1
|
Chen RJ, Zhang ZH, Yang S, Yu SC, Wang JC, Liao PY, Qiu TT, Xiao L, Xue S, Chen H, Shao WB, Hu JW, Lan Y, Chen XL, Xu Y, Zhou TM, Zhao XJ, Liu WB. Synthesis, structural characterization, analytical profiling, and application to authentic samples of synthesized Phase I metabolites of the synthetic cannabinoid 5F-MDMB-PICA. Drug Test Anal 2024; 16:1578-1592. [PMID: 38488339 DOI: 10.1002/dta.3680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 12/13/2024]
Abstract
5F-MDMB-PICA, an indole-type synthetic cannabinoid (SC), was classified illicit globally in 2020. Although the extensive metabolism of 5F-MDMB-PICA in the human body warrants the development of robust analytical methods for metabolite detection and quantification, a current lack of reference standards for characteristic metabolites hinders such method creation. This work described the synthesis of 18 reference standards for 5F-MDMB-PICA and its possible Phase I metabolites, including three hydroxylated positional isomers R14 to R16. All the compounds were systematic characterized via nuclear magnetic resonance, Fourier transform infrared spectroscopy, and high-resolution mass spectrometry. Furthermore, two methods were developed for the simultaneous detection of all standards using liquid chromatography-tandem mass spectrometry and ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. By comparison with authentic samples, R17 was identified as a suitable urine biomarker for 5F-MDMB-PICA uptake.
Collapse
Affiliation(s)
- Rui-Jia Chen
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China
- Shanghai Yuansi Standard Science and Technology Co., Ltd, Shanghai, China
| | - Zi-Hua Zhang
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China
- Shanghai Yuansi Standard Science and Technology Co., Ltd, Shanghai, China
| | - Shenglan Yang
- College of Materials Science and Engineering, National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing, China
| | - Shu-Chen Yu
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China
- Shanghai Yuansi Standard Science and Technology Co., Ltd, Shanghai, China
| | - Jun-Chang Wang
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China
- Shanghai Yuansi Standard Science and Technology Co., Ltd, Shanghai, China
| | - Ping-Yong Liao
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China
- Shanghai Yuansi Standard Science and Technology Co., Ltd, Shanghai, China
| | - Ting-Ting Qiu
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China
- Shanghai Yuansi Standard Science and Technology Co., Ltd, Shanghai, China
| | - Lu Xiao
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China
- Shanghai Yuansi Standard Science and Technology Co., Ltd, Shanghai, China
| | - Shang Xue
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China
- Shanghai Yuansi Standard Science and Technology Co., Ltd, Shanghai, China
| | - Hong Chen
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China
- Shanghai Yuansi Standard Science and Technology Co., Ltd, Shanghai, China
| | - Wen-Bin Shao
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China
- Shanghai Yuansi Standard Science and Technology Co., Ltd, Shanghai, China
| | - Jian-Wen Hu
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China
- Shanghai Yuansi Standard Science and Technology Co., Ltd, Shanghai, China
| | - Yun Lan
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China
- Shanghai Yuansi Standard Science and Technology Co., Ltd, Shanghai, China
| | - Xi-Long Chen
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China
- Shanghai Yuansi Standard Science and Technology Co., Ltd, Shanghai, China
| | - Yue Xu
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China
- Shanghai Yuansi Standard Science and Technology Co., Ltd, Shanghai, China
| | - Tian-Meng Zhou
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China
- Shanghai Yuansi Standard Science and Technology Co., Ltd, Shanghai, China
| | - Xue-Jun Zhao
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China
- Shanghai Yuansi Standard Science and Technology Co., Ltd, Shanghai, China
| | - Wen-Bin Liu
- Shanghai Key Laboratory of Crime Scene Evidence, Shanghai Research Institute of Criminal Science and Technology, Shanghai, China
- Shanghai Yuansi Standard Science and Technology Co., Ltd, Shanghai, China
| |
Collapse
|
2
|
Norman C, Webling K, Kyslychenko O, Reid R, Krotulski AJ, Farrell R, Deventer MH, Liu H, Connolly MJ, Guillou C, Vinckier IMJ, Logan BK, NicDaéid N, McKenzie C, Stove CP, Gréen H. Detection in seized samples, analytical characterization, and in vitro metabolism of the newly emerged 5-bromo-indazole-3-carboxamide synthetic cannabinoid receptor agonists. Drug Test Anal 2024; 16:915-935. [PMID: 38037247 DOI: 10.1002/dta.3609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023]
Abstract
Synthetic cannabinoid receptor agonists (SCRAs) are a diverse class of new psychoactive substances (NPS) and new structural scaffolds have emerged on the recreational drug market since the enactment of Chinese SCRA analog controls in 2021. This study reports the first SCRAs to be detected with a bromide at the 5 position (5'Br) on the phenyl ring of the indazole core and without a tail moiety. ADB-5'Br-INACA (ADMB-5'Br-INACA) and MDMB-5'Br-INACA were detected in seized samples from Scottish prisons, Belgian customs, and US forensic casework. The brominated analog with a tail moiety, ADB-5'Br-BUTINACA (ADMB-5'Br-BUTINACA), was also detected in Scottish prisons and US forensic casework. The metabolites of these compounds and the predicted compound MDMB-5'Br-BUTINACA were identified through incubation with primary human hepatocytes to aid in their toxicological identification. The bromide on the indazole remains intact on metabolites, allowing these compounds to be easily distinguished in toxicological samples from their non-brominated analogs. Glucuronidation was more common for tail-less analogs than their butyl tail-containing counterparts. Forensic toxicologists are advised to update their analytical methods with the characteristic ions for these compounds, as well as their anticipated urinary markers: amide hydrolysis and monoOH at tert-butyl metabolites (after β-glucuronidase treatment) for ADB-5'Br-INACA; monoOH at tert-butyl and amide hydrolysis metabolites for ADB-5'Br-BUTINACA; and ester hydrolysis metabolites with additional metabolites for MDMB-5'Br-INACA and MDMB-5'Br-BUTINACA. Toxicologists should remain vigilant to the emergence of new SCRAs with halogenation of the indazole core and tail-less analogs, which have already started to emerge.
Collapse
Affiliation(s)
- Caitlyn Norman
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Kristin Webling
- Department of Biomedical and Clinical Science, Division of Clinical Chemistry and Pharmacology, Linköping University, Linköping, Sweden
| | - Oleksandra Kyslychenko
- Department of Biomedical and Clinical Science, Division of Clinical Chemistry and Pharmacology, Linköping University, Linköping, Sweden
| | - Robert Reid
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Alex J Krotulski
- Center for Forensic Science Research and Education, Fredric Rieders Family Foundation, Willow Grove, Pennsylvania, USA
| | - Ryan Farrell
- Indianapolis-Marion County Forensic Services Agency, Indianapolis, Indiana, USA
| | - Marie H Deventer
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | | | | | - Claude Guillou
- European Commission, Joint Research Centre, Directorate F-Health, Consumers and Reference Materials, Ispra, Italy
| | | | - Barry K Logan
- Center for Forensic Science Research and Education, Fredric Rieders Family Foundation, Willow Grove, Pennsylvania, USA
- Toxicology Department, NMS Labs, Horsham, Pennsylvania, USA
| | - Niamh NicDaéid
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Craig McKenzie
- Leverhulme Research Centre for Forensic Science, School of Science and Engineering, University of Dundee, Dundee, UK
- Chiron AS, Trondheim, Norway
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Henrik Gréen
- Department of Biomedical and Clinical Science, Division of Clinical Chemistry and Pharmacology, Linköping University, Linköping, Sweden
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| |
Collapse
|
3
|
Zheng H, Wang C, Yu X, Zheng W, An Y, Zhang J, Zhang Y, Wang G, Qi M, Lin H, Wang F. The Role of Metabolomics and Microbiology in Urinary Tract Infection. Int J Mol Sci 2024; 25:3134. [PMID: 38542107 PMCID: PMC10969911 DOI: 10.3390/ijms25063134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 08/25/2024] Open
Abstract
One of the common illnesses that affect women's physical and mental health is urinary tract infection (UTI). The disappointing results of empirical anti-infective treatment and the lengthy time required for urine bacterial culture are two issues. Antibiotic misuse is common, especially in females who experience recurrent UTI (rUTI). This leads to a higher prevalence of antibiotic resistance in the microorganisms that cause the infection. Antibiotic therapy will face major challenges in the future, prompting clinicians to update their practices. New testing techniques are making the potential association between the urogenital microbiota and UTIs increasingly apparent. Monitoring changes in female urinary tract (UT) microbiota, as well as metabolites, may be useful in exploring newer preventive treatments for UTIs. This review focuses on advances in urogenital microbiology and organismal metabolites relevant to the identification and handling of UTIs in an attempt to provide novel methods for the identification and management of infections of the UT. Particular attention is paid to the microbiota and metabolites in the patient's urine in relation to their role in supporting host health.
Collapse
Affiliation(s)
- Haoyu Zheng
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.Z.); (C.W.); (X.Y.); (W.Z.); (Y.A.); (J.Z.); (Y.Z.); (G.W.); (M.Q.); (H.L.)
| | - Chao Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.Z.); (C.W.); (X.Y.); (W.Z.); (Y.A.); (J.Z.); (Y.Z.); (G.W.); (M.Q.); (H.L.)
| | - Xiao Yu
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.Z.); (C.W.); (X.Y.); (W.Z.); (Y.A.); (J.Z.); (Y.Z.); (G.W.); (M.Q.); (H.L.)
| | - Wenxue Zheng
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.Z.); (C.W.); (X.Y.); (W.Z.); (Y.A.); (J.Z.); (Y.Z.); (G.W.); (M.Q.); (H.L.)
| | - Yiming An
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.Z.); (C.W.); (X.Y.); (W.Z.); (Y.A.); (J.Z.); (Y.Z.); (G.W.); (M.Q.); (H.L.)
| | - Jiaqi Zhang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.Z.); (C.W.); (X.Y.); (W.Z.); (Y.A.); (J.Z.); (Y.Z.); (G.W.); (M.Q.); (H.L.)
| | - Yuhan Zhang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.Z.); (C.W.); (X.Y.); (W.Z.); (Y.A.); (J.Z.); (Y.Z.); (G.W.); (M.Q.); (H.L.)
| | - Guoqiang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.Z.); (C.W.); (X.Y.); (W.Z.); (Y.A.); (J.Z.); (Y.Z.); (G.W.); (M.Q.); (H.L.)
| | - Mingran Qi
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.Z.); (C.W.); (X.Y.); (W.Z.); (Y.A.); (J.Z.); (Y.Z.); (G.W.); (M.Q.); (H.L.)
| | - Hongqiang Lin
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.Z.); (C.W.); (X.Y.); (W.Z.); (Y.A.); (J.Z.); (Y.Z.); (G.W.); (M.Q.); (H.L.)
| | - Fang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (H.Z.); (C.W.); (X.Y.); (W.Z.); (Y.A.); (J.Z.); (Y.Z.); (G.W.); (M.Q.); (H.L.)
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| |
Collapse
|
4
|
Matey JM, Zapata F, Menéndez-Quintanal LM, Montalvo G, García-Ruiz C. Identification of new psychoactive substances and their metabolites using non-targeted detection with high-resolution mass spectrometry through diagnosing fragment ions/neutral loss analysis. Talanta 2023; 265:124816. [PMID: 37423179 DOI: 10.1016/j.talanta.2023.124816] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/24/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023]
Affiliation(s)
- José Manuel Matey
- Department of Chemistry and Drugs, National Institute of Toxicology and Forensic Sciences, C/ José Echegaray Nº4, 28232, Las Rozas de Madrid, Madrid, Spain; Universidad de Alcalá, Instituto Universitario de Investigación en Ciencias Policiales (IUICP), calle Libreros 27, 28801, Alcalá de Henares, Madrid, España(1); Chemical and Forensic Sciences (CINQUIFOR) Research Group, University of Alcalá, Ctra. Madrid-Barcelona km 33.600, 28871, Alcalá de Henares, Madrid, Spain(2).
| | - Félix Zapata
- Department of Analytical Chemistry, University of Murcia, Campus Espinardo, 30100, Murcia, Spain.
| | - Luis Manuel Menéndez-Quintanal
- Department of Chemistry and Drugs, National Institute of Toxicology and Forensic Sciences, Campus de Ciencias de la Salud, La Cuesta, 38320, La Laguna (Sta. Cruz de Tenerife), Spain.
| | - Gemma Montalvo
- Universidad de Alcalá, Instituto Universitario de Investigación en Ciencias Policiales (IUICP), calle Libreros 27, 28801, Alcalá de Henares, Madrid, España(1); Chemical and Forensic Sciences (CINQUIFOR) Research Group, University of Alcalá, Ctra. Madrid-Barcelona km 33.600, 28871, Alcalá de Henares, Madrid, Spain(2); Universidad de Alcalá, Departamento de Química Analítica, Quimica Física e Ingeniería Química, Ctra. Madrid-Barcelona km 33,6, 28871 Alcalá de Henares, Madrid, España.
| | - Carmen García-Ruiz
- Universidad de Alcalá, Instituto Universitario de Investigación en Ciencias Policiales (IUICP), calle Libreros 27, 28801, Alcalá de Henares, Madrid, España(1); Chemical and Forensic Sciences (CINQUIFOR) Research Group, University of Alcalá, Ctra. Madrid-Barcelona km 33.600, 28871, Alcalá de Henares, Madrid, Spain(2); Universidad de Alcalá, Departamento de Química Analítica, Quimica Física e Ingeniería Química, Ctra. Madrid-Barcelona km 33,6, 28871 Alcalá de Henares, Madrid, España.
| |
Collapse
|
5
|
Fabris AL, Martins AF, Costa JL, Yonamine M. A new application of the switchable hydrophilicity solvent-based homogenous liquid-liquid microextraction to analyze synthetic cannabinoids in plasma by LC-MS/MS. J Pharm Biomed Anal 2023; 234:115588. [PMID: 37517261 DOI: 10.1016/j.jpba.2023.115588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
Synthetic cannabinoids are still a growing trend among drug users and consist of a group of hundreds of highly potent compounds. To investigate the use of such substances, sample preparation of biological matrices is a crucial step prior to instrumental analysis. Although different efficient extraction techniques have been proposed for that aim, they usually do not fit eco-friendly guidelines that have been gaining popularity in recent years, such as Green Analytical Toxicology. This work uses describes for the first time the use of switchable hydrophilicity solvent-based homogenous liquid-liquid microextraction (SHS-HLLME) for synthetic cannabinoids. This is a green technique that replaces highly toxic organic reagents for switchable hydrophilicity solvents (SHS), substances that can be either water-miscible or immiscible depending on their protonation. Thus, by simply adjusting the pH of the system, these SHS can be used as extraction solvents. A full optimization study including type of SHS, volume of protonated SHS, volume of NaOH, salting-out effect, and extraction time was performed. The optimized procedure consisted of precipitating the proteins of 300 µL of plasma with 300 µL of acetonitrile followed by centrifugation; evaporation of the organic solvent under N2 stream; addition of 500 µL of the protonated DPA, DPA-HCl (6 M) (1:1, v/v); addition of 500 µL of NaOH (10 M); and finally centrifugation and evaporation. Validation results showed determination coefficients ≥ 0.99 for the 0.1-10 ng/mL linear range; 0.01-0.08 ng/mL as limit of detection; 0.1 ng/mL as limit of quantitation; accuracy and imprecision were within acceptable ranges; matrix effect, recovery, and process efficiency ranged from -55.6 to 185.9%, 36-56.7%, and 18.5-148.4%, respectively. The SHS-HLLME herein described was fully optimized providing satisfactory recoveries of 31 synthetic cannabinoids at low concentrations requiring only 300 µL of plasma. In addition, the validation results showed that the technique is a reliable eco-friendly alternative for clinical and toxicological analysis.
Collapse
Affiliation(s)
- André Luis Fabris
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil.
| | - Aline Franco Martins
- Faculty of Medical Sciences, University of Campinas, Campinas, SP 13083-859, Brazil; Campinas Poison Control Center, University of Campinas, Campinas, SP 13083-859, Brazil
| | - Jose Luiz Costa
- Campinas Poison Control Center, University of Campinas, Campinas, SP 13083-859, Brazil; Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, SP 13083-871, Brazil
| | - Mauricio Yonamine
- School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
6
|
Dvorácskó S, Körmöczi T, Sija É, Bende B, Weiczner R, Varga T, Ilisz I, Institóris L, Kereszty ÉM, Tömböly C, Berkecz R. Focusing on the 5F-MDMB-PICA, 4F-MDMB-BICA synthetic cannabinoids and their primary metabolites in analytical and pharmacological aspects. Toxicol Appl Pharmacol 2023; 470:116548. [PMID: 37182749 DOI: 10.1016/j.taap.2023.116548] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
Nowadays, more and more new synthetic cannabinoids (SCs) appearing on the illicit market present challenges to analytical, forensic, and toxicology experts. For a better understanding of the physiological effect of SCs, the key issue is studying their metabolomic and psychoactive properties. In this study, our validated targeted reversed phase UHPLC-MS/MS method was used for determination of urinary concentration of 5F-MDMB-PICA, 4F-MDMB-BICA, and their primary metabolites. The liquid-liquid extraction procedure was applied for the enrichment of SCs.The pharmacological characterization of investigated SCs were studied by radioligand competition binding and ligand stimulated [35S]GTPγS binding assays. For 5F-MDMB-PICA and 4F-MDMB-BICA, the median urinary concentrations were 0.076 and 0.312 ng/mL. For primary metabolites, the concentration range was 0.029-881.02* ng/mL for 5F-MDMB-PICA-COOH, and 0.396-4579* ng/mL for 4F-MDMB-BICA-COOH. In the polydrug aspect, the 22 urine samples were verified to be abused with 6 illicit drugs. The affinity of the metabolites to CB1R significantly decreased compared to the parent ligands. In the GTPγS functional assay, both 5F-MDMB-PICA and 4F-MDMB-BICA were acting as full agonists, while the metabolites were found as weak inverse agonists. Additionally, the G-protein stimulatory effects of the full agonist 5F-MDMB-PICA and 4F-MDMB-BICA were reduced by metabolites. These results strongly indicate the dose-dependent CB1R-mediated weak inverse agonist effects of the two butanoic acid metabolites. The obtained high concentration of main urinary metabolites of 5F-MDMB-PICA and 4F-MDMB-BICA confirmed the relevance of their routine analysis in forensic and toxicological practices. Based on in vitro binding assays, the metabolites presumably might cause a lower psychoactive effect than parent compounds.
Collapse
Affiliation(s)
- Szabolcs Dvorácskó
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, Hungary; Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 8, Szeged, Hungary
| | - Tímea Körmöczi
- Institute of Pharmaceutical Analysis, Faculty of Pharmacy, University of Szeged Somogyi, utca 4., Szeged, Hungary
| | - Éva Sija
- Department of Forensic Medicine, Albert Szent-Györgyi Health Centre, Kossuth Lajos sgt. 40., Szeged, Hungary
| | - Balázs Bende
- Department of Dermatology and Allergology, Albert Szent-Györgyi Health Center, H-6720 Szeged, Korányi fasor 6., Szeged, Hungary
| | - Roland Weiczner
- Department of Forensic Medicine, Albert Szent-Györgyi Health Centre, Kossuth Lajos sgt. 40., Szeged, Hungary
| | - Tibor Varga
- Drug Laboratory Szeged, Drug Investigation Department, Hungarian Institute for Forensic Sciences, Kossuth Lajos sgt. 22-24, Szeged, Hungary
| | - István Ilisz
- Institute of Pharmaceutical Analysis, Faculty of Pharmacy, University of Szeged Somogyi, utca 4., Szeged, Hungary
| | - László Institóris
- Department of Forensic Medicine, Albert Szent-Györgyi Health Centre, Kossuth Lajos sgt. 40., Szeged, Hungary
| | - Éva M Kereszty
- Department of Forensic Medicine, Albert Szent-Györgyi Health Centre, Kossuth Lajos sgt. 40., Szeged, Hungary
| | - Csaba Tömböly
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, Hungary
| | - Róbert Berkecz
- Institute of Pharmaceutical Analysis, Faculty of Pharmacy, University of Szeged Somogyi, utca 4., Szeged, Hungary.
| |
Collapse
|
7
|
Methyl (S)-2-(1-7 (5-fluoropentyl)-1H-indole-3-carboxamido)-3,3-dimethylbutanoate (5F-MDMB-PICA) intoxication in a child with identification of two new metabolites (ultra-high-performance liquid chromatography-tandem mass spectrometry). Forensic Toxicol 2023; 41:47-58. [PMID: 36652054 DOI: 10.1007/s11419-022-00629-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/12/2022] [Indexed: 01/21/2023]
Abstract
PURPOSE Methyl (S)-2-(1-7 (5-fluoropentyl)-1H-indole-3-carboxamido)-3,3-dimethylbutanoate (5F-MDMA-PICA) intoxication in 1.5-year-old child was presented, together with diagnostic parameters discussion and 5F-MDMB-PICA determination in biological material. Furthermore, 5F-MDMB-PICA metabolites were identified in a urine sample as markers of exposure in situation when a parent compound is not present in specimens. METHODS Drugs and metabolites were extracted from serum and urine with ethyl acetate both under alkaline (pH 9) and acidic (pH 3) conditions. Hair, after decontamination and pulverization, were incubated with methanol (16 h, 60 °C). The analysis was carried out using ultra-high-performance liquid chromatography-tandem mass spectrometry. For the identification of 5F-MDMB-PICA metabolites, an urine sample was precipitated with cold acetonitrile. Analysis was performed using ultra-high-performance liquid chromatograph with quadrupole time-of-flight mass spectrometer. RESULTS 5F-MDMB-PICA was determined only in serum sample at concentration of 298 ng/mL. After 1 year, when analysis was repeated, concentration of synthetic cannabinoid in the same sample was only 17.6 ng/mL which revealed high instability of 5F-MDMB-PICA in serum sample. Eight 5F-MDMB-PICA metabolites were identified in urine sample, including two potentially new ones with m/z 391.18964 and m/z 275.14016. CONCLUSIONS Toxicological analysis confirmed a 1.5-year-old boy intoxication with 5F-MDMB-PICA. Besides the parent drug, metabolites of 5F-MDMB-PICA were identified, including two potentially new ones, together with possible metabolic reactions which they resulted from. Metabolites determination could serve as a marker of 5F-MDMB-PICA exposure when no parent drug is present in biological material.
Collapse
|