1
|
Duan H, Zhang J, Li N, Chen L, Chen D, Yang H, Dai Q, Shen J, Mao S. Anti-heat stress lick block supplementation alleviated the detrimental effects of heat stress on dairy cows. Front Vet Sci 2025; 12:1562964. [PMID: 40125326 PMCID: PMC11927217 DOI: 10.3389/fvets.2025.1562964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 02/24/2025] [Indexed: 03/25/2025] Open
Abstract
Introduction Heat stress poses a significant challenge to the development of dairy industry, affecting cows' well-being and overall productivity, leading to substantial economic losses. In this study, the impact of a specifically formulated anti-heat stress lick block supplement on milk production, milk quality, feed intake, rectal temperature, respiratory rate, and rumen fermentation in cows exposed to heat-stress was evaluated. Methods Twenty-four healthy Holstein lactating dairy cows were divided into two blocks based on milk yield (low and high), Parity (2-3 parity), and lactation days (114 ± 8 d). The cows in each block were randomly assigned to either a control group without lick block supplementation or a treatment group receiving lick block. The trial lasted for 6 weeks, including a 2-week adaptation phase followed by 4 weeks of feeding treatment. Results Heat stress levels varied from severe (THI > 88) to moderate heat stress (THI > 80) in the first 2 weeks, gradually decreasing to mild heat stress (THI > 72) in the following weeks. With the decrease in heat stress, dry matter intake (DMI) and milk production increased (Week: p < 0.05), the rectal temperature and respiratory rate of cows decreased (Week: p < 0.05). Lick block supplementation tended to increase DMI (p = 0.09), and improved milk yield (p < 0.05) without affecting (p > 0.05) milk composition, leading to increased milk yields of fat, protein, and lactose (p < 0.05). Although the overall rectal temperature of cows in the lick block group did not differ from the control group (p > 0.05), the respiratory rate of cows in the lick block group significantly decreased (p < 0.05) in the second and third weeks. Supplementation with the lick block increased (p < 0.05) rumen pH and decreased (p < 0.05) NH3-N and propionate concentrations in dairy cows, and tended to lower the acetate-to-propionate ratio (p = 0.07), total VFA concentration (p = 0.07), and butyrate concentration (p = 0.09). Conclusion Supplementation of anti-heat stress lick block alleviated the detrimental effects of heat stress on dairy cows within a certain range of temperature and humidity.
Collapse
Affiliation(s)
- Hongwei Duan
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jiyou Zhang
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Na Li
- China Salt Jintan Co., Ltd., Changzhou, China
| | | | | | - Hang Yang
- China Salt Jintan Co., Ltd., Changzhou, China
| | - Qiuxia Dai
- China Salt Jintan Co., Ltd., Changzhou, China
| | - Junshi Shen
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shengyong Mao
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Dai D, Dong C, Kong F, Wang S, Wang S, Wang W, Li S. Dietary supplementation of S cutellariae radix flavonoid extract improves lactation performance in dairy cows by regulating gastrointestinal microbes, antioxidant capacity and immune function. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:499-508. [PMID: 40092352 PMCID: PMC11909456 DOI: 10.1016/j.aninu.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/23/2024] [Accepted: 11/20/2024] [Indexed: 03/19/2025]
Abstract
Scutellariae radix flavonoid extract (SFE) has been acknowledged for its antioxidant, anti-inflammatory and antimicrobial properties in enhancing gastrointestinal microbial communities and improving the host's immunity. Nevertheless, the impacts of dietary supplementation with SFE on the gastrointestinal microbes and host metabolism in dairy cows remain uncertain. Therefore, the aim of this study was to assess the effects of dietary supplementation with SFE on the lactation performance, gastrointestinal microbes, and plasma biochemical parameters of dairy cows. Six ruminally and duodenally cannulated multiparous dairy cows were used in a crossover design over 28-d periods that included a 21-d adaptation and a 7-d sample collection period. Cows were fed a basal diet (CON group) or a basal diet supplemented with SFE at 25 g/d (SFE group). SFE supplementation tended to increase milk yield (P = 0.067) and milk urea N concentration (P = 0.079), and decreased the milk somatic cell counts (SCC, P = 0.036). Cows in the SFE group had lower plasma aspartate aminotransferase (AST), malondialdehyde (MDA), tumor necrosis factor (TNF-α), and interleukin-1β concentrations compared with the CON (P < 0.05). Meanwhile, SFE supplementation increased butyrate concentration in the rumen (P = 0.044). The microbial structure of rumen and duodenum were affected by SFE supplementation (P = 0.009 and P = 0.031; respectively), resulting in enrichment of Butyrivibrio in both parts of the SFE cows (P = 0.034 and P = 0.029; respectively). However, microbial structure and composition of feces were not affected by SFE supplementation. Overall, our study indicated that dietary supplementation with SFE could enhance lactation performance and milk quality in dairy cows by improving the gastrointestinal inner environment and health status.
Collapse
Affiliation(s)
- Dongwen Dai
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Chunxiao Dong
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Fanlin Kong
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shuo Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | | | - Wei Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
3
|
Su D, Song L, Dong Q, Zhang A, Zhang L, Wang Y, Feng M, Li X, Li F, Sun X, Gao Y. Effects of herbal formula on growth performance, apparent digestibility, antioxidant capacity, and rumen microbiome in fattening lambs under heat stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:51364-51380. [PMID: 39110285 DOI: 10.1007/s11356-024-34542-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 07/24/2024] [Indexed: 09/06/2024]
Abstract
Heat stress (HS) causes severe economic losses in sheep industry worldwide. The objective of the present study was to investigate the effects of a herbal formula (HF) supplement on growth, digestibility, antioxidant capacity, and rumen microbes in fattening lambs under HS. The HF composed of four herbs was prepared based on the theory of compatibility of Chinese medicine "Jun-Chen-Zuo-Shi". Two-hundred forty 3-month weaned lambs (initial weight 36.61 ± 0.73 kg) were randomly allocated into four groups, supplemented 0% (Control), 0.5%, 1.0%, and 1.5% HF in diets. All lambs were exposed to HS conditions with 79.7 of average temperature-humidity index throughout an experimental period of 35 days. Growth performance, apparent digestibility, and antioxidant activities, involving antioxidant enzymes and heat shock proteins (HSPs), were measured at the end of trial, as well as microbial communities in bacteria and archaea. Results showed that 0.5% HF increased (P = 0.02) average daily gain by 13.80% and decreased feed-to-gain ratio (P = 0.03) by 14.68%, compared to control. With increasing HF doses, the digestibility of ether extract and acid detergent fiber demonstrated a cubical (P < 0.01) and quadratic (P = 0.03) relation, respectively; moreover, glutathione peroxidase and catalase activities demonstrated a quadratic increase (P < 0.01). Serum levels of HSP60, HSP70, and HSP90 for 0.5% HF were lower than that in control (P < 0.05). On the other hand, total volatile fatty acid, acetic acid, butyric acid, valeric acid, and isovaleric acid levels exhibited quadratic increases (P ≤ 0.01) with HF doses. From rumen microbes, the abundance and diversity of bacterial community were improved by HF supplements. Particularly for 0.5% HF group, the operational taxonomic units were the greatest among all groups. Compared to control, Prevotella abundance for HF supplements from 0.5 to 1.5% increased by 35.57 to 60.15%, and Succiniclasticum abundance demonstrated a quadratic pattern (P = 0.02) with doses. Additionally, Methanosphaera abundance in archaeal community raised by 0.2 to 3.3-folds when lambs were fed the HF additions of 0.5 to 1.5%. In summary, dietary HF supplements would contribute to alleviating HS in lambs, and our results suggest the optimal dose of 0.5% HF supplement in diet.
Collapse
Affiliation(s)
- Dongyao Su
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Lianjie Song
- Chengde Academy of Agriculture and Forestry Sciences, Chengde, China
| | - Qing Dong
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Ao Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Lu Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yanan Wang
- Chengde Academy of Agriculture and Forestry Sciences, Chengde, China
| | - Man Feng
- Chengde Academy of Agriculture and Forestry Sciences, Chengde, China
| | - Xuemei Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Feng Li
- Chengde Academy of Agriculture and Forestry Sciences, Chengde, China
| | - Xinsheng Sun
- College of Information Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yuhong Gao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
4
|
Abulaiti A, Ahsan U, Naseer Z, Ahmed Z, Liu W, Ruan C, Pang X, Wang S. Effect of dietary Chinese herbal preparation on dry matter intake, milk yield and milk composition, serum biochemistry, hematological profile, and reproductive efficiency of Holstein dairy cows in early postpartum period. Front Vet Sci 2024; 11:1434548. [PMID: 39100764 PMCID: PMC11294110 DOI: 10.3389/fvets.2024.1434548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024] Open
Abstract
The present study investigated the effects of various inclusion levels of dietary Chinese herbal medicine (CHM) preparation on feed consumption, milk yield and milk composition, serum biochemistry, hematological profile, and reproductive efficiency of Holstein dairy cows. A total of 117 lactating Holstein cows were randomly divided into four groups as control (n = 27; without CHM supplementation) and treatment groups CHM-0.5 (n = 31), CHM-0.75 (n = 29), and CHM-1 (n = 30) fed diet supplemented with 0.5, 0.75, and 1 kg/cow/d for 30 days, respectively. The study began at d 20 postpartum (d 0 of the study). At d 50 postpartum, the cows in all groups were subjected to estrus synchronization using a modified Ovsynch protocol (GPGMH) and observed for reproductive variables. Feed intake, milk yield and milk composition, serum biochemistry and hematological profile, and reproductive efficiency were measured. A significantly higher milk yield with improved milk lactose, milk protein and milk fat were found in the CHM-0.75 group compared to the other groups (p < 0.05). Besides, the estrus response, ovulation rate, ovulatory follicle diameter, and pregnancy rate increased in CHM-0.75 compared to CHM-0 or CHM-0.5 group (p < 0.05). The serum metabolites (glucose, AST, arginine, BUN, and NO) showed variations among the treatment groups at different time points (synchronization, AI, or post-AI). In conclusion, CHM supplementation improves the milk yield, milk composition, and serum metabolites in dairy cows. Daily supplementation of 0.75 kg CHM before the GPGMH protocol application enhances the reproductive traits in dairy cows under summer conditions.
Collapse
Affiliation(s)
- Adili Abulaiti
- College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Fengyang, Anhui, China
| | - Umair Ahsan
- Department of Plant and Animal Production, Burdur Vocational School of Food, Agriculture and Livestock, Burdur Mehmet Akif Ersoy University, İstiklal Yerleşkesi, Burdur, Türkiye
- Center for Agriculture, Livestock and Food Research, Burdur Mehmet Akif Ersoy University, İstiklal Yerleşkesi, Burdur, Türkiye
| | - Zahid Naseer
- Faculty of Veterinary and Animal Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Zulfiqar Ahmed
- Faculty of Veterinary and Animal Sciences, University of Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan
| | - Wenju Liu
- College of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Chongmei Ruan
- College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Xunsheng Pang
- College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui, China
| | - Shujuan Wang
- College of Animal Science, Anhui Science and Technology University, Fengyang, Anhui, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Fengyang, Anhui, China
| |
Collapse
|
5
|
Mahasneh ZMH, Abuajamieh M, Abdelqader A, Al-Qaisi M, Abedal-Majed MA, Al-Tamimi H, Zakaria H, Al-Fataftah ARA. The effects of Artemisia Sieberi, Achillea Fragrantissima, and Olea Europaea leaves on the performance and physiological parameters in heat-stressed broiler chickens. Front Vet Sci 2024; 11:1410580. [PMID: 38952804 PMCID: PMC11215149 DOI: 10.3389/fvets.2024.1410580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/24/2024] [Indexed: 07/03/2024] Open
Abstract
High temperatures have detrimental effects on the performance and physiology of broiler chickens. Medicinal plants have various biological activities and may enhance the heat resistance of chickens during heat waves. Therefore, this study aimed to explore the potential roles of using specific local medicinal plants to alleviate the negative impacts of heat stress (HS) in broilers. In this study, 180 day-old chicks were used to investigate the effects of HS and dietary indigenous medicinal plants on growth performance, antioxidant biomarkers, and intestinal health. The chicks were assigned to six groups (18 pens with 10 chicks per pen) with three replicates each. In the first group, the chicks were kept under thermoneutral conditions (CON) and fed a basal diet. The other five groups were exposed to recurrent heat stress and fed a basal diet (T1, HS group) or supplemented with Artemisia Sieberi (1.25 g/kg of feed; T2), Achillea Fragrantissima (15 g/kg of feed; T3), Olea europaea (10 g/kg of feed; T4), and all the previous additives (all-in-one) combined at the same dose levels mentioned above (T5). At 21 days of age, the chicks from each group were exposed to two phases of heat stress: phase 1 from days 21 to 34 (34 ± 1°C) followed by phase 2 from days 35 to 39 (37 ± 1°C). The results indicate that HS significantly increased rectal temperature and respiration rate in broiler chickens. Feed intake and body weight gain were improved in all supplemented groups, while the feed conversion ratio was decreased in response to the dietary inclusion of medicinal plants. Additionally, glutathione peroxidase and immunoglobulin G levels were increased in the T3, T4, and T5 groups compared to the other groups. HS induced significant upregulated in the mRNA levels of heat shock protein 70 and interleukin-8, while the mRNA of occludin was decreased. The T3, T4, and T5 showed significantly decreased expression of hepatic HSP70 and ileum IL-8 genes and increased ileum mRNA occludin levels relative to the CON and T1 groups. In conclusion, supplementation with these plants enhances growth performance and maintains intestinal health sustaining the productivity of broiler chickens under HS conditions.
Collapse
Affiliation(s)
- Zeinab M. H. Mahasneh
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Mohannad Abuajamieh
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Anas Abdelqader
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Mohmmad Al-Qaisi
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Mohamed A. Abedal-Majed
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman, Jordan
| | - Hosam Al-Tamimi
- Department of Animal Production, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Hana Zakaria
- Department of Animal Production, School of Agriculture, The University of Jordan, Amman, Jordan
| | | |
Collapse
|
6
|
Wang J, Deng L, Chen M, Che Y, Li L, Zhu L, Chen G, Feng T. Phytogenic feed additives as natural antibiotic alternatives in animal health and production: A review of the literature of the last decade. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:244-264. [PMID: 38800730 PMCID: PMC11127233 DOI: 10.1016/j.aninu.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/26/2023] [Accepted: 01/22/2024] [Indexed: 05/29/2024]
Abstract
The use of antibiotics in animal production raises great public safety concerns; therefore, there is an urgent need for the development of substitutes for antibiotics. In recent decades, plant-derived feed additives have been widely investigated as antibiotic alternatives for use in animal health and production because they exert multiple biological functions and are less likely to induce resistance development. This review summarizes the research history and classification of phytogenic feed additives and their main functions, potential modes of action, influencing factors, and potential negative effects. Further, we highlight the challenges in developing sustainable, safe, and affordable plant-derived antibiotic alternatives for use in livestock production.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Sino-US Joint Laboratory of Animal Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Lufang Deng
- Feed Branch of Beijing Sanyuan Breeding Technology Co., Ltd, Beijing 101105, China
| | - Meixia Chen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Sino-US Joint Laboratory of Animal Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yuyan Che
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Lu Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan 056038, China
| | - Longlong Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Guoshun Chen
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Tao Feng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Sino-US Joint Laboratory of Animal Science, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
7
|
Rahman MA, Redoy MRA, Chowdhury R, Al-Mamun M. Effect of dietary supplementation of plantain herb, lemongrass and their combination on milk yield, immunity, liver enzymes, serum, and milk mineral status in dairy cows. J Adv Vet Anim Res 2024; 11:185-193. [PMID: 38680813 PMCID: PMC11055577 DOI: 10.5455/javar.2024.k764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/29/2023] [Accepted: 02/15/2024] [Indexed: 05/01/2024] Open
Abstract
Objective This research aimed to assess the effects of dried plantain herb, lemongrass, and their combination on milk yield, immunological, liver enzymatic, serum, and milk mineral status in dairy cows. Materials and Methods Twenty cows were arbitrarily assigned to 4 diets. Cows were given a basal ration considered as control diet (CL-D) having 14.93% crude protein (CP)and 10.96 MJ ME per kg dry matter (DM). Each cow was given 100 gm plantain, 100 gm lemongrass, and 50 gm plantain + 50 gm lemongrass with CL-D and taken as plantain diet (PT-D), lemongrass diet (LG-D), and plantain-lemongrass diet (PL-D), daily for 63 days, respectively. Blood and milk samples were taken four times at an interval of 14 days. Data were analyzed using a two-way repeated measures analysis of covariance. Results Better DM consumption and milk yield were observed in the PT-D and LG-D compared to the CL-D (p ≤ 0.05). LG-D improved the milk's total solids, protein, and fat compared to CL-D (p < 0.05). Substantially, herbal groups improved serum albumin and reduced globulin concentrations compared to CL-D. LG-D had the highest serum immunoglobulin G, while herbal groups effectively reduced the liver enzymes compared to CL-D. Herbal groups did not affect serum and milk's calcium and phosphorus concentrations, while LG-D and PL-D substantially improved serum and milk zinc concentrations. Conclusions Both plantain and lemongrass improved dairy cows' DM consumption and milk yield. Plantain and/or lemongrass enhanced the immune system and liver health, but not serum and milk calcium and phosphorus level. Lemongrass and a combination of plantain and lemongrass increased the serum and milk zinc concentrations.
Collapse
Affiliation(s)
- Md. Aliar Rahman
- Department of Animal Nutrition, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Rahat Ahmad Redoy
- Department of Animal Nutrition, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Rakhi Chowdhury
- Department of Animal Nutrition, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Al-Mamun
- Department of Animal Nutrition, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
8
|
Jiang MH, Zhang T, Wang QM, Ge JS, Sun LL, Li MQ, Miao QY, Zhu YZ. Effects of enzymolysis and fermentation of Chinese herbal medicines on serum component, egg production, and hormone receptor expression in laying hens. Anim Biosci 2024; 37:95-104. [PMID: 37905322 PMCID: PMC10766462 DOI: 10.5713/ab.23.0146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/11/2023] [Accepted: 09/04/2023] [Indexed: 11/02/2023] Open
Abstract
OBJECTIVE In the present study, we aimed to investigate the effects of enzymolysis fermentation of Chinese herbal medicines (CHMs) on egg production performance, egg quality, lipid metabolism, serum reproductive hormone levels, and the mRNA expression of the ovarian hormone receptor of laying hens in the late-laying stage. METHODS A total of 360 Hy-Line Brown laying hens (age, 390 days) were randomly categorized into four groups. Hens in the control (C) group were fed a basic diet devoid of CHMs, the crushed CHM (CT), fermented CHM (FC), and enzymatically fermented CHM (EFT) groups received diets containing 2% crushed CHM, 2% fermented CHM, and 2% enzymatically fermented CHM, respectively. RESULTS Compared with crushed CHM, the acid detergent fiber, total flavonoids, and total saponins contents of fermented CHM showed improvement (p<0.05); furthermore, the neutral and acid detergent fiber, total flavonoids, and total saponins contents of enzymatically fermented CHM improved (p<0.05). At 5 to 8 weeks, hens in the FC and EFT groups showed increased laying rates, haugh unit, albumin height, yolk color, shell thickness, and shell strength compared with those in the C group (p<0.05). Compared with the FC group, the laying rate, albumin height, and Shell thickness in the EFT group was increased (p<0.05). Compared with the C, CT, and FC groups, the EFT group showed reduced serum total cholesterol and increased serum luteinizing hormone levels and mRNA expressions of follicle stimulating hormone receptor and luteinizing hormone receptor (p<0.05). CONCLUSION These results indicated that the ETF group improved the laying rate and egg quality and regulated the lipid metabolism in aged hens. The mechanism underlying this effect was likely related to cell wall degradation of CHM and increased serum levels of luteinizing hormone and mRNA expression of the ovarian hormone receptor.
Collapse
Affiliation(s)
- Mei Hong Jiang
- Key Laboratory for Animal Nutritional Regulation and Health of the Anhui Province, College of Animal Science, Anhui Science and Technology University, Bengbu 233100,
China
| | - Tao Zhang
- Key Laboratory for Animal Nutritional Regulation and Health of the Anhui Province, College of Animal Science, Anhui Science and Technology University, Bengbu 233100,
China
| | - Qing Ming Wang
- Shandong Jinghua Agriculture and Animal Husbandry Development Co., Ltd., Zhucheng 262200,
China
| | - Jin Shan Ge
- Shandong Zhongcheng Feed Technology Co., Ltd., Feicheng 271600,
China
| | - Lu Lu Sun
- Key Laboratory for Animal Nutritional Regulation and Health of the Anhui Province, College of Animal Science, Anhui Science and Technology University, Bengbu 233100,
China
| | - Meng Qi Li
- Key Laboratory for Animal Nutritional Regulation and Health of the Anhui Province, College of Animal Science, Anhui Science and Technology University, Bengbu 233100,
China
| | - Qi Yuan Miao
- Key Laboratory for Animal Nutritional Regulation and Health of the Anhui Province, College of Animal Science, Anhui Science and Technology University, Bengbu 233100,
China
| | - Yuan Zhao Zhu
- Key Laboratory for Animal Nutritional Regulation and Health of the Anhui Province, College of Animal Science, Anhui Science and Technology University, Bengbu 233100,
China
| |
Collapse
|
9
|
Wang X, Liu X, Liu S, Qu J, Ye M, Wang J, Li X, Yuan Z, Wu J, Yi J, Wen L, Li R. Effects of anti-stress agents on the growth performance and immune function in broiler chickens with vaccination-induced stress. Avian Pathol 2023; 52:12-24. [PMID: 35980124 DOI: 10.1080/03079457.2022.2114874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 05/04/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022]
Abstract
The aim of this study was to evaluate the effects of anti-stress agents on the growth performance and immune function of broilers under immune stress conditions induced by vaccination. A total of 128, 1-day-old Arbor Acres broilers were randomly divided into four groups. Group normal control (NC) was the control group. Group vaccination control (VC), T 0.5%, and T 1% were the treatment groups, which were nasally vaccinated with two doses of the Newcastle disease virus (NDV) vaccine. The chicks in groups T 0.5% and T 1% were fed conventional diets containing 0.5% and 1% anti-stress agents. Thereafter, these broilers were slaughtered on 1, 7, 14, and 21 days post-vaccination. The results indicated that anti-stress agents could significantly reduce serum adrenocorticotropic hormone (ACTH) (P < 0.01) and cortisol (CORT) (P < 0.05) levels, and improve the growth performance (P < 0.05) and immune function of broilers (P < 0.05); However, the levels of malondialdehyde (MDA) (P < 0.05) were decreased, and the decreased total antioxidant capacity (T-AOC) (P < 0.01) levels mediated by vaccination were markedly improved. In addition, anti-stress agents could attenuate apoptosis in spleen lymphocytes (P < 0.01) by upregulating the ratio of Bcl-2 to BAX (P < 0.01) and downregulating the expression of caspase-3 and -9 (P < 0.01), which might be attributed to the inhibition of the enzymatic activities of caspase-3 and -9 (P < 0.05). In conclusion, anti-stress agents may improve growth performance and immune function in broilers under immune-stress conditions.RESEARCH HIGHLIGHTS Investigation of effects and mechanism of immune stress induced by vaccination.Beneficial effect of anti-stress agents on growth performance, immune function, oxidative stress, and regulation of lymphocyte apoptosis.Demonstration of the effects of apoptosis on immune function in the organism.
Collapse
Affiliation(s)
- Xianglin Wang
- Laboratory of Animal Clinical Toxicology, College of Veterinary Medicine, Hunan Agricultural University, Changsha City, People's Republic of China
| | - Xiangyan Liu
- Laboratory of Animal Clinical Toxicology, College of Veterinary Medicine, Hunan Agricultural University, Changsha City, People's Republic of China
| | - Sha Liu
- Laboratory of Animal Clinical Toxicology, College of Veterinary Medicine, Hunan Agricultural University, Changsha City, People's Republic of China
| | - Jianyu Qu
- Laboratory of Animal Clinical Toxicology, College of Veterinary Medicine, Hunan Agricultural University, Changsha City, People's Republic of China
| | - Mengke Ye
- Laboratory of Animal Clinical Toxicology, College of Veterinary Medicine, Hunan Agricultural University, Changsha City, People's Republic of China
| | - Ji Wang
- Laboratory of Animal Clinical Toxicology, College of Veterinary Medicine, Hunan Agricultural University, Changsha City, People's Republic of China
| | - Xiaowen Li
- Laboratory of Animal Clinical Toxicology, College of Veterinary Medicine, Hunan Agricultural University, Changsha City, People's Republic of China
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City, People's Republic of China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City, People's Republic of China
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City, People's Republic of China
| | - Lixin Wen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City, People's Republic of China
| | - Rongfang Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha City, People's Republic of China
| |
Collapse
|
10
|
Yoo D, Kim H, Moon J, Kim J, Kim H, Seo J. Effects of Red Ginseng Byproducts on Rumen Fermentation, Growth Performance, Blood Metabolites, and mRNA Expression of Heat Shock Proteins in Heat-Stressed Fattening Hanwoo Steers. Vet Sci 2022; 9:vetsci9050220. [PMID: 35622748 PMCID: PMC9143152 DOI: 10.3390/vetsci9050220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/01/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022] Open
Abstract
The objective of this study was to evaluate the effects of dietary supplementation with red ginseng byproduct (RGB) on rumen fermentation, growth performance, blood metabolites, and mRNA expression of heat shock proteins (HSP) in fattening Hanwoo steers under heat stress. Two experimental total mixed rations (TMR) were prepared: (1) a TMR meeting the requirement of fattening beef having an average daily gain (ADG) 0.8 kg/day (CON) and (2) a TMR that included 2% RGB on a dry matter (DM) basis (GINSENG). In vitro rumen fermentation and in vivo growth experiments were conducted using two experimental diets. A total of 22 Hanwoo steers were distributed to two treatments (CON vs. GINSENG) in a completely randomized block design according to body weight (BW). The experiment was conducted during the summer season for five weeks. The final BW, ADG, DM intake, and feed conversion ratio did not differ between treatments in the growth trial. In the mRNA expression results, only HSP 90 showed an increasing tendency in the GINSENG group. The use of 2%DM RGB did not improve the growth performance or alleviate heat stress in fattening Hanwoo steers during the summer season.
Collapse
Affiliation(s)
- Daekyum Yoo
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea; (D.Y.); (H.K.); (J.M.)
| | - Hanbeen Kim
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea; (D.Y.); (H.K.); (J.M.)
| | - Joonbeom Moon
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea; (D.Y.); (H.K.); (J.M.)
| | - Jongnam Kim
- Department of Food and Nutrition, Dongseo University, Busan 47011, Korea;
| | - Hyeran Kim
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Jeonju-si 55365, Korea;
| | - Jakyeom Seo
- Department of Animal Science, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea; (D.Y.); (H.K.); (J.M.)
- Correspondence: ; Tel.: +82-55-350-5513
| |
Collapse
|
11
|
Jin L, Dong H, Sun D, Wang L, Qu L, Lin S, Yang Q, Zhang X. Biological Functions and Applications of Antimicrobial Peptides. Curr Protein Pept Sci 2022; 23:226-247. [DOI: 10.2174/1389203723666220519155942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Despite antimicrobial resistance, which is attributed to the misuse of broad-spectrum antibiotics,
antibiotics can indiscriminately kill pathogenic and beneficial microorganisms. These events
disrupt the delicate microbial balance in both humans and animals, leading to secondary infections
and other negative effects. Antimicrobial peptides (AMPs) are functional natural biopolymers in
plants and animals. Due to their excellent antimicrobial activities and absence of microbial resistance,
AMPs have attracted enormous research attention. We reviewed the antibacterial, antifungal, antiviral,
antiparasitic, as well as antitumor properties of AMPs and research progress on AMPs. In addition,
we highlighted various recommendations and potential research areas for their progress and
challenges in practical applications.
Collapse
Affiliation(s)
- Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University,
Wenzhou 325035, China
| | - Hao Dong
- College of Life Science and Technology, Jilin Agricultural University, Changchun 130118,
China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University,
Wenzhou 325035, China
| | - Lei Wang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University,
Wenzhou 325035, China
| | - Linkai Qu
- College of Life Science and Technology, Jilin Agricultural University, Changchun 130118,
China
| | - Sue Lin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University,
Wenzhou 325035, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Xingxing Zhang
- Department of Endocrinology
and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
12
|
Li L, Sun X, Luo J, Chen T, Xi Q, Zhang Y, Sun J. Effects of Herbal Tea Residue on Growth Performance, Meat Quality, Muscle Metabolome, and Rumen Microbiota Characteristics in Finishing Steers. Front Microbiol 2022; 12:821293. [PMID: 35116016 PMCID: PMC8804378 DOI: 10.3389/fmicb.2021.821293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Herbal tea residue (HTR) contains various medicinal and nutritional components and is a potential high-quality unconventional source of roughage. In this study, a total of 30 healthy Simmental crossbred finishing steers were equally divided into two groups: CN (fed with a basic diet) and RE (HTR partly replaced Pennisetum purpureum). HTR did not alter the growth performance of steers but increased the net meat rate, tenderness, and water-holding capacity and increased the moisture content and oleic acid and linoleic acid concentrations in longissimus dorsi. It altered muscle metabolic pathways and improved rumen fermentation by increasing the propionic acid concentration and propionic acid-to-acetic acid ratio. We studied the steers’ rumen microbial community composition and determined their correlation with the tested parameters. Certain rumen microorganisms were closely associated with muscle glucolipid metabolites and rumen NH3-N and volatile fatty acid levels. Our findings suggest that, as a functional roughage source, HTR improved to a certain extent the meat quality of steers by altering the rumen microbial composition and affecting the rumen fatty acid composition and muscle glucolipid metabolism.
Collapse
|
13
|
Geng J, Jin W, Hao J, Huo M, Zhang Y, Xie C, Zhao B, Li Y. Effects of Dietary Modified Bazhen on Reproductive Performance, Immunity, Breast Milk Microbes, and Metabolome Characterization of Sows. Front Microbiol 2021; 12:758224. [PMID: 34867885 PMCID: PMC8634670 DOI: 10.3389/fmicb.2021.758224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/07/2021] [Indexed: 12/04/2022] Open
Abstract
Bazhen is a classic prescription used for the prevention of qi and blood deficiency. The present study aimed to investigate the effects of dietary supplementation with modified Bazhen powder (MBP) on sows during lactation. Forty pure-bred Yorkshire sows on day 100 of gestation were randomly fed a standard diet supplemented with 20 g MBP per sow per day (MBP group) or without (control group) during -14 to 7 days relative to parturition. Results showed that the serum levels of interleukin 2 (IL-2), immunoglobulin A (IgA), and IgG were higher, whereas IL-10 level was lower in sows fed with MBP diet than in controls on day 7 postpartum. A significantly elevated proportion of serum CD4+ T cells and a slight increase in the ratio of CD4+ to CD8+ T cells in the MBP group were also observed. Furthermore, MBP supplementation improved gastrointestinal function of postpartum sows, evidenced by increased levels of motilin, gastrin, and nitric oxide. Ultra high-performance liquid chromatography combined with a quadrupole time of flight and tandem mass spectrometer identified a total of 21 absorbed milk components. 16S rRNA gene amplicon sequencing data revealed that the microbiota diversity of the colostrum and transitional milk in the MBP group was increased. At the genus level, relative abundances of Enterococcus and Anaerostipes were significantly lower in the MBP group on day 0 of lactation. Metabolomic analysis showed that 38 metabolites were upregulated, and 41 metabolites were downregulated in the transitional milk; 31 metabolites were upregulated and 8 metabolites were downregulated in the colostrum in response to MBP. Metabolic pathways, protein digestion and absorption, and biosynthesis of amino acids were enriched in the colostrum and transitional milk. Our findings provide new insights into the beneficial effects of MBP, highlighted by the changes to the microbiota and metabolomic profile of breast milk from sows fed with an MBP-supplemented diet. Thus, MBP should be considered as a potential dietary supplement for lactating sows in pork production.
Collapse
Affiliation(s)
- Jian Geng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Weicheng Jin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Jingyou Hao
- Harbin Lvdasheng Animal Medicine Manufacture Co., Ltd., Harbin, China
| | - Mohan Huo
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Yuefeng Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Chunmei Xie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Baokai Zhao
- Liaoning VICA Agriculture and Animal Husbandry Ecological Food Co., Ltd., Xincheng, China
| | - Yanhua Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China.,Harbin Herb & Herd Bio-Technology Co., Ltd., Harbin, China
| |
Collapse
|
14
|
Hu T, Lei Y, Li M, Liu Q, Song L, Zhao D. Dietary Eucommia ulmoides Extract Alleviates the Effect of Cold Stress on Chick Growth Performance, Antioxidant and Immune Ability. Animals (Basel) 2021; 11:3008. [PMID: 34827741 PMCID: PMC8614489 DOI: 10.3390/ani11113008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/09/2021] [Accepted: 10/16/2021] [Indexed: 01/10/2023] Open
Abstract
This study aimed to investigate the protective value of Eucommia ulmoides extract (EUE) on chicks under cold stress. A total of 21 compounds were identified in EUE using mass spectrometry (LC-MS). Ninety chicks were divided into a control group (CS) fed a basal diet and an experimental group supplemented with EUE, exposed to 10 ± 1 °C for 8 h per day. Results showed, compared with the CS group, the body weights (BW) (p < 0.01) and average daily gains ADG (p < 0.05) of the EUE group were increased throughout the study period. Chicks fed EUE had higher AFI (0-7 d, p < 0.001) and lower feed-to-gain ratios (F/G) (0-15 d, p < 0.001). EUE increased the activities of superoxide dismutase (SOD) (15 d, p < 0.05) and glutathione peroxidase (GSH-Px) (7 d, p < 0.05), whereas it decreased malondialdehyde (MDA) (15 d, p < 0.01). The contents of IgA (7 d, p < 0.05), IgG (7 d; 15 d, p < 0.01), and IgM (15 d, p < 0. 001) were higher in the EUE group. Dietary EUE could also reduce chick organ damage. Overall, EUE as a natural feed additive can improve the growth performance, antioxidant capacity, and immune level, and reduce the organ damage of cold-stressed chicks.
Collapse
Affiliation(s)
- Ting Hu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China; (T.H.); (Y.L.); (M.L.)
- Guizhou Key Lab of Agro-Bioengineering, Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
- College of Life Sciences, Guizhou University, Guiyang 550025, China
| | - Yue Lei
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China; (T.H.); (Y.L.); (M.L.)
- Guizhou Key Lab of Agro-Bioengineering, Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
- Guizhou Institute of Subtropical Crops, Xingyi 562400, China
| | - Minxue Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China; (T.H.); (Y.L.); (M.L.)
- Guizhou Key Lab of Agro-Bioengineering, Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Qin Liu
- College of Animal Science, Guizhou University, Guiyang 550025, China;
| | - Li Song
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China; (T.H.); (Y.L.); (M.L.)
- Guizhou Key Lab of Agro-Bioengineering, Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Degang Zhao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China; (T.H.); (Y.L.); (M.L.)
- Guizhou Key Lab of Agro-Bioengineering, Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
- Guizhou Academy of Agricultural Science, Guiyang 550006, China
| |
Collapse
|
15
|
Anti-Inflammatory and Antibacterial Potential of Qicao Rukang Powder in Bovine Subclinical Mastitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2148186. [PMID: 34484387 PMCID: PMC8416365 DOI: 10.1155/2021/2148186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/06/2021] [Accepted: 08/13/2021] [Indexed: 11/22/2022]
Abstract
Background Subclinical mastitis is one of the most common reproductive diseases in dairy cows. Qicao Rukang powder is a Chinese herbal compound mixture developed to treat subclinical mastitis in dairy cows by clearing heat, tonifying qi, and improving blood and milk circulation. The study aimed to determine the anti-inflammatory and antimicrobial efficacy of Qicao Rukang powder in treating subclinical mastitis in dairy cows at the manufacturer's recommended dose. Methods Forty (40) Holstein dairy cows with milk somatic cell count (SCC) ≥ 500,000 cellml−1 were randomly assigned to treatment (n = 20) and control (n = 20) groups. Cows in the treatment group were administered with 150 grams of Qicao Rukang powder orally for five days, while the control group received no treatment. The authors analyzed the milk SCC, milk composition, bacteriological cure rate of the drug, blood serum levels of interleukins (IL-6, IL-1β, and IL-8), tumor necrosis factor (TNF-α), and interferon gamma (INF-γ) quantified by using ELISA kits on day 0 and day 6. Results SCC of the treated group reduced very significantly (P < 0.001) compared with the control group. Milk fat, protein, and total solids increased significantly (P < 0.05) after treatment, whereas lactose and milk urea nitrogen levels showed a nonsubstantial rise. The bacteriological cure percentage of Qicao Rukang powder therapy was 77.8% for Aeromonas spp. (14 of 18), 75% for Pseudomonas spp. (6 of 8), and 100% for Acinetobacter spp. and Enterococcus spp. giving 81.8% cured for all isolates (27 of 33). Only 26.7% (8 of 30) of untreated cows recovered spontaneously. Analysis of IL-1β, IL-6, and INF-γ in the blood serum of the treated group revealed a significant decrease (P < 0.01) with nonsignificant rises in TNF-α and IL-8 levels. Conclusions This research demonstrates that Qicao Rukang powder has potent antibacterial and anti-inflammatory actions, supporting its use as an alternative to conventional treatment for subclinical dairy cow mastitis. However, further investigations will be required to explain the role of the active ingredients and the mechanisms involved in the pharmacological activities of the Qicao Rukang powder.
Collapse
|
16
|
Cui Y, Lu H, Tian Z, Deng D, Ma X. Current trends of Chinese herbal medicines on meat quality of pigs. A review. JOURNAL OF ANIMAL AND FEED SCIENCES 2021. [DOI: 10.22358/jafs/138775/2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Chen H, Guo B, Yang M, Luo J, Hu Y, Qu M, Song X. Response of Growth Performance, Blood Biochemistry Indices, and Rumen Bacterial Diversity in Lambs to Diets Containing Supplemental Probiotics and Chinese Medicine Polysaccharides. Front Vet Sci 2021; 8:681389. [PMID: 34250066 PMCID: PMC8264418 DOI: 10.3389/fvets.2021.681389] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
This study aims to investigate the effects of probiotics and Chinese medicine polysaccharides (CMPs) on growth performance, blood indices, rumen fermentation, and bacteria composition in lambs. Forty female lambs were randomly divided into four groups as follows: control, probiotics, CMP, and compound (probiotics + CMP) groups. The results showed that probiotics treatment increased the concentrations of blood glucose (GLU) and immunoglobulin G (IgG) and enhanced rumen microbial protein contents but declined the value of pH in rumen fluid compared with the control (P < 0.05). Furthermore, supplementation with CMP enhanced the average daily gain (ADG) and the contents of IgA, IgG, and IgM in the serum but decreased the F:G ratio compared with the control (P < 0.05). Besides, both CMP and compound (probiotics + CMP) treatments decreased the ratio of acetic acid and propionic acid compared with the control (P < 0.05). High-throughput sequencing data showed that at the genus level, the relative abundance of Veillonellaceae_UCG-001 in the probiotics group was increased, the relative abundance of Succiniclasticum and norank_f__Muribaculaceae in the CMP group were enhanced, and the relative abundance of Ruminococcaceae_UCG-002 in the compound group was raised compared with the control (P < 0.05). In summary, supplementation with probiotics can promote rumen protein fermentation but decrease the diversity of bacteria in rumen fluid; however, CMP treatment increased the relative abundance of Fibrobacteria, changed rumen microbial fermentation mode, increased the immune function, and ultimately improved the growth performance.
Collapse
Affiliation(s)
- Huan Chen
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Beibei Guo
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Mingrui Yang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Junrong Luo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yiqing Hu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Mingren Qu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Xiaozhen Song
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
18
|
Yin B, Li W, Qin H, Yun J, Sun X. The Use of Chinese Skullcap ( Scutellaria baicalensis) and Its Extracts for Sustainable Animal Production. Animals (Basel) 2021; 11:ani11041039. [PMID: 33917159 PMCID: PMC8067852 DOI: 10.3390/ani11041039] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 12/04/2022] Open
Abstract
Simple Summary With the increasing pressure to address the problems of bacterial resistance and drug residues, medicinal herbs are gradually taking a more important role in animal production. Scutellaria baicalensis is a common and widely used Chinese medicinal herb. The main bioactive compounds in the plant are baicalein and baicalin. These compounds have many biological functions including anti-oxidation, antipyretic, analgesic, anti-inflammatory, antiallergic, antimicrobial, immunomodulatory, and antitumor effects. S. baicalensis and its extracts can effectively promote animal growth, improve the production performance of dairy cows, reduce the stress and inflammatory response, and have effective therapeutic effects on diseases caused by bacteria, viruses, and other pathogenic microorganisms. This paper summarizes the biological function of S. baicalensis and its application in sustainable animal production to provide a reference for future application of S. baicalensis and other medicinal herbs in animal production and disease treatment. Abstract Drugs have been widely adopted in animal production. However, drug residues and bacterial resistance are a worldwide issue, and thus the most important organizations (FAO, USDA, EU, and EFSA) have limited or banned the use of some drugs and the use of antibiotics as growth promoters. Natural products such as medicinal herbs are unlikely to cause bacterial resistance and have no chemical residues. With these advantages, medicinal herbs have long been used to treat animal diseases and improve animal performance. In recent years, there has been an increasing interest in the study of medicinal herbs. S. baicalensis is a herb with a high medicinal value. The main active compounds are baicalin and baicalein. They may act as antipyretic, analgesic, anti-inflammatory, antiallergenic, antimicrobial, and antitumor agents. They also possess characteristics of being safe, purely natural, and not prone to drug resistance. S. baicalensis and its extracts can effectively promote the production performance of livestock and treat many animal diseases, such as mastitis. In this review, we summarize the active compounds, biological functions, and applications of S. baicalensis in the production of livestock and provide a guideline for the application of natural medicines in the production and treatment of diseases.
Collapse
Affiliation(s)
- Baishuang Yin
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China; (B.Y.); (W.L.); (H.Q.); (J.Y.)
| | - Wei Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China; (B.Y.); (W.L.); (H.Q.); (J.Y.)
| | - Hongyu Qin
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China; (B.Y.); (W.L.); (H.Q.); (J.Y.)
| | - Jinyan Yun
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China; (B.Y.); (W.L.); (H.Q.); (J.Y.)
| | - Xuezhao Sun
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin 132109, China; (B.Y.); (W.L.); (H.Q.); (J.Y.)
- The Innovation Centre of Ruminant Precision Nutrition and Smart and Ecological Farming, Jilin Agricultural Science and Technology University, Jilin 132109, China
- Jilin Inter-Regional Cooperation Centre for the Scientific and Technological Innovation of Ruminant Precision Nutrition and Smart and Ecological Farming, Jilin 132109, China
- Correspondence: ; Tel.: +86-187-4327-5745
| |
Collapse
|
19
|
Peng T, Shang H, Yang M, Li Y, Luo J, Qu M, Zhang X, Song X. Puerarin improved growth performance and postmortem meat quality by regulating lipid metabolism of cattle under hot environment. Anim Sci J 2021; 92:e13543. [PMID: 33738872 DOI: 10.1111/asj.13543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 11/30/2022]
Abstract
This study aims to evaluate the effect of puerarin on performance, meat quality, and serum indexes of beef cattle under hot environment. Thirty-two bulls were divided into four groups and fed diet supplemented with puerarin at 0, 200, 400, or 800 mg/kg. Results showed that heat stress was employed for 54 out of 60 days, 400 mg/kg group declined serum cortisol (COR) contents, all treatments increased the contents of total cholesterol, high density lipoprotein cholesterol, and total superoxide dismutase activity; in addition, glutathione peroxidase activity of 200 mg/kg group were enhanced, only 800 mg/kg group enhanced immunoglobulin (IgA, IgM, and IgG) and low density lipoprotein cholesterol contents compared with the control (p < .05). Moreover, 400-mg/kg puerarin increased serum growth hormone levels compared with 200 mg/kg group but declined COR concentrations compared with 200 mg/kg and 800 mg/kg groups (p < .05). More importantly, average daily gain and daily matter intake, and intramuscular fat contents of 400 mg/kg group were enhanced, but the shear force of beef in 400 mg/kg and 800 mg/kg groups were declined compared with the control (p < .05). These findings indicated that supplemental with puerarin enhanced immune and antioxidant, and 400 mg/kg of puerarin improved performance and meat quality by normalizing levels of stress hormones and increasing intramuscular fat deposition of beef cattle under hot environment.
Collapse
Affiliation(s)
- Tao Peng
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Hanle Shang
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Mingrui Yang
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yanjiao Li
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Junrong Luo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Mingren Qu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Xinyu Zhang
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| | - Xiaozhen Song
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
20
|
Xie Y, Chen Z, Wang D, Chen G, Sun X, He Q, Luo J, Chen T, Xi Q, Zhang Y, Sun J. Effects of Fermented Herbal Tea Residues on the Intestinal Microbiota Characteristics of Holstein Heifers Under Heat Stress. Front Microbiol 2020; 11:1014. [PMID: 32528442 PMCID: PMC7264259 DOI: 10.3389/fmicb.2020.01014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 04/24/2020] [Indexed: 01/01/2023] Open
Abstract
Herbal tea residue (HTR) is a reusable resource with high nutritional value and bioactive substances content, which can be used as a feed additive. In the present study, HTRs were fermented by lactic acid bacteria, and then fed to a total of 90 Holstein heifers, termed as CN, LC, and HC groups. The supplementation improved physiological indices of respiratory frequency and rectal temperature, increased the concentrations of immunoglobulins and antioxidant capacity-related parameters, and reduced the concentrations of heat stress-related parameters and serum hormones. The heifers’ body height increased considerably, while their energy metabolism rates were stimulated in response to fermented HTRs. We also studied the fecal microbial community composition of 8 Holstein heifers in each group, and employed correlation analysis with tested parameters. We found that the bacteria were closely related to characteristics including the energy utilization rate, growth performance, serum biochemical indexes, and fecal SCFA levels of the heifers. Based on our findings, the 5% fermented HTRs replaced corn silage might be advantageous for the heifers’ characteristics under heat stress.
Collapse
Affiliation(s)
- Yueqin Xie
- Guangdong Engineering & Research Center for Woody Fodder Plants, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zujing Chen
- Guangdong Engineering & Research Center for Woody Fodder Plants, South China Agricultural University, Guangzhou, China
| | - Dongyang Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Guoping Chen
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaohong Sun
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qian He
- Guangdong Engineering & Research Center for Woody Fodder Plants, South China Agricultural University, Guangzhou, China
| | - Junyi Luo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ting Chen
- Guangdong Engineering & Research Center for Woody Fodder Plants, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qianyun Xi
- Guangdong Engineering & Research Center for Woody Fodder Plants, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yongliang Zhang
- Guangdong Engineering & Research Center for Woody Fodder Plants, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiajie Sun
- Guangdong Engineering & Research Center for Woody Fodder Plants, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
21
|
Zeng H, Xi Y, Li Y, Wang Z, Zhang L, Han Z. Analysis of Astragalus Polysaccharide Intervention in Heat-Stressed Dairy Cows' Serum Metabolomics. Animals (Basel) 2020; 10:ani10040574. [PMID: 32235382 PMCID: PMC7222412 DOI: 10.3390/ani10040574] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/22/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
This experiment was conducted to investigate the effects of astragalus polysaccharides (APS) on serum metabolism of dairy cows under heat stress. Thirty healthy Holstein dairy cows were randomly divided into three groups (10 cows in each group). In the experimental group, 30 mL/d (Treatment I) and 50 mL/d (Treatment II) of APS injection were injected into the neck muscle respectively. Each stage was injected with APS for 4 days (8:00 a.m. every day) and stopped for 3 days. Serum hormone and antioxidant indexes of dairy cows were investigated. Through repeated measurement analysis of variance, the results have shown that cortisol (COR) (F = 6.982, p = 0.026), triiodothyronine (T3) (F = 10.005, p = 0.012) and thyroxine (T4) (F = 22.530, p = 0.002) at different time points were significantly different. COR showed a downward trend, T3 and T4 showed an upward trend. At each time point, different concentrations of APS have significant effects on COR (F = 30.298, p = 0.000 < 0.05), T3 (F = 18.122, p = 0.001), and T4 (F = 44.067, p = 0.000 < 0.05). However, there were no significant differences in serum insulin (INS), glucagon (GC) and heat shock protein 70 (HSP70) between different time points (p > 0.05) and at each time point (p > 0.05). Additionally, the results have also shown that there were also no significant differences in serum Superoxide dismutase (SOD), malondialdehyde (MDA) and lactate dehydrogenase (LDH) between different time points (p > 0.05) and at each time point (p > 0.05). However, the injection of APS had a significant impact on glutathione peroxidase (GSH-Px) (F = 9.421, p = 0.014) at different times, and showed a trend of rising first and then falling. At each time point, APS of different concentrations had no significant effect on GSH-Px (p > 0.05). Furthermore, we used gas chromatography-mass spectrometry (GC-MS) non-targeted metabolomics to determine the potential markers of APS for heat-stressed dairy cows. Twenty metabolites were identified as potential biomarkers for the diagnosis of APS in heat-stressed dairy cows. These substances are involved in protein digestion and absorption, glutathione metabolism, prolactin signaling pathway, aminoacyl-tRNA biosynthesis, pentose and glucuronate interconversions, and so on. Our findings suggest that APS have an effect on the serum hormones of heat-stressed dairy cows, and regulate the metabolism of heat-stressed dairy cows through glucose metabolism and amino acid metabolism pathways.
Collapse
Affiliation(s)
- Hanfang Zeng
- Institute of Dairy Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (Y.L.); (Z.W.); (L.Z.)
| | - Yumeng Xi
- Animal Husbandry Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Yeqing Li
- Institute of Dairy Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (Y.L.); (Z.W.); (L.Z.)
| | - Zedong Wang
- Institute of Dairy Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (Y.L.); (Z.W.); (L.Z.)
| | - Lin Zhang
- Institute of Dairy Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (Y.L.); (Z.W.); (L.Z.)
| | - Zhaoyu Han
- Institute of Dairy Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.Z.); (Y.L.); (Z.W.); (L.Z.)
- Correspondence: ; Tel.: +13851685522; Fax: +02584395314
| |
Collapse
|
22
|
Min L, Li D, Tong X, Nan X, Ding D, Xu B, Wang G. Nutritional strategies for alleviating the detrimental effects of heat stress in dairy cows: a review. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2019; 63:1283-1302. [PMID: 31218396 DOI: 10.1007/s00484-019-01744-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/29/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
Heat stress responses negatively impact production performance, milk quality, body temperature, and other parameters in dairy cows. As global warming continues unabated, heat stress in dairy cows is likely to become more widespread in the future. To address this challenge, researchers have evaluated a number of potentially available nutritional strategies, including dietary fat, dietary fiber, dietary microbial additives, minerals, vitamins, metal ion buffer, plant extracts, and other anti-stress additives. In this paper, we discuss the evidence for the efficacy of these nutritional strategies aimed at alleviating the detrimental effects of heat stress in dairy cows. It was comprised of the treatment (dosage and usage), animal information (lactation stage and number of dairy cows), THI value (level of heat stress), duration of exposure, the changes of feed intake and milk yield (production performance), the changes of milk protein and milk fat (milk quality), the changes of rectal temperature and respiration rate (body temperature), other indices, and reference resources. The results of these studies are presented with statistical justification in the tables. In total, the 49 kinds of dietary interventions derived from these eight types of nutritional strategies may provide an appropriate means of mitigating heat stress on a particular dairy farm based on the explanation of the results.
Collapse
Affiliation(s)
- Li Min
- State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Dagang Li
- State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Xiong Tong
- State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Diyun Ding
- State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Bin Xu
- State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China
| | - Gang Wang
- State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China.
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, People's Republic of China.
| |
Collapse
|