfecdis.4c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Efflux is a natural process found in all prokaryotic and eukaryotic cells that removes a diverse range of substrates from inside to outside. Many antibiotics are substrates of bacterial efflux pumps, and modifications to the structure or overexpression of efflux pumps are an important resistance mechanism utilized by many multidrug-resistant bacteria. Therefore, chemical inhibition of bacterial efflux to revitalize existing antibiotics has been considered a promising approach for antimicrobial chemotherapy over two decades, and various strategies have been employed. In this review, we provide an overview of bacterial multidrug resistance (MDR) efflux pumps, of which the resistance nodulation division (RND) efflux pumps are considered the most clinically relevant in Gram-negative bacteria, and describe over 50 efflux inhibitors that target such systems. Although numerous efflux inhibitors have been identified to date, none have progressed into clinical use because of formulation, toxicity, and pharmacokinetic issues or a narrow spectrum of inhibition. For these reasons, the development of efflux inhibitors has been considered a difficult and complex area of research, and few active preclinical studies on efflux inhibitors are in progress. However, recently developed tools, including but not limited to computational tools including molecular docking models, offer hope that further research on efflux inhibitors can be a platform for research and development of new bacterial efflux inhibitors.
Collapse
Affiliation(s)
- Maëlle Duffey
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| | - Ravindra P. Jumde
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| | - Renata M.A. da Costa
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| | - Henni-Karoliina Ropponen
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| | - Benjamin Blasco
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| | - Laura J.V. Piddock
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| |
Collapse
|
5
|
Bina XR, Weng Y, Budnick J, Van Allen ME, Bina JE. Klebsiella pneumoniae TolC contributes to antimicrobial resistance, exopolysaccharide production, and virulence. Infect Immun 2023; 91:e0030323. [PMID: 37982617 PMCID: PMC10715176 DOI: 10.1128/iai.00303-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/26/2023] [Indexed: 11/21/2023] Open
Abstract
Klebsiella pneumoniae is a Gram-negative bacterium that causes a variety of human diseases, ranging from pneumonia to urinary tract infections and invasive diseases. The emergence of K. pneumoniae strains that are resistant to multiple antibiotics has made treatment more complex and led to K. pneumoniae becoming a global health threat. Addressing this threat necessitates the development of new therapeutic strategies to combat this pathogen, including strategies to overcome antimicrobial resistance and therapeutics for novel targets such as antivirulence. Here, we investigated the function of TolC, an outer membrane protein essential for the function of tripartite transporters, in K. pneumoniae. Mutation of tolC rendered K. pneumoniae hypersensitive to multiple antibiotics. Moreover, the tolC mutation impaired capsule production and affected the expression of key capsule biosynthetic genes, indicating a regulatory role for TolC in capsule biosynthesis. Additionally, TolC was essential for growth under iron-limiting conditions, suggesting its involvement in iron acquisition. The tolC mutant exhibited increased adherence to human enterocytes and enhanced serum sensitivity. In the Galleria mellonella infection model, the tolC mutant displayed reduced virulence compared to the wild type. Our findings highlight the pleiotropic role of TolC in K. pneumoniae pathobiology, influencing antimicrobial resistance, capsule production, iron homeostasis, adherence to host cells, and virulence. Understanding the multifaceted role of TolC in K. pneumoniae may guide the development of new therapeutic strategies against this pathogen. .
Collapse
Affiliation(s)
- X. Renee Bina
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yuding Weng
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - James Budnick
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mia E. Van Allen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - James E. Bina
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Shahzad S, Willcox MDP, Rayamajhee B. A Review of Resistance to Polymyxins and Evolving Mobile Colistin Resistance Gene ( mcr) among Pathogens of Clinical Significance. Antibiotics (Basel) 2023; 12:1597. [PMID: 37998799 PMCID: PMC10668746 DOI: 10.3390/antibiotics12111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/26/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023] Open
Abstract
The global rise in antibiotic resistance in bacteria poses a major challenge in treating infectious diseases. Polymyxins (e.g., polymyxin B and colistin) are last-resort antibiotics against resistant Gram-negative bacteria, but the effectiveness of polymyxins is decreasing due to widespread resistance among clinical isolates. The aim of this literature review was to decipher the evolving mechanisms of resistance to polymyxins among pathogens of clinical significance. We deciphered the molecular determinants of polymyxin resistance, including distinct intrinsic molecular pathways of resistance as well as evolutionary characteristics of mobile colistin resistance. Among clinical isolates, Acinetobacter stains represent a diversified evolution of resistance, with distinct molecular mechanisms of intrinsic resistance including naxD, lpxACD, and stkR gene deletion. On the other hand, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa are usually resistant via the PhoP-PhoQ and PmrA-PmrB pathways. Molecular evolutionary analysis of mcr genes was undertaken to show relative relatedness across the ten main lineages. Understanding the molecular determinants of resistance to polymyxins may help develop suitable and effective methods for detecting polymyxin resistance determinants and the development of novel antimicrobial molecules.
Collapse
Affiliation(s)
- Shakeel Shahzad
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Mark D. P. Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia;
| | | |
Collapse
|
7
|
Ding Y, Hao J, Xiao W, Ye C, Xiao X, Jian C, Tang M, Li G, Liu J, Zeng Z. Role of efflux pumps, their inhibitors, and regulators in colistin resistance. Front Microbiol 2023; 14:1207441. [PMID: 37601369 PMCID: PMC10436536 DOI: 10.3389/fmicb.2023.1207441] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 08/22/2023] Open
Abstract
Colistin is highly promising against multidrug-resistant and extensively drug-resistant bacteria clinically. Bacteria are resistant to colistin mainly through mcr and chromosome-mediated lipopolysaccharide (LPS) synthesis-related locus variation. However, the current understanding cannot fully explain the resistance mechanism in mcr-negative colistin-resistant strains. Significantly, the contribution of efflux pumps to colistin resistance remains to be clarified. This review aims to discuss the contribution of efflux pumps and their related transcriptional regulators to colistin resistance in various bacteria and the reversal effect of efflux pump inhibitors on colistin resistance. Previous studies suggested a complex regulatory relationship between the efflux pumps and their transcriptional regulators and LPS synthesis, transport, and modification. Carbonyl cyanide 3-chlorophenylhydrazone (CCCP), 1-(1-naphthylmethyl)-piperazine (NMP), and Phe-Arg-β-naphthylamide (PAβN) all achieved the reversal of colistin resistance, highlighting the role of efflux pumps in colistin resistance and their potential for adjuvant development. The contribution of the efflux pumps to colistin resistance might also be related to specific genetic backgrounds. They can participate in colistin tolerance and heterogeneous resistance to affect the treatment efficacy of colistin. These findings help understand the development of resistance in mcr-negative colistin-resistant strains.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jinbo Liu
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhangrui Zeng
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
8
|
Li L, Ma J, Cheng P, Li M, Yu Z, Song X, Yu Z, Sun H, Zhang W, Wang Z. Roles of two-component regulatory systems in Klebsiella pneumoniae: Regulation of virulence, antibiotic resistance, and stress responses. Microbiol Res 2023; 272:127374. [PMID: 37031567 DOI: 10.1016/j.micres.2023.127374] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
Klebsiella pneumoniae is an opportunistic pathogen belonging to the Enterobacteriaceae family, which is the leading cause of nosocomial infections. The emergence of hypervirulent and multi-drug resistant K. pneumoniae is a serious health threat. In the process of infection, K. pneumoniae needs to adapt to different environmental conditions, and the two-component regulatory system (TCS) composed of a sensor histidine kinase and response regulator is an important bacterial regulatory system in response to external stimuli. Understanding how K. pneumoniae perceives and responds to complex environmental stimuli provides insights into TCS regulation mechanisms and new targets for drug design. In this review, we analyzed the TCS composition and summarized the regulation mechanisms of TCSs, focusing on the regulation of genes involved in virulence, antibiotic resistance, and stress response. Collectively, these studies demonstrated that several TCSs play important roles in the regulation of virulence, antibiotic resistance and stress responses of K. pneumoniae. A single two-component regulatory system can participate in the regulation of several stress responses, and one stress response process may include several TCSs, forming a complex regulatory network. However, the function and regulation mechanism of some TCSs require further study. Hence, future research endeavors are required to enhance the understanding of TCS regulatory mechanisms and networks in K. pneumoniae, which is essential for the design of novel drugs targeting TCSs.
Collapse
|
9
|
Dodan H, Hiromura M, Ting Ni R, Matsubara F, Kuroda T, Ogawa W. Mutation in crrB encoding a sensor kinase increases expression of the RND-type multidrug efflux pump KexD in Klebsiella pneumoniae. Gene 2023:147543. [PMID: 37331490 DOI: 10.1016/j.gene.2023.147543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/23/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND RND-type multidrug efflux systems in Gram-negative bacteria protect them against antimicrobial agents. Gram-negative bacteria generally possess several genes which encode such efflux pumps, but these pumps sometimes fail to show expression. Generally, some multidrug efflux pumps are silent or expressed only at low levels. However, genome mutations often increase the expression of such genes, conferring the bacteria with multidrug-resistant phenotypes. We previously reported mutants with increased expression of the multidrug efflux pump KexD. We aimed to identify the cause of KexD overexpression in our isolates. Furthermore, we also examined the colistin resistant levels in our mutants. METHODS A transposon (Tn) was inserted into the genome of Klebsiella pneumoniae Em16-1, a KexD-overexpressing mutant, to identify the gene(s) responsible for KexD overexpression. RESULTS Thirty-two strains with decreased kexD expression after Tn insertion were isolated. In 12 of these 32 strains, Tn was identified in crrB, which encodes a sensor kinase of a two-component regulatory system. DNA sequencing of crrB in Em16-1 showed that the 452nd cytosine on crrB was replaced by thymine, and this mutation changed the 151st proline into leucine. The same mutation was found in all other KexD-overexpressing mutants. The expression of crrA increased in the mutant overexpressing kexD, and the strains in which crrA was complemented by a plasmid showed elevated expression of kexD and crrB from the genome. The complementation of the mutant-type crrB also increased the expression of kexD and crrA from the genome, but the complementation of the wild-type crrB did not. Deletion of crrB decreased antibiotic resistance levels and KexD expression. CrrB was reported as a factor of colistin resistance, and the colistin resistance of our strains was tested. However, our mutants and strains carrying kexD on a plasmid did not show increased colistin resistance. CONCLUSION Mutation in crrB is important for KexD overexpression. Increased CrrA may also be associated with KexD overexpression.
Collapse
Affiliation(s)
- Hayata Dodan
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Okayama University, Tsushima, Kita-ku, Okayama 700-8530, Japan
| | - Makoto Hiromura
- Department of Molecular Biology, Daiichi University of Pharmacy, Tamagawa-machi, Minami-ku, Fukuoka 815-8511, Japan
| | - Rui Ting Ni
- Department of Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Tsushima, Kita-ku, Okayama 700-8530, Japan
| | - Futoshi Matsubara
- Department of Microbiology and Biochemistry, Daiichi University of Pharmacy, Tamagawa-machi, Minami-ku, Fukuoka 815-8511, Japan
| | - Teruo Kuroda
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Okayama University, Tsushima, Kita-ku, Okayama 700-8530, Japan; Department of Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Tsushima, Kita-ku, Okayama 700-8530, Japan; Department of Microbiology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Wakano Ogawa
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Okayama University, Tsushima, Kita-ku, Okayama 700-8530, Japan; Department of Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Tsushima, Kita-ku, Okayama 700-8530, Japan; Department of Microbiology and Biochemistry, Daiichi University of Pharmacy, Tamagawa-machi, Minami-ku, Fukuoka 815-8511, Japan.
| |
Collapse
|
10
|
Karami-Zarandi M, Rahdar HA, Esmaeili H, Ranjbar R. Klebsiella pneumoniae: an update on antibiotic resistance mechanisms. Future Microbiol 2023; 18:65-81. [PMID: 36632990 DOI: 10.2217/fmb-2022-0097] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Klebsiella pneumoniae colonizes mucosal surfaces of healthy humans and is responsible for one third of all Gram-negative infections in hospitalized patients. K. pneumoniae is compatible with acquiring antibiotic resistance elements such as plasmids and transposons encoding various β-lactamases and efflux pumps. Mutations in different proteins such as β-lactamases, efflux proteins, outer membrane proteins, gene replication enzymes, protein synthesis complexes and transcription enzymes also generate resistance to antibiotics. Biofilm formation is another strategy that facilitates antibiotic resistance. Resistant strains can be treated by combination therapy using available antibiotics, though proper management of antibiotic consumption in hospitals is important to reduce the emergence and proliferation of resistance to current antibiotics.
Collapse
Affiliation(s)
- Morteza Karami-Zarandi
- Department of Microbiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, 4513956111, Iran
| | - Hossein Ali Rahdar
- Department of Microbiology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, 7618815676, Iran
| | - Hadi Esmaeili
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, 1435916471, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology & Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, 1435916471, Iran
| |
Collapse
|
11
|
Meletiadis J, Paranos P, Tsala M, Pournaras S, Vourli S. Pharmacodynamics of colistin resistance in carbapenemase-producing Klebsiella pneumoniae: the double-edged sword of heteroresistance and adaptive resistance. J Med Microbiol 2022; 71. [PMID: 36201344 DOI: 10.1099/jmm.0.001565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. The presence of heteroresistant subpopulations and the development of resistance during drug exposure (adaptive resistance) limits colistin's efficacy against carbapenemase-producing Klebsiella pneumoniae (CP-Kp) isolates.Hypothesis/Gap statement. The pharmacokinetic/pharmacodynamic (PK/PD) characteristics of both types of colistin resistance against CP-Kp are unknown.Aim. We therefore studied the PK/PD characteristics of colistin resistance in an in vitro PK/PD model simulating clinical colistin exposures.Methods. Two K. pneumoniae clinical isolates, one non-CP-Kp and one CP-Kp, with colistin MICs of 0.5-1 mg l-1 at a final inoculum of 107 c.f.u. ml-1 were used in an in vitro PK/PD dialysis/diffusion closed model simulating 4.5 MU q12h and 3 MU q8h clinical dosing regimens. Heteroresistant (HRS, bacteria with stable high-level resistance present before drug exposure) and adaptive resistant (ARS, bacteria with reversible low-level resistance emerging after drug exposure) subpopulations were measured and optimal PK/PD targets for reducing both ARS and HRS were determined. Cumulative fractional response (CFR) was calculated with Monte Carlo simulation for 9 MU q24h, 4.5 MU q12h and 3 MU q8h clinical dosing regimens.Results. A 2-5 log10c.f.u. ml-1 decrease of the total bacterial population was observed within the first 2 h of exposure, followed by regrowth at 12 h. Colistin exposure was positively and negatively correlated with HRS and ARS 24-0 h c.f.u. ml-1 changes, respectively. An optimal PK/PD (~0.5log10 increase) target of 35 fAUC/MIC (the ratio of the area under the unbound concentration-time curve to the MIC) was found for reducing both HRS and ARS of high-level resistance (MIC >16 mg l-1). The 4.5 MU q12h regimen had slightly higher CFR (74 %) compared to the other dosing regimens.Conclusions. High colistin exposures reduced high-level adaptive resistance at the expense of selection of heteroresistant subpopulations.
Collapse
Affiliation(s)
- Joseph Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens 157 72, Greece.,Department of Medical Microbiology, Erasmus MC, Rotterdam, Netherlands
| | - Paschalis Paranos
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens 157 72, Greece
| | - Marilena Tsala
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens 157 72, Greece
| | - Spyros Pournaras
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens 157 72, Greece
| | - Sofia Vourli
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens 157 72, Greece
| |
Collapse
|
12
|
Huang W, Zhang J, He Y, Hu C, Cheng S, Zeng H, Zheng M, Yu H, Liu X, Zou Q, Cui R. A cyclic adenosine monophosphate response element-binding protein inhibitor enhances the antibacterial activity of polymyxin B by inhibiting the ATP hydrolyzation activity of CrrB. Front Pharmacol 2022; 13:949869. [PMID: 36147339 PMCID: PMC9485624 DOI: 10.3389/fphar.2022.949869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/04/2022] [Indexed: 11/23/2022] Open
Abstract
The emergence of polymyxin B (PB) resistant Gram-negative bacteria poses an important clinical and public health threat. Antibiotic adjuvants development is a complementary strategy that fills the gap in new antibiotics. Here, we described the discovery of the enhancement capacity of compound 666-15, previously identified as an inhibitor of cyclic adenosine monophosphate response element-binding protein (CREB), on the activity of PB against Klebsiella pneumoniae in vitro and in vivo. Mechanistic studies showed that this compound reduced the transcription and translation levels of genes related to lipid A modification in the presence of PB. We also identified that 666-15 reduces the ATP hydrolyzation activity of CrrB, and P151L mutation mediates the resistance of bacteria to the enhancement of 666-15. Our results demonstrated the potential of 666-15 in clinical application and support the further development of a PB synergist based on this compound.
Collapse
Affiliation(s)
- Wei Huang
- Antimicrobial Drug Screening Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- Department of Clinical Microbiology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yuzhang He
- Department of Pathogen Biology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Chunxia Hu
- Antimicrobial Drug Screening Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Shumin Cheng
- Antimicrobial Drug Screening Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Huan Zeng
- College of Pharmacy, Jinan University, Guangzhou, China
| | | | - Huijuan Yu
- Antimicrobial Drug Screening Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- Department of Clinical Microbiology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Xue Liu
- Department of Pathogen Biology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
- *Correspondence: Xue Liu, ; Quanming Zou, ; Ruiqin Cui,
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
- *Correspondence: Xue Liu, ; Quanming Zou, ; Ruiqin Cui,
| | - Ruiqin Cui
- Antimicrobial Drug Screening Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- *Correspondence: Xue Liu, ; Quanming Zou, ; Ruiqin Cui,
| |
Collapse
|
13
|
Zhao J, Li Z, Zhang Y, Liu X, Lu B, Cao B. Convergence of MCR-8.2 and Chromosome-Mediated Resistance to Colistin and Tigecycline in an NDM-5-Producing ST656 Klebsiella pneumoniae Isolate From a Lung Transplant Patient in China. Front Cell Infect Microbiol 2022; 12:922031. [PMID: 35899054 PMCID: PMC9310643 DOI: 10.3389/fcimb.2022.922031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
We characterized the first NDM-5 and MCR-8.2 co-harboring ST656 Klebsiella pneumoniae clinical isolate, combining with chromosomal gene-mediated resistance to colistin and tigecycline. The K. pneumoniae KP32558 was isolated from the bronchoalveolar lavage fluid from a lung transplant patient. Complete genome sequences were obtained through Illumina HiSeq sequencing and nanopore sequencing. The acquired resistance genes and mutations in chromosome-encoded genes associated with colistin and tigecycline resistance were analyzed. Comparative genomic analysis was conducted between mcr-8.2-carrying plasmids. The K. pneumoniae KP32558 was identified as a pan-drug resistant bacteria, belonging to ST656, and harbored plasmid-encoded blaNDM-5 and mcr-8.2 genes. The blaNDM-5 gene was located on an IncX3 type plasmid. The mcr-8.2 gene was located on a conjugative plasmid pKP32558-2-mcr8, which had a common ancestor with another two mcr-8.2-carrying plasmids pMCR8_020135 and pMCR8_095845. The MIC of KP32558 for colistin was 256 mg/L. The mcr-8.2 gene and mutations in the two-component system, pmrA and crrB, and the regulator mgrB, had a synergistic effect on the high-level colistin resistance. The truncation in the acrR gene, related to tigecycline resistance, was also identified. K. pneumoniae has evolved a variety of complex resistance mechanisms to the last-resort antimicrobials, close surveillance is urgently needed to monitor the prevalence of this clone.
Collapse
Affiliation(s)
- Jiankang Zhao
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ziyao Li
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yulin Zhang
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xinmeng Liu
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Binghuai Lu
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- *Correspondence: Binghuai Lu, ; Bin Cao,
| | - Bin Cao
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China
- Department of Respiratory Medicine, Capital Medical University, Beijing, China
- *Correspondence: Binghuai Lu, ; Bin Cao,
| |
Collapse
|
14
|
Huang PH, Chen WY, Chou SH, Wang FD, Lin YT. Risk Factors for the Development of Colistin Resistance during Colistin Treatment of Carbapenem-Resistant Klebsiella pneumoniae Infections. Microbiol Spectr 2022; 10:e0038122. [PMID: 35652641 PMCID: PMC9241908 DOI: 10.1128/spectrum.00381-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/18/2022] [Indexed: 11/20/2022] Open
Abstract
Colistin is one of the last-resort options for carbapenem-resistant Klebsiella pneumoniae (CRKP) infections if novel antibiotics are unavailable, where the development of colistin resistance during treatment represents a major challenge for clinicians. We aimed to investigate the risk factors associated with the development of colistin resistance in patients with CRKP infections following colistin treatment. We conducted a retrospective case-control study of patients with CRKP strains available before and after colistin treatment at a medical center in Taiwan, between October 2016 and November 2020. Cases (n = 35) included patients with an initial colistin-susceptible CRKP (ColS-CRKP) strain and a subsequent colistin-resistant CRKP (ColR-CRKP) strain. Controls (n = 18) included patients with ColS-CRKP as both the initial and subsequent strains. The 30-day mortality rate after the subsequent CRKP isolation was not different between cases and controls (12/35 [34%] versus 5/18 [28%] [P = 0.631]). blaKPC (n = 38) and blaOXA-48 (n = 11) accounted for the major mechanisms of carbapenem resistance. Alterations in mgrB were found in 18/35 (51%) ColR-CRKP strains, and mcr-1 was not detected in any of the strains. More patients received combination therapy in the control group than in the case group (17/18 versus 21/35 [P = 0.008]). The logistic regression model indicated that combination therapy with tigecycline was protective against the acquisition of colistin resistance (odds ratio, 0.17; 95% confidence interval, 0.05 to 0.62 [P = 0.008]). We observed that the inclusion of tigecycline in colistin treatment mitigated the risk of acquiring colistin resistance. These results offer insight into using the combination of tigecycline and colistin for the treatment of CRKP infections in antimicrobial stewardship. IMPORTANCE Treatment of carbapenem-resistant Klebsiella pneumoniae (CRKP) infections is challenging due to the limited options of antibiotics. Colistin is one of the last-resort antibiotics if novel antimicrobial agents are not available. It is crucial to identify modifiable clinical factors associated with the emergence of resistance during colistin treatment. Here, we found that the addition of tigecycline to colistin treatment prevented the acquisition of colistin resistance. Colistin-tigecycline combination therapy is therefore considered a hopeful option in antimicrobial stewardship to treat CRKP infections.
Collapse
Affiliation(s)
- Po-Han Huang
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Yin Chen
- Division of Infectious Diseases, Department of Paediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Sheng-Hua Chou
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Fu-Der Wang
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Tsung Lin
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
15
|
Blair JMA, Zeth K, Bavro VN, Sancho-Vaello E. The role of bacterial transport systems in the removal of host antimicrobial peptides in Gram-negative bacteria. FEMS Microbiol Rev 2022; 46:6617596. [PMID: 35749576 PMCID: PMC9629497 DOI: 10.1093/femsre/fuac032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/23/2022] [Accepted: 06/22/2022] [Indexed: 01/09/2023] Open
Abstract
Antibiotic resistance is a global issue that threatens our progress in healthcare and life expectancy. In recent years, antimicrobial peptides (AMPs) have been considered as promising alternatives to the classic antibiotics. AMPs are potentially superior due to their lower rate of resistance development, since they primarily target the bacterial membrane ('Achilles' heel' of the bacteria). However, bacteria have developed mechanisms of AMP resistance, including the removal of AMPs to the extracellular space by efflux pumps such as the MtrCDE or AcrAB-TolC systems, and the internalization of AMPs to the cytoplasm by the Sap transporter, followed by proteolytic digestion. In this review, we focus on AMP transport as a resistance mechanism compiling all the experimental evidence for the involvement of efflux in AMP resistance in Gram-negative bacteria and combine this information with the analysis of the structures of the efflux systems involved. Finally, we expose some open questions with the aim of arousing the interest of the scientific community towards the AMPs-efflux pumps interactions. All the collected information broadens our understanding of AMP removal by efflux pumps and gives some clues to assist the rational design of AMP-derivatives as inhibitors of the efflux pumps.
Collapse
Affiliation(s)
- Jessica M A Blair
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Kornelius Zeth
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Vassiliy N Bavro
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, United Kingdom
| | - Enea Sancho-Vaello
- Corresponding author. College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom. E-mail:
| |
Collapse
|
16
|
Kim SJ, Cho H, Ko KS. Comparative analysis of the Colistin resistance-regulating gene cluster in Klebsiella species. J Microbiol 2022; 60:461-468. [DOI: 10.1007/s12275-022-1640-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 10/18/2022]
|
17
|
Park NH, Lee SJ, Lee EB, Birhanu BT, Park SC. Colistin Induces Resistance through Biofilm Formation, via Increased phoQ Expression, in Avian Pathogenic Escherichia coli. Pathogens 2021; 10:pathogens10111525. [PMID: 34832681 PMCID: PMC8620993 DOI: 10.3390/pathogens10111525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to optimize the colistin-based antibacterial therapy to prevent antimicrobial resistance related to biofilm formation in avian pathogenic Escherichia coli (APEC) in chicken. Of all the bacterial isolates (n = 136), 69 were identified as APEC by polymerase chain reaction (PCR). Through a series of antibiotic susceptibility tests, susceptibility to colistin (<2 μg/mL) was confirmed in all isolates. Hence, a mutant selection window (MSW) was determined to obtain colistin-induced resistant bacteria. The minimum inhibitory concentration (MIC) of colistin against the colistin-induced resistant APEC strains ranged from 8 to 16 μg/mL. To identify the inhibitory activity of colistin against the resistant strains, the mutant prevention concentration (MPC) was investigated for 72 h, and the single and multi-dose colistin activities were determined through the time-kill curve against APEC strains. Bacterial regrowth occurred after 12 h at a double MIC50 concentration (1.00 μg/mL), and regrowth was not inhibited even during multiple exposures. However, upon exposure to 8 μg/mL—a concentration that was close to the MPC—the growth of APEC was inhibited, including in the resistant strains. Additionally, colistin-induced resistant strains showed a slower growth compared with the susceptible ones. Colistin-induced resistant APEC strains did not show colistin resistance gene (mcr-1). However, the expression of higher mgrB and phoQ levels was observed in the resistant strains. Furthermore, these strains showed increased formation of biofilm. Hence, the present study indicated that colistin could induce resistance through the increased formation of biofilm in APEC strains by enhancing the expression of phoQ.
Collapse
Affiliation(s)
- Na-Hye Park
- Laboratory Animal Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea;
| | - Seung-Jin Lee
- Reproductive and Developmental Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34114, Korea;
| | - Eon-Bee Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea;
| | - Biruk Tesfaye Birhanu
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea;
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (B.T.B.); (S.-C.P.); Tel.: +82-53-950-5964 (B.T.B. & S.-C.P.)
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea;
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (B.T.B.); (S.-C.P.); Tel.: +82-53-950-5964 (B.T.B. & S.-C.P.)
| |
Collapse
|
18
|
Queiroz PA, Meneguello JE, Silva BR, Caleffi-Ferracioli KR, Scodro RB, Cardoso RF, Marchiosi R, Siqueira VL. Proteomic profiling of Klebsiella pneumoniae carbapenemase (KPC)-producer Klebsiella pneumoniae after induced polymyxin resistance. Future Microbiol 2021; 16:1195-1207. [PMID: 34590903 DOI: 10.2217/fmb-2021-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To elucidate the changes in protein expression associated with polymyxin resistance in Klebsiella pneumoniae, we profiled a comparative proteomic analysis of polymyxin B-resistant mutants KPC-2-producing K. pneumoniae, and of its susceptible counterparts. Material & methods: Two-dimensional reversed phase nano ultra-performance liquid chromatography mass spectrometry was used for proteomic analysis. Results: Our results showed that the proteomic profile involved several biological processes, and we highlight the downregulation of outer membrane protein A (OmpA) and the upregulation of SlyB outer membrane lipoprotein (conserved protein member of the PhoPQ regulon) and AcrA multidrug efflux pump in polymyxin B-resistant strains. Conclusion: Our results highlight the possible participation of the SlyB, AcrA and OmpA proteins in the determination of polymyxin B heteroresistance in KPC-2-producing K. pneumoniae.
Collapse
Affiliation(s)
- Paula A Queiroz
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringa, Parana, 87020-900, Brazil
| | - Jean E Meneguello
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringa, Parana, 87020-900, Brazil
| | - Bruna R Silva
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringa, Parana, 87020-900, Brazil
| | - Katiany R Caleffi-Ferracioli
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringa, Parana, 87020-900, Brazil.,Laboratory of Medical Bacteriology, Department of Clinical Analysis & Biomedicine, State University of Maringa, Parana, 87020-900, Brazil
| | - Regiane Bl Scodro
- Laboratory of Medical Bacteriology, Department of Clinical Analysis & Biomedicine, State University of Maringa, Parana, 87020-900, Brazil
| | - Rosilene F Cardoso
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringa, Parana, 87020-900, Brazil.,Laboratory of Medical Bacteriology, Department of Clinical Analysis & Biomedicine, State University of Maringa, Parana, 87020-900, Brazil
| | - Rogério Marchiosi
- Department of Biochemistry, State University of Maringa, Maringa, Parana, Brazil
| | - Vera Ld Siqueira
- Postgraduate Program in Bioscience & Physiopathology, State University of Maringa, Parana, 87020-900, Brazil.,Laboratory of Medical Bacteriology, Department of Clinical Analysis & Biomedicine, State University of Maringa, Parana, 87020-900, Brazil
| |
Collapse
|
19
|
Rodríguez-Santiago J, Cornejo-Juárez P, Silva-Sánchez J, Garza-Ramos U. Polymyxin resistance in Enterobacterales: overview and epidemiology in the Americas. Int J Antimicrob Agents 2021; 58:106426. [PMID: 34419579 DOI: 10.1016/j.ijantimicag.2021.106426] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/07/2021] [Accepted: 08/15/2021] [Indexed: 12/30/2022]
Abstract
The worldwide spread of carbapenem- and polymyxin-resistant Enterobacterales represents an urgent public-health threat. However, for most countries in the Americas, the available data are limited, although Latin America has been suggested as a silent spreading reservoir for isolates carrying plasmid-mediated polymyxin resistance mechanisms. This work provides an overall update on polymyxin and polymyxin resistance and focuses on uses, availability and susceptibility testing. Moreover, a comprehensive review of the current polymyxin resistance epidemiology in the Americas is provided. We found that reports in the English and Spanish literature show widespread carbapenemase-producing and colistin-resistant Klebsiella pneumoniae in the Americas determined by the clonal expansion of the pandemic clone ST258 and mgrB-mediated colistin resistance. In addition, widespread IncI2 and IncX4 plasmids carrying mcr-1 in Escherichia coli come mainly from human sources; however, plasmid-mediated colistin resistance in the Americas is underreported in the veterinary sector. These findings demonstrate the urgent need for the implementation of polymyxin resistance surveillance in Enterobacterales as well as appropriate regulatory measures for antimicrobial use in veterinary medicine.
Collapse
Affiliation(s)
- J Rodríguez-Santiago
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, México; Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - P Cornejo-Juárez
- Departamento de Infectología, Instituto Nacional de Cancerología (INCan), Ciudad de México, México
| | - J Silva-Sánchez
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, México
| | - U Garza-Ramos
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación sobre Enfermedades Infecciosas (CISEI), Laboratorio de Resistencia Bacteriana, Cuernavaca, Morelos, México.
| |
Collapse
|
20
|
A Resistance Mechanism in Non- mcr Colistin-Resistant Escherichia coli in Taiwan: R81H Substitution in PmrA Is an Independent Factor Contributing to Colistin Resistance. Microbiol Spectr 2021; 9:e0002221. [PMID: 34259551 PMCID: PMC8552686 DOI: 10.1128/spectrum.00022-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colistin resistance due to the mcr-type genes in Escherichia coli is well characterized. In order to study the resistance mechanism in mcr-negative colistin-resistant E. coli, strains were selected from a nationwide antimicrobial resistance surveillance program in Taiwan for further investigation. A total of 11 mcr-negative colistin-resistant isolates among 7,942 (0.1%) clinical E. coli isolates were identified between 2008 and 2018. Their prevalence was low and remained stable during the study period. Since 2012, ST131 and ST1193 clones with multiple drug-resistant phenotypes have emerged. All resistant strains displayed higher expression levels of the operons pmrHFIJKLM and pmrCAB than the control MG1655 strain. Although several amino acid substitutions were identified in PmrA or PmrB, only R81H in PmrA was associated with overexpression of pmrHFIJKLM and colistin resistance. The effect of substitution R81H in PmrA in colistin resistance was confirmed by complementation experiments. Although some strains harbored substitutions in PmrB, the identified mutations in pmrB did not contribute to colistin resistance. In conclusion, the amino acid substitution R81H in PmrA is an independent factor contributing to colistin resistance in non-mcrE. coli. IMPORTANCE The molecular epidemiology and resistance mechanisms of mcr-negative colistin-resistant E. coli are not well described. In this study, a total of 11 mcr-negative colistin-resistant E. coli isolates were selected from a nationwide antimicrobial resistance surveillance program in Taiwan for further investigation. We determined the resistance mechanism of non-mcr colistin-resistant strains using gene knockout and complementation experiments. We observed the occurrence of the global multiple-drug-resistant E. coli clones ST131 and ST1193 starting in 2012. Moreover, for the first time, we proved that the amino acid substitution R81H in PmrA is an independent factor contributing to colistin resistance in non-mcrE. coli. The study results helped to gain an insight into the diversity and complexity of chromosome-encoded colistin resistance in E. coli.
Collapse
|
21
|
Elias R, Duarte A, Perdigão J. A Molecular Perspective on Colistin and Klebsiella pneumoniae: Mode of Action, Resistance Genetics, and Phenotypic Susceptibility. Diagnostics (Basel) 2021; 11:1165. [PMID: 34202395 PMCID: PMC8305994 DOI: 10.3390/diagnostics11071165] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/26/2022] Open
Abstract
Klebsiella pneumoniae is a rod-shaped, encapsulated, Gram-negative bacteria associated with multiple nosocomial infections. Multidrug-resistant (MDR) K. pneumoniae strains have been increasing and the therapeutic options are increasingly limited. Colistin is a long-used, polycationic, heptapeptide that has regained attention due to its activity against Gram-negative bacteria, including the MDR K. pneumoniae strains. However, this antibiotic has a complex mode of action that is still under research along with numerous side-effects. The acquisition of colistin resistance is mainly associated with alteration of lipid A net charge through the addition of cationic groups synthesized by the gene products of a multi-genic regulatory network. Besides mutations in these chromosomal genes, colistin resistance can also be achieved through the acquisition of plasmid-encoded genes. Nevertheless, the diversity of molecular markers for colistin resistance along with some adverse colistin properties compromises the reliability of colistin-resistance monitorization methods. The present review is focused on the colistin action and molecular resistance mechanisms, along with specific limitations on drug susceptibility testing for K. pneumoniae.
Collapse
Affiliation(s)
- Rita Elias
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Aida Duarte
- Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Monte da Caparica, 2829-511 Almada, Portugal
| | - João Perdigão
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| |
Collapse
|
22
|
Nwabor OF, Terbtothakun P, Voravuthikunchai SP, Chusri S. A Bibliometric Meta-Analysis of Colistin Resistance in Klebsiella pneumoniae. Diseases 2021; 9:44. [PMID: 34202931 PMCID: PMC8293170 DOI: 10.3390/diseases9020044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Colistin is a last resort antibiotic medication for the treatment of infections caused by carbapenem-resistant Klebsiella pneumoniae. In recent years, various mechanisms have been reported to mediate colistin resistance in K. pneumoniae. This study reports a bibliometric analysis of published articles retrieved from the Scopus database relating to colistin resistance in K. pneumoniae. The research trends in colistin resistance and mechanisms of resistance were considered. A total of 1819 research articles published between 1995 and 2019 were retrieved, and the results indicated that 50.19% of the documents were published within 2017-2019. The USA had the highest participation with 340 (14.31%) articles and 14087 (17.61%) citations. Classification based on the WHO global epidemiological regions showed that the European Region contributed 42% of the articles while the American Region contributed 21%. The result further indicated that 45 countries had published at least 10 documents with strong international collaborations amounting to 272 links and a total linkage strength of 735. A total of 2282 keywords were retrieved; however, 57 keywords had ≥15 occurrences with 764 links and a total linkage strength of 2388. Furthermore, mcr-1, colistin resistance, NDM, mgrB, ceftazidime-avibactam, MDR, combination therapy, and carbapenem-resistant Enterobacteriaceae were the trending keywords. Concerning funders, the USA National Institute of Health funded 9.1% of the total research articles, topping the list. The analysis indicated poor research output, collaboration, and funding from Africa and South-East Asia and demands for improvement in international research collaboration.
Collapse
Affiliation(s)
- Ozioma Forstinus Nwabor
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (O.F.N.); (P.T.)
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand;
| | - Pawarisa Terbtothakun
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (O.F.N.); (P.T.)
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand;
| | - Supayang P. Voravuthikunchai
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand;
| | - Sarunyou Chusri
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (O.F.N.); (P.T.)
| |
Collapse
|
23
|
Campos PAD, Fuga B, Ferreira ML, Brígido RTES, Lincopan N, Gontijo-Filho PP, Ribas RM. Genetic Alterations Associated with Polymyxin B Resistance in Nosocomial KPC-2-Producing Klebsiella pneumoniae from Brazil. Microb Drug Resist 2021; 27:1677-1684. [PMID: 34129401 DOI: 10.1089/mdr.2020.0531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The rapid increased multidrug resistance in Klebsiella pneumoniae has led to a renewed interest in polymyxin antibiotics, such as colistin, as antibiotics of last resort, not least in low/middle income countries. We conducted a genomic survey of clinical polymyxin-resistant K. pneumoniae to investigate the genetic alterations in isolates harboring blaKPC-2. Whole-genome sequencing was performed using an Illumina NextSeq 500 paired-end reads. Mutations and insertion sequence detection were analyzed to seven isolates recovered from clinical specimens of patients hospitalized in Brazil, focusing on key genes associated with polymyxin resistance. Furthermore, the levels of mRNA expression of genes associated with resistance to polymyxin B and other antimicrobials were evaluated by quantitative real-time PCR. Eighty-five percent of the isolates were assigned to clonal complex 258, with a minimum inhibitory concentration range of 4 to >256 mg/L for polymyxin B. It was possible to observe the presence of one important insertion element, ISKpn13, in a strain recovered from the blood that have blaKPC-2. Deleterious mutations reported in PmrB (R256G), YciM (N212T), and AcrB (T598A) were common, and mobile colistin resistance (mcr) genes were absent in all the isolates. RT-qPCR analysis revealed an overexpression of the pmrC (1.160-fold), pmrD (2.258-fold), and kpnE (1.530-fold) genes in the polymyxin B-resistant isolates compared with the expression of the polymyxin B-susceptible K. pneumoniae isolate. Overall, these results demonstrate the diversity of genetic variations in polymyxin-resistant populations derived from the different clonal strains, but the same sequence types, and suggest that there are still unknown mechanisms of polymyxin resistance in K. pneumoniae.
Collapse
Affiliation(s)
- Paola Amaral de Campos
- Laboratório de Microbiologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Bruna Fuga
- Laboratório de Microbiologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil.,Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Melina Lorraine Ferreira
- Laboratório de Microbiologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | | | - Nilton Lincopan
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo P Gontijo-Filho
- Laboratório de Microbiologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Rosineide Marques Ribas
- Laboratório de Microbiologia Molecular, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| |
Collapse
|
24
|
Missense Mutations in the CrrB Protein Mediate Odilorhabdin Derivative Resistance in Klebsiella pneumoniae. Antimicrob Agents Chemother 2021; 65:AAC.00139-21. [PMID: 33685902 PMCID: PMC8092918 DOI: 10.1128/aac.00139-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NOSO-502 is a preclinical antibiotic candidate of the Odilorhabdin class. This compound exhibits activity against Enterobacteriaceae pathogens, including carbapenemase-producing bacteria and most of the Colistin (CST)-resistant strains. Among a collection of CST-resistant Klebsiella pneumoniae strains harboring mutations on genes pmrAB, mgrB, phoPQ, and crrB, only those bearing mutations in gene crrB were found to be resistant to NOSO-502.CrrB is a histidine kinase which acts with the response regulator CrrA to modulate the PmrAB system, which finally induces the restructuring of the lipopolysaccharide present on the outer membrane and thus leading to CST resistance. Moreover, crrB mutations also enhance the transcription of neighboring genes such as H239_3063, an ABC transporter transmembrane region; H239_3064, a putative efflux pump also known as KexD; and H239_3065, a N-acetyltransferase.To elucidate the mechanism of resistance to NOSO-502 induced by CrrB missense mutations in K. pneumoniae, mutants of NCTC 13442 and ATCC BAA-2146 strains resistant to NOSO-502 and CST with single amino acid substitutions in CrrB (S8N, F33Y, Y34N, W140R, N141I, P151A, P151L, P151S, P151T, F303Y) were selected. Full susceptibility to NOSO-502 was restored in crrA or crrB deleted K. pneumoniae NCTC 13442 CrrB(P151L) mutants, confirming the role of CrrAB in controlling this resistance pathway. Deletion of kexD (but no other neighboring genes) in the same mutant also restored NOSO-502-susceptibility. Upregulation of the kexD gene expression was observed for all CrrB mutants. Finally, plasmid expression of kexD in a K. pneumoniae strain missing the locus crrABC and kexD significantly increased resistance to NOSO-502.
Collapse
|
25
|
Risk factors and mechanisms of in vivo emergence of colistin resistance in carbapenem-resistant Klebsiella pneumoniae. Int J Antimicrob Agents 2021; 57:106342. [PMID: 33864932 DOI: 10.1016/j.ijantimicag.2021.106342] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/07/2021] [Accepted: 04/03/2021] [Indexed: 11/21/2022]
Abstract
Colistin is one of the last-resort antibiotics for treating carbapenem-resistant Klebsiella pneumoniae (CRKP). However, colistin resistance in CRKP poses a global antimicrobial crisis, as therapeutic options are limited. We investigated risk factors for in vivo emergence of colistin resistance in CRKP and explored the underlying resistance mechanisms. We conducted this matched case-control study of patients with sequential CRKP clinical strains at a medical centre in Taiwan between October 2016 and June 2019. The case group included patients with an index colistin-resistant CRKP (ColR-CRKP) strain and a previous colistin-susceptible CRKP (ColS-CRKP) counterpart. The control group encompassed patients with both an index and previous ColS-CRKP strains. Cases and controls were matched according to the time at risk, and conditional logistic regression was used to evaluate potential risk factors. Alterations in genes associated with resistance were compared between ColR-CRKP and ColS-CRKP strains. We identified 24 CRKP cases with in vivo-emergent colistin resistance, matched in a 1:2 ratio with controls. Multivariate analysis showed that colistin exposure is the only independent risk factor predisposing to colistin resistance (adjusted odds ratio = 19.09, 95% confidence interval 1.26-290.45; P = 0.034). Alteration in the mgrB gene was the predominant mechanism for emergent colistin resistance (17/24; 71%). In conclusion, colistin use is a risk factor for in vivo emergence of colistin resistance in CRKP. Given the lack of a rapid and reliable method to detect colistin resistance in daily practice, physicians should be vigilant for the emergence of resistance during colistin treatment.
Collapse
|
26
|
Ara B, Urmi UL, Haque TA, Nahar S, Rumnaz A, Ali T, Alam MS, Mosaddek ASM, Rahman NAA, Haque M, Islam S. Detection of mobile colistin-resistance gene variants ( mcr-1 and mcr-2) in urinary tract pathogens in Bangladesh: the last resort of infectious disease management colistin efficacy is under threat. Expert Rev Clin Pharmacol 2021; 14:513-522. [PMID: 33691556 DOI: 10.1080/17512433.2021.1901577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background: Currently, colistin-resistant pathogens emerged has become a global health concern. This study assessed the distribution of mcr-1 to mcr-5 variants with the phenotypic colistin-resistance in bacterial isolates from urinary tract infection (UTI) patients in Bangladesh.Methods: A cross-sectional study was conducted between April 2017 and March 2018 to enroll uncomplicated UTI patients, and 142 urine samples were analyzed. Uropathogens were identified using the API-20E biochemical panel and 16s rRNA gene sequencing. Polymerase chain reactions detected the mcr gene variants in the UTI isolates. The phenotypic colistin-susceptibility was determined by the Kirby-Bauer disc-diffusion method and the minimal inhibitory concentration (MIC) measurement.Results: The combined carriage of mcr-1 and mcr-2 genes in 11.4% (14/123) of urinary tract pathogens. The mcr-positive pathogens include five Escherichia coli, three Klebsiella pneumoniae, three Pseudomonas putida, two Enterobacter cloacae, and one Enterobacter hormaechei. The mcr-positive variant showed significantly higher phenotypic colistin resistance with MIC between >16 µg/mL and >128 µg/mL (p< 0.001). Over 85% of colistin-resistant isolates showed MDR phenomena.Conclusions: The emergence of the clinical MDR pathogens with resistance to a highly selective drug may lead to a lack of treatment options for the infectious diseases and spread of infection to the unaffected cohorts.
Collapse
Affiliation(s)
- Bayasrin Ara
- Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| | - Umme Laila Urmi
- Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| | - Tanjum Ara Haque
- Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| | - Shamsun Nahar
- Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| | - Adity Rumnaz
- Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| | - Tamanna Ali
- Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| | | | | | - Nor Azlina A Rahman
- Department of Physical Rehabilitation Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan, Malaysia
| | - Mainul Haque
- Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kuala Lumpur, Malaysia
| | - Salequl Islam
- Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| |
Collapse
|
27
|
McConville TH, Giddins MJ, Uhlemann AC. An efficient and versatile CRISPR-Cas9 system for genetic manipulation of multi-drug resistant Klebsiella pneumoniae. STAR Protoc 2021; 2:100373. [PMID: 33733242 PMCID: PMC7941085 DOI: 10.1016/j.xpro.2021.100373] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Multi-drug resistant (MDR) Klebsiella pneumoniae remains an urgent public health threat. While whole-genome sequencing has helped identify genetic changes underlying resistance, functional validation remains difficult due to a lack of genetic manipulation systems for MDR K. pneumoniae. CRISPR-Cas9 has revolutionized molecular biology, but its use was only recently adapted in bacteria by overcoming the lack of genetic repair systems. We describe a CRISPR-Cas9/lambda recombineering system utilizing a zeocin resistance cassette allowing efficient and versatile genetic manipulation of K. pneumoniae. For complete details on the use and execution of this protocol, please refer to McConville et al. (2020). Gene editing for multi-drug resistant Klebsiella pneumoniae utilizing CRISPR-Cas9 Description of plasmid design, cloning, genetic manipulation, and mutant confirmation Approach allows for gene knockouts and single nucleotide polymorphism editing “Scarless” editing allows for serial modifications in a single bacterial isolate
Collapse
Affiliation(s)
- Thomas H McConville
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, 630 West 168 Street, New York, NY 10032, USA
| | - Marla J Giddins
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, 630 West 168 Street, New York, NY 10032, USA
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, 630 West 168 Street, New York, NY 10032, USA
| |
Collapse
|
28
|
Emerging Transcriptional and Genomic Mechanisms Mediating Carbapenem and Polymyxin Resistance in Enterobacteriaceae: a Systematic Review of Current Reports. mSystems 2020; 5:5/6/e00783-20. [PMID: 33323413 PMCID: PMC7771540 DOI: 10.1128/msystems.00783-20] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The spread of carbapenem- and polymyxin-resistant Enterobacteriaceae poses a significant threat to public health, challenging clinicians worldwide with limited therapeutic options. This review describes the current coding and noncoding genetic and transcriptional mechanisms mediating carbapenem and polymyxin resistance, respectively. The spread of carbapenem- and polymyxin-resistant Enterobacteriaceae poses a significant threat to public health, challenging clinicians worldwide with limited therapeutic options. This review describes the current coding and noncoding genetic and transcriptional mechanisms mediating carbapenem and polymyxin resistance, respectively. A systematic review of all studies published in PubMed database between 2015 to October 2020 was performed. Journal articles evaluating carbapenem and polymyxin resistance mechanisms, respectively, were included. The search identified 171 journal articles for inclusion. Different New Delhi metallo-β-lactamase (NDM) carbapenemase variants had different transcriptional and affinity responses to different carbapenems. Mutations within the Klebsiella pneumoniae carbapenemase (KPC) mobile transposon, Tn4401, affect its promoter activity and expression levels, increasing carbapenem resistance. Insertion of IS26 in ardK increased imipenemase expression 53-fold. ompCF porin downregulation (mediated by envZ and ompR mutations), micCF small RNA hyperexpression, efflux upregulation (mediated by acrA, acrR, araC, marA, soxS, ramA, etc.), and mutations in acrAB-tolC mediated clinical carbapenem resistance when coupled with β-lactamase activity in a species-specific manner but not when acting without β-lactamases. Mutations in pmrAB, phoPQ, crrAB, and mgrB affect phosphorylation of lipid A of the lipopolysaccharide through the pmrHFIJKLM (arnBCDATEF or pbgP) cluster, leading to polymyxin resistance; mgrB inactivation also affected capsule structure. Mobile and induced mcr, efflux hyperexpression and porin downregulation, and Ecr transmembrane protein also conferred polymyxin resistance and heteroresistance. Carbapenem and polymyxin resistance is thus mediated by a diverse range of genetic and transcriptional mechanisms that are easily activated in an inducing environment. The molecular understanding of these emerging mechanisms can aid in developing new therapeutics for multidrug-resistant Enterobacteriaceae isolates.
Collapse
|
29
|
Rocha IV, Dos Santos Silva N, das Neves Andrade CA, de Lacerda Vidal CF, Leal NC, Xavier DE. Diverse and emerging molecular mechanisms award polymyxins resistance to Enterobacteriaceae clinical isolates from a tertiary hospital of Recife, Brazil. INFECTION GENETICS AND EVOLUTION 2020; 85:104584. [PMID: 33022426 DOI: 10.1016/j.meegid.2020.104584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/21/2020] [Accepted: 10/01/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To describe the molecular mechanisms of polymyxins resistance in five Enterobacteriaceae clinical isolates from a tertiary hospital of Recife, Brazil. METHODS The species identification and the susceptibility to antimicrobials were firstly performed by automatized methods and polymyxin resistance was confirmed by broth microdilution methods. The genetic basis of resistance was characterized with WGS analyses to study their resistome, plasmidome and mobilome, by BLAST searches on reference databases. RESULTS Five (5%) Enterobacteriaceae isolates, comprising Escherichia coli (n = 2), Klebsiella pneumoniae (n = 2) and Citrobacter freundii (n = 1) species, exhibited polymyxin resistance. The mcr-1.1 gene was found in identical IncX4-plasmids harbored by both K. pneumoniae C119 (PolB MIC = 512 mg/L) and E. coli C153 (PolB MIC = 8 mg/L). The remaining E. coli strain C027 harbored the mcr-5.1 gene on an undefined Inc-plasmid (PolB MIC 256 mg/L). Some amino acid substitutions in PmrA (S29G, G144S), PmrB (S202P; D283G, W350*, Y258N) and PhoP (I44L) was detected among the E. coli clinical isolates, however they were also found in colistin-susceptible strains and predicted as neutral alterations. The mgrB of the ST54 KPC-2-producing K. pneumoniae C151 (PolB MIC = 32 g/mL) was interrupted at 69 nt by the IS903 element. The ST117 C. freundii C156 (PolB MIC = 256 mg/L) showed the A91T substitution on HAMP domain of the histidine kinase sensor CrrB, predicted as deleterious and deemed the remarkable determinant to polymyxins resistance in this strain. CONCLUSIONS Diverse mechanisms of polymyxins resistance were identified among clinical Enterobacteriaceae from a tertiary hospital of Recife, Brazil, such as plasmid-mediated MCR-1 and MCR-5; IS903-interruption of mgrB and mutation in CrrAB regulatory system. These findings highlight the involvement of the identified plasmids on mcr dissemination among Enterobacteriaceae; warn about co-selection of the polymyxin-resistant and KPC-producer K. pneumoniae ΔmgrB lineage by carbapenems usage; and demonstrate potential role of CrrAB on emerging of polymyxin resistance among Enterobacteriaceae, besides Klebsiella species.
Collapse
|
30
|
McConville TH, Annavajhala MK, Giddins MJ, Macesic N, Herrera CM, Rozenberg FD, Bhushan GL, Ahn D, Mancia F, Trent MS, Uhlemann AC. CrrB Positively Regulates High-Level Polymyxin Resistance and Virulence in Klebsiella pneumoniae. Cell Rep 2020; 33:108313. [PMID: 33113377 PMCID: PMC7656232 DOI: 10.1016/j.celrep.2020.108313] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/16/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
Polymyxin resistance (PR) threatens the treatment of carbapenem-resistant Klebsiella pneumoniae (CRKP) infections. PR frequently arises through chemical modification of the lipid A portion of lipopolysaccharide. Various mutations are implicated in PR, including in three two-component systems—CrrA/B, PmrA/B, and PhoP/Q—and the negative regulator MgrB. Few have been functionally validated. Therefore, here we adapt a CRISPR-Cas9 system to CRKP to elucidate how mutations in clinical CRKP isolates induce PR. We demonstrate that CrrB is a positive regulator of PR, and common clinical mutations lead to the addition of both 4-amino-4-deoxy-L-arabinose (L-Ara4N) and phosophethanolamine (pEtN) to lipid A, inducing notably higher polymyxin minimum inhibitory concentrations than mgrB disruption. Additionally, crrB mutations cause a significant virulence increase at a fitness cost, partially from activation of the pentose phosphate pathway. Our data demonstrate the importance of CrrB in high-level PR and establish important differences across crrB alleles in balancing resistance with fitness and virulence. McConville et al. leverage CRISPR-Cas to demonstrate that mutations in crrB induce high-level polymyxin resistance in Klebsiella pneumoniae via the addition of L-Ara4N and pEtN to lipid A. CrrB mutations also increase virulence while conferring a fitness cost and alter carbon metabolism through activation of the pentose phosphate pathway.
Collapse
Affiliation(s)
- Thomas H McConville
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Medini K Annavajhala
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Marla J Giddins
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nenad Macesic
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, 3004 VIC, Australia
| | - Carmen M Herrera
- Departments of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Felix D Rozenberg
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Gitanjali L Bhushan
- Division of Pediatric Critical Care, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Danielle Ahn
- Division of Pediatric Critical Care, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Filippo Mancia
- Department of Physiology, Columbia University, New York, NY 10032, USA
| | - M Stephen Trent
- Departments of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
31
|
Antimicrobial Peptide Exposure Selects for Resistant and Fit Stenotrophomonas maltophilia Mutants That Show Cross-Resistance to Antibiotics. mSphere 2020; 5:5/5/e00717-20. [PMID: 32999081 PMCID: PMC7529437 DOI: 10.1128/msphere.00717-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial peptides (AMPs) are essential components of the innate immune system and have been proposed as promising therapeutic agents against drug-resistant microbes. AMPs possess a rapid bactericidal mode of action and can interact with different targets, but bacteria can also avoid their effect through a variety of resistance mechanisms. Apart from hampering treatment by the AMP itself, or that by other antibiotics in the case of cross-resistance, AMP resistance might also confer cross-resistance to innate human peptides and impair the anti-infective capability of the human host. A better understanding of how resistance to AMPs is acquired and the genetic mechanisms involved is needed before using these compounds as therapeutic agents. Using experimental evolution and whole-genome sequencing, we determined the genetic causes and the effect of acquired de novo resistance to three different AMPs in the opportunistic pathogen Stenotrophomonas maltophilia, a bacterium that is intrinsically resistant to a wide range of antibiotics. Our results show that AMP exposure selects for high-level resistance, generally without any reduction in bacterial fitness, conferred by mutations in different genes encoding enzymes, transporters, transcriptional regulators, and other functions. Cross-resistance to AMPs and to other antibiotic classes not used for selection, as well as collateral sensitivity, was observed for many of the evolved populations. The relative ease by which high-level AMP resistance is acquired, combined with the occurrence of cross-resistance to conventional antibiotics and the maintained bacterial fitness of the analyzed mutants, highlights the need for careful studies of S. maltophilia resistance evolution to clinically valuable AMPs.IMPORTANCE Stenotrophomonas maltophilia is an increasingly relevant multidrug-resistant (MDR) bacterium found, for example, in people with cystic fibrosis and associated with other respiratory infections and underlying pathologies. The infections caused by this nosocomial pathogen are difficult to treat due to the intrinsic resistance of this bacterium against a broad number of antibiotics. Therefore, new treatment options are needed, and considering the growing interest in using AMPs as alternative therapeutic compounds and the restricted number of antibiotics active against S. maltophilia, we addressed the potential for development of AMP resistance, the genetic mechanisms involved, and the physiological effects that acquisition of AMP resistance has on this opportunistic pathogen.
Collapse
|
32
|
Oliveira WK, Ferrarini M, Morello LG, Faoro H. Resistome analysis of bloodstream infection bacterial genomes reveals a specific set of proteins involved in antibiotic resistance and drug efflux. NAR Genom Bioinform 2020; 2:lqaa055. [PMID: 33575606 PMCID: PMC7671365 DOI: 10.1093/nargab/lqaa055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/30/2020] [Accepted: 07/13/2020] [Indexed: 12/28/2022] Open
Abstract
Bacterial resistance to antibiotics is a global public health problem. Its association with bloodstream infections is even more severe and may easily evolve to sepsis. To improve our response to these bacteria, it is essential to gather thorough knowledge on the main pathogens along with the main mechanisms of resistance they carry. In this paper, we performed a large meta-analysis of 3872 bacterial genomes isolated from blood samples, from which we identified 71 745 antibiotic resistance genes (ARGs). Taxonomic analysis showed that Proteobacteria and Firmicutes phyla, and the species Klebsiella pneumoniae and Staphylococcus aureus were the most represented. Comparison of ARGs with the Resfams database showed that the main mechanism of antibiotic resistance is mediated by efflux pumps. Clustering analysis between resistome of blood and soil-isolated bacteria showed that there is low identity between transport and efflux proteins between bacteria from these environments. Furthermore, a correlation analysis among all features showed that K. pneumoniae and S. aureus formed two well-defined clusters related to the resistance mechanisms, proteins and antibiotics. A retrospective analysis has shown that the average number of ARGs per genome has gradually increased. The results demonstrate the importance of comprehensive studies to understand the antibiotic resistance phenomenon.
Collapse
Affiliation(s)
- Willian K Oliveira
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, FIOCRUZ, Paraná, 81350-010, Brazil
| | - Mariana Ferrarini
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, Université de Lyon, Université Lyon 1, Villeurbanne 69622, France
| | - Luis G Morello
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, FIOCRUZ, Paraná, 81350-010, Brazil
| | - Helisson Faoro
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, FIOCRUZ, Paraná, 81350-010, Brazil
- Graduate Program on Bioinformatics, Federal University of Paraná, Paraná, 81520-260, Brazil
| |
Collapse
|
33
|
Macesic N, Bear Don't Walk OJ, Pe'er I, Tatonetti NP, Peleg AY, Uhlemann AC. Predicting Phenotypic Polymyxin Resistance in Klebsiella pneumoniae through Machine Learning Analysis of Genomic Data. mSystems 2020; 5:e00656-19. [PMID: 32457240 PMCID: PMC7253370 DOI: 10.1128/msystems.00656-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 05/01/2020] [Indexed: 02/06/2023] Open
Abstract
Polymyxins are used as treatments of last resort for Gram-negative bacterial infections. Their increased use has led to concerns about emerging polymyxin resistance (PR). Phenotypic polymyxin susceptibility testing is resource intensive and difficult to perform accurately. The complex polygenic nature of PR and our incomplete understanding of its genetic basis make it difficult to predict PR using detection of resistance determinants. We therefore applied machine learning (ML) to whole-genome sequencing data from >600 Klebsiella pneumoniae clonal group 258 (CG258) genomes to predict phenotypic PR. Using a reference-based representation of genomic data with ML outperformed a rule-based approach that detected variants in known PR genes (area under receiver-operator curve [AUROC], 0.894 versus 0.791, P = 0.006). We noted modest increases in performance by using a bacterial genome-wide association study to filter relevant genomic features and by integrating clinical data in the form of prior polymyxin exposure. Conversely, reference-free representation of genomic data as k-mers was associated with decreased performance (AUROC, 0.692 versus 0.894, P = 0.015). When ML models were interpreted to extract genomic features, six of seven known PR genes were correctly identified by models without prior programming and several genes involved in stress responses and maintenance of the cell membrane were identified as potential novel determinants of PR. These findings are a proof of concept that whole-genome sequencing data can accurately predict PR in K. pneumoniae CG258 and may be applicable to other forms of complex antimicrobial resistance.IMPORTANCE Polymyxins are last-resort antibiotics used to treat highly resistant Gram-negative bacteria. There are increasing reports of polymyxin resistance emerging, raising concerns of a postantibiotic era. Polymyxin resistance is therefore a significant public health threat, but current phenotypic methods for detection are difficult and time-consuming to perform. There have been increasing efforts to use whole-genome sequencing for detection of antibiotic resistance, but this has been difficult to apply to polymyxin resistance because of its complex polygenic nature. The significance of our research is that we successfully applied machine learning methods to predict polymyxin resistance in Klebsiella pneumoniae clonal group 258, a common health care-associated and multidrug-resistant pathogen. Our findings highlight that machine learning can be successfully applied even in complex forms of antibiotic resistance and represent a significant contribution to the literature that could be used to predict resistance in other bacteria and to other antibiotics.
Collapse
Affiliation(s)
- Nenad Macesic
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York, New York, USA
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Australia
| | | | - Itsik Pe'er
- Department of Computer Science, Columbia University, New York, New York, USA
| | - Nicholas P Tatonetti
- Department of Biomedical Informatics, Columbia University, New York, New York, USA
| | - Anton Y Peleg
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Columbia University Irving Medical Center, New York, New York, USA
- Microbiome & Pathogen Genomics Core, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
34
|
Sun L, Rasmussen PK, Bai Y, Chen X, Cai T, Wang J, Guo X, Xie Z, Ding X, Niu L, Zhu N, You X, Kirpekar F, Yang F. Proteomic Changes of Klebsiella pneumoniae in Response to Colistin Treatment and crrB Mutation-Mediated Colistin Resistance. Antimicrob Agents Chemother 2020; 64:e02200-19. [PMID: 32229491 PMCID: PMC7269499 DOI: 10.1128/aac.02200-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 03/25/2020] [Indexed: 01/07/2023] Open
Abstract
Polymyxins are increasingly used as the critical last-resort therapeutic options for multidrug-resistant Gram-negative bacteria. Unfortunately, polymyxin resistance has increased gradually over the past few years. Although studies on polymyxin mechanisms are expanding, systemwide analyses of the underlying mechanism for polymyxin resistance and stress response are still lacking. To understand how Klebsiella pneumoniae adapts to colistin (polymyxin E) pressure, we carried out proteomic analysis of a K. pneumoniae strain cultured with different concentrations of colistin. Our results showed that the proteomic responses to colistin treatment in K. pneumoniae involve several pathways, including (i) gluconeogenesis and the tricarboxylic acid (TCA) cycle, (ii) arginine biosynthesis, (iii) porphyrin and chlorophyll metabolism, and (iv) enterobactin biosynthesis. Interestingly, decreased abundances of class A β-lactamases, including TEM, SHV-11, and SHV-4, were observed in cells treated with colistin. Moreover, we present comprehensive proteome atlases of paired polymyxin-susceptible and -resistant K. pneumoniae strains. The polymyxin-resistant strain Ci, a mutant of K. pneumoniae ATCC BAA 2146, showed a missense mutation in crrB This crrB mutant, which displayed lipid A modification with 4-amino-4-deoxy-l-arabinose (l-Ara4N) and palmitoylation, showed striking increases in the expression of CrrAB, PmrAB, PhoPQ, ArnBCADT, and PagP. We hypothesize that crrB mutations induce elevated expression of the arnBCADTEF operon and pagP via PmrAB and PhoPQ. Moreover, the multidrug efflux pump KexD, which was induced by crrB mutation, also contributed to colistin resistance. Overall, our results demonstrated proteomic responses to colistin treatment and the mechanism of CrrB-mediated colistin resistance, which may offer valuable information on the management of polymyxin resistance.
Collapse
Affiliation(s)
- Lang Sun
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Center for Education and Research, Beijing, China
| | - Pernille Kronholm Rasmussen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Center for Education and Research, Beijing, China
| | - Yinlei Bai
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiulan Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tanxi Cai
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jifeng Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaojing Guo
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhensheng Xie
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiang Ding
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lili Niu
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Nali Zhu
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Finn Kirpekar
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- Sino-Danish Center for Education and Research, Beijing, China
| | - Fuquan Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Center for Education and Research, Beijing, China
| |
Collapse
|
35
|
The Efflux Pump MexXY/OprM Contributes to the Tolerance and Acquired Resistance of Pseudomonas aeruginosa to Colistin. Antimicrob Agents Chemother 2020; 64:AAC.02033-19. [PMID: 31964794 DOI: 10.1128/aac.02033-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/13/2020] [Indexed: 12/29/2022] Open
Abstract
The intrinsic resistance of Pseudomonas aeruginosa to polymyxins in part relies on the addition of 4-amino-4-deoxy-l-arabinose (Ara4N) molecules to the lipid A of lipopolysaccharide (LPS), through induction of operon arnBCADTEF-ugd (arn) expression. As demonstrated previously, at least three two-component regulatory systems (PmrAB, ParRS, and CprRS) are able to upregulate this operon when bacteria are exposed to colistin. In the present study, gene deletion experiments with the bioluminescent strain PAO1::lux showed that ParRS is a key element in the tolerance of P. aeruginosa to this last-resort antibiotic (i.e., resistance to early drug killing). Other loci of the ParR regulon, such as those encoding the efflux proteins MexXY (mexXY), the polyamine biosynthetic pathway PA4773-PA4774-PA4775, and Ara4N LPS modification process (arnBCADTEF-ugd), also contribute to the bacterial tolerance in an intricate way with ParRS. Furthermore, we found that both stable upregulation of the arn operon and drug-induced ParRS-dependent overexpression of the mexXY genes accounted for the elevated resistance of pmrB mutants to colistin. Deletion of the mexXY genes in a constitutively activated ParR mutant of PAO1 was associated with significantly increased expression of the genes arnA, PA4773, and pmrA in the absence of colistin exposure, thereby highlighting a functional link between the MexXY/OprM pump, the PA4773-PA4774-PA4775 pathway, and Ara4N-based modification of LPS. The role played by MexXY/OprM in the adaptation of P. aeruginosa to polymyxins opens new perspectives for restoring the susceptibility of resistant mutants through the use of efflux inhibitors.
Collapse
|
36
|
Yang TY, Wang SF, Lin JE, Griffith BTS, Lian SH, Hong ZD, Lin L, Lu PL, Tseng SP. Contributions of insertion sequences conferring colistin resistance in Klebsiella pneumoniae. Int J Antimicrob Agents 2020; 55:105894. [DOI: 10.1016/j.ijantimicag.2020.105894] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 12/18/2019] [Accepted: 12/28/2019] [Indexed: 01/26/2023]
|
37
|
Colclough AL, Alav I, Whittle EE, Pugh HL, Darby EM, Legood SW, McNeil HE, Blair JM. RND efflux pumps in Gram-negative bacteria; regulation, structure and role in antibiotic resistance. Future Microbiol 2020; 15:143-157. [PMID: 32073314 DOI: 10.2217/fmb-2019-0235] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Rresistance-nodulation-division (RND) efflux pumps in Gram-negative bacteria remove multiple, structurally distinct classes of antimicrobials from inside bacterial cells therefore directly contributing to multidrug resistance. There is also emerging evidence that many other mechanisms of antibiotic resistance rely on the intrinsic resistance conferred by RND efflux. In addition to their role in antibiotic resistance, new information has become available about the natural role of RND pumps including their established role in virulence of many Gram-negative organisms. This review also discusses the recent advances in understanding the regulation and structure of RND efflux pumps.
Collapse
Affiliation(s)
- Abigail L Colclough
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ilyas Alav
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Emily E Whittle
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Hannah L Pugh
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Elizabeth M Darby
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Simon W Legood
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Helen E McNeil
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jessica Ma Blair
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
38
|
Acquired Resistance to Colistin via Chromosomal And Plasmid-Mediated Mechanisms in Klebsiella pneumoniae. ACTA ACUST UNITED AC 2019. [DOI: 10.1097/im9.0000000000000002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Li Z, Cao Y, Yi L, Liu JH, Yang Q. Emergent Polymyxin Resistance: End of an Era? Open Forum Infect Dis 2019; 6:5550895. [PMID: 31420655 PMCID: PMC6767968 DOI: 10.1093/ofid/ofz368] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Indexed: 12/03/2022] Open
Abstract
Until recently, the polymyxin antibiotics were used sparingly due to dose limiting toxicities. However, the lack of therapeutic alternatives for infections caused by highly resistant Gram-negative bacteria has led to the increased use of the polymyxins. Unfortunately, the world has witnessed increased rates of polymyxin resistance in the last decade, which is likely in part due to its irrational use in human and veterinary medicine. The spread of polymyxin resistance has been aided by the dissemination of the transferable polymyxin-resistance gene, mcr, in humans and the environment. The mortality of colistin-resistant bacteria (CoRB) infections varies in different reports. However, poor clinical outcome was associated with prior colistin treatment, illness severity, complications, and multidrug resistance. Detection of polymyxin resistance in the clinic is possible through multiple robust and practical tests, including broth microdilution susceptibility testing, chromogenic agar testing, and molecular biology assays. There are multiple risk factors that increase a person’s risk for infection with a polymyxin-resistant bacteria, including age, prior colistin treatment, hospitalization, and ventilator support. For patients that are determined to be infected by polymyxin-resistant bacteria, various antibiotic treatment options currently exist. The rising trend of polymyxin resistance threatens patient care and warrants effective control.
Collapse
Affiliation(s)
- Zekun Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China.,Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuping Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lingxian Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jian-Hua Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qiwen Yang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| |
Collapse
|
40
|
Venter H. Reversing resistance to counter antimicrobial resistance in the World Health Organisation's critical priority of most dangerous pathogens. Biosci Rep 2019; 39:BSR20180474. [PMID: 30910848 PMCID: PMC6465202 DOI: 10.1042/bsr20180474] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 02/07/2023] Open
Abstract
The speed at which bacteria develop antimicrobial resistance far outpace drug discovery and development efforts resulting in untreatable infections. The World Health Organisation recently released a list of pathogens in urgent need for the development of new antimicrobials. The organisms that are listed as the most critical priority are all Gram-negative bacteria resistant to the carbapenem class of antibiotics. Carbapenem resistance in these organisms is typified by intrinsic resistance due to the expression of antibiotic efflux pumps and the permeability barrier presented by the outer membrane, as well as by acquired resistance due to the acquisition of enzymes able to degrade β-lactam antibiotics. In this perspective article we argue the case for reversing resistance by targeting these resistance mechanisms - to increase our arsenal of available antibiotics and drastically reduce antibiotic discovery times - as the most effective way to combat antimicrobial resistance in these high priority pathogens.
Collapse
Affiliation(s)
- Henrietta Venter
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
41
|
Hadjadj L, Baron SA, Diene SM, Rolain JM. How to discover new antibiotic resistance genes? Expert Rev Mol Diagn 2019; 19:349-362. [PMID: 30895843 DOI: 10.1080/14737159.2019.1592678] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Antibiotic resistance (AR) is a worldwide concern and the description of AR have been discovered mainly because of their implications in human medicine. Since the recent burden of whole-genome sequencing of microorganisms, the number of new AR genes (ARGs) have dramatically increased over the last decade. Areas covered: In this review, we will describe the different methods that could be used to characterize new ARGs using classic or innovative methods. First, we will focus on the biochemical methods, then we will develop on molecular methods, next-generation sequencing and bioinformatics approaches. The use of various methods, including cloning, mutagenesis, transposon mutagenesis, functional genomics, whole genome sequencing, metagenomic and functional metagenomics will be reviewed here, outlining the advantages and drawbacks of each method. Bioinformatics softwares used for resistome analysis and protein modeling will be also described. Expert opinion: Biological experiments and bioinformatics analysis are complementary. Nowadays, the ARGs described only account for the tip of the iceberg of all existing resistance mechanisms. The multiplication of the ecosystems studied allows us to find a large reservoir of AR mechanisms. Furthermore, the adaptation ability of bacteria facing new antibiotics promises a constant discovery of new AR mechanisms.
Collapse
Affiliation(s)
- Linda Hadjadj
- a Microbes Evolution Phylogeny and Infections (MEPHI), IRD, APHM, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie , Aix-Marseille-Univ , Marseille , France
| | - Sophie Alexandra Baron
- a Microbes Evolution Phylogeny and Infections (MEPHI), IRD, APHM, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie , Aix-Marseille-Univ , Marseille , France
| | - Seydina M Diene
- a Microbes Evolution Phylogeny and Infections (MEPHI), IRD, APHM, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie , Aix-Marseille-Univ , Marseille , France
| | - Jean-Marc Rolain
- a Microbes Evolution Phylogeny and Infections (MEPHI), IRD, APHM, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie , Aix-Marseille-Univ , Marseille , France.,b IHU Méditerranée Infection , Marseille , France
| |
Collapse
|
42
|
In Vitro and In Vivo Characterization of NOSO-502, a Novel Inhibitor of Bacterial Translation. Antimicrob Agents Chemother 2018; 62:AAC.01016-18. [PMID: 29987155 PMCID: PMC6125496 DOI: 10.1128/aac.01016-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 06/27/2018] [Indexed: 12/29/2022] Open
Abstract
Antibacterial activity screening of a collection of Xenorhabdus strains led to the discovery of the odilorhabdins, a new antibiotic class with broad-spectrum activity against Gram-positive and Gram-negative pathogens. Odilorhabdins inhibit bacterial translation by a new mechanism of action on ribosomes. Antibacterial activity screening of a collection of Xenorhabdus strains led to the discovery of the odilorhabdins, a new antibiotic class with broad-spectrum activity against Gram-positive and Gram-negative pathogens. Odilorhabdins inhibit bacterial translation by a new mechanism of action on ribosomes. A lead optimization program identified NOSO-502 as a promising candidate. NOSO-502 has MIC values ranging from 0.5 to 4 μg/ml against standard Enterobacteriaceae strains and carbapenem-resistant Enterobacteriaceae (CRE) isolates that produce KPC, AmpC, or OXA enzymes and metallo-β-lactamases. In addition, this compound overcomes multiple chromosome-encoded or plasmid-mediated resistance mechanisms of acquired resistance to colistin. It is effective in mouse systemic infection models against Escherichia coli EN122 (extended-spectrum β-lactamase [ESBL]) or E. coli ATCC BAA-2469 (NDM-1), achieving a 50% effective dose (ED50) of 3.5 mg/kg of body weight and 1-, 2-, and 3-log reductions in blood burden at 2.6, 3.8, and 5.9 mg/kg, respectively, in the first model and 100% survival in the second, starting with a dose as low as 4 mg/kg. In a urinary tract infection (UTI) model with E. coli UTI89, urine, bladder, and kidney burdens were reduced by 2.39, 1.96, and 1.36 log10 CFU/ml, respectively, after injection of 24 mg/kg. There was no cytotoxicity against HepG2, HK-2, or human renal proximal tubular epithelial cells (HRPTEpiC), no inhibition of hERG-CHO or Nav 1.5-HEK current, and no increase of micronuclei at 512 μM. NOSO-502, a compound with a new mechanism of action, is active against Enterobacteriaceae, including all classes of CRE, has a low potential for resistance development, shows efficacy in several mouse models, and has a favorable in vitro safety profile.
Collapse
|
43
|
Cain AK, Boinett CJ, Barquist L, Dordel J, Fookes M, Mayho M, Ellington MJ, Goulding D, Pickard D, Wick RR, Holt KE, Parkhill J, Thomson NR. Morphological, genomic and transcriptomic responses of Klebsiella pneumoniae to the last-line antibiotic colistin. Sci Rep 2018; 8:9868. [PMID: 29959380 PMCID: PMC6026146 DOI: 10.1038/s41598-018-28199-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 06/08/2018] [Indexed: 11/09/2022] Open
Abstract
Colistin remains one of the few antibiotics effective against multi-drug resistant (MDR) hospital pathogens, such as Klebsiella pneumoniae. Yet resistance to this last-line drug is rapidly increasing. Characterized mechanisms of colR in K. pneumoniae are largely due to chromosomal mutations in two-component regulators, although a plasmid-mediated colR mechanism has recently been uncovered. However, the effects of intrinsic colistin resistance are yet to be characterized on a whole-genome level. Here, we used a genomics-based approach to understand the mechanisms of adaptive colR acquisition in K. pneumoniae. In controlled directed-evolution experiments we observed two distinct paths to colistin resistance acquisition. Whole genome sequencing identified mutations in two colistin resistance genes: in the known colR regulator phoQ which became fixed in the population and resulted in a single amino acid change, and unstable minority variants in the recently described two-component sensor crrB. Through RNAseq and microscopy, we reveal the broad range of effects that colistin exposure has on the cell. This study is the first to use genomics to identify a population of minority variants with mutations in a colR gene in K. pneumoniae.
Collapse
Affiliation(s)
- Amy K Cain
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK. .,Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia.
| | - Christine J Boinett
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK. .,Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research, Würzburg, D-97080, Germany
| | - Janina Dordel
- Department of Biology, Drexel University, Philadelphia, 19104, PA, USA
| | - Maria Fookes
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Matthew Mayho
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | | | - David Goulding
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Derek Pickard
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Ryan R Wick
- Centre for Systems Genomics, The University of Melbourne, Melbourne, VIC, Australia
| | - Kathryn E Holt
- Centre for Systems Genomics, The University of Melbourne, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Julian Parkhill
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Nicholas R Thomson
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK. .,Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| |
Collapse
|