1
|
Chen X, Zhang L, Xing T, Zhao L, Gao F. Effects of corn completely replacement by broken rice, wheat, and rice bran and enzyme preparation supplementation on growth performance, meat quality, digestive function, and glucose metabolism of Langshan chickens. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40433800 DOI: 10.1002/jsfa.14347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/04/2025] [Accepted: 04/14/2025] [Indexed: 05/29/2025]
Abstract
BACKGROUND The aim of this experiment was to evaluate the effects of a completely alternative to corn diet, addition of compound enzymes or their combination on growth performance, intestinal digestive enzyme activity, nutrient apparent digestibility and gene expression related to energy metabolism in the breast muscle of Langshan chickens. In total, 192 30-day-old birds were used in a 2 × 2 factorial design, with respect to the main effects of diets (corn or alternative) and enzymes (absent or present). The experimental period was two phases of 28 days each. RESULTS An interaction was observed between diet and enzyme for average daily feed intake (ADFI). Compared to corn-soybean meal basal diet, although the alternative diet showed a decrease (P < 0.05) on ADFI, the alternative diet with compound enzymes showed an improvement (P < 0.05). The main effect of alternative diets improved (P < 0.05) the digestibility of gross energy (GE). The metabolism related gene expression of SGLT-1 and GLUT-2 was significantly up-regulated (P < 0.05). Furthermore, the compound enzymes improved (P < 0.05) dry matter (DM), crude protein (CP) and GE apparent digestibility. Enzyme supplementation elevated (P < 0.05) jejunal chyme amylase, mucosal maltase, and sucrase activity. It also enhanced (P < 0.05) serum albumin (ALB), triiodothyronine (T3), glucose and insulin levels. CONCLUSION The completely alternative diet, compound enzymes supplementation or their combination, had no negative impact on nutrient digestion, and had a beneficial effect on the growth performance of Langshan chickens. The combination of the diet and enzyme played a synergistic effect in improving growth performance. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuan Chen
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Liang Zhao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Baker JT, Deng Z, Gormley AR, Kim SW. Impacts of non-starch polysaccharide sources with enzymes influencing intestinal mucosa-associated microbiota and mucosal immunity of nursery pigs on growth and carcass traits at market weight. J Anim Sci Biotechnol 2025; 16:47. [PMID: 40165296 PMCID: PMC11959798 DOI: 10.1186/s40104-025-01170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/20/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND This study investigated the effects of different non-starch polysaccharide (NSP) sources with NSP degrading enzymes (NSPases) and the influence on the mucosa-associated microbiota and intestinal immunity of nursery pigs, on growth performance and carcass traits at market weight. METHODS One hundred and sixty newly weaned pigs at 7.0 ± 0.3 kg body weight (BW) were allotted in a 2 × 2 factorial with NSP sources and NSPases serving as factors. The 4 dietary treatments were: DDGS, corn distillers' dried grains with solubles as source of NSP; DDGS + NSPases (DDGS +), DDGS with xylanase at 0.01%, 3,000 U/kg of feed and β-mannanase at 0.05%, 400 U/kg of feed; SHWB, soybean hulls and wheat bran replacing corn DDGS as the source of NSP; SHWB with NSPases (SHWB +), SHWB with xylanase at 0.01%, 3,000 U/kg of feed and β-mannanase at 0.05%, 400 U/kg of feed. Pigs were fed for 37 d and housed in groups of 4 pigs per pen. At d 37, the median body weight pig in each pen was euthanized for sampling to analyze intestinal health parameters. Remaining pigs were fed a common diet for subsequent phases to evaluate the carryover effect on growth and carcass traits. RESULTS The SHWB decreased (P < 0.05) the relative abundance of Helicobacter, tended to increase (P = 0.074) the relative abundance of Lactobacillus, increased (P < 0.05) immunoglobulin G (IgG) in the jejunal mucosa, tended to increase (P = 0.096) the villus height (VH) in the jejunum, and tended to improve ADG (P = 0.099) and feed efficiency (P = 0.068) during phase 1 compared to DDGS treatment. Supplementation of NSPases increased (P < 0.05) Shannon index of diversity, increased the relative abundance of Streptococcus and Acinetobacter, and tended to increase (P = 0.082) dry matter digestibility. The BW of pigs fed SHWB was more uniform (P < 0.05) at the end of the 120 d study. Additionally, hot carcass weight of pigs fed SHWB tended to be more uniform (P = 0.089) than DDGS treatment. CONCLUSION Soybean hulls and wheat bran replacing DDGS in nursery diets improved uniformity of pigs at market weight, which might be attributed to beneficial modulation of the mucosa-associated microbiota and enhanced intestinal morphology during the nursery phase. Supplementation of NSPases had beneficial effects on the intestinal mucosa-associated microbiota, digestibility, and intestinal immunity in SHWB treatment, whereas no carryover effects were overserved at market weight.
Collapse
Affiliation(s)
- Jonathan T Baker
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA
| | - Zixiao Deng
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA
| | - Alexa R Gormley
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA.
| |
Collapse
|
3
|
Choi H, Rocha GC, Kim SW. Effects of dietary supplementation of myristic acid on jejunal mucosa-associated microbiota, mucosal immunity, and growth performance of nursery pigs. Anim Sci J 2025; 96:e70027. [PMID: 39777830 PMCID: PMC11707569 DOI: 10.1111/asj.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/08/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
The objective of this study was to investigate the effects of myristic acid on jejunal mucosal microbiota, mucosal immunity, and growth performance of nursery pigs. Thirty-six pigs (6.6 ± 0.4 kg of body weight) were assigned to three treatments (n = 12) for 35 d in three phases: (NC) basal diet; (PC) NC + bacitracin; and (MA) NC + myristic acid compound. Pigs were euthanized to collect jejunal mucosa, jejunal tissues, and ileal digesta. The PC increased (p < 0.05) the relative abundance (RA) of Lactobacillus spp., and Bifidobacterium boum than the NC group. The MA increased (p < 0.05) RA of Bifidobacterium dentium and Megasphaera spp. than the NC group. The PC tended to decrease IL-8 (p = 0.053) and protein carbonyl (p = 0.075) whereas IgG (p = 0.051) and IL-8 (p = 0.090) in jejunal mucosa were decreased by the MA. The PC increased (p < 0.05) the villus height to crypt depth ratio than the NC group. Both bacitracin and myristic acid improved the intestinal health and growth performance of nursery pigs. Effects of bacitracin were rather immediate whereas the effects of myristic acid were obtained after a 3-week feeding.
Collapse
Affiliation(s)
- Hyunjun Choi
- Department of Animal ScienceNorth Carolina State UniversityRaleighNCUSA
| | | | - Sung Woo Kim
- Department of Animal ScienceNorth Carolina State UniversityRaleighNCUSA
| |
Collapse
|
4
|
Huang Q, Yi W, Fan J, Chen R, Ma X, Chen Z, Wu W, Qian L. Effects supplementation of novel multi-enzyme on laying performance, egg quality, and intestinal health and digestive function of laying hens. Poult Sci 2024; 103:104461. [PMID: 39504823 PMCID: PMC11570941 DOI: 10.1016/j.psj.2024.104461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/14/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
This study investigated the effects of multi-enzyme supplementation on various aspects of laying hens, including laying performance, egg quality, intestinal health and digestive function. In total, 384 Jingfen No.6 laying hens at 65-week-age were randomly assigned to four distinct dietary treatments: a basal diet (CON), CON supplemented with 150 g/t multi-enzyme (T1), CON with 300 g/t multi-enzyme (T2), and 600 g/t multi-enzyme (T3). A significant linear (P = 0.044) and quadratic (P = 0.014) increase was observed in the laying rate, while the feed/egg ratio exhibited a linear (P = 0.001) and quadratic (P < 0.001) decrease with increasing multi-enzyme supplementation. Additionally, linear (P < 0.05) and quadratic (P < 0.05) increases were observed in yolk rate and haugh unit with increasing levels of multi-enzyme supplementation. The trypsin activity in the duodenum and crude protein digestibility showed linear (P < 0.05) and quadratic (P < 0.05) increase with the addition of multi-enzyme. Furthermore, lipase and amylase activities in the duodenum increased quadratically (P = 0.041) and linearly (P = 0.040), respectively. Both jejunal and ileal digesta viscosities showed linear (P < 0.05) and quadratic (P < 0.05) decrease with the increasing addition of multi-enzyme. Moreover, multi-enzyme supplementation significantly increased (P < 0.05) the number of goblet cells in the intestinal of the treatment groups. The mRNA expression of Occludin-1, mucin 2 (MUC-2), large neutral amino acids transporter small subunit 1 (LAT-1) in the jejunum were significantly increased (P < 0.05) in the treatment groups (T1, T2 and T3) compared to the CON group. Additionally, the mRNA expression of solute carrier family 6-member 19 (B0AT-1) and large neutral amino acids transporter small subunit 4 (LAT-4) were significantly evaluated (P < 0.05) in the T2 and T3 groups, respectively. In conclusion, multi-enzyme supplementation enhanced digestive enzyme activities and intestinal barrier function, reduced intestinal digesta viscosity, and regulated mRNA expression of intestinal amino acid and lipid transporter genes, thereby improving crude protein digestibility and positively affecting laying performance and egg quality in hens.
Collapse
Affiliation(s)
- Qixin Huang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Wuzhou Yi
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jinghui Fan
- Hainan Institute of Zhejiang University, Sanya 572025, PR China
| | - Rui Chen
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; Hainan Institute of Zhejiang University, Sanya 572025, PR China
| | - Xin Ma
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Zhou Chen
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; Hangzhou Academy of Agricultural Sciences, Hangzhou 310004, PR China
| | - Wenzi Wu
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China; Hangzhou Academy of Agricultural Sciences, Hangzhou 310004, PR China
| | - Lichun Qian
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
5
|
Galli GM, Andretta I, Carvalho CL, Stefanello TB, Souza de Lima Cony B, Zem Fraga A, Ludwig Takeuti K, da Rosa AB, Kipper M. Effects of β-Mannanase Alone or Combined with Multi-Carbohydrase Complex in Corn-Soybean Meal Diets on Nutrient Metabolism and Gut Health of Growing Pigs. Animals (Basel) 2024; 14:3457. [PMID: 39682426 DOI: 10.3390/ani14233457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 12/18/2024] Open
Abstract
(1) Background: This study was performed to evaluate whether the addition of β-mannanase alone or combined with a multi-carbohydrase complex can improve diet digestibility, nutrient and energy metabolism, and the gut health of growing pigs. (2) Methods: Twenty-four pigs (35.56 ± 3.81 kg) were fed a control corn-soybean meal-based diet (no addition) or a control diet with β-mannanase (BM; 300 g/ton) or control diet β-mannanase plus a multi-carbohydrase complex including xylanase, β-glucanase, and arabinofuranosidases (BM + MCC; 300 + 50 g/ton) for 13 days. Total fecal and urine samples were collected from days 6 to 12. The feces samples were collected from all the pigs to determine fecal biomarkers using commercial ELISA tests. Blood samples were collected from all the pigs on day 13 to assess the serum concentrations of acute-phase proteins. All the pigs were euthanized on day 13 for intestinal tissue collection for morphometric analysis. Data were submitted to variance analysis and differences were considered significant at p ≤ 0.05 and a trend for 0.05 < p ≤ 0.10. (3) Results: The addition of BM and BM + MCC resulted in greater dry matter, protein, and energy digestibility coefficients, and protein (2.87% and 2.60%) and energy (2.61% and 1.44%) metabolizability coefficients compared to control (p < 0.05). A greater retention of nitrogen ratio and lower fecal energy were observed in BM and BM + MCC than in the control (p < 0.01). Furthermore, the addition of BM and BM + MCC resulted in lower manure production (29.78 and 49.77%, respectively) and fecal moisture (p < 0.001) compared to the control. The BM addition resulted in a greater villus area and villi height to crypt depth ratio compared to the control (p < 0.05). The addition of BM and BM + MCC diets also reduced the fecal calprotectin levels by 52 and 56% in relation to the control pigs. (4) Conclusions: The use of β-mannanase alone or associated with multi-carbohydrase complex improved nutritional digestibility, nutrient and energy metabolism, and gut health, and reduced the manure production of growing pigs.
Collapse
Affiliation(s)
- Gabriela Miotto Galli
- Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540000, RS, Brazil
| | - Ines Andretta
- Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540000, RS, Brazil
| | - Camila Lopes Carvalho
- Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540000, RS, Brazil
| | - Thais B Stefanello
- Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540000, RS, Brazil
| | - Bruna Souza de Lima Cony
- Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540000, RS, Brazil
| | - Alícia Zem Fraga
- Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540000, RS, Brazil
| | - Karine Ludwig Takeuti
- Departamento de Medicina Veterinária, Universidade Feevale, Novo Hamburgo 93525075, RS, Brazil
| | - Aline Beatriz da Rosa
- Departamento de Medicina Veterinária, Universidade Feevale, Novo Hamburgo 93525075, RS, Brazil
| | - Marcos Kipper
- Elanco Animal Health, São Paulo 04703002, SP, Brazil
| |
Collapse
|
6
|
Galli GM, Forero Salamanca A, Haydon K, Levesque CL, Perez-Palencia JY. Effect of Dietary Xylanase Inclusion on Growth Performance, Nutrient Digestibility, and Digesta Viscosity of Weaned Pigs Fed Wheat-Soybean Meal-Based Diets. Animals (Basel) 2024; 14:3255. [PMID: 39595308 PMCID: PMC11591498 DOI: 10.3390/ani14223255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
(1) Background: This study aimed to evaluate the effects of dietary xylanase addition on growth performance, nutrient digestibility, volatile fatty acids, and digesta viscosity at different digestive sites in weaned pigs fed wheat-soybean meal-based diets with reduced metabolizable energy. (2) Methods: A total of 312 weaned pigs (5.1 ± 0.9 kg, 20 ± 2 days of age) were assigned to one of six dietary treatments. The experimental diets were formulated in a three-phase nursery feeding program: phase 1 (d0-d7), phase 2 (d8-d21), and phase 3 (d22-d42). The experimental diets consisted of a wheat-soybean meal-based diet formulated to meet pig requirements (positive control, PC); the PC diet with a reduction of 100 kcal of metabolizable energy (ME) (negative control, NC); and the NC diet with either 900, 1800, 3600, or 7200 units of xylanase. Feed disappearance and body weight were measured at d7, 14, 21, and 42 in the nursery phase. The pen fecal score was assessed daily from d0 to d14 and three times a week from d15 to d28. On d21-d24 of the experiment (12 pigs per day), one pig per pen was selected for sample collection: ileal, cecal, and mid-colon digesta for viscosity and ileal digesta, feces for nutrient digestibility, and feces and cecal digesta for the measurement of volatile fatty acid. (3) Results: The addition of xylanase to the NC diets did not improve pig growth performance (body weight, feed conversion ratio, and average daily gain; p > 0.10) during the entire nursery phase. In Week 2 and Week 3, pigs fed xylanase had a lower (χ2 < 0.05) incidence of fecal scores 3 and 4 (diarrhea) than the PC and NC diets. In addition, the apparent total tract digestibility of neutral detergent fiber and acid detergent fiber increased linearly (p < 0.1) in response to xylanase addition. Xylanase addition (900 to 7200 U) decreased digesta viscosity in the colon compared to the PC and NC diets. Furthermore, xylanase addition resulted in a lower (p < 0.05) concentration of acetic, propionic, butyric, valeric, and total volatile fatty acid in cecal samples compared to PC. The addition of xylanase resulted in greater acetic and valeric acid concentrations in cecal samples compared to the NC group (p < 0.10). (4) Conclusions: Xylanase addition can improve nutrient digestibility, particularly at the total tract level, and reduce viscosity in the hindgut, which could be related to decreasing the occurrence of looseness. However, its impact on growth performance was minimal in wheat-soybean meal-based diets with a reduction of 100 kcal of ME.
Collapse
Affiliation(s)
- Gabriela M. Galli
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA; (G.M.G.); (A.F.S.); (C.L.L.)
| | - Alejandra Forero Salamanca
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA; (G.M.G.); (A.F.S.); (C.L.L.)
| | - Keith Haydon
- CJ Bio America Inc., Downers Grove, IL 60515, USA;
| | - Crystal L. Levesque
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA; (G.M.G.); (A.F.S.); (C.L.L.)
| | - Jorge Y. Perez-Palencia
- Department of Animal Science, South Dakota State University, Brookings, SD 57007, USA; (G.M.G.); (A.F.S.); (C.L.L.)
| |
Collapse
|
7
|
Ha SH, Tajudeen H, Hosseindoust A, Mun JY, Neves P, Kinara E, Park SR, Ingale S, Lokhande A, Kim J. Endo-1,4-beta-xylanase with traces of endo-1,4-beta-glucanase improves the performance of weanling pigs supplied diets reduced in 90 kcal metabolisable energy/kg. Arch Anim Nutr 2024; 78:340-353. [PMID: 39601769 DOI: 10.1080/1745039x.2024.2430574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
This experiment was carried out to evaluate the effect of endo-1,4-beta-xylanase with traces of endo-1,4-beta-glucanase on the performance of 240 piglets (Landrace × Yorkshire × Duroc) with an initial body (BW) of 5.90 ± 0.6 kg. The mixed sex piglets were randomly assigned to 3 treatments with 10 replicates per treatment, and 8 heads per replicate pen. The dietary treatments include (1) corn-wheat-soybean meal (SBM) basal diet without xylanase (XYL) enzyme as positive control (PC), (2) corn-wheat-SBM diet deprived -90 kcal/kg metabolizable energy without XYL enzyme (NC), and (3) corn-wheat-SBM diet deprived -90 kcal/kg metabolizable energy + 0.02 XYL (DG2). The diets were administered in mash form for 42 d (split into 2 phases) as phase 1, d 0-21, and phase 2, d 22-42. All the experimental diets were designed to fulfil the nutrient requirement by NRC 2012. The results show XYL supplementation significantly increased (p < 0.05) final body weight and overall average daily gain (ADG) while enhancing feed efficiency (G/F) compared to the negative control group (NC). Nutrient digestibility was notably improved, with significant increases (p < 0.05) in gross energy (GE), xylan, and non-starch polysaccharides (NSP) digestibility in both phases. The incorporation of XYL also increased monosaccharide and xylooligosaccharide levels in the ileum and caecum, indicating enhanced carbohydrate breakdown. Additionally, XYL supplementation improved the gut microbiota profile by showing higher tendency (p = 0.066) for beneficial bacteria like Lactobacillus with a tendency (p = 0.052) for lower Escherichia coli counts. Overall, XYL supplementation effectively enhanced growth performance and nutrient digestibility in weanling pigs on a low-energy diet.
Collapse
Affiliation(s)
- Sang Hun Ha
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, Republic of Korea
| | - Habeeb Tajudeen
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, Republic of Korea
| | - Abdolreza Hosseindoust
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, Republic of Korea
| | - Jun Young Mun
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, Republic of Korea
| | - Priscilla Neves
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, Republic of Korea
| | - Elick Kinara
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, Republic of Korea
| | - Se Rin Park
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, Republic of Korea
| | - Santosh Ingale
- Department of Animal Nutrition, Advanced Enzyme Technologies Ltd, Thane, India
| | - Anushka Lokhande
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, Republic of Korea
| | - JinSoo Kim
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
8
|
Kim HY, Moon JO, Kim SW. Development and application of a multi-step porcine in vitro system to evaluate feedstuffs and feed additives for their efficacy in nutrient digestion, digesta characteristics, and intestinal immune responses. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:265-282. [PMID: 38800740 PMCID: PMC11127235 DOI: 10.1016/j.aninu.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 05/29/2024]
Abstract
In vitro model provides alternatives to the use of live animals in research. In pig nutrition, there has been a tremendous increase in in vivo research over the decades. Proper utilization of in vitro models could provide a screening tool to reduce the needs of in vivo studies, research duration, cost, and the use of animals and feeds. This study aimed to develop a multi-step porcine in vitro system to simulate nutrient digestion and intestinal epithelial immune responses affected by feedstuffs and feed additives. Seven feedstuffs (corn, corn distillers dried grains with solubles [corn DDGS], barley, wheat, soybean meal, soy protein concentrates, and Corynebacterium glutamicum cell mass [CGCM]), feed enzymes (xylanase and phytase), and supplemental amino acids (arginine, methionine, and tryptophan), were used in this in vitro evaluation for their efficacy on digestibility, digesta characteristics, and intestinal health compared with the results from previously published in vivo studies. All in vitro evaluations were triplicated. Data were analyzed using Mixed procedure of SAS9.4. Evaluations included (1) nutrient digestibility of feedstuffs, (2) the effects of feed enzymes, xylanase and phytase, on digestibility of feedstuffs and specific substrates, and (3) the effects of amino acids, arginine, tryptophan, and methionine, on anti-inflammatory, anti-oxidative, and anti-heat stress statuses showing their effects (P < 0.05) on the measured items. Differences in dry matter and crude protein digestibility among the feedstuffs as well as effects of xylanase and phytase were detected (P < 0.05), including xylo-oligosaccharide profiles and phosphorus release from phytate. Supplementation of arginine, tryptophan, and methionine modulated (P < 0.05) cellular inflammatory and oxidative stress responses. The use of this in vitro model allowed the use of 3 experimental replications providing sufficient statistical power at P < 0.05. This indicates in vitro models can have increased precision and consistency compared with in vivo animal studies.
Collapse
Affiliation(s)
- Hee Yeon Kim
- Application Center, CJ Blossom Park, Suwon, South Korea
| | - Jun-Ok Moon
- Application Center, CJ Blossom Park, Suwon, South Korea
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
9
|
Choi H, Duarte YG, Pasquali GAM, Kim SW. Investigation of the nutritional and functional roles of a combinational use of xylanase and β-glucanase on intestinal health and growth of nursery pigs. J Anim Sci Biotechnol 2024; 15:63. [PMID: 38704593 PMCID: PMC11070102 DOI: 10.1186/s40104-024-01021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/05/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Xylanase and β-glucanase combination (XG) hydrolyzes soluble non-starch polysaccharides that are anti-nutritional compounds. This study aimed to evaluate the effects of increasing levels of XG on intestinal health and growth performance of nursery pigs. METHODS Forty pigs (6.5 ± 0.4 kg) were assigned to 5 dietary treatments and fed for 35 d in 3 phases (11, 9, and 15 d, respectively). Basal diets mainly included corn, soybean meal, and corn distiller's dried grains with solubles, contained phytase (750 FTU/kg), and were supplemented with 5 levels of XG at (1) 0, (2) 280 TXU/kg xylanase and 125 TGU/kg β-glucanase, (3) 560 and 250, (4) 840 and 375, or (5) 1,120 and 500, respectively. Growth performance was measured. On d 35, all pigs were euthanized and jejunal mucosa, jejunal digesta, jejunal tissues, and ileal digesta were collected to determine the effects of increasing XG levels and XG intake on intestinal health. RESULTS Increasing XG intake tended to quadratically decrease (P = 0.059) viscosity of jejunal digesta (min: 1.74 mPa·s at 751/335 (TXU/TGU)/kg). Increasing levels of XG quadratically decreased (P < 0.05) Prevotellaceae (min: 0.6% at 630/281 (TXU/TGU)/kg) in the jejunal mucosa. Increasing XG intake quadratically increased (P < 0.05) Lactobacillaceae (max: 40.3% at 608/271 (TXU/TGU)/kg) in the jejunal mucosa. Increasing XG intake quadratically decreased (P < 0.05) Helicobacteraceae (min: 1.6% at 560/250 (TXU/TGU)/kg) in the jejunal mucosa. Increasing levels of XG tended to linearly decrease (P = 0.073) jejunal IgG and tended to quadratically increase (P = 0.085) jejunal villus height to crypt depth ratio (max: 2.62 at 560/250 (TXU/TGU)/kg). Increasing XG intake tended to linearly increase the apparent ileal digestibility of dry matter (P = 0.087) and ether extract (P = 0.065). Increasing XG intake linearly increased (P < 0.05) average daily gain. CONCLUSIONS A combinational use of xylanase and β-glucanase would hydrolyze the non-starch polysaccharides fractions, positively modulating the jejunal mucosa-associated microbiota. Increased intake of these enzyme combination possibly reduced digesta viscosity and humoral immune response in the jejunum resulting in improved intestinal structure, and ileal digestibility of nutrients, and finally improving growth of nursery pigs. The beneficial effects were maximized at a combination of 550 to 800 TXU/kg xylanase and 250 to 360 TGU/kg β-glucanase.
Collapse
Affiliation(s)
- Hyunjun Choi
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA
| | - Yesid Garavito Duarte
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA
| | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA.
| |
Collapse
|
10
|
Wang X, Li D, Xu Y, Ding X, Liang S, Xie L, Wang Y, Zhan X. Xylanase Supplement Enhances the Growth Performance of Broiler by Modulating Serum Metabolism, Intestinal Health, Short-Chain Fatty Acid Composition, and Microbiota. Animals (Basel) 2024; 14:1182. [PMID: 38672330 PMCID: PMC11047501 DOI: 10.3390/ani14081182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/01/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
This study aimed to investigate the effects of different levels of xylanase supplementation in a wheat-based diet on growth performance, short-chain fatty acids, intestinal health, microbial composition, and serum metabolism. A total of 1200 male chicks were randomly assigned to four wheat-based diet treatments: Group C (adding 0 mg/kg of xylanase), Group L (adding 50 mg/kg of xylanase), Group M (adding 100 mg/kg of xylanase), and Group H (adding 150 mg/kg of xylanase). The experiment lasted for 56 days. The results indicated that Group H broilers experienced a decreased feed-to-gain ratio throughout the study period. Additionally, dietary supplementation with xylanase led to an increase in the physical barrier, as indicated by increased VH and VH/CD in the gut (p < 0.05). Furthermore, levels of D-lactic acid and endotoxin were reduced. Xylanase supplementation also increased the abundance of Muc-2, ZO-1, and Occludin (p < 0.05). Moreover, xylanase supplementation enhanced the activity of sucrase and maltase in the duodenum (p < 0.05), which may be attributable to the upregulation of the abundance of SI and MGA (p < 0.05). Furthermore, xylanase addition promoted propionic acid produced by specific bacteria, such as Phascolarctobacterium, and influenced the microbial composition to some extent, promoting intestinal health. Additionally, 150 mg/kg of xylanase supplementation increased the amino acid, peptide, and carbohydrate content and upregulated the metabolism of amino acids related to histidine, cysteine, methionine, and other pathways (p < 0.05). These findings suggest adequate xylanase supplementation can enhance nutritional digestibility and absorption, improve growth performance, stimulate endogenous enzyme activity, optimize intestinal morphology and barrier function, and positively influence acid-producing bacteria and amino acid metabolic pathways.
Collapse
Affiliation(s)
- Xiaoli Wang
- State Key Laboratory of Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Danlei Li
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (D.L.); (Y.X.); (X.D.); (S.L.); (L.X.)
| | - Yibin Xu
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (D.L.); (Y.X.); (X.D.); (S.L.); (L.X.)
| | - Xiaoqing Ding
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (D.L.); (Y.X.); (X.D.); (S.L.); (L.X.)
| | - Shuang Liang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (D.L.); (Y.X.); (X.D.); (S.L.); (L.X.)
| | - Lingyu Xie
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (D.L.); (Y.X.); (X.D.); (S.L.); (L.X.)
| | - Yongxia Wang
- Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China;
| | - Xiuan Zhan
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (D.L.); (Y.X.); (X.D.); (S.L.); (L.X.)
| |
Collapse
|
11
|
Jang KB, Kim YI, Duarte ME, Kim SW. Effects of β-mannanase supplementation on intestinal health and growth of nursery pigs. J Anim Sci 2024; 102:skae052. [PMID: 38422238 PMCID: PMC10957119 DOI: 10.1093/jas/skae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/27/2024] [Indexed: 03/02/2024] Open
Abstract
Two experiments were conducted using 120 pigs to test the hypothesis that supplementation of β-mannanase could reduce digesta viscosity, enhance nutrient digestion, and improve intestinal health and growth of nursery pigs. In experiment 1, 48 crossbred barrows were randomly allotted to four treatments with increasing levels of β-mannanase at 0, 200, 400, and 600 U/kg in feeds. All pigs were euthanized on day 12 to collect jejunal digesta to measure digesta viscosity and ileal digesta to measure apparent ileal digestibility (AID) of dry matter (DM), gross energy (GE), neutral detergent fiber (NDF), and acid detergent fiber (ADF). In experiment 2, 72 nursery pigs were randomly allotted to three treatments with increasing levels of β-mannanase at 0, 400, and 600 U/kg in feeds. Plasma collected on day 9 was used to measure tumor necrosis factor-α (TNF-α), immunoglobulin G (IgG), malondialdehyde (MDA), and protein carbonyl (PC). All pigs were euthanized on day 10 to collect duodenal and jejunal tissues to evaluate the production of TNF-α, IL-6, and MDA, morphology, crypt cell proliferation, and expression of tight junction proteins in the jejunum. Data were analyzed using the MIXED procedure for polynomial contrasts and the NLMIXED procedure for broken-line analysis of SAS. In experiment 1, β-mannanase supplementation tended to have quadratic effects on digesta viscosity (P = 0.085) and AID of GE (P = 0.093) in the pigs. In experiment 2, jejunal digesta viscosity of the pigs was reduced (P < 0.05) when β-mannanase was supplemented at 360 U/kg of feed. β-Mannanase supplementation linearly reduced (P < 0.05) TNF-α, IgG, MDA, and PC in the duodenum, and TNF-α, IgG, and MDA in the jejunum of the pigs. β-Mannanase supplementation linearly increased (P < 0.05) villus height to crypt depth ratio and crypt cell proliferation in the jejunum. β-Mannanase supplementation tended to linearly improve (P = 0.083) expression of zonula occludens-1 in the jejunum. In conclusion, supplementation of β-mannanase at 360 U/kg reduced the digesta viscosity and up to 600 U/kg positively affected intestinal health and growth of pigs by reducing inflammation and oxidative stress whilst enhancing structure and barrier function in the jejunum.
Collapse
Affiliation(s)
- Ki Beom Jang
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Young Ihn Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
12
|
Baker JT, Deng Z, Sokale A, Frederick B, Kim SW. Nutritional and functional roles of β-mannanase on intestinal health and growth of newly weaned pigs fed two different types of feeds. J Anim Sci 2024; 102:skae206. [PMID: 39044687 PMCID: PMC11306790 DOI: 10.1093/jas/skae206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/05/2024] [Indexed: 07/25/2024] Open
Abstract
This study aimed to investigate the nutritional and functional roles of β-mannanase on the intestinal health and growth of newly weaned pigs fed a typical or low-cost formulated feeds (LCF). Twenty-four newly weaned pigs at 6.2 kg ± 0.4 body weight (BW) were allotted to three dietary treatments based on a randomized complete block design with sex and initial BW as blocks. Three dietary treatments are as follows: Control, typical nursery feeds including animal protein supplements and enzyme-treated soybean meal; LCF with increased amounts of soybean meal, decreased amounts of animal protein supplements, and no enzyme-treated soybean meal; LCF+, low-cost formulated feed with β-mannanase at 100 g/t, providing 800 thermostable β-mannanase unit (TMU) per kg of feed. Pigs were fed based on a three-phase feeding program for a total of 37 d. On day 37 of feeding, all pigs were euthanized and the gastrointestinal tract was removed for sample collection to analyze intestinal health parameters, mucosa-associated microbiota, and gene expression of tight junction proteins. Pigs fed LCF increased (P < 0.05) the relative abundance of Proteobacteria and Helicobacter in the jejunal mucosa, tended to decrease (P = 0.097; P = 0.098) the concentration of malondialdehyde (MDA) and the expression of zona occluden 1 (ZO-1) gene in the jejunum, tended to decrease average daily gain (ADG; P = 0.084) and final BW (P = 0.090), and decreased (P < 0.05) average daily feed intake. Pigs fed LCF + tended to decrease (P = 0.088) digesta viscosity, decreased (P < 0.05) the relative abundance of Helicobacter, and increased (P < 0.05) Lactobacillus in the jejunal mucosa compared to LCF. Additionally, LCF + tended to increase final BW (P = 0.059) and ADG (P = 0.054), increased (P < 0.05) gain to feed ratio (G:F), and reduced (P < 0.05) fecal score compared to LCF. LCF with decreased amounts of animal protein supplements and increased amounts of soybean meal had negative effects on the composition of the mucosa-associated microbiota, intestinal integrity, and growth performance of nursery pigs. Beta-mannanase supplementation to LCF decreased digesta viscosity, increased the relative abundance of potentially health-benefitting microbiota such as Lactobacillus, and improved growth and fecal score, thus reflecting its efficacy in low-cost formulated feeds with increased amounts of soybean meal.
Collapse
Affiliation(s)
- Jonathan T Baker
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Zixiao Deng
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
13
|
Petry AL, Huntley NF, Bedford MR, Patience JF. Unveiling the influence of adaptation time on xylanase and arabinoxylan-oligosaccharide efficacy: a study on nutrient digestibility, viscosity, and scanning electron microscopy in the small and large intestine of growing pigs fed insoluble fiber. J Anim Sci 2024; 102:skad378. [PMID: 37991108 PMCID: PMC10783243 DOI: 10.1093/jas/skad378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023] Open
Abstract
The experiment objective was to evaluate the impact of xylanase over time on viscosity and digestibility in growing pigs fed corn-based fiber. Twenty gilts with an initial body weight of 30.6 ± 0.2 kg (n = 5 per dietary treatment) were fitted with t-cannulae in the medial jejunum and terminal ileum, housed individually, and randomly assigned to one of four dietary treatments: low-fiber control (LF) with 10.4% total dietary fiber (TDF), 30% corn bran high-fiber control (HF; 26.4% TDF), HF + 100 mg xylanase/kg (XY; Econase XT 25P; AB Vista, Marlborough, UK), and HF + 50 mg arabinoxylan-oligosaccharide/kg (AX). Gilts were limit fed for three 17 d periods (P1, P2, P3); each included 5 d adaptation, 2 d fecal collection, 3 d ileal collection, 3 d jejunal collection, and 4 d related rate of passage study. Data were analyzed as repeated measures using a linear mixed model with surgery date as a random effect, and dietary treatment, period, and their interaction as fixed effects. Jejunal and ileal digesta viscosity did not differ among dietary treatments or periods (P > 0.10). There was a dietary treatment × period interaction for the apparent jejunal digestibility (AJD) of dry matter (DM), gross energy (GE), insoluble dietary fiber (IDF), neutral detergent fiber (NDF), total arabinoxylan (T-AX), total non-starch polysaccharide (T-NSP), and TDF (P≤ 0.05). In P1, LF had the greatest AJD of DM (15.5%), and relative to HF and AX, XY decreased it (9.3%, 10.1 %, and 6.3%, respectively). In P2, the AJD of DM in XY was greater than HF (11.7% vs. 9.1%) but did not differ from AX (10.5%). Relative to HF, in P3, XY increased AJD of DM (11.7 vs 15.3%), and AX decreased it (7.2%). For the AJD of NDF, AX performed intermediately in P1; in P2, relative to HF, XY, and AX increased the AJD of NDF (8.4%, 13.1%, and 11.7%, respectively), and in P3, XY, and LF did not differ (13.6 vs. 14.4%). A similar response was observed for the AJD of IDF and TDF, except for XY having the greatest AJD of IDF, T-AX, T-NSP, and TDF in P3 (P < 0.05). Compared to LF, irrespective of period, HF decreased the apparent ileal digestibility (AID) and apparent total tract digestibility (ATTD) of IDF, TDF, and NDF (P < 0.05). Relative to HF, XY partially mitigated this effect, improving the AID and ATTD of TDF, IDF, and NDF (P < 0.05). Increased corn-based fiber decreased nutrient digestibility, but XY partially mitigated that effect in the small intestine through enhanced fiber digestibility when given sufficient adaptation time.
Collapse
Affiliation(s)
- Amy L Petry
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Nichole F Huntley
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Michael R Bedford
- AB Vista Feed Ingredients, Marlborough, Wiltshire SN8 4AN, United Kingdom
| | - John F Patience
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
14
|
Baker JT, Duarte ME, Kim SW. Effects of dietary xylanase supplementation on growth performance, intestinal health, and immune response of nursery pigs fed diets with reduced metabolizable energy. J Anim Sci 2024; 102:skae026. [PMID: 38280204 PMCID: PMC10889732 DOI: 10.1093/jas/skae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/25/2024] [Indexed: 01/29/2024] Open
Abstract
This study aimed to investigate the effects of xylanase on growth performance and intestinal health of nursery pigs fed diets with reduced metabolizable energy (ME). One hundred ninety-two pigs at 8.7 kg ± 0.7 body weight (BW) after 7 d of weaning were allotted in a randomized complete block design with initial BW and sex as blocks. Eight dietary treatments consisted of 5 ME levels (3,400, 3,375, 3,350, 3,325, and 3,300 kcal ME/kg) below the NRC (2012) requirement and 4 levels of xylanase (0, 1,200, 2,400, and 3,600 XU/kg) to a diet with 3,300 kcal ME/kg. All pigs received their respective treatments for 35 d in 2 phases, pre-starter (14 d) and starter (21 d). On day 35, eight pigs in 3,400 kcal/kg (CON), 3,300 kcal/kg (LE), and 3,300 kcal/kg + 3,600 XU xylanase/kg (LEX) were euthanized to collect jejunal tissues and digesta for the evaluation of mucosa-associated microbiota, intestinal immune response, oxidative stress status, intestinal morphology, crypt cell proliferation, and digesta viscosity as well as ileal digesta to measure apparent ileal digestibility. Data were analyzed using the MIXED procedure on SAS 9.4. The LE increased (P < 0.05) jejunal digesta viscosity, tended to have decreased (P = 0.053) relative abundance of Prevotella, and tended to increase (P = 0.055) Lactobacillus. The LE also increased (P < 0.05) the concentration of protein carbonyl whereas malondialdehyde, villus height (VH), villus height to crypt depth ratio (VH:CD), apparent ileal digestibility (AID) of nutrients, and finally average daily feed intake were decreased (P < 0.05). The LE did not affect average daily gain (ADG). The LEX decreased (P < 0.05) digesta viscosity, increased (P < 0.05) the relative abundance of Prevotella, decreased (P < 0.05) Helicobacter, decreased (P < 0.05) the concentration of protein carbonyl, tended to increase (P = 0.065) VH, and decreased (P < 0.05) VH:CD and crypt cell proliferation. Moreover, LEX increased (P < 0.05) the AID of dry matter and gross energy and tended to increase (P = 0.099; P = 0.076) AID of crude protein, and ether extract. The LEX did not affect ADG but did tend to decrease (P = 0.070) fecal score during the starter phase. Overall, reducing ME negatively affected intestinal health parameters and nutrient digestibility without affecting growth. Supplementation of xylanase mitigated some of the negative effects observed by ME reduction on intestinal health and digestibility of nutrients without affecting growth.
Collapse
Affiliation(s)
- Jonathan T Baker
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
15
|
Zentek J, Vahjen W, Grześkowiak Ł, Martínez-Vallespín B, Holthausen JS, Saliu EM. The Gut Microbiome in Pigs and Its Impact on Animal Health. PRODUCTION DISEASES IN FARM ANIMALS 2024:157-177. [DOI: 10.1007/978-3-031-51788-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
16
|
Passos AA, Moita VHC, Kim SW. Individual or combinational use of phytase, protease, and xylanase for the impacts on total tract digestibility of corn, soybean meal, and distillers dried grains with soluble fed to pigs. Anim Biosci 2023; 36:1869-1879. [PMID: 37641823 PMCID: PMC10623029 DOI: 10.5713/ab.23.0212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/31/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023] Open
Abstract
OBJECTIVE This study was to evaluate the effects of individual or combinational use of phytase, protease, and xylanase on total tract digestibility of corn, soybean meal, and distillers dried grains with soluble (DDGS) fed to pigs. METHODS Each experiment had four 4×4 Latin squares using 16 barrows. Each period had 5-d adaptation and 3-d collection. All experiments had: CON (no enzyme); Phy (CON+phytase); Xyl (CON+xylanase); Pro (CON+protease); Phy+Xyl; Phy+Pro, Xyl+Pro, Phy+Xyl+Pro. Each Latin square had 'CON, Phy, Xyl, and Phy+Xyl'; 'CON, Phy, Pro, and Phy+Pro'; 'CON, Pro, Xyl, and Xyl+Pro'; and 'Phy+Xyl, Phy+Pro, Xyl+Pro, Phy+Xyl+Pro'. RESULTS The digestible energy (DE), metabolizable energy (ME), and nitrogen retention (NR) of corn were not affected by enzymes but the apparent total tract digestibility (ATTD) of phosphorus (P) was improved (p<0.01) by Phy. The DE and ATTD dry matter (DM) in soybean meal were increased (p<0.05) by Phy+Pro and the ATTD P was improved (p<0.01) by Phy, Phy+Pro, and Phy+Xyl. The DE, ME, and ATTD DM in DDGS were improved (p<0.05) by Phy+Xyl and the ATTD P was improved (p<0.01) by Phy, Phy+Pro, and Phy+Xyl. CONCLUSION Phytase individually or in combination with xylanase and protease improved the Ca and P digestibility of corn, soybean meal, and DDGS, from the hydrolysis of phytic acid. The supplementation of protease was more effective when combined with phytase and xylanase in the soybean meal and DDGS possibly due to a higher protein content in these feedstuffs. Xylanase was more effective in DDGS diets due to the elevated levels of non-starch polysaccharides in these feedstuffs. However, when xylanase was combined with phytase, it demonstrated a higher efficacy improving the nutrient digestibility of pigs. Overall, combinational uses of feed enzymes can be more efficient for nutrient utilization in soybean meal and DDGS than single enzymes.
Collapse
Affiliation(s)
- Adsos Adami Passos
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695,
USA
| | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695,
USA
| |
Collapse
|
17
|
Jang KB, Zhao Y, Kim YI, Pasquetti T, Kim SW. Effects of bacterial β-mannanase on apparent total tract digestibility of nutrients in various feedstuffs fed to growing pigs. Anim Biosci 2023; 36:1700-1708. [PMID: 37592382 PMCID: PMC10623040 DOI: 10.5713/ab.23.0158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/07/2023] [Accepted: 06/22/2023] [Indexed: 08/19/2023] Open
Abstract
OBJECTIVE The objective of this study was to determine the effects of β-mannanase on metabolizable energy (ME) and apparent total tract digestibility (ATTD) of protein in various feedstuffs including barley, copra meal, corn, corn distillers dried grains with solubles (DDGS), palm kernel meal, sorghum, and soybean meal. METHODS A basal diet was formulated with 94.8% corn and 0.77% amino acids, minerals, and vitamins and test diets replacing corn-basal diets with barley, corn DDGS, sorghum, soybean meal, or wheat (50%, respectively) and copra meal or palm kernel meal (30%, respectively). The basal diet and test diets were evaluated by using triplicated or quadruplicated 2×2 Latin square designs consisting of 2 diets and 2 periods with a total of 54 barrows at 20.6±0.6 kg (9 wk of age). Dietary treatments were levels of β-mannanase supplementation (0 or 800 U/kg of feed). Fecal and urine samples were collected for 4 d following a 4-d adaptation period. The ME and ATTD of crude protein (CP) in feedstuffs were calculated by a difference procedure. Data were analyzed using Proc general linear model of SAS. RESULTS Supplementation of β-mannanase improved (p<0.05) ME of barley (10.4%), palm kernel meal (12.4%), sorghum (6.0%), and soybean meal (2.9%) fed to growing pigs. Supplementation of β-mannanase increased (p<0.05) ATTD of CP in palm kernel meal (8.8%) and tended to increase (p = 0.061) ATTD of CP in copra meal (18.0%) fed to growing pigs. CONCLUSION This study indicates that various factors such as the structure and the amount of β-mannans, water binding capacity, and the level of resistant starch vary among feedstuffs and the efficacy of supplemental β-mannanase may be influenced by these factors.
Collapse
Affiliation(s)
- Ki Beom Jang
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695,
USA
| | - Yan Zhao
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695,
USA
| | - Young Ihn Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695,
USA
| | - Tiago Pasquetti
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695,
USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695,
USA
| |
Collapse
|
18
|
Deng Z, Duarte ME, Kim SW. Efficacy of soy protein concentrate replacing animal protein supplements in mucosa-associated microbiota, intestinal health, and growth performance of nursery pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:235-248. [PMID: 37600837 PMCID: PMC10432921 DOI: 10.1016/j.aninu.2023.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 06/10/2023] [Accepted: 06/20/2023] [Indexed: 08/22/2023]
Abstract
This study investigated the effects of using soy protein concentrate (SPC) to replace animal protein supplements on mucosa-associated microbiota, intestinal health, and growth performance of nursery pigs. Fifty-six newly weaned pigs (BW = 6.4 ± 0.6 kg) were allotted to 5 treatments in a randomized complete block design. Pigs were fed for 35 d in 3 phases (P; 1, 2, 3) for 10, 12, 13 d, respectively. Dietary treatments were: (1) basal diet with fish meal (P1: 4%, P2: 2%, and P3: 1%), poultry meal (P1: 10%, P2: 8%, and P3: 4%), and blood plasma (P1: 4%, P2: 2%, and P3: 1%), where SPC replacing none (NC); (2) basal diet with SPC replacing fish meal (RFM); (3) basal diet with SPC replacing poultry meal (RPM); (4) basal diet with SPC replacing blood plasma (RBP); and (5) basal diet with SPC replacing all animal protein supplements (PC). Growth performance was recorded for each phase. Pigs were euthanized on d 35 to collect jejunal mucosa and tissue to evaluate intestinal health and microbiota, and ileal digesta to measure apparent ileal digestibility (AID) of nutrients. Data were analyzed using the MIXED procedure of SAS. Overall, RFM, RPM, and RBP did not affect growth performance, whereas PC decreased (P < 0.05) ADG and ADFI. The RPM increased (P < 0.05) Prevotella stercorea and decreased (P < 0.05) Helicobacter rappini. The PC decreased (P < 0.05) H. rappini, whilst increasing (P < 0.05) Prevotella copri, Propionibacterium acnes, and Pelomonas aquatica. The RFM tended to increase (P = 0.096) immunoglobulin A in the jejunum. The PC tended to decrease (P = 0.078) jejunal crypt cell proliferation. There were no differences in the villus height, AID of nutrients, intestinal inflammation, and intestinal oxidative stress among treatments. In conclusion, SPC can replace fish meal, poultry meal, or blood plasma individually without affecting growth performance and intestinal health, and AID of nutrients of nursery pigs. Particularly SPC replacing poultry meal benefitted intestinal health by reducing H. rappini and increasing P. stercorea. However, SPC replacing all three animal protein supplements reduced growth of nursery pigs mainly by reducing feed intake.
Collapse
Affiliation(s)
- Zixiao Deng
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
19
|
Deng Z, Duarte ME, Kim SY, Hwang Y, Kim SW. Comparative effects of soy protein concentrate, enzyme-treated soybean meal, and fermented soybean meal replacing animal protein supplements in feeds on growth performance and intestinal health of nursery pigs. J Anim Sci Biotechnol 2023; 14:89. [PMID: 37393326 DOI: 10.1186/s40104-023-00888-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/03/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Soy protein supplements, with high crude protein and less antinutritional factors, are produced from soybean meal by different processes. This study evaluated the comparative effects of various soy protein supplements replacing animal protein supplements in feeds on the intestinal immune status, intestinal oxidative stress, mucosa-associated microbiota, and growth performance of nursery pigs. METHODS Sixty nursery pigs (6.6 ± 0.5 kg BW) were allotted to five treatments in a randomized complete block design with initial BW and sex as blocks. Pigs were fed for 39 d in 3 phases (P1, P2, and P3). Treatments were: Control (CON), basal diet with fish meal 4%, 2%, and 1%, poultry meal 10%, 8%, and 4%, and blood plasma 4%, 2%, and 1% for P1, P2, and P3, respectively; basal diet with soy protein concentrate (SPC), enzyme-treated soybean meal (ESB), fermented soybean meal with Lactobacillus (FSBL), and fermented soybean meal with Bacillus (FSBB), replacing 1/3, 2/3, and 3/3 of animal protein supplements for P1, P2, and P3, respectively. Data were analyzed using the MIXED procedure in SAS 9.4. RESULTS The SPC did not affect the BW, ADG, and G:F, whereas it tended to reduce (P = 0.094) the ADFI and tended to increase (P = 0.091) crypt cell proliferation. The ESM did not affect BW, ADG, ADFI, and G:F, whereas tended to decrease (P = 0.098) protein carbonyl in jejunal mucosa. The FSBL decreased (P < 0.05) BW and ADG, increased (P < 0.05) TNF-α, and Klebsiella and tended to increase MDA (P = 0.065) and IgG (P = 0.089) in jejunal mucosa. The FSBB tended to increase (P = 0.073) TNF-α, increased (P < 0.05) Clostridium and decreased (P < 0.05) Achromobacter and alpha diversity of microbiota in jejunal mucosa. CONCLUSIONS Soy protein concentrate, enzyme-treated soybean meal, and fermented soybean meal with Bacillus could reduce the use of animal protein supplements up to 33% until 7 kg body weight, up to 67% from 7 to 11 kg body weight, and entirely from 11 kg body weight without affecting the intestinal health and the growth performance of nursery pigs. Fermented soybean meal with Lactobacillus, however, increased the immune reaction and oxidative stress in the intestine consequently reducing the growth performance.
Collapse
Affiliation(s)
- Zixiao Deng
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA
| | - Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA
| | | | | | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, 116 Polk Hall, Campus Box 7621, Raleigh, NC, 27695, USA.
| |
Collapse
|
20
|
Duarte ME, Stahl CH, Kim SW. Intestinal Damages by F18 +Escherichia coli and Its Amelioration with an Antibacterial Bacitracin Fed to Nursery Pigs. Antioxidants (Basel) 2023; 12:antiox12051040. [PMID: 37237906 DOI: 10.3390/antiox12051040] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/18/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023] Open
Abstract
This study investigated intestinal oxidative damage caused by F18+Escherichia coli and its amelioration with antibacterial bacitracin fed to nursery pigs. Thirty-six weaned pigs (6.31 ± 0.08 kg BW) were allotted in a randomized complete block design. Treatments were: NC, not challenged/not treated; PC, challenged (F18+E. coli at 5.2 × 109 CFU)/not treated; AGP challenged (F18+E. coli at 5.2 × 109 CFU)/treated with bacitracin (30 g/t). Overall, PC reduced (p < 0.05) average daily gain (ADG), gain to feed ratio (G:F), villus height, and villus height to crypt depth ratio (VH:CD), whereas AGP increased (p < 0.05) ADG, and G:F. PC increased (p < 0.05) fecal score, F18+E. coli in feces, and protein carbonyl in jejunal mucosa. AGP reduced (p < 0.05) fecal score and F18+E. coli in jejunal mucosa. PC reduced (p < 0.05) Prevotella stercorea populations in jejunal mucosa, whereas AGP increased (p < 0.05) Phascolarctobacterium succinatutens and reduced (p < 0.05) Mitsuokella jalaludinii populations in feces. Collectively, F18+E. coli challenge increased fecal score and disrupted the microbiota composition, harming intestinal health by increasing oxidative stress, and damaging the intestinal epithelium, ultimately impairing growth performance. Dietary bacitracin reduced reduced F18+E. coli populations and the oxidative damages they cause, thereby improving intestinal health and the growth performance of nursery pigs.
Collapse
Affiliation(s)
- Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Chad H Stahl
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
21
|
He Y, Li Y, Pan Y, Li A, Huang Y, Mi Q, Zhao S, Zhang C, Ran J, Hu H, Pan H. Correlation analysis between jejunum metabolites and immune function in Saba and Landrace piglets. Front Vet Sci 2023; 10:1069809. [PMID: 37008364 PMCID: PMC10060822 DOI: 10.3389/fvets.2023.1069809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
The immune function of the intestinal mucosa plays a crucial role in the intestinal health of hosts. As signaling molecules and precursors of metabolic reactions, intestinal chyme metabolites are instrumental in maintaining host immune homeostasis. Saba (SB) pigs, a unique local pig species in central Yunnan Province, China. However, research on jejunal metabolites in this species is limited. Here, we used immunohistochemistry and untargeted metabolomics by liquid chromatography mass spectrometry (LC-MS/MS) to study differences in jejunal immunophenotypes and metabolites between six Landrace (LA) and six SB piglets (35 days old). The results showed that the levels of the anti-inflammatory factor interleukin 10 (IL-10) were markedly higher in SB piglets than in LA piglets (P < 0.01), while the levels of the proinflammatory factors IL-6, IL-1β, and Toll-like receptor 2 (TLR-2) were markedly lower (P < 0.01). Furthermore, the levels of mucin 2 (MUC2) and zona occludens (ZO-1), which are related to mucosal barrier function, were significantly higher in SB piglets than in LA piglets (P < 0.01), as were villus height, villus height/crypt depth ratio, and goblet cell number (P < 0.05). Differences in jejunal chyme metabolic patterns were observed between the two piglets. In the negative ion mode, cholic acid metabolites ranked in the top 20 and represented 25% of the total. Taurodeoxycholic acid (TDCA) content was significantly higher in SB piglets than in LA piglets (P < 0.01). TDCA positively correlated with ZO-1, villus height, villus height/crypt depth ratio, and goblet cell number. These results suggest that SB pigs have a strong jejunal immune function and that TDCA was positively regulates jejunal immunity and mucosal barrier function. Our findings provide a reference for understanding intestinal immune function in different pig breeds and for the discovery of potential biomarkers to help solve health issues related to pig production.
Collapse
Affiliation(s)
- Yang He
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yongxiang Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yangsu Pan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Anjian Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ying Huang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Qianhui Mi
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Sumei Zhao
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Chunyong Zhang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jinming Ran
- College of Modern Agriculture, Dazhou Vocational and Technical College, Dazhou, China
| | - Hong Hu
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- Hong Hu
| | - Hongbin Pan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- *Correspondence: Hongbin Pan
| |
Collapse
|
22
|
Moita VHC, Kim SW. Efficacy of a bacterial 6-phytase supplemented beyond traditional dose levels on jejunal mucosa-associated microbiota, ileal nutrient digestibility, bone parameters, and intestinal health, and growth performance of nursery pigs. J Anim Sci 2023; 101:skad134. [PMID: 37115619 PMCID: PMC10224734 DOI: 10.1093/jas/skad134] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/27/2023] [Indexed: 04/29/2023] Open
Abstract
This study aimed to determine the efficacy of a bacterial 6-phytase (Buttiauxella spp.) supplemented beyond traditional dose levels based on jejunal mucosa-associated microbiota, apparent ileal digestibility (AID), intestinal health and bone parameters, and growth performance of nursery pigs. Seventy-two weaned pigs (36 barrows and 36 gilts at 21 d of age with 5.8 ± 0.5 kg BW) were allotted to six treatments based on randomized complete block design with sex and initial BW as blocks and fed in three dietary phases (phase 1 for 14 d, phase 2 for 10 d, and phase 3 for 14 d). The treatments included a negative control (NC) diet without phytase formulated meeting nutrient requirements by NRC and the other five treatments were deficient in calcium (Ca) and phosphorus (P) by 0.12% with increasing levels of a bacterial 6-phytase (0, 500, 1,000, 2,000, and 5,000 FTU/kg feed). Titanium dioxide (0.4%) was added to phase 3 diets as an indigestible marker to measure AID of nutrients. On day 45, all pigs were euthanized to collect ileal digesta to measure AID, the third metacarpus to measure bone parameters, and jejunal mucosa to evaluate intestinal health and microbiota. Data were analyzed using the MIXED procedure for polynomial contrasts and the NLMIXED procedure for broken line analysis using the SAS 9.4. Broken line analysis demonstrated that 948 FTU/kg feed increased (P < 0.05) the ADG and the bone P content. Increasing phytase supplementation increased (linear, P < 0.05) AID of CP, bone P, and ash content. Increasing phytase supplementation reduced (P < 0.05) the fecal score during phases 2 and 3. Broken line analysis demonstrated that 1,889 FTU/kg feed increased (P < 0.05) bone breaking strength. Increasing phytase supplementation (PC vs. Phy) increased (P < 0.05) AID of ether extract (EE) and P. The supplementation of phytase at 2,000 FTU/kg feed tended (P = 0.087) to reduce the relative abundance of Prevotellaceae. In conclusion, the supplementation of a bacterial 6-phytase beyond traditional dose levels improved bone breaking strength, bone ash, and P content, AID of CP, EE, and P, and growth performance of nursery pigs with reduced relative abundance of Bacteroidetes specifically Prevotellaceae in the jejunal mucosa. Supplementation of a bacterial 6-phytase between 1,000 and 2,000 FTU/kg feed provided benefits associated with growth performance and bone parameters of nursery pigs.
Collapse
Affiliation(s)
- Vitor Hugo C Moita
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
23
|
Moita VHC, Kim SW. Nutritional and Functional Roles of Phytase and Xylanase Enhancing the Intestinal Health and Growth of Nursery Pigs and Broiler Chickens. Animals (Basel) 2022; 12:3322. [PMID: 36496844 PMCID: PMC9740087 DOI: 10.3390/ani12233322] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
This review paper discussed the nutritional and functional roles of phytase and xylanase enhancing the intestinal and growth of nursery pigs and broiler chickens. There are different feed enzymes that are currently supplemented to feeds for nursery pigs and broiler chickens. Phytase and xylanase have been extensively studied showing consistent results especially related to enhancement of nutrient digestibility and growth performance of nursery pigs and broiler chickens. Findings from recent studies raise the hypothesis that phytase and xylanase could play functional roles beyond increasing nutrient digestibility, but also enhancing the intestinal health and positively modulating the intestinal microbiota of nursery pigs and broiler chickens. In conclusion, the supplementation of phytase and xylanase for nursery pigs and broiler chickens reaffirmed the benefits related to enhancement of nutrient digestibility and growth performance, whilst also playing functional roles benefiting the intestinal microbiota and reducing the intestinal oxidative damages. As a result, it could contribute to a reduction in the feed costs by allowing the use of a wider range of feedstuffs without compromising the optimal performance of the animals, as well as the environmental concerns associated with a poor hydrolysis of antinutritional factors present in the diets for swine and poultry.
Collapse
Affiliation(s)
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
24
|
Diether NE, Nam SL, Fouhse J, Le Thanh BV, Stothard P, Zijlstra RT, Harynuk J, de la Mata P, Willing BP. Dietary benzoic acid and supplemental enzymes alter fiber-fermenting taxa and metabolites in the cecum of weaned pigs. J Anim Sci 2022; 100:skac324. [PMID: 36205053 PMCID: PMC9683507 DOI: 10.1093/jas/skac324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Inclusion of enzymes and organic acids in pig diets is an important strategy supporting decreased antibiotic usage in pork production. However, limited knowledge exists about how these additives impact intestinal microbes and their metabolites. To examine the effects of benzoic acid and enzymes on gut microbiota and metabolome, 160 pigs were assigned to one of four diets 7 days after weaning: a control diet or the addition of 0.5% benzoic acid, 0.045% dietary enzymes (phytase, β-glucanase, xylanase, and α-amylase), or both and fed ad libitum for 21 to 22 d. Individual growth performance and group diarrhea incidence data were collected throughout the experimental period. A decrease of 20% in pen-level diarrhea incidence from days 8 to 14 in pigs-fed both benzoic acid and enzymes compared to the control diet (P = 0.047). Cecal digesta samples were collected at the end of the experimental period from 40 piglets (n = 10 per group) and evaluated for differences using 16S rRNA sequencing and two-dimensional gas chromatography and time-of-flight mass spectrometry (GCxGC-TOFMS). Analysis of cecal microbiota diversity revealed that benzoic acid altered microbiota composition (Unweighted Unifrac, P = 0.047, r2 = 0.07) and decreased α-diversity (Shannon, P = 0.041; Faith's Phylogenetic Diversity, P = 0.041). Dietary enzymes increased fiber-fermenting bacterial taxa such as Prevotellaceae. Two-step feature selection identified 17 cecal metabolites that differed among diets, including increased microbial cross-feeding product 1,2-propanediol in pigs-fed benzoic acid-containing diets. In conclusion, dietary benzoic acid and enzymes affected the gut microbiota and metabolome of weaned pigs and may support the health and resolution of postweaning diarrhea.
Collapse
Affiliation(s)
- Natalie E Diether
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Seo Lin Nam
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Janelle Fouhse
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Bich V Le Thanh
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Paul Stothard
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Ruurd T Zijlstra
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - James Harynuk
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Paulina de la Mata
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Benjamin P Willing
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| |
Collapse
|
25
|
Duarte ME, Kim SW. Phytobiotics from Oregano Extracts Enhance the Intestinal Health and Growth Performance of Pigs. Antioxidants (Basel) 2022; 11:antiox11102066. [PMID: 36290789 PMCID: PMC9598381 DOI: 10.3390/antiox11102066] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 02/08/2023] Open
Abstract
This study aimed to investigate the effects of phytobiotics on the intestinal health and growth performance of pigs. Totals of 40 newly-weaned pigs with 6.4 ± 0.3 kg BW (Exp. 1) and 120 growing pigs with 27.9 ± 2.3 kg BW (Exp. 2) were allotted in RCBD in a 2 × 2 factorial arrangement. The factors were: antibiotics as growth promoter (AGP) and phytobiotics (PHY). Pigs were fed experimental diets during 21 d (Exp. 1) and 42 d (Exp. 2). Growth performance, health parameters, and nutrient digestibility were evaluated. In Exp. 1, AGP diet increased (p < 0.05) ADG and G:F compared with a diet without AGP or PHY and a diet with AGP combined with PHY. PHY decreased (p < 0.05) TNF-α and IgG in the jejunum and protein carbonyl in plasma, whereas it increased (p < 0.05) the villus height. In Exp. 2, AGP or PHY diets increased (p < 0.05) ADG, ADFI, and G:F compared with a diet without AGP or PHY and a diet with AGP combined with PHY. PHY decreased (p < 0.05) IgG and PC in plasma. Collectively, AGP and PHY improved growth performance by reducing oxidative stress and enhancing immune status and jejunal morphology. However, the combinational use of phytobiotics with antibiotics suppressed their effect.
Collapse
|