1
|
Zhang M, Han R, Zhang A, Xu C, Zhao G, Pang X, Jiang X, Wang S. Acremonium terricola culture supplementation in the diet of pregnant and lactating Ewes can improve the production performance of Ewes and lambs by regulating maternal metabolism and antibody delivery. BMC Vet Res 2025; 21:361. [PMID: 40389975 PMCID: PMC12090512 DOI: 10.1186/s12917-025-04801-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 05/01/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND The fungal culture of Acremonium terricola culture (ATC) has been extensively utilized in livestock farming systems due to its demonstrated efficacy in improving productivity and preventing disease outbreaks. However, the effects of dietary ATC supplementation on pregnant and lactating ewes and their offspring remain a critical knowledge gap requiring investigation. Therefore, this study was designed to address two primary objectives: (1) to evaluate the effects of dietary supplementation with ATC on production performance and hematological parameters in ewes; (2) to determine whether maternally ingested ATC can be transmitted to offspring via lactation and subsequently influence lamb growth performance. This study employed eighteen ewes randomly stratified into two groups: a basal diet control (CON, n = 9) and an experimental group receiving basal diet supplementation with 9 g of ATC per ewe daily (ATC, n = 9). The study design comprised a 115-day protocol consisting of a 10-day pre-experimental acclimatization phase with environmental parameter standardization, followed by a 105-day controlled experimental intervention period. RESULTS The findings demonstrated that administration of ATC supplemented diets throughout the gestational-lactational period significantly enhanced maternal dry matter intake (DMI) and late-gestation (day 145) body mass (p < 0.05), concurrently attenuating gestational lipolysis compared with control group. Regarding lactation performance, ATC supplementation led to an increase in the average daily milk yield (0.90 vs. 0.78 kg/d), decelerated the decline rate of the lactation peak, and enhanced milk quality by boosting the percentages of milk fat, total solids (Ts), and urea content (p < 0.05). Moreover, ATC supplementation elevated serum levels of immunoglobulin A (IgA), urea, and superoxide dismutase (SOD) in pregnant and lactating ewes, while decreasing the interleukin-6 (IL-6) level (p < 0.05). For lambs, the supplementation of ATC in ewes' diets significantly improved the average daily gain (ADG) during the 1-45-day nursing period (p < 0.05) and showed a trend toward increased weaning weight at 45 days of nursing (p = 0.061). Biochemically, lambs from the ATC - supplemented group exhibited significantly higher serum concentrations of urea, IgA, interleukin-4 (IL-4), catalase (CAT), SOD, and total antioxidant capacity (T-AOC), along with lower serum tumor necrosis factor-α (TNF-α) content (p < 0.05). CONCLUSIONS Maternal dietary supplementation with ATC demonstrated dual zootechnical benefits, effectively augmenting ovine productive efficiency through enhanced milk synthesis capacity, improving the immune and antioxidant levels of the body, while concurrently stimulating neonatal development of pre-weaning growth velocity.
Collapse
Affiliation(s)
- Mengen Zhang
- College of Animal Science and Technology, Anhui Science and Technology University, Chuzhou, 233100, China
| | - Rui Han
- College of Animal Science and Technology, Anhui Science and Technology University, Chuzhou, 233100, China
| | - Anguo Zhang
- College of Animal Science and Technology, Anhui Science and Technology University, Chuzhou, 233100, China
| | - Chao Xu
- College of Animal Science and Technology, Anhui Science and Technology University, Chuzhou, 233100, China
| | - Guohong Zhao
- College of Animal Science and Technology, Anhui Science and Technology University, Chuzhou, 233100, China
| | - Xunsheng Pang
- College of Animal Science and Technology, Anhui Science and Technology University, Chuzhou, 233100, China
| | - Xichun Jiang
- Institute of Animal and Veterinary Science, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Shiqin Wang
- College of Animal Science and Technology, Anhui Science and Technology University, Chuzhou, 233100, China.
| |
Collapse
|
2
|
Crouse MS, Cushman RA, Redifer CA, Neville BW, Dahlen CR, Caton JS, Diniz WJS, Ward AK. International Symposium on Ruminant Physiology: One-carbon metabolism in beef cattle throughout the production cycle. J Dairy Sci 2024:S0022-0302(24)01390-0. [PMID: 39701525 DOI: 10.3168/jds.2024-25784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024]
Abstract
One-carbon metabolism (OCM) is a series of connected pathways involving the methionine-folate cycles, transsulfuration, polyamine synthesis, nucleotide synthesis, free-radical scavenging, and energy metabolism. These pathways functionally depend upon amino acids (methionine, glycine, and serine), vitamins (folate, B2, B6, and B12), and minerals (sulfur, cobalt, and zinc). Growing bodies of research indicate that in beef cattle, physiological stage, nutritional plane, diet, species (Bos taurus vs. indicus), rumen protected vs. not, individual vs. combination supplementation and method of delivery all affect the efficacy of one-carbon metabolite supplementation. Infusion studies showed that supplementing methionine to growing steers improved N retention and altered hepatic activity of methionine synthase; however, only supplementing methionine without folate decreased folate concentrations in circulation. When heifers were supplemented with methionine, choline, folate, and B12 for the first 63 d of gestation, metabolomic analysis revealed increasing OCM analytes to the heifer, but a buffering effect to the fetus with minimal changes seen in hepatic metabolite abundance. Methionine supplementation to heifers during the periconceptual period increased circulating methionine but shifted fetal hepatic metabolism toward the transsulfuration pathway. Periconceptual methionine supplementation to cows increased gain and total-tract digestibility in calves post-weaning. In vitro supplementation of choline to beef cattle embryos results in calves of increased birth and weaning weight. Overall, these data demonstrate that OCM is altered in those cattle receiving one-carbon metabolites, and that a metabolic programming response is elicited in offspring receiving supplements in vitro or during early gestation. Research should be considered to maximize efficiency of beef cattle production at all stages by identifying limiting metabolites or enzymes to maximize efficiency of OCM in beef cattle, as well as to understand the concerted effects of multiple one-carbon metabolites to balance the stoichiometry of the pathway.
Collapse
Affiliation(s)
- Matthew S Crouse
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA..
| | - Robert A Cushman
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA
| | - Colby A Redifer
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA
| | - Bryan W Neville
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA
| | | | - Joel S Caton
- North Dakota State University, Fargo, ND 58102, USA
| | | | | |
Collapse
|
3
|
Polizel GHG, Fanalli SL, Diniz WJS, Cesar ASM, Cônsolo NRB, Fukumasu H, Cánovas A, Fernandes AC, Prati BCT, Furlan É, Pombo GDV, Santana MHDA. Liver transcriptomics-metabolomics integration reveals biological pathways associated with fetal programming in beef cattle. Sci Rep 2024; 14:27681. [PMID: 39532951 PMCID: PMC11557885 DOI: 10.1038/s41598-024-78965-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
We investigated the long-term effects of prenatal nutrition on pre-slaughter Nelore bulls using integrative transcriptome and metabolome analyses of liver tissue. Three prenatal nutritional treatments were administered to 126 cows: NP (control, mineral supplementation only), PP (protein-energy supplementation in the third trimester), and FP (protein-energy supplementation throughout pregnancy). Liver samples from 22.5 ± 1-month-old bulls underwent RNA-Seq and targeted metabolomics. Weighted correlation network analysis (WGCNA) identified treatment-associated gene and metabolite co-expression modules, further analyzed using MetaboAnalyst 6.0 (metabolite over-representation analysis and transcriptome-metabolome integrative analysis) and Enrichr (gene over-representation analysis). We identified several significant gene and metabolite modules, as well as hub components associated with energy, protein and oxidative metabolism, regulatory mechanisms, epigenetics, and immune function. The NP transcriptome-metabolome analysis identified key pathways (aminoacyl t-RNA biosynthesis, gluconeogenesis, and PPAR signaling) and hub components (glutamic acid, SLC6A14). PP highlighted pathways (arginine and proline metabolism, TGF-beta signaling, glyoxylate and dicarboxylate metabolism) with arginine and ODC1 as hub components. This study highlights the significant impact of prenatal nutrition on the liver tissue of Nelore bulls, shedding light on critical metabolic pathways and hub components related to energy and protein metabolism, as well as immune system and epigenetics.
Collapse
Affiliation(s)
- Guilherme Henrique Gebim Polizel
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, 13635-900, SP, Brazil.
| | - Simara Larissa Fanalli
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, 13635-900, SP, Brazil
| | - Wellison J S Diniz
- Department of Animal Sciences, College of Agriculture, Auburn University, Auburn, AL, 36849, USA
| | - Aline Silva Mello Cesar
- Department of Food Science and Technology, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias 11, Piracicaba, 13418-900, SP, Brazil
| | - Nara Regina Brandão Cônsolo
- Department of Nutrition and Animal Production, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, Av. Duque de Caxias Norte, 255, 13635- 900, Pirassununga, SP, Brazil
| | - Heidge Fukumasu
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, 13635-900, SP, Brazil
| | - Angela Cánovas
- Department of Animal Biosciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
| | - Arícia Christofaro Fernandes
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, 13635-900, SP, Brazil
| | - Barbara Carolina Teixeira Prati
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, 13635-900, SP, Brazil
| | - Édison Furlan
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, 13635-900, SP, Brazil
| | - Gabriela do Vale Pombo
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, 13635-900, SP, Brazil
| | - Miguel Henrique de Almeida Santana
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga, 13635-900, SP, Brazil
| |
Collapse
|
4
|
Davidson BD, Zambon AA, Guadagnin AR, Hoppmann A, Larsen GA, Sherlock DN, Luchini D, Apelo SIA, Laporta J. Rumen-protected methionine supplementation during the transition period under artificially induced heat stress: impacts on cow-calf performance. J Dairy Sci 2024:S0022-0302(24)00898-1. [PMID: 38851569 DOI: 10.3168/jds.2024-24739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/07/2024] [Indexed: 06/10/2024]
Abstract
Dairy cows experiencing heat stress (HS) during the pre-calving portion of the transition period give birth to smaller calves and produce less milk and milk protein. Supplementation of rumen-protected methionine (RPM) has been shown to modulate protein, energy, and placenta metabolism, making it a potential candidate to ameliorate HS effects. We investigated the effects of supplementing RPM to transition cows under HS induced by electric heat blanket (EHB) on cow-calf performance. Six weeks before expected calving, 53 Holstein cows were housed in a tie-stall barn and fed a control diet (CON, 2.2% Met of MP) or a CON diet supplemented with Smartamine®M (MET, 2.6% Met of MP, Adisseo Inc., France). Four weeks pre-calving, all MET and half CON cows were fitted with an EHB. The other half of the CON cows were considered thermoneutral (TN), resulting in 3 treatments: CONTN (n = 19), CONHS (n = 17), and METHS (n = 17). Respiratory rate (RR), skin temperature (ST), and rectal temperature (RT) were measured thrice weekly and core body temperatures recorded bi-weekly. Post-calving body weights (BW) and BCS were recorded weekly, and DMI was calculated and averaged weekly. Milk yield was recorded daily and milk components were analyzed every third DIM. Biweekly AA and weekly nonesterified fatty acids (NEFA), β-hydroxybutyrate (BHB), insulin, and glucose were measured from plasma. Calf birth weight and 24 h growth, thermoregulation, and hematology profile were measured and apparent efficiency of absorption (AEA) of immunoglobulins was calculated. Data were analyzed using the MIXED procedure of SAS with 2 preplanned orthogonal contrasts: CONTN vs. the average of CONHS and METHS (C1) and CONHS vs. METHS (C2). Relative to TN, EHB cows had increased RT during the post-calving weeks and increased RR and ST during the entire transition period. Body weight, BCS, DMI, and milk yield were not impacted by the EHB or RPM. However, protein % and SNF were lower in CONHS, relative to METHS cows. At calving, METHS dams had higher glucose concentrations, relative to CONHS, and during the post-calving weeks, the EHB cows had lower NEFA concentrations than TN cows. Calf birthweight and AEA were reduced by HS, while RR was increased by HS. Calf withers height tended to be shorter and RT were lower in CONHS, compared with MTHS heifers. Overall, RPM supplementation to transition cows reverts the negative impact of HS on blood glucose concentration at calving and milk protein % in the dams and increases wither height while decreasing RT in the calf.
Collapse
Affiliation(s)
- B D Davidson
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI †Adisseo USA Inc., Alpharetta, GA, USA
| | - A A Zambon
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI †Adisseo USA Inc., Alpharetta, GA, USA
| | - A R Guadagnin
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI †Adisseo USA Inc., Alpharetta, GA, USA
| | - A Hoppmann
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI †Adisseo USA Inc., Alpharetta, GA, USA
| | - G A Larsen
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI †Adisseo USA Inc., Alpharetta, GA, USA
| | - D N Sherlock
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI †Adisseo USA Inc., Alpharetta, GA, USA
| | - D Luchini
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI †Adisseo USA Inc., Alpharetta, GA, USA
| | - S I Arriola Apelo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI †Adisseo USA Inc., Alpharetta, GA, USA
| | - J Laporta
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI †Adisseo USA Inc., Alpharetta, GA, USA.
| |
Collapse
|
5
|
Diddeniya G, Ghaffari MH, Hernandez-Sanabria E, Guan LL, Malmuthuge N. INVITED REVIEW: Impact of Maternal Health and Nutrition on the Microbiome and Immune Development of Neonatal Calves. J Dairy Sci 2024:S0022-0302(24)00869-5. [PMID: 38825126 DOI: 10.3168/jds.2024-24835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/01/2024] [Indexed: 06/04/2024]
Abstract
This comprehensive review highlights the intricate interplay between maternal factors and the co-development of the microbiome and immune system in neonatal calves. Based on human and mouse studies, multiple prenatal and postnatal factors influence this process by altering the host-associated microbiomes (gut, respiratory tract, skin), microbial colonization trajectories, and priming of the immune systems (mucosal and systemic). This review emphasizes the importance of early life exposure, highlighting postnatal factors that work in synergy with maternal factors in further finetuning the co-development of the neonatal microbiome and immunity. In cattle, there is a general lack of research to identify the maternal effect on the early colonization process of neonatal calves (gut, respiratory tract) and its impact on the priming of the immune system. Past studies have primarily investigated the maternal effects on the passive transfer of immunity at birth. The co-development process of the microbiome and immune system is vital for lifelong health and production in cattle. Therefore, comprehensive research beyond the traditional focus on passive immunity is an essential step in this endeavor. Calf microbiome research reports the colonization of diverse bacterial communities in newborns, which is affected by the colostrum feeding method immediately after birth. In contrast to human studies reporting a strong link between maternal and infant bacterial communities, there is a lack of evidence to clearly define cow-to-calf transmission in cattle. Maternal exposure has been shown to promote the colonization of beneficial bacteria in neonatal calves. Nonetheless, calf microbiome research lacks links to early development of the immune system. An in-depth understanding of the impact of maternal factors on microbiomes and immunity will improve the management of pregnant cows to raise immune-fit neonatal calves. It is essential to investigate the diverse effects of maternal health conditions and nutrition during pregnancy on the gut microbiome and immunity of neonatal calves through collaboration among researchers from diverse fields such as microbiology, immunology, nutrition, veterinary science, and epidemiology.
Collapse
Affiliation(s)
| | | | - Emma Hernandez-Sanabria
- Department of Microbiology and Immunology, Laboratory of Molecular Bacteriology, Rega Institute, KU Leuven, Leuven 3000, Belgium
| | - Le Luo Guan
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, Canada
| | - Nilusha Malmuthuge
- Lethbridge Research and Development Center, Agriculture Agri-Food Canada, Lethbridge, Canada.
| |
Collapse
|
6
|
Moriel P, Vedovatto M, Izquierdo V, Palmer EA, Vendramini JMB. Maternal prepartum supplementation of protein and energy and body condition score modulated the performance of Bos indicus-influenced cow-calf pairs. Anim Reprod Sci 2024; 262:107433. [PMID: 38368654 DOI: 10.1016/j.anireprosci.2024.107433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/10/2024] [Indexed: 02/20/2024]
Abstract
Retrospective analyses were performed on a dataset of 1188 fall-calving, Brangus cow-calf pairs. Analyses 1 sorted cows according to their initial body condition score (BCS < 5 vs. ≥ 5) and whether they received (SUP) or not (NOSUP) prepartum supplementation of protein and energy. Analyses 2 sorted cows according to their calving BCS (BCS < 5 or ≥ 5) and BCS change from calving until the start of the breeding season (lost, maintained, or gained). Cows were not estrus synchronized and were assigned to natural breeding for 90 days. Prepartum supplementation increased (P = 0.04) pregnancy percentage in cows with initial BCS < 5 but not (P = 0.20) with initial BCS ≥ 5. Calf weaning weight was greatest (P ≤ 0.04) for calves born from SUP cows with an initial BCS ≥ 5 and did not differ (P ≥ 0.56) among all remaining groups. Among cows with calving BCS < 5, pregnancy percentage were less (P = 0.05) for cows that lost vs. maintained/gained BCS. Postpartum BCS change did not (P ≥ 0.16) impact pregnancy percentage of cows calving at BCS ≥ 5. Calf weaning weight increased (P < 0.01) for cows calving with BCS ≥ 5 vs. < 5 and was not impacted (P = 0.47) by postpartum BCS change. Therefore, precalving supplementation improved reproduction of cows with BCS below optimal and weaning weight of calves born from cows with BCS above optimal, whereas calving BCS was the major factor affecting postpartum BCS change and cow reproductive performance.
Collapse
Affiliation(s)
- P Moriel
- Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA.
| | - M Vedovatto
- Dean Lee Research and Extension Station, Louisiana State University, Alexandria, LA 71302, USA
| | - V Izquierdo
- Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | - E A Palmer
- Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | - J M B Vendramini
- Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| |
Collapse
|
7
|
Sousa LM, de Souza WL, Oliveira KA, Cidrini IA, Moriel P, Nogueira HCR, Ferreira IM, Ramirez-Zamudio GD, de Oliveira IM, Prados LF, de Resende FD, Siqueira GR. Effect of Different Herbage Allowances from Mid to Late Gestation on Nellore Cow Performance and Female Offspring Growth until Weaning. Animals (Basel) 2024; 14:163. [PMID: 38200894 PMCID: PMC10778419 DOI: 10.3390/ani14010163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
This study evaluated different herbage allowances from mid to late pregnancy on pre- and postpartum physiological responses, milk production, and the performance of Nellore cows and the preweaning growth of their female offspring. Sixty multiparous Nellore cows were blocked by their body weight (BW; 425 ± 36 kg) and body condition score (BCS; 3.67 ± 0.23, scale 1-5) and randomly allocated to twelve pastures. Treatments consisted of two different herbage allowances (HA) during pregnancy: low HA (LHA; 2.80 kg DM/kg of BW) and high HA (HHA; 7.60 kg DM/kg of BW). Both treatment groups were fed 1 g/kg BW of a protein supplement. After calving, all cow-calf pairs were combined in a single group. The effects of maternal treatment × day of the study were detected for herbage mass and allowance, the stocking rate and forage crude protein, and for cow BW, BCS, and carcass measures (p < 0.01). Milk yield corrected to 4% fat, while the levels of fat total solids and cow plasma IGF-1 and urea were different (p ≤ 0.04) between treatments. HHA offspring was heavier (p ≤ 0.05) at 120 days and at weaning. A high herbage allowance can be implemented from mid-gestation until calving to increase cow prepartum performance, post-partum milk yield and composition, and positively modulate female offspring preweaning growth.
Collapse
Affiliation(s)
- Luciana Melo Sousa
- Departament of Animal Science, São Paulo State University, Jaboticabal 14884-900, SP, Brazil; (W.L.d.S.); (K.A.O.); (I.A.C.); (I.M.F.); (F.D.d.R.); (G.R.S.)
- Agência Paulista de Tecnologia dos Agronegócios, Colina 14770-000, SP, Brazil; (H.C.R.N.); (I.M.d.O.); (L.F.P.)
| | - William Luiz de Souza
- Departament of Animal Science, São Paulo State University, Jaboticabal 14884-900, SP, Brazil; (W.L.d.S.); (K.A.O.); (I.A.C.); (I.M.F.); (F.D.d.R.); (G.R.S.)
- Agência Paulista de Tecnologia dos Agronegócios, Colina 14770-000, SP, Brazil; (H.C.R.N.); (I.M.d.O.); (L.F.P.)
| | - Karla Alves Oliveira
- Departament of Animal Science, São Paulo State University, Jaboticabal 14884-900, SP, Brazil; (W.L.d.S.); (K.A.O.); (I.A.C.); (I.M.F.); (F.D.d.R.); (G.R.S.)
- Agência Paulista de Tecnologia dos Agronegócios, Colina 14770-000, SP, Brazil; (H.C.R.N.); (I.M.d.O.); (L.F.P.)
| | - Iorrano Andrade Cidrini
- Departament of Animal Science, São Paulo State University, Jaboticabal 14884-900, SP, Brazil; (W.L.d.S.); (K.A.O.); (I.A.C.); (I.M.F.); (F.D.d.R.); (G.R.S.)
- Agência Paulista de Tecnologia dos Agronegócios, Colina 14770-000, SP, Brazil; (H.C.R.N.); (I.M.d.O.); (L.F.P.)
| | - Philipe Moriel
- Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA;
| | | | - Igor Machado Ferreira
- Departament of Animal Science, São Paulo State University, Jaboticabal 14884-900, SP, Brazil; (W.L.d.S.); (K.A.O.); (I.A.C.); (I.M.F.); (F.D.d.R.); (G.R.S.)
- Agência Paulista de Tecnologia dos Agronegócios, Colina 14770-000, SP, Brazil; (H.C.R.N.); (I.M.d.O.); (L.F.P.)
| | | | - Ivanna Moraes de Oliveira
- Agência Paulista de Tecnologia dos Agronegócios, Colina 14770-000, SP, Brazil; (H.C.R.N.); (I.M.d.O.); (L.F.P.)
| | - Laura Franco Prados
- Agência Paulista de Tecnologia dos Agronegócios, Colina 14770-000, SP, Brazil; (H.C.R.N.); (I.M.d.O.); (L.F.P.)
| | - Flávio Dutra de Resende
- Departament of Animal Science, São Paulo State University, Jaboticabal 14884-900, SP, Brazil; (W.L.d.S.); (K.A.O.); (I.A.C.); (I.M.F.); (F.D.d.R.); (G.R.S.)
- Agência Paulista de Tecnologia dos Agronegócios, Colina 14770-000, SP, Brazil; (H.C.R.N.); (I.M.d.O.); (L.F.P.)
| | - Gustavo Rezende Siqueira
- Departament of Animal Science, São Paulo State University, Jaboticabal 14884-900, SP, Brazil; (W.L.d.S.); (K.A.O.); (I.A.C.); (I.M.F.); (F.D.d.R.); (G.R.S.)
- Agência Paulista de Tecnologia dos Agronegócios, Colina 14770-000, SP, Brazil; (H.C.R.N.); (I.M.d.O.); (L.F.P.)
| |
Collapse
|
8
|
Crouse MS, Trotta RJ, Freetly HC, Lindholm-Perry AK, Neville BW, Oliver WT, Hammer CJ, Syring JG, King LE, Neville TL, Reynolds LP, Dahlen CR, Caton JS, Ward AK, Cushman RA. Disrupted one-carbon metabolism in heifers negatively affects their health and physiology. J Anim Sci 2024; 102:skae144. [PMID: 38770669 PMCID: PMC11176977 DOI: 10.1093/jas/skae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/20/2024] [Indexed: 05/22/2024] Open
Abstract
The objective of this study was to determine the dose-dependent response of one-carbon metabolite (OCM: methionine, choline, folate, and vitamin B12) supplementation on heifer dry matter intake on fixed gain, organ mass, hematology, cytokine concentration, pancreatic and jejunal enzyme activity, and muscle hydrogen peroxide production. Angus heifers (n = 30; body weight [BW] = 392.6 ± 12.6 kg) were individually fed and assigned to one of five treatments: 0XNEG: total mixed ration (TMR) and saline injections at days 0 and 7 of the estrous cycle, 0XPOS: TMR, rumen-protected methionine (MET) fed at 0.08% of the diet dry matter, rumen-protected choline (CHOL) fed at 60 g/d, and saline injections at days 0 and 7, 0.5X: TMR, MET, CHOL, 5-mg B12, and 80-mg folate injections at days 0 and 7, 1X: TMR, MET CHOL, 10-mg vitamin B12, and 160-mg folate at days 0 and 7, and 2X: TMR, MET, CHOL, 20-mg vitamin B12, and 320-mg folate at days 0 and 7. All heifers were estrus synchronized but not bred, and blood samples were collected on days 0, 7, and at slaughter (day 14) during which tissues were collected. By design, heifer ADG did not differ (P = 0.96). Spleen weight and uterine weight were affected cubically (P = 0.03) decreasing from 0XPOS to 0.5X. Ovarian weight decreased linearly (P < 0.01) with increasing folate and B12 injection. Hemoglobin and hematocrit percentage were decreased (P < 0.01) in the 0.5X treatment compared with all other treatments. Plasma glucose, histotroph protein, and pancreatic α-amylase were decreased (P ≤ 0.04) in the 0.5X treatment. Heifers on the 2X treatment had greater pancreatic α-amylase compared with 0XNEG and 0.5X treatment. Interleukin-6 in plasma tended (P = 0.08) to be greater in the 0XPOS heifers compared with all other treatments. Lastly, 0XPOS-treated heifers had reduced (P ≤ 0.07) hydrogen peroxide production in muscle compared with 0XNEG heifers. These data imply that while certain doses of OCM do not improve whole animal physiology, OCM supplementation doses that disrupt one-carbon metabolism, such as that of the 0.5X treatment, can induce a negative systemic response that results in negative effects in both the dam and the conceptus during early gestation. Therefore, it is necessary to simultaneously establish an optimal OCM dose that increases circulating concentrations for use by the dam and the conceptus, while avoiding potential negative side effects of a disruptive OCM, to evaluate the long-term impacts of OCM supplementation of offspring programming.
Collapse
Affiliation(s)
- Matthew S Crouse
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Ronald J Trotta
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Harvey C Freetly
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | | | - Bryan W Neville
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - William T Oliver
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Carrie J Hammer
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Jessica G Syring
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Layla E King
- Department of Agriculture and Natural Resources, University of Minnesota Crookston, Crookston, MN 56716, USA
| | - Tammi L Neville
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Lawrence P Reynolds
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Carl R Dahlen
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Joel S Caton
- Department of Animal Sciences, and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Alison K Ward
- Department of Veterinary Biomedical Science, University of Saskatchewan, Saskatoon, SK S7N5A2, Canada
| | - Robert A Cushman
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| |
Collapse
|
9
|
Izquierdo VS, Cappellozza BI, Silva JVL, Santos GCM, Miranda A, Bittar JHJ, Pickett A, Mackey S, Cooke RF, Vendramini JMB, Moriel P. Maternal pre- and postpartum supplementation of a Bacillus-based DFM enhanced cow and calf performance. J Anim Sci 2024; 102:skae110. [PMID: 38647379 PMCID: PMC11077610 DOI: 10.1093/jas/skae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024] Open
Abstract
This study evaluated the effects of maternal supplementation of a Bacillus-based direct-fed microbial (DFM) on the physiology and growth performance of Bos indicus-influenced cow-calf pairs. On day 0 (~139 d before expected calving date), 72 fall-calving, Brangus crossbred beef heifers (20 to 22 mo of age) pregnant with first offspring were stratified by their initial body weight (BW; 431 ± 31 kg) and body condition score (BCS; 6.0 ± 0.36; scale 1 to 9), and randomly allocated into 1 of 12 bahiagrass pastures (1 ha and six heifers per pasture). Treatments were randomly assigned to pastures (six pastures per treatment) and consisted of heifers supplemented with 1 kg/d of soybean hulls (dry matter, DM) that was added (BAC) or not (CON) with DFM containing Bacillus subtilis and B. licheniformis (Bovacillus; Chr. Hansen A/S, Hørsholm, Denmark). Treatments were provided from days 0 to 242 (139 ± 4 d prepartum to 104 ± 4 d postpartum). Calves were weaned on day 242 (96 ± 30 d of age) and then allocated into 1 of 16 drylot pens and fed the same concentrate at 3.25% of BW (DM) until day 319. Maternal treatment effects were not detected (P ≥ 0.29) for herbage allowance and forage chemical composition. Heifer BCS on days 39 and 63 tended (P ≤ 0.09) to be greater for BAC vs. CON heifers, whereas heifer BCS on day 91 was greater (P = 0.01) for BAC vs. CON heifers. Heifer BCS did not differ (P ≥ 0.20) between treatments on days 179 and 242. Plasma glucose concentration did not differ from days 0 to 63 (P ≥ 0.14) but were greater (P < 0.01) on day 179 and tended (P = 0.09) to be greater on day 242 for BAC vs. CON heifers. Calf BW at birth, ADG from birth to weaning, and BW at weaning did not differ (P ≥ 0.19) between treatments, but calf BW at drylot exit (day 319) was greater (P = 0.05) for BAC vs. CON calves. Maternal treatment effects were not detected (P ≥ 0.42) for calf serum concentration of IgG at birth and postvaccination plasma concentrations of glucose, cortisol, and haptoglobin. Serum titers against bovine respiratory syncytial virus (BRSV) were greater (P = 0.04) for BAC vs. CON calves on day 287, whereas seroconversion against parainfluenza-3 virus (PI-3) was greater (P < 0.01) for BAC vs. CON calves on day 271. Thus, maternal supplementation of a Bacillus-based DFM increased prepartum BCS gain and postpartum plasma glucose concentration of heifers and led to positive carryover effects on postweaning BW gain and humoral immune response in their offspring.
Collapse
Affiliation(s)
- Vinicius S Izquierdo
- Range Cattle Research and Education Center, IFAS, University of Florida, Ona, FL 33865, USA
| | | | - João V L Silva
- Range Cattle Research and Education Center, IFAS, University of Florida, Ona, FL 33865, USA
| | - Giovanna C M Santos
- Range Cattle Research and Education Center, IFAS, University of Florida, Ona, FL 33865, USA
| | - André Miranda
- Range Cattle Research and Education Center, IFAS, University of Florida, Ona, FL 33865, USA
| | - João H J Bittar
- College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Autumn Pickett
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Shea Mackey
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Reinaldo F Cooke
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - João M B Vendramini
- Range Cattle Research and Education Center, IFAS, University of Florida, Ona, FL 33865, USA
| | - Philipe Moriel
- Range Cattle Research and Education Center, IFAS, University of Florida, Ona, FL 33865, USA
| |
Collapse
|
10
|
Baumgaertner F, Menezes ACB, Diniz WJS, Hurlbert JL, Bochantin-Winders KA, Underdahl SR, Kirsch JD, Dorsam ST, McCarthy KL, Ramirez-Zamudio GD, Sedivec KK, Caton JS, Dahlen CR. Effects of rate of body weight gain during the first trimester of gestation on beef heifer and offspring performance, concentrations of hormones and metabolites, and response to vaccination. J Anim Sci 2024; 102:skae193. [PMID: 39028632 PMCID: PMC11337006 DOI: 10.1093/jas/skae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024] Open
Abstract
Our study objectives were to evaluate the effects of divergent rates of body weight (BW) gain during early gestation in beef heifers on F0 performance, metabolic and endocrine status, colostrum immunoglobulins, and subsequent F1 calf characteristics, growth performance, concentrations of hormones and metabolites, and response to vaccination. Angus-based heifers (n = 100; BW = 369 ± 2.5 kg) were adapted to individual feeding for 14 d and bred using artificial insemination with female-sexed semen. Heifers were ranked by BW and assigned to either a basal diet targeting 0.28 kg/d gain (low [LG], n = 50) or the basal diet plus an energy/protein supplement targeting 0.79 kg/d gain (moderate gain [MG], n = 50) until day 84 of gestation. Dam BW and blood samples were collected at 6 time points during gestation; body composition was evaluated on days -10 and 84; and fetal measurements were taken on days 42, 63, and 84. At calving (LG, n = 23; MG, n = 23), dam and calf BW were recorded; and colostrum, calf body measurements, and blood samples were collected. Cow-calf pairs were managed on a common diet from calving to weaning, followed by a common postnatal development period for all F1 female offspring. Growth performance, hormone and metabolite profiles, feeding behavior, and reproductive performance were assessed from birth to prebreeding in F1 heifers. Offspring were vaccinated against respiratory disease and bovine viral diarrhea pathogens on days 62.3 ± 4.13 and 220.3 ± 4.13 postcalving. By design, MG dams were heavier (P < 0.0001) than LG on day 84, and the BW advantage persisted until subsequent weaning of F1 calves. Concentrations of serum IGF-1 and glucose were increased throughout gestation (P < 0.001) in MG dams, whereas concentrations of NEFA were decreased (P < 0.001) in LG dams. Calves from MG dams were 2.14 kg heavier (P = 0.03) and had larger chest circumference (P = 0.04) at birth compared with LG cohorts. Heifers from MG dams continued to have greater (P ≤ 0.03) BW gain and feed efficiency during the development period, but no differences were observed (P ≥ 0.13) in body composition, concentrations of hormones and metabolites, feeding behavior, puberty attainment, and response to vaccination in F1 offspring. Hence, early gestation rate of gain impacted BW and concentrations of glucose and IGF-1 throughout gestation in the F0 dam, resulting in altered F1 calf BW and measurements at birth and increased gain and efficiency during the development period.
Collapse
Affiliation(s)
- Friederike Baumgaertner
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
- Central Grasslands Research and Extension Center, North Dakota State University, Streeter, ND 58483, USA
| | - Ana Clara B Menezes
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Wellison J S Diniz
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Jennifer L Hurlbert
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Kerri A Bochantin-Winders
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Sarah R Underdahl
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - James D Kirsch
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Sheri T Dorsam
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Kacie L McCarthy
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - German D Ramirez-Zamudio
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
- Department of Animal Science, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, 13635-900, Brazil
| | - Kevin K Sedivec
- Central Grasslands Research and Extension Center, North Dakota State University, Streeter, ND 58483, USA
| | - Joel S Caton
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Carl R Dahlen
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
11
|
Izquierdo VS, Silva JVL, Ranches J, Santos GCM, Carroll JA, Burdick Sanchez NC, Bittar JHJ, Vendramini JMB, Moriel P. Removing maternal heat stress abatement during gestation modulated postnatal physiology and improved performance of Bos indicus-influenced beef offspring. J Anim Sci 2023; 101:skad250. [PMID: 37542727 PMCID: PMC10414138 DOI: 10.1093/jas/skad250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023] Open
Abstract
This study evaluated the growth and immune response of beef calves born from Bos indicus-influenced beef heifers provided pre- and postpartum heat abatement on pasture. On 83 ± 4 d prepartum (day 0), 64 Brangus crossbred beef heifers (~¼ B. indicus) were stratified by body weight (BW; 454 ± 37 kg) and body condition score (BCS; 6.3 ± 0.28; scale 1 to 9), and then allocated into 1 of 16 bahiagrass pastures (1 ha and 4 heifers per pasture). Treatments were randomly assigned to pastures (8 pastures per treatment) and consisted of heifers provided (SH) or not (NSH) access to artificial shade (4.5 m2 of shade area per heifer) from 83 d prepartum to 50 d postpartum (days 0 to 133). Heifers and calves were managed similarly from day 133 until the start of the breeding season (day 203). Calves were weaned on day 203 (at 119 ± 19 d of age), limit-fed the same drylot diet at 3.5% of BW (DM basis) days 209 to 268 (3 to 4 calves per pen; 8 pens per treatment) and vaccinated against respiratory disease pathogens on days 222 and 236. Heifer intravaginal temperatures from days 35 to 42 were lower (P ≤ 0.03) for NSH vs. SH heifers from 0000 to 0800 hours but greater (P ≤ 0.05) for NSH vs. SH heifers from 1100 to 1800 hours. Heifer intravaginal temperature from days 126 to 132 did not differ (P = 0.99) between NSH and SH heifers. Heifers assigned to NSH had greater respiration rates from days 20 to 96 (P ≤ 0.0007), greater plasma concentration of cortisol on days 35 (P = 0.07) and 55 (P = 0.02), less plasma concentration of insulin-like growth factor 1 (IGF-1) on days 35 (P = 0.10), 55, and 133 (P ≤ 0.05), and less BCS from days 55 to 203 (P ≤ 0.01) compared to SH heifers. Calves born from NSH heifers had less birth BW (P = 0.05), greater overall plasma haptoglobin concentrations (P = 0.05), greater seroconversion against bovine respiratory syncytial virus on day 222 (P = 0.02), tended to have greater ADG from days 209 to 268 (P = 0.07), and had greater BW on day 268 (P = 0.05) compared to SH offspring. Plasma concentrations of cortisol and serum titers against other respiratory disease pathogens did not differ (P ≥ 0.15) between NSH and SH offspring. Hence, removing maternal access to artificial shade: (1) increased prepartum intravaginal temperature and plasma concentrations of cortisol but reduced prepartum BCS and plasma concentrations of IGF-1 in grazing B. indicus-influenced beef heifers; and (2) increased post-weaning BW gain and had positive effects on humoral immune response of their offspring.
Collapse
Affiliation(s)
- Vinicius S Izquierdo
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | - João V L Silva
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | - Juliana Ranches
- Eastern Oregon Agricultural Research Center, Oregon State University, Burns, OR 97720, USA
| | - Giovanna C M Santos
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | | | | | - João H J Bittar
- College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - João M B Vendramini
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | - Philipe Moriel
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| |
Collapse
|
12
|
S. Izquierdo V, L. Silva JV, Palmer E, Ranches J, Bittar JHJ, Santos GCM, Pickett A, Cooke RF, Vendramini JMB, Moriel P. Bakery waste supplementation to late gestating Bos indicus-influenced beef cows successfully impacted offspring postnatal performance. J Anim Sci 2023; 101:skad244. [PMID: 37465852 PMCID: PMC10400122 DOI: 10.1093/jas/skad244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/14/2023] [Indexed: 07/20/2023] Open
Abstract
This study evaluated the growth and immune function of beef calves born to cows supplemented with bakery waste containing two concentrations of crude fat. On day 0 (~90 d before calving), 108 multiparous Brangus crossbred cows were stratified by body weight (BW; 551 ± 65 kg) and body condition score (BCS, 5.5 ± 0.9) and randomly allocated into 1 of 18 bahiagrass (Paspalum notatum) pastures (6 cows and 4.3 ha per pasture). Treatments were randomly assigned to pastures (6 pastures per treatment) and consisted of no prepartum supplementation (NOSUP) and isocaloric and isonitrogenous supplementation of low-fat (LFAT; 6.4% crude fat) or high-fat (HFAT; 10.7% crude fat) bakery waste from days 0 to 70 (1 kg DM per cow per day). Calves were weaned on day 292 (201 ± 17 d of age). Then, 15 heifers per treatment were randomly selected and assigned to drylot pens from days 300 to 345 and vaccinated against respiratory pathogens on days 300 and 315. Cow BCS near calving (day 70) was the least (P ≤ 0.05) for NOSUP cows and did not differ (P = 0.12) between LFAT and HFAT cows. Cow BCS at the start of the breeding season (day 140) was greater (P = 0.05) for HFAT vs. NOSUP cows and intermediate (P ≥ 0.35) for LFAT cows. Plasma concentrations of total polyunsaturated fatty acids in HFAT cows did not differ (P ≥ 0.76) compared with LFAT cows but were greater (P ≤ 0.05) compared to NOSUP cows on day 70. Final pregnancy percentage did not differ (P ≥ 0.26) among treatments, but a greater percentage of HFAT cows calved (P ≤ 0.05) their second offspring during the first 21 d of the calving season compared to NOSUP and LFAT cows (bred by natural service). Weaning BW was the greatest (P ≤ 0.05) for LFAT and least for NOSUP calves. Maternal treatments did not impact (P ≥ 0.11) postweaning growth and total DM intake of calves. Average plasma cortisol concentrations were greater (P = 0.03) for NOSUP vs. HFAT calves and intermediate for LFAT calves (P ≥ 0.26). Serum titers against infectious bovine rhinotracheitis and bovine respiratory syncytial virus were greater or tended to be greater (P ≤ 0.08) for HFAT vs. LFAT calves and intermediate (P ≥ 0.27) for NOSUP calves at the end of preconditioning. Thus, supplemental fat concentration fed to late-gestating beef cows had variable effects on calf performance. Low-fat bakery waste led to the greatest calf preweaning growth, whereas high-fat bakery waste enhanced maternal reproduction and had minor benefits to calf humoral immune function.
Collapse
Affiliation(s)
- Vinicius S. Izquierdo
- University of Florida, Range Cattle Research and Education Center, Ona, FL 33865, USA
| | - João V L. Silva
- University of Florida, Range Cattle Research and Education Center, Ona, FL 33865, USA
| | - Elizabeth Palmer
- University of Florida, Range Cattle Research and Education Center, Ona, FL 33865, USA
| | - Juliana Ranches
- Oregon State University, Eastern Oregon Agricultural Research Center, Burns, OR 97720, USA
| | - João H J Bittar
- University of Florida, College of Veterinary Medicine, Gainesville, FL 32610, USA
| | - Giovanna C M Santos
- University of Florida, Range Cattle Research and Education Center, Ona, FL 33865, USA
| | - Autumn Pickett
- Texas A&M University, Department of Animal Science, College Station, TX 77843, USA
| | - Reinaldo F Cooke
- Texas A&M University, Department of Animal Science, College Station, TX 77843, USA
| | - João M B Vendramini
- University of Florida, Range Cattle Research and Education Center, Ona, FL 33865, USA
| | - Philipe Moriel
- University of Florida, Range Cattle Research and Education Center, Ona, FL 33865, USA
| |
Collapse
|
13
|
Redifer CA, Loy DD, Youngs CR, Wang C, Meyer AM, Tucker HA, Gunn PJ. Evaluation of peripartum supplementation of methionine hydroxy analogue on beef cow-calf performance. Transl Anim Sci 2023; 7:txad046. [PMID: 37256190 PMCID: PMC10226683 DOI: 10.1093/tas/txad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/05/2023] [Indexed: 06/01/2023] Open
Abstract
The objective was to evaluate the effects of peripartum supplementation of a methionine hydroxy analogue (MHA) to primiparous, spring-calving beef females on dam and progeny performance. Angus heifers (n = 60) were blocked by expected parturition date, stratified by body weight (BW) and body condition score (BCS), and randomized to 1 of 15 pens. Pens were randomly assigned to 1 of 3 dietary treatments: a basal diet supplemented with 0 (M0), 15 (M15), or 30 (M30) g/animal/d of MHA (provided as MFP feed supplement, Novus International Inc., St. Charles, MO). Diets were fed from 45 ± 13 (SD) d pre-calving through 81 ± 13 d postpartum (DPP), after which all cow-calf pairs were managed as a single group on pasture until weaning (199 ± 13 DPP). Dam BW, BCS, and blood samples were taken at 6 predetermined timepoints. Progeny data were collected at birth, 2 intermediate timepoints, and at weaning. Milk samples were collected for composition analysis at 7 ± 2 DPP and at 55 ± 5 DPP. Serial progesterone samples were analyzed to establish resumption of cyclicity, and ultrasonography was performed at 55 ± 5 DPP to evaluate ovarian function. Cows were bred via artificial insemination at 82 ± 13 DPP and subsequently exposed to bulls for a 55-d breeding season. Pen was the experimental unit, and preplanned orthogonal contrasts were tested (linear effect and M0 vs. M15 + M30). Dam BW and BCS were not affected by treatment (P ≥ 0.29) throughout the study. Week 1 milk fat concentration increased linearly (P = 0.05) and total solids tended to increase linearly (P = 0.07) as MHA increased; however, no other milk components were affected (P ≥ 0.16). Treatment did not affect (P ≥ 0.16) dam reproductive parameters or progeny growth from birth until weaning. Post-calving, circulating methionine equivalents tended to linearly increase (P = 0.10) with increasing MHA supplementation. At breeding, plasma urea N linearly decreased (P = 0.03) with increased supplementation of MHA, and plasma non-esterified fatty acids were less (P = 0.04) in MHA-supplemented dams compared with dams receiving no MHA. Maternal circulating glucose, glutathione peroxidase, and thiobarbituric acid-reactive substances were not affected (P ≥ 0.15) by treatment at any point. These data indicate that peripartum supplementation of MHA may increase milk fat composition shortly after calving, but MHA supplementation did not improve progeny growth or dam reproductive performance in the current study.
Collapse
Affiliation(s)
- Colby A Redifer
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Daniel D Loy
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Curtis R Youngs
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Chong Wang
- Department of Statistics, Iowa State University, Ames, IA 50011, USA
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011, USA
| | - Allison M Meyer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | | |
Collapse
|
14
|
Izquierdo V, Vedovatto M, Palmer EA, Oliveira RA, Silva HM, Vendramini JMB, Moriel P. Frequency of maternal supplementation of energy and protein during late gestation modulates preweaning growth of their beef offspring. Transl Anim Sci 2022; 6:txac110. [PMID: 36090697 PMCID: PMC9449678 DOI: 10.1093/tas/txac110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/16/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
This study evaluated the effects of decreasing the frequency of dried distillers grains (DDG) supplementation during third trimester of gestation on cow physiology and offspring preweaning growth. At 201 ± 7 d prepartum (day 0 of the study), 120 Brangus crossbred cows were stratified by body weight (BW = 543 ± 53 kg) and body condition score (BCS = 5.47 ± 0.73), and then assigned randomly to 1 of 20 bahiagrass (Paspalum notatum) pastures (six cows and 4.7 ha/pasture). Treatments were randomly assigned to pastures (five pastures/treatment) and consisted of cows offered no DDG supplementation (NOSUP) or precalving supplementation of DDG dry matter at 1 kg/cow daily (7×), 2.33 kg/cow every Monday, Wednesday, and Friday (3×), or 7 kg/cow every Monday (1×) from day 0 to 77. All cows assigned to DDG supplementation received the same total amount of DDG dry matter (77 kg/cow) from day 0 to 77. All cow-calf pairs were managed similarly from day 77 until calf weaning (day 342). Supplementation frequency did not impact (P ≥ 0.16) any forage or cow reproduction data. Cow BCS on days 77, 140, and 342 did not differ among 1×, 3×, and 7× cows (P ≥ 0.29) but all supplemented cows, regardless of supplementation frequency, had greater BCS on days 77, 140, and 342 compared to NOSUP cows (P ≤ 0.04). Cows offered 1× supplementation had greater plasma concentrations of IGF-1 on days 35 and 140 compared to NOSUP, 3× and 7× cows (P ≤ 0.04), whereas 3× and 7× cows had greater plasma concentrations of IGF-1 on day 35 compared to NOSUP cows (P ≤ 0.005). Average plasma concentrations of glucose did not differ among 1×, 3×, and 7× cows (P ≥ 0.44), but all supplemented cows had greater plasma concentrations of glucose compared to NOSUP cows (P ≤ 0.05). Birth BW of the first offspring did not differ between 3× and 7× calves (P = 0.54) but both groups were heavier at birth compared to NOSUP calves (P ≤ 0.05). On day 342, calves born from 7× cows were the heaviest (P ≤ 0.05), whereas calves born from 1× and 3× cows had similar BW (P = 0.97) but both groups were heavier compared to calves born from NOSUP cows (P ≤ 0.05). In summary, decreasing the frequency of DDG supplementation, from daily to one or three times weekly, during third trimester of gestation of beef cows did not impact cow BCS but altered maternal plasma concentrations of IGF-1 and glucose, leading to reduced offspring preweaning growth.
Collapse
Affiliation(s)
- Vinicius Izquierdo
- IFAS – Range Cattle Research and Education Center, University of Florida , Ona, FL 33865 , USA
| | - Marcelo Vedovatto
- IFAS – Range Cattle Research and Education Center, University of Florida , Ona, FL 33865 , USA
| | - Elizabeth A Palmer
- IFAS – Range Cattle Research and Education Center, University of Florida , Ona, FL 33865 , USA
| | - Rhaiza A Oliveira
- IFAS – Range Cattle Research and Education Center, University of Florida , Ona, FL 33865 , USA
| | - Hiran M Silva
- IFAS – Range Cattle Research and Education Center, University of Florida , Ona, FL 33865 , USA
| | - João M B Vendramini
- IFAS – Range Cattle Research and Education Center, University of Florida , Ona, FL 33865 , USA
| | - Philipe Moriel
- IFAS – Range Cattle Research and Education Center, University of Florida , Ona, FL 33865 , USA
| |
Collapse
|
15
|
Vedovatto M, Izquierdo V, Palmer E, Oliveira RA, Silva HM, Vendramini JMB, Moriel P. Monensin supplementation during late gestation of beef cows alters maternal plasma concentrations of insulin-like growth factors 1 and 2 and enhances offspring preweaning growth. Transl Anim Sci 2022; 6:txac105. [PMID: 36046092 PMCID: PMC9423031 DOI: 10.1093/tas/txac105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/29/2022] [Indexed: 11/28/2022] Open
Abstract
This study evaluated the effects of maternal prepartum supplementation of dried distillers grains (DDG), with or without monensin addition, on maternal performance and physiology and offspring preweaning growth. On day 0 (approximately 197 ± 4 d prepartum), 150 multiparous, Brangus crossbred beef cows were ranked by their initial body weight (BW; 524 ± 51 kg) and body condition score (BCS; 5.0 ± 0.63), and then randomly assigned into one of 15 bahiagrass (Paspalum notatum) pastures (10 cows and 8.1 ha/pasture). Maternal treatments were randomly assigned to pastures (5 pastures/treatment) and consisted of no prepartum supplementation of DDG (NOSUP) or supplementation of DDG at 1 kg/cow/d (dry matter basis; DM) added with 0 mg (SUP) or 200 mg/d of monensin (SUPMO) from days 0 to 77. Effects of maternal treatment and maternal treatment × day of the study were not detected (P ≥ 0.63) for any forage data. Cow BCS on day 35 and near calving (day 77) did not differ (P ≥ 0.19) between SUP and SUPMO cows but both groups had greater (P ≤ 0.001) BCS compared with NOSUP cows. Cow BCS at the start of the breeding season (day 142) and on day 168 were the greatest (P < 0.0001) for SUPMO cows, least for NOSUP cows, and intermediate (P ≤ 0.02) for SUP cows. Maternal plasma concentrations of glucose did not differ (P ≥ 0.25) among treatments. Plasma concentrations of insulin-like growth factor 1 (IGF-1) on day 77 were the least for NOSUP cows (P ≤ 0.05) and did not differ (P = 0.66) between SUP and SUPMO cows, whereas plasma concentrations of IGF-2 on days 35 and 77 were greatest (P ≤ 0.05) for SUPMO cows and did not differ (P ≥ 0.60) between NOSUP and SUP cows. Birth BW of first offspring did not differ (P = 0.77) between SUP and SUPMO calves but NOSUP calves were lighter at birth (P ≤ 0.05) compared with SUP and SUPMO calves. Percentage of cows pregnant with a second offspring did not differ (P = 0.72) between SUP and SUPMO cows and were the least for NOSUP cows (P ≤ 0.05). First offspring BW at weaning (day 325) was greatest (P ≤ 0.05) for SUPMO calves, least for NOSUP calves, and intermediate for SUP calves. Therefore, adding monensin into prepartum DDG supplements for Bos indicus-influenced beef cows did not increase cow prepartum BCS but led to greatest offspring preweaning growth, likely by modulating maternal plasma concentrations of IGF-1 and IGF-2 during gestation.
Collapse
Affiliation(s)
- Marcelo Vedovatto
- IFAS—Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | - Vinicius Izquierdo
- IFAS—Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | - Elizabeth Palmer
- IFAS—Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | - Rhaiza A Oliveira
- IFAS—Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | - Hiran M Silva
- IFAS—Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | - João M B Vendramini
- IFAS—Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | - Philipe Moriel
- IFAS—Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| |
Collapse
|
16
|
Schalch Junior FJ, Polizel GHG, Cançado FACQ, Fernandes AC, Mortari I, Pires PRL, Fukumasu H, Santana MHDA, Saran Netto A. Prenatal Supplementation in Beef Cattle and Its Effects on Plasma Metabolome of Dams and Calves. Metabolites 2022; 12:347. [PMID: 35448533 PMCID: PMC9028846 DOI: 10.3390/metabo12040347] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
This study investigated the effect of different prenatal nutrition on the plasma metabolome of Nellore dams and their offspring. For that purpose, three nutritional treatments were used in 126 cows during pregnancy: NP—(control) only mineral supplementation; PP—protein-energy supplementation in the final third; and FP—protein-energy supplementation during the entire pregnancy. Targeted metabolomics were analyzed in plasma at the beginning of pregnancy and in pre-delivery of cows (n = 27) as well as in calves (n = 27, 30 ± 9.6 days of age). Data were analyzed by the analysis of variance, partial least squares discriminant analysis, and the principal component analysis (PCA). The PCA showed a clear clustering in the periods investigated only in cows (early gestation and pre-delivery). We found significant metabolites in both supervised analyses (p < 0.05 and VIP score > 1) for cows (Taurine, Glutamic acid, Histidine, and PC aa C42:2) and for calves (Carnosine, Alanine, and PC aa C26:0). The enrichment analysis revealed biological processes (p < 0.1) common among cows and calves (histidine metabolism and beta-alanine metabolism), which may be indicative of transgenerational epigenetic changes. In general, fetal programming affected mainly the metabolism of amino acids.
Collapse
Affiliation(s)
- Fernando José Schalch Junior
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (F.J.S.J.); (G.H.G.P.); (A.C.F.); (I.M.); (A.S.N.)
| | - Guilherme Henrique Gebim Polizel
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (F.J.S.J.); (G.H.G.P.); (A.C.F.); (I.M.); (A.S.N.)
| | - Fernando Augusto Correia Queiroz Cançado
- Department of Basic Sciences, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil;
| | - Arícia Christofaro Fernandes
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (F.J.S.J.); (G.H.G.P.); (A.C.F.); (I.M.); (A.S.N.)
| | - Isabela Mortari
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (F.J.S.J.); (G.H.G.P.); (A.C.F.); (I.M.); (A.S.N.)
| | - Pedro Ratto Lisboa Pires
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (P.R.L.P.); (H.F.)
| | - Heidge Fukumasu
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (P.R.L.P.); (H.F.)
| | - Miguel Henrique de Almeida Santana
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (F.J.S.J.); (G.H.G.P.); (A.C.F.); (I.M.); (A.S.N.)
| | - Arlindo Saran Netto
- Department of Animal Science, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (F.J.S.J.); (G.H.G.P.); (A.C.F.); (I.M.); (A.S.N.)
| |
Collapse
|
17
|
Palmer EA, Vedovatto M, Oliveira RA, Ranches J, Vendramini JMB, Poore MH, Martins T, Binelli M, Arthington JD, Moriel P. Effects of maternal winter vs. year-round supplementation of protein and energy on postnatal growth, immune function, and carcass characteristics of Bos indicus-influenced beef offspring. J Anim Sci 2022; 100:6539999. [PMID: 35230426 PMCID: PMC8886918 DOI: 10.1093/jas/skac003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022] Open
Abstract
This 2-yr study evaluated the effects of winter vs. year-round supplementation of Bos indicus-influenced beef cows on cow reproductive performance and impact on their offspring. On day 0 of each year (approximately day 122 ± 23 of gestation), 82 to 84 mature Brangus cows/yr were stratified by body weight (BW; 475 ± 67 kg) and body condition score (BCS; 4.85 ± 0.73) and randomly assigned to 1 of 6 bahiagrass (Paspalum notatum) pastures (13 to 14 cows/pasture). Treatments were randomly assigned to pastures consisting of winter supplementation with molasses + urea (WMOL), or year-round supplementation with molasses + urea (YMOL) or wheat middling-based range cubes (YCUB). Total yearly supplement DM amount was 272 kg/cow and supplements were formulated to be isocaloric and isonitrogenous (75% TDN and 20% CP). On day 421 (weaning; approximately 260 ± 24 d of age), 33 to 35 steers/yr were vaccinated against parainfluenza-3 (PI3) and bovine viral diarrhea virus type 1 (BVDV-1) and transported 1,193 km to a feedlot. Steers were penned according to maternal pasture and managed similarly until slaughter. Data were analyzed using the MIXED and GLIMMIX procedures of SAS. On day 217 (start of breeding season), BCS was greater (P = 0.01) for YMOL than WMOL cows, whereas BCS of YCUB did not differ (P ≥ 0.11) to both WMOL and YMOL cows. The percentage of cows that calved, calving date, birth BW, and preweaning BW of the first offspring did not differ (P ≥ 0.22) among maternal treatments. Plasma cortisol concentrations were greater (P ≤ 0.001) for YCUB steers at feedlot arrival (day 422) than WMOL and YMOL steers. Moreover, YCUB steers had greater (P = 0.02) and tended (P = 0.08) to have greater plasma concentrations of haptoglobin compared to WMOL and YMOL steers, respectively. Antibody titers against PI3 and BVDV-1 viruses did not differ (P ≥ 0.25) among maternal treatments. Steer BW at feedlot exit was greater (P ≤ 0.05) for YMOL and WMOL than YCUB steers. However, feedlot DMI did not differ (P ≥ 0.37) by maternal treatment. Hot carcass weight, yield grade, LMA, and marbling did not differ (P ≥ 0.14) among maternal treatments. Percentage of steers that graded low choice was enhanced (P ≤ 0.05) for WMOL and YCUB than YMOL steers. Maternal year-round supplementation of range cubes or molasses + urea either did not impact or decrease growth, immune function, and carcass characteristics of the offspring when compared with maternal supplementation of molasses + urea during winter only.
Collapse
Affiliation(s)
- Elizabeth A Palmer
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | - Marcelo Vedovatto
- Unidade Universitária de Aquidauana, Universidade Estadual de Mato Grosso do Sul, Aquidauana, MS, Brazil
| | - Rhaiza A Oliveira
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | - Juliana Ranches
- Eastern Oregon Agricultural Research Center, Oregon State University, Burns, OR 97720, USA
| | - Joao M B Vendramini
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | - Matthew H Poore
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Thiago Martins
- Department of Animal Science, University of Florida, Gainesville, FL 32605, USA
| | - Mario Binelli
- Department of Animal Science, University of Florida, Gainesville, FL 32605, USA
| | - John D Arthington
- Department of Animal Science, University of Florida, Gainesville, FL 32605, USA
| | - Philipe Moriel
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA,Corresponding author:
| |
Collapse
|
18
|
Palmer EA, Vedovatto M, Oliveira RA, Ranches J, Vendramini JMB, Poore MH, Martins T, Binelli M, Arthington JD, Moriel P. Timing of maternal supplementation of dried distillers grains during late gestation influences postnatal growth, immunocompetence, and carcass characteristics of Bos indicus-influenced beef calves. J Anim Sci 2022; 100:6517363. [PMID: 35092433 PMCID: PMC8903140 DOI: 10.1093/jas/skac022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/25/2022] [Indexed: 01/31/2023] Open
Abstract
This 2-yr study investigated the timing of dried distillers grains (DDG) supplementation during the third trimester of gestation of Bos indicus-influenced beef cows and its impact on their offspring performance. On day 0 of each year (84 d before calving), Brangus cows (n = 84/yr; cow age = 8 ± 3 yr) were stratified by initial body weight (BW; 482 ± 75 kg) and body condition score (BCS; 5.3 ± 0.8) and assigned randomly to one of six bahiagrass (Paspalum notatum) pastures (experimental units; 14 cows/pasture). Treatments were assigned randomly to pasture (2 pastures/treatment/yr) and consisted of no prepartum supplementation (CON), 2 kg/d of DDG from day 0 to 42 (LATE42), or 1 kg/d of DDG from day 0 to 84 (LATE84). Following calving (day 84), cow-calf pairs remained in their respective pastures, and cows were offered sugarcane molasses + urea (1.82 kg of dry matter/cow/d) from day 85 until the end of the breeding season (day 224). On day 347, steer calves (n = 38/yr; 11 to 15 steers/treatment/yr) were weaned and transported to the feedlot (1,193 km). Steers were penned according to cow prepartum pasture and managed similarly until the time of harvest. BCS at calving was greater (P < 0.01) for LATE42 and LATE84 vs. CON cows but did not differ (P = 0.16) between LATE42 and LATE84 cows. Calving date, calving percentage, and birth BW of the first offspring did not differ (P ≥ 0.22) among treatments. However, LATE42 cows calved their second offspring 8 d earlier (P = 0.04) compared with CON and LATE84 cows. At weaning (first offspring), LATE84 calves were the heaviest (P ≤ 0.05), CON calves were the lightest, and LATE42 calves had intermediate BW (P ≤ 0.05). Steer plasma concentrations of cortisol and haptoglobin and serum bovine viral diarrhea virus type-1 titers did not differ (P ≥ 0.21) between treatments. Steer serum parainfluenza-3 titers were greater (P = 0.03) for LATE42 vs. CON steers, tended to be greater (P = 0.10) for LATE84 compared with CON steers, and did not differ (P = 0.38) between LATE42 and LATE84 steers. Steer feedlot BW, average daily gain, dry matter intake, and hot carcass weight did not differ (P ≥ 0.36) between treatments. Marbling and the percentage of steers grading choice were greater (P ≤ 0.04) for LATE42 vs. CON steers, whereas LATE84 steers were intermediate. In summary, different timing of DDG supplementation during the third trimester of gestation could be explored to optimize cow BCS and offspring preweaning growth and carcass quality.
Collapse
Affiliation(s)
- Elizabeth A Palmer
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | - Marcelo Vedovatto
- Unidade Universitária de Aquidauana, Universidade Estadual de Mato GrIGFosso do Sul, Aquidauana, MS, Brazil
| | - Rhaiza A Oliveira
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | - Juliana Ranches
- Eastern Oregon Agricultural Research Center, Oregon State University, Burns, OR 97720, USA
| | - Joao M B Vendramini
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | - Matthew H Poore
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Thiago Martins
- Department of Animal Science, University of Florida, Gainesville, FL 32605, USA
| | - Mario Binelli
- Department of Animal Science, University of Florida, Gainesville, FL 32605, USA
| | - John D Arthington
- Department of Animal Science, University of Florida, Gainesville, FL 32605, USA
| | - Philipe Moriel
- IFAS – Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA,Corresponding author:
| |
Collapse
|
19
|
Moriel P, Palmer EA, Harvey KM, Cooke RF. Improving Beef Progeny Performance Through Developmental Programming. FRONTIERS IN ANIMAL SCIENCE 2021. [DOI: 10.3389/fanim.2021.728635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Maternal nutritional management during gestation appears to modulate fetal development and imprint offspring postnatal health and performance, via altered organ and tissue development and tissue-specific epigenetics. This review highlighted the studies demonstrating how developmental programming could be explored by beef producers to enhance offspring performance (growth, immune function, and reproduction), including altering cow body condition score (BCS) during pregnancy and maternal supplementation of protein and energy, polyunsaturated fatty acids (PUFA), trace minerals, frequency of supplementation, specific amino acids, and vitamins. However, this review also highlighted that programming effects on offspring performance reported in the literature were highly variable and depended on level, duration, timing, and type of nutrient restriction during gestation. It is suggested that maternal BCS gain during gestation, rather than BCS per se, enhances offspring preweaning growth. Opportunities for boosting offspring productive responses through maternal supplementation of protein and energy were identified more consistently for pre- vs. post-weaning phases. Maternal supplementation of specific nutrients (i.e., PUFA, trace minerals, and methionine) demonstrated potential for improving offspring performance, health and carcass characteristics during immunological challenging scenarios. Despite the growing body of evidence in recent years, the complexity of investigating developmental programming in beef cattle production is also growing and potential reasons for current research challenges are highlighted herein. These challenges include: (1) intrinsic difficulty of accurately measuring cow milk production multiple times in cow-calf systems; (2) larger focus on Bos taurus vs. Bos indicus breeds despite the predominance of Bos indicus-influenced beef breeds in tropical/subtropical environments and their specific, and sometimes opposite, physiological and performance outcomes compared to Bos taurus breeds; (3) limited focus on interaction between prenatal and postnatal management; (4) sex-specific outcomes following similar maternal nutrition during gestation; (5) greater focus on nutrient deficiency vs. excess; (6) limited implementation of immunological challenges; and (7) lack of multigeneration and longer periods of offspring evaluation. This review provides multiple evidence that such obstacles need to be overcome in order to significantly advance the scientific knowledge of developmental programming in beef cattle and promote global beef production.
Collapse
|
20
|
Effects of maternal gestational diet, with or without methionine, on muscle transcriptome of Bos indicus-influenced beef calves following a vaccine-induced immunological challenge. PLoS One 2021; 16:e0253810. [PMID: 34166453 PMCID: PMC8224847 DOI: 10.1371/journal.pone.0253810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Maternal nutrition during gestation can cause epigenetic effects that translate to alterations in gene expression in offspring. This 2-year study employed RNA-sequencing technology to evaluate the pre- and post-vaccination muscle transcriptome of early-weaned Bos indicus-influenced beef calves born from dams offered different supplementation strategies from 57 ± 5 d prepartum until 17 ± 5 d postpartum. Seventy-two Brangus heifers (36 heifers/yr) were stratified by body weight and body condition score and assigned to bahiagrass pastures (3 heifers/pasture/yr). Treatments were randomly assigned to pastures and consisted of (i) no pre- or postpartum supplementation (NOSUP), (ii) pre- and postpartum supplementation of protein and energy using 7.2 kg of dry matter/heifer/wk of molasses + urea (MOL), or (iii) MOL fortified with 105 g/heifer/wk of methionine hydroxy analog (MOLMET). Calves were weaned on d 147 of the study. On d 154, 24 calves/yr (8 calves/treatment) were randomly selected and individually limit-fed a high-concentrate diet until d 201. Calves were vaccinated on d 160. Muscle biopsies were collected from the same calves (4 calves/treatment/day/yr) on d 154 (pre-vaccination) and 201 (post-vaccination) for gene expression analysis using RNA sequencing. Molasses maternal supplementation led to a downregulation of genes associated with muscle cell differentiation and development along with intracellular signaling pathways (e.g., Wnt and TGF-β signaling pathway) compared to no maternal supplementation. Maternal fortification with methionine altered functional gene-sets involved in amino acid transport and metabolism and the one-carbon cycle. In addition, muscle transcriptome was impacted by vaccination with a total of 2,396 differentially expressed genes (FDR ≤ 0.05) on d 201 vs. d 154. Genes involved in cell cycle progression, extracellular matrix, and collagen formation were upregulated after vaccination. This study demonstrated that maternal supplementation of energy and protein, with or without, methionine has long-term implications on the muscle transcriptome of offspring and potentially influence postnatal muscle development.
Collapse
|
21
|
Silva GM, Chalk CD, Ranches J, Schulmeister TM, Henry DD, DiLorenzo N, Arthington JD, Moriel P, Lancaster PA. Effect of rumen-protected methionine supplementation to beef cows during the periconception period on performance of cows, calves, and subsequent offspring. Animal 2020; 15:100055. [PMID: 33516019 DOI: 10.1016/j.animal.2020.100055] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/26/2022] Open
Abstract
Maternal nutrition affects the development of the fetus and postnatal performance of the calf. Methionine may play a critical role in developmental programming and is likely deficient in beef cows fed low-quality forage. The objective of this study was to determine the effect of metabolizable methionine supply to lactating beef cows during the periconception period on performance of cows, calves, and subsequent offspring. This project involved two consecutive production cycles commencing at calving in which dietary treatments were fed to cows during the periconception period along with measurements on cows and initial calves in Production Cycle 1, and measurements on subsequent calves in Production Cycle 2. Brangus-Angus crossbred lactating beef cows (N = 108; age = 6.4 (2.8) year) were stratified by previous calving date and assigned to one of three supplements: (1) control, molasses plus urea at 2.72 kg/day as fed, (2) fishmeal, 2.27 kg/day molasses plus urea plus 0.33 kg/day as fed of fishmeal, and (3) methionine, 2.72 kg/day of molasses plus urea plus 9.5 g/day of 2-hydroxy-4-(methylthio)-butanoic acid. Cows were fed supplements and low-quality limpograss (Hemarthria altissima) hay while grazing dormant bahiagrass (Paspalum notatum Flüggé) pastures during the 115-day periconception period from December 2014 to April 2015 in Production Cycle 1 only. Body weight change and milk yield of cows were measured during the periconception period in Production Cycle 1. Body weight of calves was measured at birth and weaning in both production cycles. Following weaning in Production Cycle 2, eight subsequent steer calves per treatment were individually housed for a 42-day metabolism experiment. Treatment did not affect (P > 0.10) BW change of cows, but cows fed methionine tended (P = 0.09) to produce more energy-corrected milk than control and fishmeal. Treatment did not affect (P > 0.10) 205-day adjusted weaning weight of calves in either production cycle. During the metabolism experiment, subsequent calves from dams fed fishmeal and methionine gained faster (P < 0.05) and had greater (P < 0.05) gain:feed than control calves. Methionine calves tended (P = 0.06) to have greater apparent total tract NDF and ADF digestibility and lesser (P < 0.05) blood glucose concentration than control and fishmeal calves. These data indicate that maternal methionine supply during the periconception period plays an important role in programming future performance of the offspring.
Collapse
Affiliation(s)
- G M Silva
- North Florida Research and Education Center, University of Florida, Marianna, FL 32351, USA
| | - C D Chalk
- Department of Animal Science, Missouri State University, Springfield, MO 65897, USA
| | - J Ranches
- Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | - T M Schulmeister
- North Florida Research and Education Center, University of Florida, Marianna, FL 32351, USA
| | - D D Henry
- North Florida Research and Education Center, University of Florida, Marianna, FL 32351, USA
| | - N DiLorenzo
- North Florida Research and Education Center, University of Florida, Marianna, FL 32351, USA
| | - J D Arthington
- Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | - P Moriel
- Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA
| | - P A Lancaster
- Range Cattle Research and Education Center, University of Florida, Ona, FL 33865, USA.
| |
Collapse
|
22
|
Palmer EA, Vedovatto M, Oliveira RA, Gouvea V, Silva HM, Vendramini JM, Moriel P. Maternal supplement type and methionine hydroxy analogue fortification effects on performance of BOS indicus-influenced beef cows and their offspring. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|