1
|
Aryal A, Nwachukwu ID, Aryee ANA. Examining the impact of crops and foods biofortified with micronutrients on the gut microbiome. Food Res Int 2025; 209:116189. [PMID: 40253169 DOI: 10.1016/j.foodres.2025.116189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/13/2025] [Accepted: 03/11/2025] [Indexed: 04/21/2025]
Abstract
Micronutrient deficiencies (MNDs) impact more than three billion individuals worldwide, particularly those in impoverished and marginalized communities, leading to adverse long-term health consequences. Biofortification, which focusses on enhancing the nutrient density of food crops, presents a promising strategy to address this challenge. Recent studies involving both model organisms and human subjects have demonstrated that, beyond remedying common dietary insufficiencies, micronutrients can modulate the composition and functionality of the gut microbiome. The microbiota, in turn, utilize these micronutrients, facilitating digestion, synthesizing essential nutrients, and modulating immune responses, thereby establishing a bidirectional relationship known as the micronutrient-microbiome axis. Numerous studies have also documented significant variations in these interactions, highlighting the complex dynamics of the micronutrient-microbiome relationship. The composition and interactions of the microbiota have been investigated using various methodologies, including 16S rRNA gene sequencing, RT-PCR, metagenomics, and metabolomics. This review explores recent advancements in understanding the reciprocal relationship between micronutrient levels and the gut microbiome, emphasizing key findings that provide critical insights for the development of targeted dietary strategies aimed at alleviating MNDs and improving overall health.
Collapse
Affiliation(s)
- Asmita Aryal
- Department of Human Ecology (Food Science and Biotechnology Program), Delaware State University, Dover, DE, 19901, USA
| | - Ifeanyi D Nwachukwu
- Center for Nutrition and Healthy Lifestyles, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA; Department of Public and Allied Health, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Alberta N A Aryee
- Department of Human Ecology (Food Science and Biotechnology Program), Delaware State University, Dover, DE, 19901, USA.
| |
Collapse
|
2
|
Fernandez Sanchez J, Maknojia AA, King KY. Blood and guts: how the intestinal microbiome shapes hematopoiesis and treatment of hematologic disease. Blood 2024; 143:1689-1701. [PMID: 38364184 PMCID: PMC11103099 DOI: 10.1182/blood.2023021174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/18/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
ABSTRACT Over the past 10 years, there has been a marked increase in recognition of the interplay between the intestinal microbiome and the hematopoietic system. Despite their apparent distance in the body, a large literature now supports the relevance of the normal intestinal microbiota to steady-state blood production, affecting both hematopoietic stem and progenitor cells as well as differentiated immune cells. Microbial metabolites enter the circulation where they can trigger cytokine signaling that influences hematopoiesis. Furthermore, the state of the microbiome is now recognized to affect outcomes from hematopoietic stem cell transplant, immunotherapy, and cellular therapies for hematologic malignancies. Here we review the mechanisms by which microbiotas influence hematopoiesis in development and adulthood as well as the avenues by which microbiotas are thought to impact stem cell transplant engraftment, graft-versus-host disease, and efficacy of cell and immunotherapies. We highlight areas of future research that may lead to reduced adverse effects of antibiotic use and improved outcomes for patients with hematologic conditions.
Collapse
Affiliation(s)
- Josaura Fernandez Sanchez
- Division of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX
| | - Arushana A. Maknojia
- Program in Immunology and Microbiology, Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX
| | - Katherine Y. King
- Program in Immunology and Microbiology, Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX
- Division of Infectious Diseases, Department of Pediatrics, and Center for Cell and Gene Therapy, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX
| |
Collapse
|
3
|
Cohen A, Turjeman S, Levin R, Tal S, Koren O. Comparison of canine colostrum and milk using a multi-omics approach. Anim Microbiome 2024; 6:19. [PMID: 38650014 PMCID: PMC11034113 DOI: 10.1186/s42523-024-00309-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND A mother's milk is considered the gold standard of nutrition in neonates and is a source of cytokines, immunoglobulins, growth factors, and other important components, yet little is known about the components of canine milk, specifically colostrum, and the knowledge related to its microbial and metabolic profiles is particularly underwhelming. In this study, we characterized canine colostrum and milk microbiota and metabolome for several breeds of dogs and examined profile shifts as milk matures in the first 8 days post-whelping. RESULTS Through untargeted metabolomics, we identified 63 named metabolites that were significantly differentially abundant between days 1 and 8 of lactation. Surprisingly, the microbial compositions of the colostrum and milk, characterized using 16S rRNA gene sequencing, were largely similar, with only two differentiating genera. The shifts observed, mainly increases in several sugars and amino sugars over time and shifts in amino acid metabolites, align with shifts observed in human milk samples and track with puppy development. CONCLUSION Like human milk, canine milk composition is dynamic, and shifts are well correlated with developing puppies' needs. Such a study of the metabolic profile of canine milk, and its relation to the microbial community, provides insights into the changing needs of the neonate, as well as the ideal nutrition profile for optimal functionality. This information will add to the existing knowledge base of canine milk composition with the prospect of creating a quality, tailored milk substitute or supplement for puppies.
Collapse
Affiliation(s)
- Alisa Cohen
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Rachel Levin
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Smadar Tal
- Koret School of Veterinary Medicine, The Hebrew University Veterinary Teaching Hospital, Hebrew University of Jerusalem, Rehovot, Israel
- Tel-Hai Academic College, Upper Galilee, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
- Kyung Hee University, Seoul, the Republic of Korea.
| |
Collapse
|
4
|
Deschamps C, Denis S, Humbert D, Priymenko N, Chalancon S, De Bodt J, Van de Wiele T, Ipharraguerre I, Alvarez-Acero I, Achard C, Apper E, Blanquet-Diot S. Canine Mucosal Artificial Colon: development of a new colonic in vitro model adapted to dog sizes. Appl Microbiol Biotechnol 2024; 108:166. [PMID: 38261090 PMCID: PMC10806056 DOI: 10.1007/s00253-023-12987-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/18/2023] [Accepted: 12/24/2023] [Indexed: 01/24/2024]
Abstract
Differences in dog breed sizes are an important determinant of variations in digestive physiology, mainly related to the large intestine. In vitro gut models are increasingly used as alternatives to animal experiments for technical, cost, societal, and regulatory reasons. Up to now, only one in vitro model of the canine colon incorporates the dynamics of different canine gut regions, yet no adaptations exist to reproduce size-related digestive parameters. To address this limitation, we developed a new model of the canine colon, the CANIne Mucosal ARtificial COLon (CANIM-ARCOL), simulating main physiochemical (pH, transit time, anaerobiosis), nutritional (ileal effluent composition), and microbial (lumen and mucus-associated microbiota) parameters of this ecosystem and adapted to three dog sizes (i.e., small under 10 kg, medium 10-30 kg, and large over 30 kg). To validate the new model regarding microbiota composition and activities, in vitro fermentations were performed in bioreactors inoculated with stools from 13 dogs (4 small, 5 medium, and 4 large). After a stabilization period, microbiota profiles clearly clustered depending on dog size. Bacteroidota and Firmicutes abundances were positively correlated with dog size both in vitro and in vivo, while opposite trends were observed for Actinobacteria and Proteobacteria. As observed in vivo, microbial activity also increased with dog size in vitro, as evidenced from gas production, short-chain fatty acids, ammonia, and bile acid dehydroxylation. In line with the 3R regulation, CANIM-ARCOL could be a relevant platform to assess bilateral interactions between food and pharma compounds and gut microbiota, capturing inter-individual or breed variabilities. KEY POINTS: • CANIM-ARCOL integrates main canine physicochemical and microbial colonic parameters • Gut microbiota associated to different dog sizes is accurately maintained in vitro • The model can help to move toward personalized approach considering dog body weight.
Collapse
Affiliation(s)
- Charlotte Deschamps
- UMR 454 MEDIS, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
- Lallemand Animal Nutrition, Blagnac, France
| | - Sylvain Denis
- UMR 454 MEDIS, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | | | - Nathalie Priymenko
- Toxalim (Research Center in Food Toxicology), University of Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31000, Toulouse, France
| | - Sandrine Chalancon
- UMR 454 MEDIS, Université Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Jana De Bodt
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | | | - Inma Alvarez-Acero
- Institute of Food Science, Technology and Nutrition, Spanish National Research Council, ICTAN-CSIC), Madrid, Spain
| | | | | | | |
Collapse
|
5
|
Belchik SE, Oba PM, Wyss R, Asare PT, Vidal S, Miao Y, Adesokan Y, Suchodolski JS, Swanson KS. Effects of a milk oligosaccharide biosimilar on fecal characteristics, microbiota, and bile acid, calprotectin, and immunoglobulin concentrations of healthy adult dogs treated with metronidazole. J Anim Sci 2023; 101:skad011. [PMID: 36617268 PMCID: PMC9912710 DOI: 10.1093/jas/skad011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
In recent dog and cat experiments, a novel milk oligosaccharide biosimilar (GNU100) positively modulated fecal microbiota and metabolite profiles, suggesting benefits to gastrointestinal health. The objective of this study was to investigate the effects of GNU100 on the fecal characteristics, microbiota, and bile acid (BA) concentrations of healthy adult dogs treated with antibiotics. Twelve healthy adult female dogs (mean age: 3.74 ± 2.4 yr) were used in an 8-wk crossover design study (dogs underwent both treatments). All dogs were fed a control diet during a 2-wk baseline, then randomly allotted to 1 of 2 treatments (diet only or diet + 1% GNU100) for another 6 wk. From weeks 2 to 4, dogs were orally administered metronidazole (20 mg/kg BW) twice daily. Fecal scores were recorded daily and fresh fecal samples were collected at weeks 2, 4, 5, 6, and 8 for measurement of pH, dry matter, microbiota populations, and BA, immunoglobulin A, and calprotectin concentrations. On weeks 0, 4, and 8, blood samples were collected for serum chemistry and hematology analysis. All data were analyzed as repeated measures using the Mixed Models procedure of SAS version 9.4, with significance considered P < 0.05. Metronidazole increased (P < 0.0001) fecal scores (looser stools) and modified (P < 0.05) fecal microbiota and BA profiles. Using qPCR, metronidazole reduced fecal Blautia, Fusobacterium, Turicibacter, Clostridium hiranonis, and Faecalibacterium abundances, and increased fecal Streptococcus and Escherichia coli abundances. DNA sequencing analysis demonstrated that metronidazole reduced microbial alpha diversity and influenced the relative abundance of 20 bacterial genera and families. Metronidazole also increased primary BA and reduced secondary BA concentrations. Most antibiotic-induced changes returned to baseline by week 8. Fecal scores were more stable (P = 0.01) in GNU100-fed dogs than controls after antibiotic administration. GNU100 also influenced fecal microbiota and BA profiles, reducing (P < 0.05) the influence of metronidazole on microbial alpha diversity and returning some fecal microbiota and secondary BA to baseline levels at a quicker (P < 0.05) rate than controls. In conclusion, our results suggest that GNU100 supplementation provides benefits to dogs treated with antibiotics, providing more stable fecal scores, maintaining microbial diversity, and allowing for quicker recovery of microbiota and secondary BA profiles which play an essential role in gut health.
Collapse
Affiliation(s)
- Sara E Belchik
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Patricia M Oba
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Romain Wyss
- Gnubiotics Sciences, Route de la Corniche 6, Epalinges, Switzerland
| | - Paul T Asare
- Gnubiotics Sciences, Route de la Corniche 6, Epalinges, Switzerland
| | - Sara Vidal
- Gnubiotics Sciences, Route de la Corniche 6, Epalinges, Switzerland
| | - Yong Miao
- Gnubiotics Sciences, Route de la Corniche 6, Epalinges, Switzerland
| | - Yemi Adesokan
- Gnubiotics Sciences, Route de la Corniche 6, Epalinges, Switzerland
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
6
|
Li Z, Di D, Sun Q, Yao X, Wei J, Li B, Liu K, Shao D, Qiu Y, Liu H, Cheng Z, Ma Z. Comparative Analyses of the Gut Microbiota in Growing Ragdoll Cats and Felinae Cats. Animals (Basel) 2022; 12:ani12182467. [PMID: 36139326 PMCID: PMC9494971 DOI: 10.3390/ani12182467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Accumulating studies have revealed that the gut microbiota had intimate relations with the animal gastrointestinal tract diseases. Through regulating the development of the host’s intestinal immune system, the gut microbiota could directly influence the host’s intestinal function. In the current study, the gut microbiota of Ragdoll cats and Felinae cats were investigated and compared. Results demonstrated the diversity and richness of the gut microbiota in the Felinae cats were much higher than in the Ragdoll cats. However, the relative abundances of beneficial microbes in the Ragdoll cats were much higher than those in the Felinae cats. In all, different genetic portraits determined the different microbial communities in the feline gut. The candidate probiotics isolated in the growing cat’s gut might be applied to treat the gastrointestinal tract diseases. Abstract Today, domestic cats are important human companion animals for their appearance and favorable personalities. During the history of their domestication, the morphological and genetic portraits of domestic cats changed significantly from their wild ancestors, and the gut microbial communities of different breeds of cats also apparently differ. In the current study, the gut microbiota of Ragdoll cats and Felinae cats were analyzed and compared. Our data indicated that the diversity and richness of the gut microbiota in the Felinae cats were much higher than in the Ragdoll cats. The taxonomic analyses revealed that the most predominant phyla of the feline gut microbiota were Firmicutes, Bacteroidota, Fusobacteriota, Proteobacteria, Actinobacteriota, Campilobacterota, and others, while the most predominant genera were Anaerococcus, Fusobacterium, Bacteroides, Escherichia-Shigella, Finegoldia, Porphyromonas, Collinsella, Lactobacillus, Ruminococcus_gnavus_group, Prevotella, and others. Different microbial communities between the Ragdoll group and the Felinae group were observed, and the compared results demonstrated that the relative abundances of beneficial microbes (such as Lactobacillus, Enterococcus, Streptococcus, Blautia, Roseburia, and so on) in the Ragdoll group were much higher than in the Felinae group. The co-occurrence network revealed that the number of nodes and links in the Felinae group was significantly higher than the Ragdoll group, which meant that the network of the Felinae group was larger and more complex than that of the Ragdoll group. PICRUSt function analyses indicated that the differences in microbial genes might influence the energy metabolism and immune functions of the host. In all, our data demonstrated that the richness and diversity of beneficial microbes in the Ragdoll group were much higher than the Felinae group. Therefore, it is possible to isolate and identify more candidate probiotics in the gut microbiota of growing Ragdoll cats.
Collapse
Affiliation(s)
- Zongjie Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Di Di
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Qing Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Xiaohui Yao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Haixia Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Zhanjun Cheng
- Nanjing Policedog Insitute of the Ministry of Public Security, Nanjing 210012, China
- Correspondence: (Z.C.); (Z.M.); Tel.: +86-21-3429-3139 (Z.M.); Fax: +86-21-5408-1818 (Z.M.)
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
- Correspondence: (Z.C.); (Z.M.); Tel.: +86-21-3429-3139 (Z.M.); Fax: +86-21-5408-1818 (Z.M.)
| |
Collapse
|
7
|
Effect of Lactobacillus plantarum-fermented mulberry pomace on antioxidant properties and fecal microbial community. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111651] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Lee AH, Vidal S, Oba PM, Wyss R, Miao Y, Adesokan Y, Swanson KS. Evaluation of a novel animal milk oligosaccharide biosimilar: macronutrient digestibility and gastrointestinal tolerance, fecal metabolites, and fecal microbiota of healthy adult dogs and in vitro genotoxicity assays. J Anim Sci 2021; 99:6102879. [PMID: 33454743 DOI: 10.1093/jas/skab014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/12/2021] [Indexed: 11/13/2022] Open
Abstract
Milk oligosaccharides (MO) are bioactive compounds in mammalian milk that provide health benefits to neonates beyond essential nutrients. GNU100, a novel animal MO biosimilar, was recently tested in vitro, with results showing beneficial shifts in microbiota and increased short-chain fatty acid (SCFA) production, but other effects of GNU100 were unknown. Three studies were conducted to evaluate the safety, palatability, and gastrointestinal (GI) tolerance of GNU100. In study 1, the mutagenic potential of GNU100 was tested using a bacterial reverse mutation assay and a mammalian cell micronucleus test. In study 2, palatability was assessed by comparing diets containing 0% vs. 1% GNU100 in 20 adult dogs. In study 3, 32 adult dogs were used in a completely randomized design to assess the safety and GI tolerance of GNU100 and explore utility. Following a 2-wk baseline, dogs were assigned to one of four treatments and fed for 26 wk: 0%, 0.5%, 1%, and 1.5% GNU100. On weeks 2, 4, and 26, fresh fecal samples were collected to measure stool quality, immunoglobulin A, and calprotectin, and blood samples were collected to measure serum chemistry, inflammatory markers, and hematology. On weeks 2 and 4, fresh fecal samples were collected to measure metabolites and microbiota. On week 4, total feces were collected to assess apparent total tract macronutrient digestibility. Although revertant numbers were greater compared with the solvent control in tester strain WP2uvrA(pKM101) in the presence of metabolic activation (S9) in the initial experiment, they remained below the threshold for a positive mutagenic response in follow-up confirmatory tests, supporting that GNU100 is not mutagenic. Similarly, no cytotoxicity or chromosome damage was observed in the cell micronucleus test. The palatability test showed that 1% GNU100 was strongly preferred (P < 0.05; 3.6:1 consumption ratio) over the control. In study 3, all dogs were healthy and had no signs of GI intolerance or illness. All diets were well accepted, and food intake, fecal characteristics, metabolite concentrations, and macronutrient digestibilities were not altered. GNU100 modulated fecal microbiota, increasing evenness and Catenibacterium, Megamonas, and Prevotella (SCFA producers) and reducing Collinsella. Overall, the results suggest that GNU100 is palatable and well-tolerated, causes no genotoxicity or adverse effects on health, and beneficially shifts the fecal microbiota, supporting the safety of GNU100 for the inclusion in canine diets.
Collapse
Affiliation(s)
- Anne H Lee
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Sara Vidal
- Gnubiotics Sciences SA, Epalinges, Switzerland
| | - Patrícia M Oba
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Romain Wyss
- Gnubiotics Sciences SA, Epalinges, Switzerland
| | - Yong Miao
- Gnubiotics Sciences SA, Epalinges, Switzerland
| | | | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL.,Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
9
|
Oba PM, Lee AH, Vidal S, Wyss R, Miao Y, Adesokan Y, Swanson KS. Effect of a novel animal milk oligosaccharide biosimilar on macronutrient digestibility and gastrointestinal tolerance, fecal metabolites, and fecal microbiota of healthy adult cats. J Anim Sci 2021; 99:skaa399. [PMID: 33320182 PMCID: PMC7799586 DOI: 10.1093/jas/skaa399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/11/2020] [Indexed: 11/13/2022] Open
Abstract
GNU100 is a novel animal milk oligosaccharide (AMO) biosimilar. In a recent in vitro fermentation study, GNU100 was shown to be fermentable by feline gastrointestinal microbiota and lead to increased short-chain fatty acid production. Our objectives herein were to evaluate the palatability, safety, and gastrointestinal tolerance of GNU100 in healthy adult cats. Exploratory end-points were measured to assess utility. In study 1, 20 adult cats were used to test the palatability of diets containing 0% or 1% GNU100. In study 2, 32 (mean age = 1.9 yr; mean body weight = 4.6 kg) male (n = 12) and female (n = 20) adult cats were used in a completely randomized design. After a 2-wk baseline, cats were assigned to one of the following treatment groups and fed for 26 wk: control (CT, no GNU100), low dose (LD, 0.5% GNU100), medium dose (MD, 1.0% GNU100), and high dose (HD, 1.5% GNU100). On weeks 2, 4, and 26, fresh fecal samples were collected for the measurement of stool quality and immune and inflammatory markers and on weeks 2 and 4 for microbiota and metabolites. On week 4, total feces were collected to measure apparent total tract macronutrient digestibility. On weeks 2, 4, and 26, blood samples were collected for serum chemistry, hematology, and inflammatory marker measurement. The palatability test showed that 1% GNU100 was strongly preferred (P < 0.05), with GNU100 having a 17.6:1 consumption ratio compared with control. In the long-term study, all cats remained healthy, without any signs of gastrointestinal intolerance or illness. All diets were well accepted, resulting in similar (P > 0.05) food intake, fecal characteristics, immunoglobulin A, and calprotectin, and dry matter, organic matter, fat, and crude protein digestibilities. Fecal butyrate was greater (P = 0.02) in cats fed HD than cats fed LD or MD. Fecal indole was lower (P = 0.02) in cats fed HD than cats fed LD. Cats fed CT had a higher (P = 0.003) relative abundance of Actinobacteria than cats fed LD. The relative abundance of Peptococcus was impacted by diet and time. At 4 wk, Campylobacter was lower in fecal samples of cats fed HD. Overall, the data suggest that dietary GNU100 supplementation was highly palatable, well tolerated, did not cause detrimental effects on fecal quality or nutrient digestibility, increased fecal butyrate concentrations, and reduced fecal indole concentrations, supporting the safety of GNU100 for inclusion in feline diets and suggesting potential benefits on gastrointestinal health of cats.
Collapse
Affiliation(s)
- Patrícia M Oba
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Anne H Lee
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Sara Vidal
- Gnubiotics Sciences SA, Epalinges, Switzerland
| | - Romain Wyss
- Gnubiotics Sciences SA, Epalinges, Switzerland
| | - Yong Miao
- Gnubiotics Sciences SA, Epalinges, Switzerland
| | | | - Kelly S Swanson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|