1
|
Bai X, Smith HE, Golden A. Identification of genetic suppressors for a BSCL2 lipodystrophy pathogenic variant in Caenorhabditis elegans. Dis Model Mech 2024; 17:dmm050524. [PMID: 38454882 PMCID: PMC11051982 DOI: 10.1242/dmm.050524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/04/2024] [Indexed: 03/09/2024] Open
Abstract
Seipin (BSCL2), a conserved endoplasmic reticulum protein, plays a critical role in lipid droplet (LD) biogenesis and in regulating LD morphology, pathogenic variants of which are associated with Berardinelli-Seip congenital generalized lipodystrophy type 2 (BSCL2). To model BSCL2 disease, we generated an orthologous BSCL2 variant, seip-1(A185P), in Caenorhabditis elegans. In this study, we conducted an unbiased chemical mutagenesis screen to identify genetic suppressors that restore embryonic viability in the seip-1(A185P) mutant background. A total of five suppressor lines were isolated and recovered from the screen. The defective phenotypes of seip-1(A185P), including embryonic lethality and impaired eggshell formation, were significantly suppressed in each suppressor line. Two of the five suppressor lines also alleviated the enlarged LDs in the oocytes. We then mapped a suppressor candidate gene, lmbr-1, which is an ortholog of human limb development membrane protein 1 (LMBR1). The CRISPR/Cas9 edited lmbr-1 suppressor alleles, lmbr-1(S647F) and lmbr-1(P314L), both significantly suppressed embryonic lethality and defective eggshell formation in the seip-1(A185P) background. The newly identified suppressor lines offer valuable insights into potential genetic interactors and pathways that may regulate seipin in the lipodystrophy model.
Collapse
Affiliation(s)
- Xiaofei Bai
- Department of Biology, University of Florida, Gainesville, FL 32610, USA
- Genetics Institute, University of Florida, Gainesville, FL 32610, USA
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Harold E. Smith
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andy Golden
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Bai X, Smith HE, Golden A. Identification of Genetic Suppressors for a Berardinelli-Seip Congenital Generalized Lipodystrophy Type 2 (BSCL2) Pathogenic Variant in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.559059. [PMID: 37790539 PMCID: PMC10542546 DOI: 10.1101/2023.09.22.559059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Maintaining the metabolic homeostasis of fatty acids is crucial for human health. Excess fatty acids are stored in lipid droplets (LDs), the primary energy reservoir that helps regulate fat and lipid homeostasis in nearly all cell types. Seipin (BSCL2), a conserved endoplasmic reticulum protein, plays a critical role in LD biogenesis and regulating LD morphology. Pathogenic variants of seipin are associated with multiple human genetic diseases, including Berardinelli-Seip Congenital Generalized Lipodystrophy Type 2 (BSCL2). However, the cellular and molecular mechanisms by which dysfunctional seipin leads to these diseases remain unclear. To model BSCL2 disease, we generated an orthologous BSCL2 pathogenic variant seip-1(A185P) using CRISPR/Cas9 genome editing in Caenorhabditis elegans . This variant led to severe developmental and cellular defects, including embryonic lethality, impaired eggshell formation, and abnormally enlarged LDs. We set out to identify genetic determinants that could suppress these defective phenotypes in the seip-1(A185P) mutant background. To this end, we conducted an unbiased chemical mutagenesis screen to identify genetic suppressors that restore embryonic viability in the seip-1(A185P) mutant background. A total of five suppressor lines were isolated and recovered from the screen. The defective phenotypes of seip-1(A185P) , including embryonic lethality and impaired eggshell formation, were significantly suppressed in each suppressor line. Two of the five suppressor lines also alleviated the enlarged LDs in the oocytes. We then mapped a suppressor candidate gene, R05D3.2 (renamed as lmbr-1 ), which is an ortholog of human LMBR1 (limb development membrane protein 1). The CRISPR/Cas9 edited lmbr-1 suppressor alleles, lmbr-1(Ser647Phe) and lmbr-1(Pro314Leu) , both significantly suppressed embryonic lethality and defective eggshell formation in the seip-1(A185P) background. The newly identified suppressor lines offer valuable insights into potential genetic interactors and pathways that may regulate seipin in the lipodystrophy model.
Collapse
|
3
|
Baksheeva VE, Tiulina VV, Iomdina EN, Petrov SY, Filippova OM, Kushnarevich NY, Suleiman EA, Eyraud R, Devred F, Serebryakova MV, Shebardina NG, Chistyakov DV, Senin II, Mitkevich VA, Tsvetkov PO, Zernii EY. Tear nanoDSF Denaturation Profile Is Predictive of Glaucoma. Int J Mol Sci 2023; 24:ijms24087132. [PMID: 37108298 PMCID: PMC10139145 DOI: 10.3390/ijms24087132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Primary open-angle glaucoma (POAG) is a frequent blindness-causing neurodegenerative disorder characterized by optic nerve and retinal ganglion cell damage most commonly due to a chronic increase in intraocular pressure. The preservation of visual function in patients critically depends on the timeliness of detection and treatment of the disease, which is challenging due to its asymptomatic course at early stages and lack of objective diagnostic approaches. Recent studies revealed that the pathophysiology of glaucoma includes complex metabolomic and proteomic alterations in the eye liquids, including tear fluid (TF). Although TF can be collected by a non-invasive procedure and may serve as a source of the appropriate biomarkers, its multi-omics analysis is technically sophisticated and unsuitable for clinical practice. In this study, we tested a novel concept of glaucoma diagnostics based on the rapid high-performance analysis of the TF proteome by differential scanning fluorimetry (nanoDSF). An examination of the thermal denaturation of TF proteins in a cohort of 311 ophthalmic patients revealed typical profiles, with two peaks exhibiting characteristic shifts in POAG. Clustering of the profiles according to peaks maxima allowed us to identify glaucoma in 70% of cases, while the employment of artificial intelligence (machine learning) algorithms reduced the amount of false-positive diagnoses to 13.5%. The POAG-associated alterations in the core TF proteins included an increase in the concentration of serum albumin, accompanied by a decrease in lysozyme C, lipocalin-1, and lactotransferrin contents. Unexpectedly, these changes were not the only factor affecting the observed denaturation profile shifts, which considerably depended on the presence of low-molecular-weight ligands of tear proteins, such as fatty acids and iron. Overall, we recognized the TF denaturation profile as a novel biomarker of glaucoma, which integrates proteomic, lipidomic, and metallomic alterations in tears, and monitoring of which could be adapted for rapid non-invasive screening of the disease in a clinical setting.
Collapse
Affiliation(s)
- Viktoriia E Baksheeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskye Gory, 119992 Moscow, Russia
- Institut Neurophysiopathol, INP, Faculté des Sciences Médicales et Paramédicales, Aix Marseille Univ, CNRS, 13005 Marseille, France
| | - Veronika V Tiulina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskye Gory, 119992 Moscow, Russia
| | - Elena N Iomdina
- Helmholtz National Medical Research Center of Eye Diseases, 105062 Moscow, Russia
| | - Sergey Yu Petrov
- Helmholtz National Medical Research Center of Eye Diseases, 105062 Moscow, Russia
| | - Olga M Filippova
- Helmholtz National Medical Research Center of Eye Diseases, 105062 Moscow, Russia
| | - Nina Yu Kushnarevich
- Helmholtz National Medical Research Center of Eye Diseases, 105062 Moscow, Russia
| | - Elena A Suleiman
- Helmholtz National Medical Research Center of Eye Diseases, 105062 Moscow, Russia
| | - Rémi Eyraud
- Université Jean Monnet Saint-Etienne, CNRS, Institut d Optique Graduate School, Laboratoire Hubert Curien UMR 5516, 42023 Saint-Etienne, France
| | - François Devred
- Institut Neurophysiopathol, INP, Faculté des Sciences Médicales et Paramédicales, Aix Marseille Univ, CNRS, 13005 Marseille, France
| | - Marina V Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskye Gory, 119992 Moscow, Russia
| | - Natalia G Shebardina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskye Gory, 119992 Moscow, Russia
| | - Dmitry V Chistyakov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskye Gory, 119992 Moscow, Russia
| | - Ivan I Senin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskye Gory, 119992 Moscow, Russia
| | - Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Philipp O Tsvetkov
- Institut Neurophysiopathol, INP, Faculté des Sciences Médicales et Paramédicales, Aix Marseille Univ, CNRS, 13005 Marseille, France
| | - Evgeni Yu Zernii
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskye Gory, 119992 Moscow, Russia
| |
Collapse
|
4
|
Glasgow BJ. Tear Lipocalin and Lipocalin-Interacting Membrane Receptor. Front Physiol 2021; 12:684211. [PMID: 34489718 PMCID: PMC8417070 DOI: 10.3389/fphys.2021.684211] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/13/2021] [Indexed: 11/24/2022] Open
Abstract
Tear lipocalin is a primate protein that was recognized as a lipocalin from the homology of the primary sequence. The protein is most concentrated in tears and produced by lacrimal glands. Tear lipocalin is also produced in the tongue, pituitary, prostate, and the tracheobronchial tree. Tear lipocalin has been assigned a multitude of functions. The functions of tear lipocalin are inexorably linked to structural characteristics that are often shared by the lipocalin family. These characteristics result in the binding and or transport of a wide range of small hydrophobic molecules. The cavity of tear lipocalin is formed by eight strands (A-H) that are arranged in a β-barrel and are joined by loops between the β-strands. Recently, studies of the solution structure of tear lipocalin have unveiled new structural features such as cation-π interactions, which are extant throughout the lipocalin family. Lipocalin has many unique features that affect ligand specificity. These include a capacious and a flexible cavity with mobile and short overhanging loops. Specific features that confer promiscuity for ligand binding in tear lipocalin will be analyzed. The functions of tear lipocalin include the following: antimicrobial activities, scavenger of toxic and tear disruptive compounds, endonuclease activity, and inhibition of cysteine proteases. In addition, tear lipocalin binds and may modulate lipids in the tears. Such actions support roles as an acceptor for phospholipid transfer protein, heteropolymer formation to alter viscosity, and tear surface interactions. The promiscuous lipid-binding properties of tear lipocalin have created opportunities for its use as a drug carrier. Mutant analogs have been created to bind other molecules such as vascular endothelial growth factor for medicinal use. Tear lipocalin has been touted as a useful biomarker for several diseases including breast cancer, chronic obstructive pulmonary disease, diabetic retinopathy, and keratoconus. The functional possibilities of tear lipocalin dramatically expanded when a putative receptor, lipocalin-interacting membrane receptor was identified. However, opposing studies claim that lipocalin-interacting membrane receptor is not specific for lipocalin. A recent study even suggests a different function for the membrane protein. This controversy will be reviewed in light of gene expression data, which suggest that tear lipocalin has a different tissue distribution than the putative receptor. But the data show lipocalin-interacting membrane receptor is expressed on ocular surface epithelium and that a receptor function here would be rational.
Collapse
Affiliation(s)
- Ben J. Glasgow
- Departments of Ophthalmology, Pathology and Laboratory Medicine, Jules Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
5
|
The ligand-mediated affinity of brain-type fatty acid-binding protein for membranes determines the directionality of lipophilic cargo transport. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:158506. [DOI: 10.1016/j.bbalip.2019.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/29/2019] [Accepted: 08/08/2019] [Indexed: 01/22/2023]
|
6
|
Glasgow BJ, Abduragimov AR. Ligand binding complexes in lipocalins: Underestimation of the stoichiometry parameter (n). BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2018; 1866:1001-1007. [PMID: 30037780 PMCID: PMC6481938 DOI: 10.1016/j.bbapap.2018.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/15/2018] [Accepted: 07/03/2018] [Indexed: 11/18/2022]
Abstract
The stoichiometry of a ligand binding reaction to a protein is given by a parameter (n). The value of this parameter may indicate the presence of protein monomer or dimers in the binding complex. Members of the lipocalin superfamily show variation in the stoichiometry of binding to ligands. In some cases the stoichiometry parameter (n) has been variously reported for the same protein as mono- and multimerization of the complex. Prime examples include retinol binding protein, β lactoglobulin and tear lipocalin, also called lipocalin-1(LCN1). Recent work demonstrated the stoichiometric ratio for ceramide:tear lipocalin varied (range n = 0.3-0.75) by several different methods. The structure of ceramide raises the intriguing possibility of a lipocalin dimer complex with each lipocalin molecule attached to one of the two alkyl chains of ceramide. The stoichiometry of the ceramide-tear lipocalin binding complex was explored in detail using size exclusion chromatography and time resolved fluorescence anisotropy. Both methods showed consistent results that tear lipocalin remains monomeric when bound to ceramide. Delipidation experiments suggest the most likely explanation is that the low 'n' values result from prior occupancy of the binding sites by native ligands. Lipocalins such as tear lipocalin that have numerous binding partners are particularly prone to an underestimated apparent stoichiometry parameter.
Collapse
Affiliation(s)
- Ben J Glasgow
- Departments of Ophthalmology, Pathology and Laboratory Medicine, Jules Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza Rm. BH 623, Los Angeles, CA 90095, United States.
| | - Adil R Abduragimov
- Departments of Ophthalmology, Pathology and Laboratory Medicine, Jules Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza Rm. BH 623, Los Angeles, CA 90095, United States
| |
Collapse
|
7
|
Glasgow BJ, Abduragimov AR. Interaction of ceramides and tear lipocalin. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:399-408. [PMID: 29331331 PMCID: PMC5835416 DOI: 10.1016/j.bbalip.2018.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/19/2017] [Accepted: 01/06/2018] [Indexed: 10/18/2022]
Abstract
The distribution of lipids in tears is critical to their function. Lipids in human tears may retard evaporation by forming a surface barrier at the air interface. Lipids complexed with the major lipid binding protein in tears, tear lipocalin, reside in the bulk (aqueous) and may have functions unrelated to the surface. Many new lipids species have been revealed through recent mass spectrometric studies. Their association with lipid binding proteins has not been studied. Squalene, (O-acyl) omega-hydroxy fatty acids (OAHFA) and ceramides are examples. Even well-known lipids such as wax and cholesteryl esters are only presumed to be unbound because extracts of protein fractions of tears were devoid of these lipids. Our purpose was to determine by direct binding assays if the aforementioned lipids can bind tear lipocalin. Lipids were screened for ability to displace DAUDA from tear lipocalin in a fluorescence displacement assay. Di- and tri-glycerides, squalene, OAHFA, wax and cholesterol esters did not displace DAUDA from tear lipocalin. However, ceramides displaced DAUDA. Apparent dissociation constants for ceramide-tear lipocalin complexes using fluorescent analogs were measured consistently in the submicromolar range with 3 methods, linear spectral summation, high speed centrifugal precipitation and standard fluorescence assays. At the relatively small concentrations in tears, all ceramides were complexed to tear lipocalin. The lack of binding of di- and tri-glycerides, squalene, OAHFA, as well as wax and cholesterol esters to tear lipocalin is consonant with residence of these lipids near the air interface.
Collapse
Affiliation(s)
- Ben J Glasgow
- Departments of Ophthalmology, Pathology and Laboratory Medicine, Jules Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza Rm. BH 623, Los Angeles, CA 90095, United States.
| | - Adil R Abduragimov
- Departments of Ophthalmology, Pathology and Laboratory Medicine, Jules Stein Eye Institute, University of California, Los Angeles, 100 Stein Plaza Rm. BH 623, Los Angeles, CA 90095, United States
| |
Collapse
|
8
|
Ahamad SR, Raish M, Yaqoob SH, Khan A, Shakeel F. Metabolomics and Trace Element Analysis of Camel Tear by GC-MS and ICP-MS. Biol Trace Elem Res 2017; 177:251-257. [PMID: 27837381 DOI: 10.1007/s12011-016-0889-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/31/2016] [Indexed: 10/20/2022]
Abstract
Camel tear metabolomics and elemental analysis are useful in getting the information regarding the components responsible for maintaining the protective system that allows living in the desert and dry regions. The aim of this study was to correlate that the camel tears can be used as artificial tears for the evaluation of dryness in the eye. Eye biomarkers of camel tears were analyzed by gas chromatography-mass spectroscopy (GC-MS) and inductively coupled plasma mass spectroscopy (ICP-MS). The major compounds detected in camel tears by GC-MS were alanine, valine, leucine, norvaline, glycine, cadaverine, urea, ribitol, sugars, and higher fatty acids like octadecanoic acid and hexadecanoic acid. GC-MS analysis of camel tears also finds several products of metabolites and its associated metabolic participants. ICP-MS analysis showed the presence of different concentration of elemental composition in the camel tears.
Collapse
Affiliation(s)
- Syed Rizwan Ahamad
- Central Laboratory, Research Center, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Syed Hilal Yaqoob
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Altaf Khan
- Central Laboratory, Research Center, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.
- Center of Excellence in Biotechnology Research (CEBR), College of Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
9
|
Xu Z, Zhai L, Yi T, Gao H, Fan F, Li Y, Wang Y, Li N, Xing X, Su N, Wu F, Chang L, Chen X, Dai E, Zhao C, Yang X, Cui C, Xu P. Hepatitis B virus X induces inflammation and cancer in mice liver through dysregulation of cytoskeletal remodeling and lipid metabolism. Oncotarget 2016; 7:70559-70574. [PMID: 27708241 PMCID: PMC5342574 DOI: 10.18632/oncotarget.12372] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 09/13/2016] [Indexed: 12/31/2022] Open
Abstract
Hepatitis B virus X protein (HBx) participates in the occurrence and development processes of hepatocellular carcinoma (HCC) as a multifunctional regulation factor. However, the underlying molecular mechanism remains obscure. Here, we describe the use of p21HBx/+ mouse and SILAM (Stable Isotope Labeling in Mammals) strategy to define the pathological mechanisms for the occurrence and development of HBx induced liver cancer. We systematically compared a series of proteome samples from regular mice, 12- and 24-month old p21HBx/+ mice representing the inflammation and HCC stages of liver disease respectively and their nontransgenic wild-type (WT) littermates. Totally we identified 22 and 97 differentially expressed proteins out of a total of 2473 quantified proteins. Bioinformatics analysis suggested that the lipid metabolism and CDC42-induced cytoskeleton remodeling pathways were strongly activated by the HBx transgene. Interestingly, the protein-protein interaction MS study revealed that HBx directly interacted with multiple proteins in these two pathways. The same effect of up-regulation of cytoskeleton and lipid metabolism related proteins, including CDC42, CFL1, PPARγ and ADFP, was also observed in the Huh-7 cells transfected with HBx. More importantly, CFL1 and ADFP were specifically accumulated in HBV-associated HCC (HBV-HCC) patient samples, and their expression levels were positively correlated with the severity of HBV-related liver disease. These results provide evidence that HBx induces the dysregulation of cytoskeleton remodeling and lipid metabolism and leads to the occurrence and development of liver cancer. The CFL1 and ADFP might be served as potential biomarkers for prognosis and diagnosis of HBV-HCC.
Collapse
Affiliation(s)
- Zhongwei Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
- Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, China
| | - Linghui Zhai
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
| | - Tailong Yi
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
- Anhui Medical University, Hefei, 230032, China
| | - Huiying Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
| | - Fengxu Fan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
- Anhui Medical University, Hefei, 230032, China
| | - Yanchang Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
| | - Youliang Wang
- Beijing Institute of Bioengineering, Beijing, 100071, P. R. China
| | - Ning Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
| | - Xiaohua Xing
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
| | - Na Su
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
| | - Feilin Wu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
| | - Lei Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
| | - Xiuli Chen
- The Fifth Hospital of Shijiazhuang City, Shijiazhuang, 050021, China
| | - Erhei Dai
- The Fifth Hospital of Shijiazhuang City, Shijiazhuang, 050021, China
| | - Chao Zhao
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, and Research Center on Aging and Medicine, Fudan University, Shanghai, 200032, China
| | - Xiao Yang
- Beijing Institute of Bioengineering, Beijing, 100071, P. R. China
| | - Chunping Cui
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430072, P. R. China
- Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
10
|
Gasymov OK, Abduragimov AR, Glasgow BJ. Exploring protein solution structure: Second moments of fluorescent spectra report heterogeneity of tryptophan rotamers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 150:909-920. [PMID: 26119357 PMCID: PMC4550534 DOI: 10.1016/j.saa.2015.06.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 03/11/2015] [Accepted: 06/15/2015] [Indexed: 06/04/2023]
Abstract
Trp fluorescent spectra appear as a log-normal function but are usually analyzed with λmax, full width at half maximum, and the first moment of incomplete spectra. Log-normal analyses have successfully separated fluorescence contributions from some multi-Trp proteins but deviations were observed in single Trp proteins. The possibility that disparate rotamer environments might account for these deviations was explored by moment spectral analysis of single Trp mutants spanning the sequence of tear lipocalin as a model. The analysis required full width Trp spectra. Composite spectra were constructed using log-normal analysis to derive the inaccessible blue edge, and the experimentally obtained spectra for the remainder. First moments of the composite spectra reflected the site-resolved secondary structure. Second moments were most sensitive for spectral deviations. A novel parameter, derived from the difference of the second moments of composite and simulated log-normal spectra correlated with known multiple heterogeneous rotamer conformations. Buried and restricted side chains showed the most heterogeneity. Analyses applied to other proteins further validated the method. The rotamer heterogeneity values could be rationalized by known conformational properties of Trp residues and the distribution of nearby charged groups according to the internal Stark effect. Spectral heterogeneity fits the rotamer model but does not preclude other contributing factors. Spectral moment analysis of full width Trp emission spectra is accessible to most laboratories. The calculations are informative of protein structure and can be adapted to study dynamic processes.
Collapse
Affiliation(s)
- Oktay K Gasymov
- Departments of Pathology and Ophthalmology and Jules Stein Eye Institute, University California at Los Angeles, CA 90095, United States.
| | - Adil R Abduragimov
- Departments of Pathology and Ophthalmology and Jules Stein Eye Institute, University California at Los Angeles, CA 90095, United States.
| | - Ben J Glasgow
- Departments of Pathology and Ophthalmology and Jules Stein Eye Institute, University California at Los Angeles, CA 90095, United States.
| |
Collapse
|
11
|
Gasymov OK, Abduragimov AR, Glasgow BJ. Double tryptophan exciton probe to gauge proximal side chains in proteins: augmentation at low temperature. J Phys Chem B 2015; 119:3962-8. [PMID: 25693116 DOI: 10.1021/jp512864s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The circular dichroic (CD) exciton couplet between tryptophans and/or tyrosines offers the potential to probe distances within 10 Å in proteins. The exciton effect has been used with native chromophores in critical positions in a few proteins. Here, site-directed mutagenesis created double tryptophan probes for key sites of a protein (tear lipocalin). For tear lipocalin, the crystal and solution structures are concordant in both apo- and holo-forms. Double tryptophan substitutions were performed at sites that could probe conformation and were likely within 10 Å. Far-UV CD spectra of double Trp mutants were performed with controls that had noninteracting substituted tryptophans. Low temperature (77 K) was tested for augmentation of the exciton signal. Exciton coupling appeared with tryptophan substitutions at positions within loop A-B (28 and 31, 33), between loop A-B (28) and strand G (103 and 105), as well as between the strands B (35) and C (56). The CD exciton couplet signals were amplified 3-5-fold at 77 K. The results were concordant with close distances in crystal and solution structures. The exciton couplets had functional significance and correctly assigned the holo-conformation. The methodology creates an effective probe to identify proximal amino acids in a variety of motifs.
Collapse
Affiliation(s)
- Oktay K Gasymov
- Departments of Pathology and Ophthalmology and Jules Stein Eye Institute, University California at Los Angeles , Los Angeles, California 90095, United States
| | | | | |
Collapse
|
12
|
Gasymov OK, Abduragimov AR, Glasgow BJ. Probing tertiary structure of proteins using single Trp mutations with circular dichroism at low temperature. J Phys Chem B 2014; 118:986-95. [PMID: 24404774 PMCID: PMC3983331 DOI: 10.1021/jp4120145] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
Trp is the most spectroscopically
informative aromatic amino acid
of proteins. However, the near-UV circular dichroism (CD) spectrum
of Trp is complicated because the intensity and sign of 1La and 1Lb bands vary independently.
To resolve vibronic structure and gain site-specific information from
complex spectra, deconvolution was combined with cooling and site-directed
tryptophan substitution. Low temperature near-UV CD was used to probe
the local tertiary structure of a loop and α-helix in tear lipocalin.
Upon cooling, the enhancement of the intensities of the near-UV CD
was not uniform, but depends on the position of Trp in the protein
structure. The most enhanced 1Lb band was observed
for Trp at position 124 in the α-helix segment matching the
known increased conformational mobility during ligand binding. Some
aspects of the CD spectra of W28 and W130 were successfully linked
to specific rotamers of Trp previously obtained from fluorescence
lifetime measurements. The discussion was based on a framework that
the magnitude of the energy differences in local conformations governs
the changes in the CD intensities at low temperature. The Trp CD spectral
classification of Strickland was modified to facilitate the recognition
of pseudo peaks. Near-UV CD spectra harbor abundant information about
the conformation of proteins that site directed Trp CD can report.
Collapse
Affiliation(s)
- Oktay K Gasymov
- Departments of Pathology and Ophthalmology and Jules Stein Eye Institute, University California at Los Angeles , California 90095, United States
| | | | | |
Collapse
|
13
|
Lacritin and the tear proteome as natural replacement therapy for dry eye. Exp Eye Res 2013; 117:39-52. [PMID: 23769845 DOI: 10.1016/j.exer.2013.05.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/23/2013] [Accepted: 05/31/2013] [Indexed: 12/21/2022]
Abstract
Tear proteins are potential biomarkers, drug targets, and even biotherapeutics. As a biotherapeutic, a recombinant tear protein might physiologically rescue the ocular surface when a deficiency is detected. Such a strategy pays more attention to the natural prosecretory and protective properties of the tear film and seeks to alleviate symptoms by addressing cause, rather than the current palliative, non-specific and temporary approaches. Only a handful of tear proteins appear to be selectively downregulated in dry eye, the most common eye disease. Lacritin and lipocalin-1 are two tear proteins selectively deficient in dry eye. Both proteins influence ocular surface health. Lacritin is a prosecretory mitogen that promotes basal tearing when applied topically. Levels of active monomeric lacritin are negatively regulated by tear tissue transglutaminase, whose expression is elevated in dry eye with ocular surface inflammation. Lipocalin-1 is the master lipid sponge of the ocular surface, without which residual lipids could interfere with epithelial wetting. It also is a carrier for vitamins and steroid hormones, and is a key endonuclease. Accumulation of DNA in tears is thought to be proinflammatory. Functions of these and other tear proteins may be influenced by protein-protein interactions. Here we discuss new advances in lacritin biology and provide an overview on lipocalin-1, and newly identified members of the tear proteome.
Collapse
|
14
|
Kondo Y, Nishiumi S, Shinohara M, Hatano N, Ikeda A, Yoshie T, Kobayashi T, Shiomi Y, Irino Y, Takenawa T, Azuma T, Yoshida M. Serum fatty acid profiling of colorectal cancer by gas chromatography/mass spectrometry. Biomark Med 2012; 5:451-60. [PMID: 21861667 DOI: 10.2217/bmm.11.41] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIMS Several screening methods have been applied for the early diagnosis of colorectal cancer, but most colorectal cancer patients are not diagnosed at a localized stage. In order to find novel biomarkers for the diagnosis of colorectal cancer, profiling of the serum levels of fatty acids, which are the main components of fats and are important factors for human metabolism, was performed using the sera of colorectal cancer patients. MATERIALS & METHODS A total of 42 colorectal cancer patients and eight healthy volunteers participated in this study. The serum levels of fatty acids, including free fatty acids and esterified fatty acids, were evaluated by gas chromatography/mass spectrometry. Then, partial least squares discriminant analysis was performed on the basis of the serum fatty acids detected by gas chromatography/mass spectrometry. RESULTS The serum levels of the nine fatty acids exhibited distinct differences between the colorectal cancer patients and healthy volunteers: the levels of four fatty acids were higher in the colorectal cancer patients than the healthy volunteers, and those of the other five fatty acids were lower. These changes were also observed at a very early clinical stage. Furthermore, the levels of very-long-chain fatty acids had a tendency to be increased in the sera of the colorectal cancer patients. CONCLUSIONS The pathogenesis of colorectal cancer leads to changes in the composition of serum fatty acids including free fatty acids and esterified fatty acids. These results suggest that serum fatty acid profiling may be used as a novel diagnostic tool for early-stage colorectal cancer.
Collapse
Affiliation(s)
- Yasuyuki Kondo
- Division of Gastroenterology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chu-o-ku, Kobe, Hyogo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Lipocalins are a family of diverse low molecular weight proteins that act extracellularly. They use multiple recognition properties that include 1) ligand binding to small hydrophobic molecules, 2) macromolecular complexation with other soluble macromolecules, and 3) binding to specific cell surface receptors to deliver cargo. Tear lipocalin (TLC) is a major protein in tears and has a large ligand-binding cavity that allows the lipocalin to bind an extensive and diverse set of lipophilic molecules. TLC can also bind to macromolecules, including the tear proteins lactoferin and lysozyme. The receptor to which TLC binds is termed tear lipocalin-interacting membrane receptor (LIMR). LIMR appears to work by endocytosis. TLC has a variety of suggested functions in tears, including regulation of tear viscosity, binding and release of lipids, endonuclease inactivation of viral DNA, binding of microbial siderophores (iron chelators used to deliver essential iron to bacteria), serving as a biomarker for dry eye, and possessing anti-inflammatory activity. Additional research is warranted to determine the actual functions of TLC in tears and the presence of its receptor on the ocular surface.
Collapse
Affiliation(s)
- Darlene A Dartt
- Schepens Eye Research Institute and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
16
|
Gasymov OK, Abduragimov AR, Glasgow BJ. The conserved disulfide bond of human tear lipocalin modulates conformation and lipid binding in a ligand selective manner. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:671-83. [PMID: 21466861 DOI: 10.1016/j.bbapap.2011.03.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/28/2011] [Accepted: 03/29/2011] [Indexed: 11/26/2022]
Abstract
The primary aim of this study is the elucidation of the mechanism of disulfide induced alteration of ligand binding in human tear lipocalin (TL). Disulfide bonds may act as dynamic scaffolds to regulate conformational changes that alter protein function including receptor-ligand interactions. A single disulfide bond, (Cys61-Cys153), exists in TL that is highly conserved in the lipocalin superfamily. Circular dichroism and fluorescence spectroscopies were applied to investigate the mechanism by which disulfide bond removal effects protein stability, dynamics and ligand binding properties. Although the secondary structure is not altered by disulfide elimination, TL shows decreased stability against urea denaturation. Free energy change (ΔG(0)) decreases from 4.9±0.2 to 2.1±0.3kcal/mol with removal of the disulfide bond. Furthermore, ligand binding properties of TL without the disulfide vary according to the type of ligand. The binding of a bulky ligand, NBD-cholesterol, has a decreased time constant (from 11.8±0.2 to 3.3s). In contrast, the NBD-labeled phospholipid shows a moderate decrease in the time constant for binding, from 33.2±0.2 to 22.2±0.4s. FRET experiments indicate that the hairpin CD is directly involved in modulation of both ligand binding and flexibility of TL. In TL complexed with palmitic acid (PA-TL), the distance between the residues 62 of strand D and 81 of loop EF is decreased by disulfide bond reduction. Consequently, removal of the disulfide bond boosts flexibility of the protein to reach a CD-EF loop distance (24.3Å, between residues 62 and 81), which is not accessible for the protein with an intact disulfide bond (26.2Å). The results suggest that enhanced flexibility of the protein promotes a faster accommodation of the ligand inside the cavity and an energetically favorable ligand-protein complex.
Collapse
Affiliation(s)
- Oktay K Gasymov
- Department of Pathology, University of California, Los Angeles, USA.
| | | | | |
Collapse
|