1
|
Giezenaar C, Montoya CA, Kreutz K, Hodgkinson S, Roy NC, Mace LJ, Fraser K, Fernstrom JD, McNabb WC, Moughan PJ. Effects of Different Protein Sources on Amino Acid Absorption and Plasma Appearance of Tryptophan, Large Neutral Amino Acids, and Tryptophan Metabolites in Pigs. J Nutr 2024; 154:2948-2962. [PMID: 39019158 DOI: 10.1016/j.tjnut.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Absorption of tryptophan (TRP) across the gut epithelium is potentially modulated by competing large neutral amino acids (LNAAs), which could affect the appearance of TRP and its metabolites in the bloodstream. OBJECTIVES This study aimed to determine, in a growing pig model of an adult human, the absorption of TRP and other LNAAs from the gastrointestinal tract, and plasma appearance of TRP, LNAAs, and TRP metabolites, in response to dietary proteins varying in TRP content. METHODS Pigs were adapted for 7 d to each of 4 diets that differed in their protein source and TRP content: 1) alpha-lactalbumin (AL; 9.95 mg TRP/g diet DM), 2) whey protein (6.59 mg TRP/g), 3) casein (3.73 mg TRP/g), or 4) zein (0.14 mg TRP/g). On day 8, pigs were euthanised after a 12-h fast (baseline), or 1, 2, 3, 4, or 6 h after they received a test meal consisting of 45 g protein, or a protein-free meal (n = 6 pigs at each time in each meal group). Tryptophan and LNAA absorption from the small intestine, and appearance of TRP, LNAAs, and TRP metabolites (melatonin, serotonin, kynurenine pathway metabolites), in the portal vein and systemic circulation, were determined. RESULTS AL intake resulted in sustained elevated plasma TRP concentrations after an overnight fast. The amount of TRP absorbed was dose-dependently related to protein TRP content (P = 0.028), with fastest rates for pigs fed AL (371 mg/h). Portal and systemic plasma TRP, TRP/LNAA, and the TRP metabolites were highest (P ≤ 0.05) after AL intake, and remained above baseline levels for ∼4 h postprandially. Absorption rates of TRP correlated with postprandial plasma TRP and TRP metabolites (P ≤ 0.05). CONCLUSIONS In adult humans, postprandial plasma TRP and TRP metabolite concentrations can likely be modulated by the TRP content of the meal.
Collapse
Affiliation(s)
- Caroline Giezenaar
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North, New Zealand; Food Experience and Sensory Testing (Feast) Laboratory, School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand.
| | - Carlos A Montoya
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North, New Zealand; Smart Foods and Bioproducts, Te Ohu Rangahau Kai Facility, AgResearch Limited, Palmerston North, New Zealand
| | - Kevin Kreutz
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North, New Zealand
| | - Suzanne Hodgkinson
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North, New Zealand
| | - Nicole C Roy
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North, New Zealand; High-Value Nutrition National Science Challenge, Auckland, New Zealand; Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - Louise J Mace
- Smart Foods and Bioproducts, Te Ohu Rangahau Kai Facility, AgResearch Limited, Palmerston North, New Zealand
| | - Karl Fraser
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North, New Zealand; High-Value Nutrition National Science Challenge, Auckland, New Zealand; Department of Human Nutrition, University of Otago, Dunedin, New Zealand
| | - John D Fernstrom
- Department of Psychiatry, and Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Warren C McNabb
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North, New Zealand; High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Paul J Moughan
- Riddet Institute, Massey University, Te Ohu Rangahau Kai Facility, Palmerston North, New Zealand
| |
Collapse
|
2
|
Rim S, Vedøy OB, Brønstad I, McCann A, Meyer K, Steinsland H, Hanevik K. Inflammation, the kynurenines, and mucosal injury during human experimental enterotoxigenic Escherichia coli infection. Med Microbiol Immunol 2024; 213:2. [PMID: 38430452 PMCID: PMC10908629 DOI: 10.1007/s00430-024-00786-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/29/2023] [Indexed: 03/03/2024]
Abstract
Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrhea in children and travelers, especially in low- and middle-income countries. ETEC is a non-invasive gut pathogen colonizing the small intestinal wall before secreting diarrhea-inducing enterotoxins. We sought to investigate the impact of ETEC infection on local and systemic host defenses by examining plasma markers of inflammation and mucosal injury as well as kynurenine pathway metabolites. Plasma samples from 21 volunteers experimentally infected with ETEC were collected before and 1, 2, 3, and 7 days after ingesting the ETEC dose, and grouped based on the level of intestinal ETEC proliferation: 14 volunteers experienced substantial proliferation (SP) and 7 had low proliferation (LP). Plasma markers of inflammation, kynurenine pathway metabolites, and related cofactors (vitamins B2 and B6) were quantified using targeted mass spectrometry, whereas ELISA was used to quantify the mucosal injury markers, regenerating islet-derived protein 3A (Reg3a), and intestinal fatty acid-binding protein 2 (iFABP). We observed increased concentrations of plasma C-reactive protein (CRP), serum amyloid A (SAA), neopterin, kynurenine/tryptophan ratio (KTR), and Reg3a in the SP group following dose ingestion. Vitamin B6 forms, pyridoxal 5'-phosphate and pyridoxal, decreased over time in the SP group. CRP, SAA, and pyridoxic acid ratio correlated with ETEC proliferation levels. The changes following experimental ETEC infection indicate that ETEC, despite causing a non-invasive infection, induces systemic inflammation and mucosal injury when proliferating substantially, even in cases without diarrhea. It is conceivable that ETEC infections, especially when repeated, contribute to negative health impacts on children in ETEC endemic areas.
Collapse
Affiliation(s)
- Sehee Rim
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.
| | - Oda Barth Vedøy
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Ingeborg Brønstad
- National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | | | | | - Hans Steinsland
- Department of Global Public Health and Primary Care, Faculty of Medicine, Centre for Intervention Science in Maternal and Child Health, Centre for International Health, University of Bergen, Bergen, Norway
- Department of Biomedicine, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Kurt Hanevik
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, National Center for Tropical Infectious Diseases, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
3
|
Hu Z, Feng L, Jiang Q, Wang W, Tan B, Tang X, Yin Y. Intestinal tryptophan metabolism in disease prevention and swine production. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:364-374. [PMID: 38058568 PMCID: PMC10695851 DOI: 10.1016/j.aninu.2023.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/05/2023] [Accepted: 08/11/2023] [Indexed: 12/08/2023]
Abstract
Tryptophan (Trp) is an essential amino acid that cannot be synthesized by animals. It has been characterized into two different isomers, levorotation-Trp (L-Trp) and dextrorotation-Trp (D-Trp), based on their distinct molecule orientation. Intestinal epithelial cells and gut microbiota are involved in metabolizing L-Trp in the gut via the activation of the kynurenine, serotonin, and indole pathways. However, knowledge regarding D-Trp metabolism in the gut remains unclear. In this review, we briefly update the current understanding of intestinal L/D-Trp metabolism and the function of their metabolites in modulating the gut physiology and diseases. Finally, we summarize the effects of Trp nutrition on swine production at different stages, including growth performance in weaned piglets and growing pigs, as well as the reproduction performance in sows.
Collapse
Affiliation(s)
- Zhenguo Hu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, Hunan 410125, China
| | - Luya Feng
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Qian Jiang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Wenliang Wang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Bi'e Tan
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xiongzhuo Tang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yulong Yin
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, Hunan 410125, China
| |
Collapse
|
4
|
He F, Jin X, Wang C, Hu J, Su S, Zhao L, Geng T, Zhao Y, Pan L, Bao N, Sun H. Lactobacillus rhamnosus GG ATCC53103 and Lactobacillus plantarum JL01 improved nitrogen metabolism in weaned piglets by regulating the intestinal flora structure and portal vein metabolites. Front Microbiol 2023; 14:1200594. [PMID: 37455717 PMCID: PMC10338925 DOI: 10.3389/fmicb.2023.1200594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
At present, most studies have shown that probiotics have a positive regulatory effect on the nutritional metabolism of the body, but the mechanism is still unclear. Here, 48 piglets were divided into four groups. The control group was not fed probiotics, the Lac group was fed L. Rhamnosus GG ATCC53103, the Rha group was fed L. Plantarum JL01, and the mix group was fed two types of probiotics. Nitrogen metabolism and mRNA levels of mTOR and S6K in skeletal muscle were observed in each group. Then, metagenome and non-targeted metabonomics were used to observe the changes of intestinal microorganisms and plasma metabolites in portal channels after probiotics feeding. Finally, we combined the results of omics analysis to reveal the mechanism of probiotics on nitrogen metabolism in weaned piglets. The results showed that L. Rhmnosus GG ATCC53103 and L. Plantarum JL01 increased nitrogen apparent digestibility, nitrogen deposition rate, and nitrogen utilization rate of weaned piglets (P < 0.05); the relative expression of mTOR and SK6 mRNA in skeletal muscle increased significantly (P < 0.05). When L. rhamnosus GG ATCC53103 and L. plantarum JL01 were combined, we found that Clostridium and Prevotella significantly increased in the jejunum (P < 0.05). The relative abundance of Lactobacillus, Ruminococcus, Streptococcus, and Prevotella in the ileum increased significantly (P < 0.05). Compared with the control group, L-Tryptophan, 3-Phosphonyloxypyruvate, cis-Aconitate, and Carbamoyl phosphate were significantly increased in the mixed group portal vein. The result of the combinatorial analysis showed that the significantly increased microorganisms could encode the enzyme genes for the synthesis of L-Tryptophan, 3-Phosphonooxypyruvate, cis-Aconitate, and Carbamoyl phosphate. In summary, our results demonstrated that L. Rhamnosus GG ATCC53103 and L. Plantarum JL01 could stimulate the expression of skeletal muscle protein synthesis genes of weaned piglets by modulating the structure of the gut microbiota and its metabolites, thereby improving nitrogen metabolism in weaned piglets.
Collapse
Affiliation(s)
- Feng He
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Xueying Jin
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Chunfeng Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Jingtao Hu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Shuai Su
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Lei Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Tingting Geng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Yuan Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Li Pan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Nan Bao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| | - Hui Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, China
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
| |
Collapse
|
5
|
Sterndale SO, Miller DW, Mansfield JP, Kim JC, Pluske JR. Dietary gamma-aminobutyric acid supplementation does not mitigate stress responses in weaner pigs given adrenocorticotropic hormone and experimentally infected with enterotoxigenic Escherichia coli. Livest Sci 2022. [DOI: 10.1016/j.livsci.2021.104818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Serão NVL, Petry AL, Sanglard LP, Rossoni-Serão MC, Bundy JM. Assessing the statistical training in animal science graduate programs in the United States: survey on statistical training. J Anim Sci 2021; 99:6178508. [PMID: 33738494 PMCID: PMC8280918 DOI: 10.1093/jas/skab086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 03/17/2021] [Indexed: 11/14/2022] Open
Abstract
Statistical analysis of data and understanding of experimental design are critical skills needed by animal science graduate students (ASGS). These skills are even more valuable with the increased development of high-throughput technologies. The objective of this study was to evaluate the perceived statistical training of U.S. ASGS. A survey with 38 questions was shared across U.S. universities, and 416 eligible ASGS from 43 universities participated in this study. The survey included questions on the demographics and overall training, graduate education on statistics, and self-assessment on statistics and career path of ASGS. Several analyses were performed: relationship between perceived received education (PRE; i.e., how ASGS evaluated their graduate education in statistics) and perceived knowledge (PK; i.e., how ASGS evaluated their knowledge in statistics from their education); ranking of statistical topics based on PRE, PK, and confidence in performing statistical analyses (CPSA); cluster analysis of statistical topics for PRE, PK, and CPSA; and factors (demographic, overall training, interest in statistics, and field of study) associated with the overall scores (OS) for PRE, PK, and CPSA. Students had greater (P < 0.05) PRE than PK for most of the statistical topics included in this study. The moderate to high repeatability of answers within statistical topics indicates substantial correlations in ASGS answers between PRE and PK. The cluster analysis resulted in distinct groups of "Traditional" and "Nontraditional" statistical topics. ASGS showed lower (P < 0.05) scores of PRE, PK, and CPSA in "Nontraditional" compared with "Traditional" statistical methods. Several factors were associated (P < 0.05) with the OS of PRE, PK, and CSPA. In general, factors related to greater training and interest in statistics of ASGS were associated with greater OS, such as taking more credits in statistics courses, having additional training in statistics outside the classroom, knowing more than one statistics software, and more. This study provided comprehensive information on the perceived level of education, knowledge, and confidence in statistics in ASGS in the United States. Although objective measurements of their training in statistics are needed, the current study suggests that ASGS have limited statistical training on topics of major importance for the current and future trends of data-driven research in animal sciences.
Collapse
Affiliation(s)
- Nick V L Serão
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Amy L Petry
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.,Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79415, USA
| | - Leticia P Sanglard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | | | - Jennifer M Bundy
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|