1
|
Alatoom A, Alattas M, Alraddadi B, Moubareck CA, Hassanien A, Jamal W, Kurdi A, Mohamed N, Senok A, Somily AM, Ziglam H. Antimicrobial Resistance Profiles of Pseudomonas aeruginosa in the Arabian Gulf Region Over a 12-Year Period (2010-2021). J Epidemiol Glob Health 2024; 14:529-548. [PMID: 38856819 PMCID: PMC11442796 DOI: 10.1007/s44197-024-00191-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/11/2024] [Indexed: 06/11/2024] Open
Abstract
OBJECTIVES To evaluate literature from a 12-year period (2010-2021) on the antimicrobial resistance profile of Pseudomonas aeruginosa from the Arabian Gulf countries (Bahrain, Kuwait, Oman, Qatar, Saudi Arabia, and the United Arab Emirates). METHODS An electronic literature search was conducted for articles on antimicrobial resistance in P. aeruginosa and associated phenotypes, covering the period of 1st January 2010 to 1st December 2021. RESULTS Antimicrobial resistance in the Arabian Gulf was highest to meropenem (10.3-45.7%) and lowest to colistin (0.0-0.8%), among the agents tested. Annual data showed that ceftazidime resistance (Kuwait), piperacillin-tazobactam non-susceptibility (Qatar), and aztreonam, imipenem, and meropenem resistance (Saudi Arabia) increased by 12-17%. Multiple mechanisms of carbapenem resistance were identified and multiple clones were detected, including high-risk clones such as ST235. The most common carbapenemases detected were the VIM-type metallo-β-lactamases. CONCLUSIONS Among P. aeruginosa in the Arabian Gulf countries, resistance to meropenem was higher than to the other agents tested, and meropenem resistance increased in Saudi Arabia during the study period. Resistance to colistin, a classic antibiotic used to treat Pseudomonas spp. infections, remained low. The VIM-type β-lactamase genes were dominant. We recommend local and regional antimicrobial resistance surveillance programs to detect the emergence of resistance genes and to monitor antimicrobial resistance trends in P. aeruginosa.
Collapse
Affiliation(s)
- A Alatoom
- National Reference Laboratory, Abu Dhabi, UAE.
- Department of Pathology and Laboratory Medicine, Sheikh Shakhbout Medical City, Abu Dhabi, UAE.
| | - M Alattas
- King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - B Alraddadi
- King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
- Alfaisal University, Riyadh, Saudi Arabia
| | - C Ayoub Moubareck
- College of Natural and Health Sciences, Zayed University, Dubai, UAE
| | | | - W Jamal
- Department of Microbiology, College of Medicine, Kuwait University, Jabriya, Kuwait
| | - A Kurdi
- Pfizer, Dubai, UAE
- Hikma Pharmaceuticals, Amman, Jordan
| | | | - A Senok
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - A M Somily
- Department of Pathology and Laboratory Medicine, College of Medicine, King Saud University Medical City, Riyadh, Saudi Arabia
| | - H Ziglam
- Department of Infectious Diseases, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
2
|
Naknaen A, Samernate T, Saeju P, Nonejuie P, Chaikeeratisak V. Nucleus-forming jumbophage PhiKZ therapeutically outcompetes non-nucleus-forming jumbophage Callisto. iScience 2024; 27:109790. [PMID: 38726363 PMCID: PMC11079468 DOI: 10.1016/j.isci.2024.109790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/21/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
With the recent resurgence of phage therapy in modern medicine, jumbophages are currently under the spotlight due to their numerous advantages as anti-infective agents. However, most significant discoveries to date have primarily focused on nucleus-forming jumbophages, not their non-nucleus-forming counterparts. In this study, we compare the biological characteristics exhibited by two genetically diverse jumbophages: 1) the well-studied nucleus-forming jumbophage, PhiKZ; and 2) the newly discovered non-nucleus-forming jumbophage, Callisto. Single-cell infection studies further show that Callisto possesses different replication machinery, resulting in a delay in phage maturation compared to that of PhiKZ. The therapeutic potency of both phages was examined in vitro and in vivo, demonstrating that PhiKZ holds certain superior characteristics over Callisto. This research sheds light on the importance of the subcellular infection machinery and the organized progeny maturation process, which could potentially provide valuable insight in the future development of jumbophage-based therapeutics.
Collapse
Affiliation(s)
- Ampapan Naknaen
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Thanadon Samernate
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Panida Saeju
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Poochit Nonejuie
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | | |
Collapse
|
3
|
Mendes Pedro D, Paulo SE, Santos CM, Fonseca AB, Melo Cristino J, Pereira ÁA, Caneiras C. Extensively drug-resistant Pseudomonas aeruginosa: clinical features and treatment with ceftazidime/avibactam and ceftolozane/tazobactam in a tertiary care university hospital center in Portugal - A cross-sectional and retrospective observational study. Front Microbiol 2024; 15:1347521. [PMID: 38414772 PMCID: PMC10896734 DOI: 10.3389/fmicb.2024.1347521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/15/2024] [Indexed: 02/29/2024] Open
Abstract
Introduction Extensively drug-resistant Pseudomonas aeruginosa (XDR-PA) is a growing concern due to its increasing incidence, limited therapeutic options, limited data on the optimal treatment, and high mortality rates. The study aimed to characterize the population, the outcome and the microbiological characteristics of XDR-PA identified in a Portuguese university hospital center. Methods All XDR-PA isolates between January 2019 and December 2021 were identified. XDR-PA was defined as resistance to piperacillin-tazobactam, third and fourth generation cephalosporins, carbapenems, aminoglycosides and fluoroquinolones. A retrospective analysis of the medical records was performed. Results One hundred seventy-eight individual episodes among 130 patients with XDR-PA detection were identified. The most common sources of infection were respiratory (32%) and urinary tracts (30%), although skin and soft tissue infections (18%) and primary bacteremia (14%) were also prevalent. Colonization was admitted in 64 cases. Several patients had risk factors for complicated infections, most notably immunosuppression, structural lung abnormalities, major surgery, hemodialysis or foreign intravascular or urinary devices. XDR-PA identification was more frequent in male patients with an average age of 64.3 ± 17.5 years. One non-susceptibility to colistin was reported. Only 12.4% were susceptible to aztreonam. Ceftazidime-avibactam (CZA) was susceptible in 71.5% of the tested isolates. Ceftolozane-tazobactam (C/T) was susceptible in 77.5% of the tested isolates. Antibiotic regimens with XDR-PA coverage were reserved for patients with declared infection, except to cystic fibrosis. The most frequently administered antibiotics were colistin (41 cases), CZA (39 cases), and C/T (16 cases). When combination therapy was used, CZA plus colistin was preferred. The global mortality rate among infected patients was 35.1%, significantly higher in those with hematologic malignancy (50.0%, p < 0.05), followed by the ones with bacteremia (44.4%, p < 0.05) and those medicated with colistin (39.0%, p < 0.05), especially the ones with respiratory infections (60.0%). Among patients treated with CZA or C/T, the mortality rate seemed to be lower. Discussion XDR-PA infections can be severe and difficult to treat, with a high mortality rate. Even though colistin seems to be a viable option, it is likely less safe and efficient than CZA and C/T. To the best of the authors' knowledge, this is the first description of the clinical infection characteristics and treatment of XDR-PA in Portugal.
Collapse
Affiliation(s)
- Diogo Mendes Pedro
- Serviço de Doenças Infeciosas, Centro Hospitalar Universitário Lisboa Norte EPE, Lisbon, Portugal
- Clínica Universitária de Doenças Infeciosas, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Laboratório de Microbiologia na Saúde Ambiental, Laboratório Associado TERRA, Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Sérgio Eduardo Paulo
- Serviço de Doenças Infeciosas, Centro Hospitalar Universitário Lisboa Norte EPE, Lisbon, Portugal
- Unidade Local do Programa de Prevenção e Controlo de Infeções e das Resistências aos Antimicrobianos, Centro Hospitalar Universitário Lisboa Norte EPE, Lisbon, Portugal
| | - Carla Mimoso Santos
- Serviço de Doenças Infeciosas, Centro Hospitalar Universitário Lisboa Norte EPE, Lisbon, Portugal
- Clínica Universitária de Doenças Infeciosas, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Unidade Local do Programa de Prevenção e Controlo de Infeções e das Resistências aos Antimicrobianos, Centro Hospitalar Universitário Lisboa Norte EPE, Lisbon, Portugal
| | - Ana Bruschy Fonseca
- Serviço de Patologia Clínica, Centro Hospitalar Universitário Lisboa Norte EPE, Lisbon, Portugal
| | - José Melo Cristino
- Serviço de Patologia Clínica, Centro Hospitalar Universitário Lisboa Norte EPE, Lisbon, Portugal
- Instituto de Microbiologia, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Álvaro Ayres Pereira
- Serviço de Doenças Infeciosas, Centro Hospitalar Universitário Lisboa Norte EPE, Lisbon, Portugal
- Unidade Local do Programa de Prevenção e Controlo de Infeções e das Resistências aos Antimicrobianos, Centro Hospitalar Universitário Lisboa Norte EPE, Lisbon, Portugal
| | - Cátia Caneiras
- Laboratório de Microbiologia na Saúde Ambiental, Laboratório Associado TERRA, Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health and Science, Monte da Caparica, Portugal
- Instituto de Medicina Preventiva e Saúde Pública, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
4
|
Li J, Tang M, Liu Z, Wei Y, Xia F, Xia Y, Hu Y, Wang H, Zou M. Molecular characterization of extensively drug-resistant hypervirulent Pseudomonas aeruginosa isolates in China. Ann Clin Microbiol Antimicrob 2024; 23:13. [PMID: 38347529 PMCID: PMC10863134 DOI: 10.1186/s12941-024-00674-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/04/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Recently, extensively drug-resistant Pseudomonas aeruginosa (XDR-PA) isolates have been increasingly detected and posed great challenges to clinical anti-infection treatments. However, little is known about extensively resistant hypervirulent P. aeruginosa (XDR-hvPA). In this study, we investigate its epidemiological characteristics and provide important basis for preventing its dissemination. METHODS Clinical XDR-PA isolates were collected from January 2018 to January 2023 and identified using matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry; antibiotic susceptibility testing was performed by broth microdilution method, and minimum inhibitory concentrations (MICs) were evaluated. Virulence was evaluated using the Galleria mellonella infection model; molecular characteristics, including resistance genes, virulence genes, and homology, were determined using whole-genome sequencing. RESULTS A total of 77 XDR-PA strains were collected; 47/77 strains were XDR-hvPA. Patients aged > 60 years showed a significantly higher detection rate of XDR-hvPA than of XDR-non-hvPA. Among the 47 XDR-hvPA strains, 24 strains carried a carbapenemase gene, including blaGES-1 (10/47), blaVIM-2 (6/47), blaGES-14 (4/47), blaIMP-45 (2/47), blaKPC-2 (1/47), and blaNDM-14 (1/47). ExoU, exoT, exoY, and exoS, important virulence factors of PA, were found in 31/47, 47/47, 46/47, and 29/47 strains, respectively. Notably, two XDR-hvPA simultaneously co-carried exoU and exoS. Six serotypes (O1, O4-O7, and O11) were detected; O11 (19/47), O7 (13/47), and O4 (9/47) were the most prevalent. In 2018-2020, O4 and O7 were the most prevalent serotypes; 2021 onward, O11 (16/26) was the most prevalent serotype. Fourteen types of ST were detected, mainly ST235 (14/47), ST1158 (13/47), and ST1800 (7/47). Five global epidemic ST235 XDR-hvPA carried blaGES and showed the MIC value of ceftazidime/avibactam reached the susceptibility breakpoint (8/4 mg/L). CONCLUSIONS The clinical detection rate of XDR-hvPA is unexpectedly high, particularly in patients aged > 60 years, who are seemingly more susceptible to contracting this infection. Clonal transmission of XDR-hvPA carrying blaGES, which belongs to the global epidemic ST235, was noted. Therefore, the monitoring of XDR-hvPA should be strengthened, particularly for elderly hospitalized patients, to prevent its spread.
Collapse
Affiliation(s)
- Jun Li
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Mengli Tang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhaojun Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yuhan Wei
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Fengjun Xia
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yubing Xia
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yongmei Hu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Haichen Wang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Mingxiang Zou
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
5
|
Li R, Shen X, Li Z, Shen J, Tang H, Xu H, Shen J, Xu Y. Combination of AS101 and Mefloquine Inhibits Carbapenem-Resistant Pseudomonas aeruginosa in vitro and in vivo. Infect Drug Resist 2023; 16:7271-7288. [PMID: 38023412 PMCID: PMC10664714 DOI: 10.2147/idr.s427232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Background In recent years, carbapenem-resistant Pseudomonas aeruginosa (CRPA) has spread around the world, leading to a high mortality and close attention of medical community. In this study, we aim to find a new strategy of treatment for CRPA infections. Methods Eight strains of CRPA were collected, and PCR detected the multi-locus sequence typing (MLST). The antimicrobial susceptibility test was conducted using the VITEK@2 compact system. The minimum inhibitory concentration (MIC) for AS101 and mefloquine was determined using the broth dilution method. Antibacterial activity was tested in vitro and in vivo through the chessboard assay, time killing assay, and a mouse model. The mechanism of AS101 combined with mefloquine against CRPA was assessed through the biofilm formation inhibition assay, electron microscopy, and detection of reactive oxygen species (ROS). Results The results demonstrated that all tested CRPA strains exhibited multidrug resistance. Moreover, our investigation revealed a substantial synergistic antibacterial effect of AS101-mefloquine in vitro. The assay for inhibiting biofilm formation indicated that AS101-mefloquine effectively suppressed the biofilm formation of CRPA-5 and CRPA-6. Furthermore, AS101-mefloquine were observed to disrupt the bacterial cell wall and enhance the permeability of the cell membrane. This effect was achieved by stimulating the production of ROS, which in turn hindered the growth of CRPA-3. To evaluate the therapeutic potential, a murine model of CRPA-3 peritoneal infection was established. Notably, AS101-mefloquine administration resulted in a significant reduction in bacterial load within the liver, kidney, and spleen of mice after 72 hours of treatment. Conclusion The present study showed that the combination of AS101 and mefloquine yielded a notable synergistic bacteriostatic effect both in vitro and in vivo, suggesting a potential clinical application of this combination in the treatment of CRPA.
Collapse
Affiliation(s)
- Rongrong Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, Hefei, People’s Republic of China
| | - Xuhang Shen
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Zhengyuan Li
- Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Jilong Shen
- Provincial Laboratories of Pathogen Biology and Zoonoses, Anhui Medical University, Hefei, People’s Republic of China
| | - Hao Tang
- Department of Clinical Laboratory, the Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Huaming Xu
- Department of Clinical Laboratory, the First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, People’s Republic of China
| | - Jilu Shen
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
- Anhui Public Health Clinical Center, Hefei, People’s Republic of China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| |
Collapse
|
6
|
Coșeriu RL, Mare AD, Toma F, Vintilă C, Ciurea CN, Togănel RO, Cighir A, Simion A, Man A. Uncovering the Resistance Mechanisms in Extended-Drug-Resistant Pseudomonas aeruginosa Clinical Isolates: Insights from Gene Expression and Phenotypic Tests. Microorganisms 2023; 11:2211. [PMID: 37764055 PMCID: PMC10535578 DOI: 10.3390/microorganisms11092211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Background: The purpose of the study was to describe the activity of mex efflux pumps in Multidrug-Resistant (MDR) clinical isolates of Pseudomonas aeruginosa and to compare the carbapenem-resistance identification tests with PCR; (2) Methods: Sixty MDR P. aeruginosa were analyzed for detection of carbapenemase by disk diffusion inhibitory method, carbapenem inactivation method and Modified Hodge Test. Endpoint PCR was used to detect 7 carbapenemase genes (blaKPC, blaOXA48-like, blaNDM, blaGES-2, blaSPM, blaIMP, blaVIM) and mcr-1 for colistin resistance. The expression of mexA, mexB, mexC, mexE and mexX genes corresponding to the four main efflux pumps was also evaluated; (3) Results: From the tested strains, 71.66% presented at least one carbapenemase gene, with blaGES-2 as the most occurring gene (63.3%). Compared with the PCR, the accuracy of phenotypic tests did not exceed 25% for P. aeruginosa. The efflux pump genes were present in all strains except one. In 85% of the isolates, an overactivity of mexA, mexB and mostly mexC was detected. Previous treatment with ceftriaxone increased the activity of mexC by more than 160 times; (4) Conclusions: In our MDR P. aeruginosa clinical isolates, the carbapenem resistance is not accurately detected by phenotypic tests, due to the overexpression of mex efflux pumps and in a lesser amount, due to carbapenemase production.
Collapse
Affiliation(s)
- Răzvan Lucian Coșeriu
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology Târgu Mureș, 540142 Târgu Mures, Romania; (R.L.C.); (F.T.); (C.V.); (C.N.C.); (R.O.T.); (A.C.); (A.S.); (A.M.)
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology Târgu Mureș, 540142 Târgu Mures, Romania
| | - Anca Delia Mare
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology Târgu Mureș, 540142 Târgu Mures, Romania; (R.L.C.); (F.T.); (C.V.); (C.N.C.); (R.O.T.); (A.C.); (A.S.); (A.M.)
| | - Felicia Toma
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology Târgu Mureș, 540142 Târgu Mures, Romania; (R.L.C.); (F.T.); (C.V.); (C.N.C.); (R.O.T.); (A.C.); (A.S.); (A.M.)
| | - Camelia Vintilă
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology Târgu Mureș, 540142 Târgu Mures, Romania; (R.L.C.); (F.T.); (C.V.); (C.N.C.); (R.O.T.); (A.C.); (A.S.); (A.M.)
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology Târgu Mureș, 540142 Târgu Mures, Romania
| | - Cristina Nicoleta Ciurea
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology Târgu Mureș, 540142 Târgu Mures, Romania; (R.L.C.); (F.T.); (C.V.); (C.N.C.); (R.O.T.); (A.C.); (A.S.); (A.M.)
| | - Radu Ovidiu Togănel
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology Târgu Mureș, 540142 Târgu Mures, Romania; (R.L.C.); (F.T.); (C.V.); (C.N.C.); (R.O.T.); (A.C.); (A.S.); (A.M.)
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology Târgu Mureș, 540142 Târgu Mures, Romania
| | - Anca Cighir
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology Târgu Mureș, 540142 Târgu Mures, Romania; (R.L.C.); (F.T.); (C.V.); (C.N.C.); (R.O.T.); (A.C.); (A.S.); (A.M.)
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology Târgu Mureș, 540142 Târgu Mures, Romania
| | - Anastasia Simion
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology Târgu Mureș, 540142 Târgu Mures, Romania; (R.L.C.); (F.T.); (C.V.); (C.N.C.); (R.O.T.); (A.C.); (A.S.); (A.M.)
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology Târgu Mureș, 540142 Târgu Mures, Romania
| | - Adrian Man
- Department of Microbiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology Târgu Mureș, 540142 Târgu Mures, Romania; (R.L.C.); (F.T.); (C.V.); (C.N.C.); (R.O.T.); (A.C.); (A.S.); (A.M.)
| |
Collapse
|
7
|
Dalla Torre C, Sannio F, Battistella M, Docquier JD, De Zotti M. Peptaibol Analogs Show Potent Antibacterial Activity against Multidrug Resistant Opportunistic Pathogens. Int J Mol Sci 2023; 24:ijms24097997. [PMID: 37175704 PMCID: PMC10178204 DOI: 10.3390/ijms24097997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
New classes of antibacterial drugs are urgently needed to address the global issue of antibiotic resistance. In this context, peptaibols are promising membrane-active peptides since they are not involved in innate immunity and their antimicrobial activity does not involve specific cellular targets, therefore reducing the chance of bacterial resistance development. Trichogin GA IV is a nonhemolytic, natural, short-length peptaibol active against Gram-positive bacteria and resistant to proteolysis. In this work, we report on the antibacterial activity of cationic trichogin analogs. Several peptides appear non-hemolytic and strongly active against many clinically relevant bacterial species, including antibiotic-resistant clinical isolates, such as Staphylococcus aureus, Acinetobacter baumannii, and extensively drug-resistant Pseudomonas aeruginosa, against which there are only a limited number of antibiotics under development. Our results further highlight how the modification of natural peptides is a valuable strategy for obtaining improved antibacterial agents with potential therapeutic applications.
Collapse
Affiliation(s)
- Chiara Dalla Torre
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
| | - Filomena Sannio
- Dipartimento di Biotecnologie Mediche, University of Siena, Viale Bracci 16, I-53100 Siena, Italy
| | - Mattia Battistella
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
| | - Jean-Denis Docquier
- Dipartimento di Biotecnologie Mediche, University of Siena, Viale Bracci 16, I-53100 Siena, Italy
- Lead Discovery Siena s.r.l., Via Fiorentina 1, I-53100 Siena, Italy
- Laboratoire de Bactériologie Moléculaire, Centre d'Ingénierie des Protéines-UR InBioS, University of Liège, Allée du Six Août 11, B-4000 Liège, Belgium
| | - Marta De Zotti
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
| |
Collapse
|
8
|
Biggel M, Johler S, Roloff T, Tschudin-Sutter S, Bassetti S, Siegemund M, Egli A, Stephan R, Seth-Smith HMB. PorinPredict: In Silico Identification of OprD Loss from WGS Data for Improved Genotype-Phenotype Predictions of P. aeruginosa Carbapenem Resistance. Microbiol Spectr 2023; 11:e0358822. [PMID: 36715510 PMCID: PMC10100854 DOI: 10.1128/spectrum.03588-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/29/2022] [Indexed: 01/31/2023] Open
Abstract
The increasing integration of genomics into routine clinical diagnostics requires reliable computational tools to identify determinants of antimicrobial resistance (AMR) from whole-genome sequencing data. Here, we developed PorinPredict, a bioinformatic tool that predicts defects of the Pseudomonas aeruginosa outer membrane porin OprD, which are strongly associated with reduced carbapenem susceptibility. PorinPredict relies on a database of intact OprD variants and reports inactivating mutations in the coding or promoter region. PorinPredict was validated against 987 carbapenemase-negative P. aeruginosa genomes, of which OprD loss was predicted for 454 out of 522 (87.0%) meropenem-nonsusceptible and 46 out of 465 (9.9%) meropenem-susceptible isolates. OprD loss was also found to be common among carbapenemase-producing isolates, resulting in even further increased MICs. Chromosomal mutations in quinolone resistance-determining regions and OprD loss commonly co-occurred, likely reflecting the restricted use of carbapenems for multidrug-resistant infections as recommended in antimicrobial stewardship programs. In combination with available AMR gene detection tools, PorinPredict provides a robust and standardized approach to link P. aeruginosa phenotypes to genotypes. IMPORTANCE Pseudomonas aeruginosa is a major cause of multidrug-resistant nosocomial infections. The emergence and spread of clones exhibiting resistance to carbapenems, a class of critical last-line antibiotics, is therefore closely monitored. Carbapenem resistance is frequently mediated by chromosomal mutations that lead to a defective outer membrane porin OprD. Here, we determined the genetic diversity of OprD variants across the P. aeruginosa population and developed PorinPredict, a bioinformatic tool that enables the prediction of OprD loss from whole-genome sequencing data. We show a high correlation between predicted OprD loss and meropenem nonsusceptibility irrespective of the presence of carbapenemases, which are a second widespread determinant of carbapenem resistance. Isolates with resistance determinants to other antibiotics were disproportionally affected by OprD loss, possibly due to an increased exposure to carbapenems. Integration of PorinPredict into genomic surveillance platforms will facilitate a better understanding of the clinical impact of OprD modifications and transmission dynamics of resistant clones.
Collapse
Affiliation(s)
- Michael Biggel
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Sophia Johler
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Tim Roloff
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Microbiology, University of Zurich, Zurich
| | - Sarah Tschudin-Sutter
- Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | - Stefano Bassetti
- Internal Medicine, University Hospital Basel, Basel, Switzerland
| | - Martin Siegemund
- Intensive Care Unit, University Hospital Basel, Basel, Switzerland
| | - Adrian Egli
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Microbiology, University of Zurich, Zurich
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Helena M. B. Seth-Smith
- Division of Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Microbiology, University of Zurich, Zurich
| |
Collapse
|
9
|
Mahamad Maifiah MH, Zhu Y, Tsuji BT, Creek DJ, Velkov T, Li J. Integrated metabolomic and transcriptomic analyses of the synergistic effect of polymyxin-rifampicin combination against Pseudomonas aeruginosa. J Biomed Sci 2022; 29:89. [PMID: 36310165 PMCID: PMC9618192 DOI: 10.1186/s12929-022-00874-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Understanding the mechanism of antimicrobial action is critical for improving antibiotic therapy. For the first time, we integrated correlative metabolomics and transcriptomics of Pseudomonas aeruginosa to elucidate the mechanism of synergistic killing of polymyxin-rifampicin combination. METHODS Liquid chromatography-mass spectrometry and RNA-seq analyses were conducted to identify the significant changes in the metabolome and transcriptome of P. aeruginosa PAO1 after exposure to polymyxin B (1 mg/L) and rifampicin (2 mg/L) alone, or in combination over 24 h. A genome-scale metabolic network was employed for integrative analysis. RESULTS In the first 4-h treatment, polymyxin B monotherapy induced significant lipid perturbations, predominantly to fatty acids and glycerophospholipids, indicating a substantial disorganization of the bacterial outer membrane. Expression of ParRS, a two-component regulatory system involved in polymyxin resistance, was increased by polymyxin B alone. Rifampicin alone caused marginal metabolic perturbations but significantly affected gene expression at 24 h. The combination decreased the gene expression of quorum sensing regulated virulence factors at 1 h (e.g. key genes involved in phenazine biosynthesis, secretion system and biofilm formation); and increased the expression of peptidoglycan biosynthesis genes at 4 h. Notably, the combination caused substantial accumulation of nucleotides and amino acids that last at least 4 h, indicating that bacterial cells were in a state of metabolic arrest. CONCLUSION This study underscores the substantial potential of integrative systems pharmacology to determine mechanisms of synergistic bacterial killing by antibiotic combinations, which will help optimize their use in patients.
Collapse
Affiliation(s)
- Mohd Hafidz Mahamad Maifiah
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- International Institute for Halal Research and Training, International Islamic University Malaysia, 50728, Kuala Lumpur, Malaysia
| | - Yan Zhu
- Infection Program and Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia
| | - Brian T Tsuji
- Department of Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Tony Velkov
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Jian Li
- Infection Program and Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
10
|
Molecular characterization of carbapenem-resistant Pseudomonas aeruginosa isolated from four medical centres in Iran. Mol Biol Rep 2022; 49:8281-8289. [PMID: 35657451 DOI: 10.1007/s11033-022-07640-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Understanding the mechanisms of antibiotic resistance is important for designing new therapeutic options and controlling resistant strains. The goal of this study was to look at the molecular epidemiology and mechanisms of resistance in carbapenem-resistant Pseudomonas aeruginosa (CRPA) isolates from Tabriz, Iran. METHODS One hundred and forty P. aeruginosa were isolated and antibiotic susceptibility patterns were determined. Overproduction of AmpC and efflux pumps were discovered using phenotypic techniques. Polymerase chain reaction (PCR) was used to determine the presence of carbapenemase-encoding genes. In addition, the expressions of OprD and efflux pumps were evaluated by the Real-Time PCR. Random amplified polymorphic DNA typing (RAPD) was performed for genotyping. RESULTS Among 140 P. aeruginosa isolates, 74 (52.8%) were screened as CRPA. Overexpression of efflux systems was observed in 81% of isolates, followed by decreased expression of OprD (62.2%), presence of carbapenemase genes (14.8%), and overproduction of AmpC (13.5%). In most isolates, carbapenem resistance was multifactorial (60.8%). According to our results, the prevalence of CRPA is at alarming levels. Overexpression of efflux systems was the most common mechanism of carbapenem resistance. CONCLUSION Most isolates may originate in patients themselves, but cross-infection is possible. Therefore, we suggest a pattern shift in the strategy of CRPA in our setting.
Collapse
|
11
|
Jean SS, Harnod D, Hsueh PR. Global Threat of Carbapenem-Resistant Gram-Negative Bacteria. Front Cell Infect Microbiol 2022; 12:823684. [PMID: 35372099 PMCID: PMC8965008 DOI: 10.3389/fcimb.2022.823684] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/15/2022] [Indexed: 01/08/2023] Open
Abstract
Infections caused by multidrug-resistant (MDR) and extensively drug-resistant (XDR) Gram-negative bacteria (GNB), including carbapenem-resistant (CR) Enterobacterales (CRE; harboring mainly blaKPC, blaNDM, and blaOXA-48-like genes), CR- or MDR/XDR-Pseudomonas aeruginosa (production of VIM, IMP, or NDM carbapenemases combined with porin alteration), and Acinetobacter baumannii complex (producing mainly OXA-23, OXA-58-like carbapenemases), have gradually worsened and become a major challenge to public health because of limited antibiotic choice and high case-fatality rates. Diverse MDR/XDR-GNB isolates have been predominantly cultured from inpatients and hospital equipment/settings, but CRE has also been identified in community settings and long-term care facilities. Several CRE outbreaks cost hospitals and healthcare institutions huge economic burdens for disinfection and containment of their disseminations. Parenteral polymyxin B/E has been observed to have a poor pharmacokinetic profile for the treatment of CR- and XDR-GNB. It has been determined that tigecycline is suitable for the treatment of bloodstream infections owing to GNB, with a minimum inhibitory concentration of ≤ 0.5 mg/L. Ceftazidime-avibactam is a last-resort antibiotic against GNB of Ambler class A/C/D enzyme-producers and a majority of CR-P. aeruginosa isolates. Furthermore, ceftolozane-tazobactam is shown to exhibit excellent in vitro activity against CR- and XDR-P. aeruginosa isolates. Several pharmaceuticals have devoted to exploring novel antibiotics to combat these troublesome XDR-GNBs. Nevertheless, only few antibiotics are shown to be effective in vitro against CR/XDR-A. baumannii complex isolates. In this era of antibiotic pipelines, strict implementation of antibiotic stewardship is as important as in-time isolation cohorts in limiting the spread of CR/XDR-GNB and alleviating the worsening trends of resistance.
Collapse
Affiliation(s)
- Shio-Shin Jean
- Department of Emergency and Critical Care Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan
- Department of Pharmacy, College of Pharmacy and Health care, Tajen University, Pingtung, Taiwan
| | - Dorji Harnod
- Division of Critical Care Medicine, Department of Emergency and Critical Care Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Emergency, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- Ph.D Program for Aging, School of Medicine, China Medical University, Taichung, Taiwan
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
- *Correspondence: Po-Ren Hsueh,
| |
Collapse
|
12
|
Wong M, Wong D, Malhotra S. Intravenous fosfomycin as salvage therapy for osteomyelitis caused by multidrug-resistant Pseudomonas aeruginosa. Am J Health Syst Pharm 2021; 78:2209-2215. [PMID: 34309646 DOI: 10.1093/ajhp/zxab294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
PURPOSE A case of osteomyelitis caused by multidrug-resistant (MDR) Pseudomonas aeruginosa is reported. SUMMARY An 84-year-old Caucasian male with an underlying history of type 2 diabetes, peripheral vascular disease, and coronary artery disease had chronic nonhealing wounds on his right foot. Wound care and a course of intravenous (IV) ertapenem with oral ciprofloxacin were ineffective. His initial wound culture grew Staphylococcus aureus, group G streptococcus and P. aeruginosa; the Pseudomonas was susceptible to multiple agents. The patient eventually required midtarsal amputation and angioplasties to his right leg. Twenty days after the operation, 2 openings were discovered at the surgical site, 1 of which was probed to the bone. He was readmitted 5 weeks after the operation. A repeat wound swab grew MDR P. aeruginosa and Finegoldia magna. The Pseudomonas was susceptible to gentamicin and colistin. The patient had revision of the infected amputation site with the goal of salvaging his right lower limb. The patient developed acute renal failure after 26 days of IV gentamicin, IV ceftriaxone, and oral metronidazole. Additional susceptibility testing was performed to identify alternatives. The bacteria were considered susceptible to IV fosfomycin, the last resort, by our microbiology laboratory. This was combined with ceftolozane/tazobactam followed by meropenem to treat the residual infection. After 2 weeks of IV fosfomycin, the patient's wound improved and further amputation was avoided. CONCLUSION Our case demonstrates that IV fosfomycin may provide an effective salvage therapy when combined with β-lactams for the treatment of severe diabetic foot infection or osteomyelitis caused by MDR P. aeruginosa.
Collapse
Affiliation(s)
- Maggie Wong
- Department of Pharmacy, Royal Columbian Hospital, Fraser Health Authority, New Westminster, British Columbia, Canada
| | - Davie Wong
- Division of Infectious Diseases, University of British Columbia, Vancouver, British Columbia, and Department of Medicine, Royal Columbian Hospital, Fraser Health Authority, New Westminster, British Columbia, Canada
| | - Sangita Malhotra
- Division of Infectious Diseases, University of British Columbia, Vancouver, British Columbia, and Royal Columbian Hospital, New Westminster, British Columbia, Canada
| |
Collapse
|
13
|
Retrospective Data Insight into the Global Distribution of Carbapenemase-Producing Pseudomonas aeruginosa. ANTIBIOTICS (BASEL, SWITZERLAND) 2021; 10:antibiotics10050548. [PMID: 34065054 PMCID: PMC8151531 DOI: 10.3390/antibiotics10050548] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022]
Abstract
This study aimed to determine the global distribution and molecular characteristics of carbapenemase-producing Pseudomonas aeruginosa isolates. A total of 328 (11.1%, 328/2953) carbapenemase-producing P. aeruginosa isolates from humans were obtained from public databases as of October 2019. Of which, the blaVIM and blaIMP genes were the most prevalent carbapenemases in the P. aeruginosa isolates. These carbapenemase-producing P. aeruginosa isolates possessed 34 distinct sequence types (STs) and six predominated: ST357, ST823, ST308, ST233, ST175 and ST111. The ST357 and ST823 isolates were primarily found detected in Asia and all ST175 isolates were found in Europe. The ST308, ST233 and ST111 isolates were spread worldwide. Further, all ST823 isolates and the majority of ST111, ST233 and ST175 isolates carried blaVIM but ST357 isolates primarily carried blaIMP. ST308 isolates provide a key reservoir for the spread of blaVIM, blaIMP and blaNDM. WGS analysis revealed that ST111 carried a great diversity of ARG types (n = 23), followed by ST357 (n = 21), ST308 (n = 19), ST233 (n = 18), ST175 (n = 14) and ST823 (n = 10). The ST175 isolates carried a more diversity and frequent of aminoglycoside ARGs, and ST233 isolates harbored more tetracycline ARGs. Our findings revealed that different carbapenem resistance genes were distributed primarily in variant STs of P. aeruginosa isolates, these isolates also possessed an extensive geographical distribution that highlights the need for surveillance studies that detect carbapenemase-producing P. aeruginosa isolates in humans.
Collapse
|
14
|
Yoon EJ, Jeong SH. Mobile Carbapenemase Genes in Pseudomonas aeruginosa. Front Microbiol 2021; 12:614058. [PMID: 33679638 PMCID: PMC7930500 DOI: 10.3389/fmicb.2021.614058] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa is one of the major concerns in clinical settings impelling a great challenge to antimicrobial therapy for patients with infections caused by the pathogen. While membrane permeability, together with derepression of the intrinsic beta-lactamase gene, is the global prevailing mechanism of carbapenem resistance in P. aeruginosa, the acquired genes for carbapenemases need special attention because horizontal gene transfer through mobile genetic elements, such as integrons, transposons, plasmids, and integrative and conjugative elements, could accelerate the dissemination of the carbapenem-resistant P. aeruginosa. This review aimed to illustrate epidemiologically the carbapenem resistance in P. aeruginosa, including the resistance rates worldwide and the carbapenemase-encoding genes along with the mobile genetic elements responsible for the horizontal dissemination of the drug resistance determinants. Moreover, the modular mobile elements including the carbapenemase-encoding gene, also known as the P. aeruginosa resistance islands, are scrutinized mostly for their structures.
Collapse
Affiliation(s)
- Eun-Jeong Yoon
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
15
|
Evaluation of the Xpert Carba-R NxG Assay for Detection of Carbapenemase Genes in a Global Challenge Set of Pseudomonas aeruginosa Isolates. J Clin Microbiol 2020; 58:JCM.01098-20. [PMID: 33115845 DOI: 10.1128/jcm.01098-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/23/2020] [Indexed: 12/28/2022] Open
Abstract
The growing prevalence and diversity of carbapenemase producers among carbapenem-resistant Pseudomonas aeruginosa (CRPA) isolates warrants an expansion of detection capabilities. The purpose of this study was to evaluate the performance of the commercially available Xpert Carba-R (Carba-R) and the research-use-only Xpert Carba-R NxG (Carba-R NxG) in a global collection of P. aeruginosa The challenge set included 123 P. aeruginosa clinical isolates from 12 countries. Isolates were previously categorized via PCR or whole-genome sequencing. Carbapenemase classes tested include VIM, IMP, NDM, SPM, KPC, and GES. Non-carbapenemase (non-CP)-harboring isolates were also tested (negative control). Isolates were tested using the Carba-R NxG and the Carba-R tests per the manufacturer's instructions. Carba-R NxG testing was completed by Cepheid (Sunnyvale, CA), blinded to genotype. Both assays gave negative results for all non-CP isolates and positive results for all VIM, NDM, and KPC isolates. An improvement in IMP detection among isolates was observed (100% detection by Carba-R NxG versus 58% by Carba-R). All SPM and GES isolates, targets not present in commercially available Carba-R, were positive by Carba-R NxG. Two isolates harbored both VIM and GES, while a third isolate contained VIM and NDM. The Carba-R NxG identified both targets in all 3 isolates, while the Carba-R was negative for both GES-containing isolates. Overall, the Carba-R NxG successfully categorized 100% of isolates tested compared with 68% for its predecessor. The Carba-R NxG will expand the detection spectrum of the current Carba-R assay to include SPM, GES, and expanded IMP variants, increasing the global utility of the test.
Collapse
|
16
|
Vrancianu CO, Gheorghe I, Dobre EG, Barbu IC, Cristian RE, Popa M, Lee SH, Limban C, Vlad IM, Chifiriuc MC. Emerging Strategies to Combat β-Lactamase Producing ESKAPE Pathogens. Int J Mol Sci 2020; 21:E8527. [PMID: 33198306 PMCID: PMC7697847 DOI: 10.3390/ijms21228527] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Since the discovery of penicillin by Alexander Fleming in 1929 as a therapeutic agent against staphylococci, β-lactam antibiotics (BLAs) remained the most successful antibiotic classes against the majority of bacterial strains, reaching a percentage of 65% of all medical prescriptions. Unfortunately, the emergence and diversification of β-lactamases pose indefinite health issues, limiting the clinical effectiveness of all current BLAs. One solution is to develop β-lactamase inhibitors (BLIs) capable of restoring the activity of β-lactam drugs. In this review, we will briefly present the older and new BLAs classes, their mechanisms of action, and an update of the BLIs capable of restoring the activity of β-lactam drugs against ESKAPE (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens. Subsequently, we will discuss several promising alternative approaches such as bacteriophages, antimicrobial peptides, nanoparticles, CRISPR (clustered regularly interspaced short palindromic repeats) cas technology, or vaccination developed to limit antimicrobial resistance in this endless fight against Gram-negative pathogens.
Collapse
Affiliation(s)
- Corneliu Ovidiu Vrancianu
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
| | - Irina Gheorghe
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
| | - Elena-Georgiana Dobre
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
| | - Ilda Czobor Barbu
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
| | - Roxana Elena Cristian
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania;
| | - Marcela Popa
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
| | - Sang Hee Lee
- Department of Biological Sciences, Myongji University, 03674 Myongjiro, Yongin 449-728, Gyeonggido, Korea;
- National Leading Research Laboratory, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin 17058, Gyeonggido, Korea
| | - Carmen Limban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia no.6, 020956 Bucharest, Romania; (C.L.); (I.M.V.)
| | - Ilinca Margareta Vlad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia no.6, 020956 Bucharest, Romania; (C.L.); (I.M.V.)
| | - Mariana Carmen Chifiriuc
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
- Academy of Romanian Scientists, 030167 Bucharest, Romania
| |
Collapse
|
17
|
Gill CM, Asempa TE, Nicolau DP. Development and Application of a Pragmatic Algorithm to Guide Definitive Carbapenemase Testing to Identify Carbapenemase-Producing Pseudomonas aeruginosa. Antibiotics (Basel) 2020; 9:antibiotics9110738. [PMID: 33120865 PMCID: PMC7693613 DOI: 10.3390/antibiotics9110738] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 02/05/2023] Open
Abstract
A minimum inhibitory concentration (MIC) derived algorithm, predictive of carbapenemase production, was developed using a challenge set (n = 92) of Pseudomonas aeruginosa (PA), including carbapenemase-producing (CP), cephalosporinase and/or efflux/porin mutation, and wild-type isolates. Broth microdilution MICs to clinically relevant anti-pseudomonal agents were utilized. The algorithm was applied to 1209 clinical PA isolates from a US surveillance program. Confirmatory genotypic (Xpert® Carba-R assay) and phenotypic (mCIM/eCIM) testing for carbapenemases was conducted on algorithm-derived isolates. With the algorithm, carbapenem resistance alone resulted in poor specificity to identify CP-PA (54%) within the challenge set of isolates. Inclusion of cefepime, ceftazidime, and piperacillin/tazobactam non-susceptibility resulted in a specificity of 66%. Ceftolozane/tazobactam resistance further improved specificity (89%). Of the 1209 isolates, 116 met criteria (carbapenem-resistant and non-susceptibility to cefepime, ceftazidime, and piperacillin/tazobactam) for confirmatory testing. Carba-R and mCIM/eCIM identified five (all blaVIM-positive) and seven carbapenemase-producing isolates, respectively. This MIC algorithm combined with genotypic/phenotypic carbapenemase testing is a pragmatic and streamlined approach to identify CP-PA.
Collapse
Affiliation(s)
- Christian M. Gill
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT 06102, USA; (C.M.G.); (T.E.A.)
| | - Tomefa E. Asempa
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT 06102, USA; (C.M.G.); (T.E.A.)
| | - David P. Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT 06102, USA; (C.M.G.); (T.E.A.)
- Division of Infectious Diseases, Hartford Hospital, Hartford, CT 06102, USA
- Correspondence: ; Tel.: +1-860-972-3941
| |
Collapse
|
18
|
Unresolved issues in the identification and treatment of carbapenem-resistant Gram-negative organisms. Curr Opin Infect Dis 2020; 33:482-494. [PMID: 33009141 DOI: 10.1097/qco.0000000000000682] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Carbapenem-resistant organisms (CROs), including Pseudomonas aeruginosa, Acinetobacter baumannii and Enterobacterales, are a threat worldwide. This review will cover mechanisms of resistance within CROs and challenges with identification and treatment of these organisms while pointing out unresolved issues and ongoing challenges. RECENT FINDINGS The treatment of CROs has expanded through newer therapeutic options. Guided utilization through genotypic and phenotypic testing is necessary in order for these drugs to target the appropriate mechanisms of resistance and select optimal antibiotic therapy. SUMMARY Identification methods and treatment options need to be precisely understood in order to limit the spread and maximize outcomes of CRO infections.
Collapse
|
19
|
Botelho J, Mourão J, Roberts AP, Peixe L. Comprehensive genome data analysis establishes a triple whammy of carbapenemases, ICEs and multiple clinically relevant bacteria. Microb Genom 2020; 6:mgen000424. [PMID: 32841111 PMCID: PMC7660259 DOI: 10.1099/mgen.0.000424] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 08/02/2020] [Indexed: 12/24/2022] Open
Abstract
Carbapenemases inactivate most β-lactam antibiotics, including carbapenems, and have frequently been reported among Enterobacteriaceae, Acinetobacter spp. and Pseudomonas spp. Traditionally, the horizontal gene transfer of carbapenemase-encoding genes (CEGs) has been linked to plasmids. However, given that integrative and conjugative elements (ICEs) are possibly the most abundant conjugative elements among prokaryotes, we conducted an in silico analysis to ascertain the likely role of ICEs in the spread of CEGs among all bacterial genomes (n=182 663). We detected 17 520 CEGs, of which 66 were located within putative ICEs among several bacterial species (including clinically relevant bacteria, such as Pseudomonas aeruginosa, Klebsiella pneumoniae and Escherichia coli). Most CEGs detected within ICEs belong to the IMP, NDM and SPM metallo-beta-lactamase families, and the serine beta-lactamase KPC and GES families. Different mechanisms were likely responsible for acquisition of these genes. The majority of CEG-bearing ICEs belong to the MPFG, MPFT and MPFF classes and often encode resistance to other antibiotics (e.g. aminoglycosides and fluoroquinolones). This study provides a snapshot of the different CEGs associated with ICEs among available bacterial genomes and sheds light on the underappreciated contribution of ICEs to the spread of carbapenem resistance globally.
Collapse
Affiliation(s)
- João Botelho
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
- Present address: Antibiotic Resistance Evolution Group, Max-Planck-Institute for Evolutionary Biology, 24306 Plön, Germany; Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | - Joana Mourão
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology, Coimbra, Portugal
- University of Coimbra, Center for Neuroscience and Cell Biology, Coimbra, Portugal
- University of Coimbra, Institute for Interdisciplinary Research, Coimbra, Portugal
| | - Adam P. Roberts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Luísa Peixe
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
20
|
Treatment options for K. pneumoniae, P. aeruginosa and A. baumannii co-resistant to carbapenems, aminoglycosides, polymyxins and tigecycline: an approach based on the mechanisms of resistance to carbapenems. Infection 2020; 48:835-851. [PMID: 32875545 PMCID: PMC7461763 DOI: 10.1007/s15010-020-01520-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
The management of carbapenem-resistant infections is often based on polymyxins, tigecycline, aminoglycosides and their combinations. However, in a recent systematic review, we found that Gram-negative bacteria (GNB) co-resistant to carbapanems, aminoglycosides, polymyxins and tigecycline (CAPT-resistant) are increasingly being reported worldwide. Clinical data to guide the treatment of CAPT-resistant GNB are scarce and based exclusively on few case reports and small case series, but seem to indicate that appropriate (in vitro active) antimicrobial regimens, including newer antibiotics and synergistic combinations, may be associated with lower mortality. In this review, we consolidate the available literature to inform clinicians dealing with CAPT-resistant GNB about treatment options by considering the mechanisms of resistance to carbapenems. In combination with rapid diagnostic methods that allow fast detection of carbapenemase production, the approach proposed in this review may guide a timely and targeted treatment of patients with infections by CAPT-resistant GNB. Specifically, we focus on the three most problematic species, namely Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii. Several treatment options are currently available for CAPT-resistant K. pneumonia. Newer β-lactam-β-lactamase combinations, including the combination of ceftazidime/avibactam with aztreonam against metallo-β-lactamase-producing isolates, appear to be more effective compared to combinations of older agents. Options for P. aeruginosa (especially metallo-β-lactamase-producing strains) and A. baumannii remain limited. Synergistic combination of older agents (e.g., polymyxin- or fosfomycin-based synergistic combinations) may represent a last resort option, but their use against CAPT-resistant GNB requires further study.
Collapse
|
21
|
Evaluation of the EDTA-Modified Carbapenem Inactivation Method for Detecting Metallo-β-Lactamase-Producing Pseudomonas aeruginosa. J Clin Microbiol 2020; 58:JCM.02015-19. [PMID: 32238433 DOI: 10.1128/jcm.02015-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
The prevalence of carbapenem-resistant Pseudomonas aeruginosa is increasing. Identification of carbapenemase-producing P. aeruginosa will have therapeutic, epidemiological, and infection control implications. This study evaluated the performance of the EDTA-modified carbapenem inactivation method (eCIM) in tandem with the modified carbapenem inactivation method (mCIM) against a large collection of clinical P. aeruginosa isolates (n = 103) to provide clinicians a phenotypic test that not only identifies carbapenemase production but also distinguishes between metallo-β-lactamase and serine-carbapenemase production in P. aeruginosa The mCIM test was performed according to Clinical and Laboratory Standards Institute guidelines, while the eCIM was conducted as previously described for Enterobacteriaceae Test performance was compared to the genotypic profile as the reference. mCIM testing successfully categorized 91% (112/123) of P. aeruginosa isolates as carbapenemases or non-carbapenemase producers, with discordant isolates being primarily Guiana extended-spectrum (GES)-type producers. To increase the sensitivity of the mCIM for GES-harboring isolates, a double inoculum, prolonged incubation, or both was evaluated, with each modification improving sensitivity to 100% (12/12). Upon eCIM testing, all Verona integrin-encoded metallo-β-lactamases (VIM; n = 27) and New Delhi metallo-β-lactamases (NDM; n = 13) tested had 100% concordance to their genotypic profiles, whereas all Klebsiella pneumoniae carbapenemase (KPC; n = 8) and GES (n = 12) isolates tested negative, as expected, in the presence of EDTA. The eCIM failed to identify all imipenemase (IMP)-producing (n = 22) and Sao Paulo metallo-β-lactamase (SPM)-producing (n = 14) isolates. KPC-, VIM-, and NDM-producing P. aeruginosa were well defined by the conventional mCIM and eCIM testing methods; additional modifications appear required to differentiate GES-, IMP-, and SPM-producing isolates.
Collapse
|
22
|
The Current Burden of Carbapenemases: Review of Significant Properties and Dissemination among Gram-Negative Bacteria. Antibiotics (Basel) 2020; 9:antibiotics9040186. [PMID: 32316342 PMCID: PMC7235769 DOI: 10.3390/antibiotics9040186] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 11/16/2022] Open
Abstract
Carbapenemases are β-lactamases belonging to different Ambler classes (A, B, D) and can be encoded by both chromosomal and plasmid-mediated genes. These enzymes represent the most potent β-lactamases, which hydrolyze a broad variety of β-lactams, including carbapenems, cephalosporins, penicillin, and aztreonam. The major issues associated with carbapenemase production are clinical due to compromising the activity of the last resort antibiotics used for treating serious infections, and epidemiological due to their dissemination into various bacteria across almost all geographic regions. Carbapenemase-producing Enterobacteriaceae have received more attention upon their first report in the early 1990s. Currently, there is increased awareness of the impact of nonfermenting bacteria, such as Acinetobacter baumannii and Pseudomonas aeruginosa, as well as other Gram-negative bacteria that are carbapenemase-producers. Outside the scope of clinical importance, carbapenemases are also detected in bacteria from environmental and zoonotic niches, which raises greater concerns over their prevalence, and the need for public health measures to control consequences of their propagation. The aims of the current review are to define and categorize the different families of carbapenemases, and to overview the main lines of their spread across different bacterial groups.
Collapse
|
23
|
Cheng IL, Chen YH, Lai CC, Tang HJ. The use of ceftolozane-tazobactam in the treatment of complicated intra-abdominal infections and complicated urinary tract infections—A meta-analysis of randomized controlled trials. Int J Antimicrob Agents 2020; 55:105858. [DOI: 10.1016/j.ijantimicag.2019.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/20/2019] [Accepted: 11/24/2019] [Indexed: 01/22/2023]
|