1
|
Aoki J, Koshikawa R, Asayama M. Recent progress in the cyanobacterial products and applications of phycocyanins. World J Microbiol Biotechnol 2025; 41:84. [PMID: 40011288 DOI: 10.1007/s11274-025-04297-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/16/2025] [Indexed: 02/28/2025]
Abstract
Recent developments in the research on cyanobacterial products have drawn increasing attention, especially in the production and application of phycocyanin, which has shown great potential in various fields. Cyanobacteria are photosynthetic prokaryotes that live on Earth and are the ancestors of plant chloroplasts. They have a compact genome size compared to other eukaryotic photosynthesizing microorganisms; some species are genetically engineered and have high growth potential in indoor culture, and some strainscan maintain high growth potential even in outdoor culture. Cyanobacteria are valuable because they can selectively and effectively produce and recover useful substances that are poorly produced by other microalgae, although this depends on the algal species. However, the social implementation of biorefineries using cyanobacteria involves issues such as setting up useful products in addition to the culture methods and strains to be used. This review aims to present research trends over the last 20 years on the production of useful substances such as biodegradable plastics, lipids, polysaccharides, and pigment proteins (phycocyanins) from cyanobacteria. Phycocyanin is mainly recovered and purified by filamentous cyanobacteria and has contributed to the research field, especially in the food and beverage industry. Additionally, the production and functions of phycocyanin are summarized to provide a better understanding of these possibilities. Their potential applications as environmentally friendly materials are also described to further contribute to the research field and social implementation.
Collapse
Affiliation(s)
- Jinichi Aoki
- College of Agriculture, Ibaraki University, 3-21-1 Ami, Inashiki, 300-0393, Ibaraki, Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho Fuchu-shi, Tokyo, 183-8509, Japan
| | - Runa Koshikawa
- College of Agriculture, Ibaraki University, 3-21-1 Ami, Inashiki, 300-0393, Ibaraki, Japan
| | - Munehiko Asayama
- College of Agriculture, Ibaraki University, 3-21-1 Ami, Inashiki, 300-0393, Ibaraki, Japan.
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho Fuchu-shi, Tokyo, 183-8509, Japan.
| |
Collapse
|
2
|
Hagar M, Andersen RJ, Ryan KS. Prephenate decarboxylase: An unexplored branchpoint to unusual natural products. Cell Chem Biol 2024; 31:1610-1626. [PMID: 39059391 DOI: 10.1016/j.chembiol.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/03/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
Prephenate decarboxylases are a small family of enzymes which initiate a specialized divergence from the shikimate pathway, where prephenate (2) is decarboxylated without aromatization. In addition to effecting a challenging chemical transformation, prephenate decarboxylases have been implicated in the production of rare specialized metabolites, sometimes directly constructing bioactive warheads. Many of the biosynthetic steps to natural products derived from prephenate decarboxylases remain elusive. Here, we review prephenate decarboxylase research thus far and highlight natural products that may be derived from biosynthetic pathways involving prephenate decarboxylases. We also highlight commonly encountered challenges in the structure elucidation of these natural products. Prephenate decarboxylases are a gateway into understudied biosynthetic pathways which present a high potential for the discovery of novel and bioactive natural products, as well as new biosynthetic enzymes.
Collapse
Affiliation(s)
- Mostafa Hagar
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Raymond J Andersen
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada; Department of Earth, Ocean, and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Katherine S Ryan
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
3
|
Zhang M, Peng Z, Huang Z, Fang J, Li X, Qiu X. Functional Diversity and Engineering of the Adenylation Domains in Nonribosomal Peptide Synthetases. Mar Drugs 2024; 22:349. [PMID: 39195464 DOI: 10.3390/md22080349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024] Open
Abstract
Nonribosomal peptides (NRPs) are biosynthesized by nonribosomal peptide synthetases (NRPSs) and are widely distributed in both terrestrial and marine organisms. Many NRPs and their analogs are biologically active and serve as therapeutic agents. The adenylation (A) domain is a key catalytic domain that primarily controls the sequence of a product during the assembling of NRPs and thus plays a predominant role in the structural diversity of NRPs. Engineering of the A domain to alter substrate specificity is a potential strategy for obtaining novel NRPs for pharmaceutical studies. On the basis of introducing the catalytic mechanism and multiple functions of the A domains, this article systematically describes several representative NRPS engineering strategies targeting the A domain, including mutagenesis of substrate-specificity codes, substitution of condensation-adenylation bidomains, the entire A domain or its subdomains, domain insertion, and whole-module rearrangements.
Collapse
Affiliation(s)
- Mengli Zhang
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Zijing Peng
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Zhenkuai Huang
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Jiaqi Fang
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Xinhai Li
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| | - Xiaoting Qiu
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China
| |
Collapse
|
4
|
Baunach M, Guljamow A, Miguel-Gordo M, Dittmann E. Harnessing the potential: advances in cyanobacterial natural product research and biotechnology. Nat Prod Rep 2024; 41:347-369. [PMID: 38088806 DOI: 10.1039/d3np00045a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Covering: 2000 to 2023Cyanobacteria produce a variety of bioactive natural products that can pose a threat to humans and animals as environmental toxins, but also have potential for or inspire pharmaceutical use. As oxygenic phototrophs, cyanobacteria furthermore hold great promise for sustainable biotechnology. Yet, the necessary tools for exploiting their biotechnological potential have so far been established only for a few model strains of cyanobacteria, while large untapped biosynthetic resources are hidden in slow-growing cyanobacterial genera that are difficult to access by genetic techniques. In recent years, several approaches have been developed to circumvent the bottlenecks in cyanobacterial natural product research. Here, we summarize current progress that has been made in unlocking or characterizing cryptic metabolic pathways using integrated omics techniques, orphan gene cluster activation, use of genetic approaches in original producers, heterologous expression and chemo-enzymatic techniques. We are mainly highlighting genomic mining concepts and strategies towards high-titer production of cyanobacterial natural products from the last 10 years and discuss the need for further research developments in this field.
Collapse
Affiliation(s)
- Martin Baunach
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany.
- University of Bonn, Institute of Pharmaceutical Biology, Nußallee 6, 53115 Bonn, Germany
| | - Arthur Guljamow
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany.
| | - María Miguel-Gordo
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany.
| | - Elke Dittmann
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany.
| |
Collapse
|
5
|
Thetsana C, Kobayashi R, Manadee K, Kodani S. Isolation and structure determination of a new depsipeptide crocapeptin C from the myxobacterium Melittangium boletus. Nat Prod Res 2024:1-7. [PMID: 38270086 DOI: 10.1080/14786419.2024.2308719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
A new cyclic depsipeptide, crocapeptin C (1), containing 3-amino-6-hydroxy-2-piperidone (Ahp) was isolated from the methanol extract of the myxobacterium Melittangium boletus. The chemical structure of crocapeptin C (1) was determined through NMR and ESI-MS analysis. The stereochemistries of the constituent amino acids in crocapeptin C (1) were determined using the advanced Marfey's method and ROESY spectrum data. Crocapeptin C (1) exhibited potent inhibitory activity against chymotrypsin with an IC50 value of 0.5 µM.
Collapse
Affiliation(s)
- Chanaphat Thetsana
- Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Ryo Kobayashi
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Kanitta Manadee
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Shinya Kodani
- Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
- College of Agriculture, Academic Institute, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
6
|
Yancey CE, Yu F, Tripathi A, Sherman DH, Dick GJ. Expression of Microcystis Biosynthetic Gene Clusters in Natural Populations Suggests Temporally Dynamic Synthesis of Novel and Known Secondary Metabolites in Western Lake Erie. Appl Environ Microbiol 2023; 89:e0209222. [PMID: 37070981 PMCID: PMC10231183 DOI: 10.1128/aem.02092-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/02/2023] [Indexed: 04/19/2023] Open
Abstract
Microcystis spp. produce diverse secondary metabolites within freshwater cyanobacterial harmful algal blooms (cyanoHABs) around the world. In addition to the biosynthetic gene clusters (BGCs) encoding known compounds, Microcystis genomes harbor numerous BGCs of unknown function, indicating a poorly understood chemical repertoire. While recent studies show that Microcystis produces several metabolites in the lab and field, little work has focused on analyzing the abundance and expression of its broader suite of BGCs during cyanoHAB events. Here, we use metagenomic and metatranscriptomic approaches to track the relative abundance of Microcystis BGCs and their transcripts throughout the 2014 western Lake Erie cyanoHAB. The results indicate the presence of several transcriptionally active BGCs that are predicted to synthesize both known and novel secondary metabolites. The abundance and expression of these BGCs shifted throughout the bloom, with transcript abundance levels correlating with temperature, nitrate, and phosphorus concentrations and the abundance of co-occurring predatory and competitive eukaryotic microorganisms, suggesting the importance of both abiotic and biotic controls in regulating expression. This work highlights the need for understanding the chemical ecology and potential risks to human and environmental health posed by secondary metabolites that are produced but often unmonitored. It also indicates the prospects for identifying pharmaceutical-like molecules from cyanoHAB-derived BGCs. IMPORTANCE Microcystis spp. dominate cyanobacterial harmful algal blooms (cyanoHABs) worldwide and pose significant threats to water quality through the production of secondary metabolites, many of which are toxic. While the toxicity and biochemistry of microcystins and several other compounds have been studied, the broader suite of secondary metabolites produced by Microcystis remains poorly understood, leaving gaps in our understanding of their impacts on human and ecosystem health. We used community DNA and RNA sequences to track the diversity of genes encoding synthesis of secondary metabolites in natural Microcystis populations and assess patterns of transcription in western Lake Erie cyanoHABs. Our results reveal the presence of both known gene clusters that encode toxic secondary metabolites as well as novel ones that may encode cryptic compounds. This research highlights the need for targeted studies of the secondary metabolite diversity in western Lake Erie, a vital freshwater source to the United States and Canada.
Collapse
Affiliation(s)
- Colleen E. Yancey
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Fengan Yu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Ashootosh Tripathi
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Natural Products Discovery Core, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - David H. Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Gregory J. Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
- Cooperative Institute for Great Lakes Research (CIGLR), University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Liu J, Chen L, Zhang X. Current research scenario for biological effect of exogenous factors on microcystin synthesis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26190-26201. [PMID: 35089514 DOI: 10.1007/s11356-021-18256-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
In natural water bodies, numerous cyanobacteria have the potential to intracellularly synthesize cyanotoxins, among which microcystin (MC) is the ubiquitous toxin that has been well known to be carcinogenic for hepatocytes. MC synthesis is a complex process, which involves about 10 non-ribosomal proteins encoded by the mcy gene cluster. In the natural environments containing MC-producing cyanobacteria, a variety of external factors can affect the generation of MC by mediating the expression of synthesizing genes. These factors can be generally divided into biotic factors (e.g., daphnia, virioplankton, MC-degrading bacteria, algicidal bacteria) and abiotic factors (e.g., nutrients, physical factors, chemicals, phytochemicals, essential trace elements), which are of great significance to the effective reduction of MC. Furthermore, comparison of MC-synthesizing genes in different cyanobacterial strains was performed, and the related factors affecting MC synthesis were summarized. Then, the problems and gaps regarding the biological effect of exogenous factors on microcystin synthesis were discussed. This review article may provide new ideas for addressing the challenges and bottlenecks of MC management.
Collapse
Affiliation(s)
- Jiahui Liu
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Lv Chen
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xian Zhang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China.
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Central South University, Changsha, China.
| |
Collapse
|
8
|
Eusebio N, Rego A, Glasser NR, Castelo-Branco R, Balskus EP, Leão PN. Distribution and diversity of dimetal-carboxylate halogenases in cyanobacteria. BMC Genomics 2021; 22:633. [PMID: 34461836 PMCID: PMC8406957 DOI: 10.1186/s12864-021-07939-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/14/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Halogenation is a recurring feature in natural products, especially those from marine organisms. The selectivity with which halogenating enzymes act on their substrates renders halogenases interesting targets for biocatalyst development. Recently, CylC - the first predicted dimetal-carboxylate halogenase to be characterized - was shown to regio- and stereoselectively install a chlorine atom onto an unactivated carbon center during cylindrocyclophane biosynthesis. Homologs of CylC are also found in other characterized cyanobacterial secondary metabolite biosynthetic gene clusters. Due to its novelty in biological catalysis, selectivity and ability to perform C-H activation, this halogenase class is of considerable fundamental and applied interest. The study of CylC-like enzymes will provide insights into substrate scope, mechanism and catalytic partners, and will also enable engineering these biocatalysts for similar or additional C-H activating functions. Still, little is known regarding the diversity and distribution of these enzymes. RESULTS In this study, we used both genome mining and PCR-based screening to explore the genetic diversity of CylC homologs and their distribution in bacteria. While we found non-cyanobacterial homologs of these enzymes to be rare, we identified a large number of genes encoding CylC-like enzymes in publicly available cyanobacterial genomes and in our in-house culture collection of cyanobacteria. Genes encoding CylC homologs are widely distributed throughout the cyanobacterial tree of life, within biosynthetic gene clusters of distinct architectures (combination of unique gene groups). These enzymes are found in a variety of biosynthetic contexts, which include fatty-acid activating enzymes, type I or type III polyketide synthases, dialkylresorcinol-generating enzymes, monooxygenases or Rieske proteins. Our study also reveals that dimetal-carboxylate halogenases are among the most abundant types of halogenating enzymes in the phylum Cyanobacteria. CONCLUSIONS Our data show that dimetal-carboxylate halogenases are widely distributed throughout the Cyanobacteria phylum and that BGCs encoding CylC homologs are diverse and mostly uncharacterized. This work will help guide the search for new halogenating biocatalysts and natural product scaffolds.
Collapse
Affiliation(s)
- Nadia Eusebio
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal
| | - Adriana Rego
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal
| | - Nathaniel R Glasser
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Raquel Castelo-Branco
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| | - Pedro N Leão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal.
| |
Collapse
|
9
|
McDonald K, Renaud JB, Pick FR, Miller JD, Sumarah MW, McMullin DR. Diagnostic Fragmentation Filtering for Cyanopeptolin Detection. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1087-1097. [PMID: 33238037 DOI: 10.1002/etc.4941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/25/2020] [Accepted: 11/20/2020] [Indexed: 06/11/2023]
Abstract
Cyanobacteria are ubiquitous photosynthetic prokaryotes that produce structurally diverse bioactive metabolites. Although microcystins are extensively studied, other cyanopeptides produced by common bloom-forming species have received little attention. Cyanopeptolins are a large cyanopeptide group that contain a characteristic 3-amino-6-hydroxy-2-piperidone (Ahp) moiety. In the present study we used diagnostic fragmentation filtering (DFF), a semitargeted liquid chromatography-tandem mass spectrometry (MS/MS) product ion filtering approach, to investigate cyanopeptolin diversity from 5 Microcystis strains and 4 bloom samples collected from lakes in Ontario and Quebec, Canada. Data processing by DFF was used to search MS/MS data sets for pairs of diagnostic product ions corresponding to cyanopeptolin partial sequences. For example, diagnostic product ions at m/z 150.0912 and 215.1183 identified cyanopeptolins with the NMe-Tyr-Phe-Ahp partial sequence. Forty-eight different cyanopeptolins, including 35 new variants, were detected from studied strains and bloom samples. Different cyanopeptolin profiles were identified from each sample. We detected a new compound, cyanopeptolin 1143, from a bloom and elucidated its planar structure from subsequent targeted MS/MS experiments. Diagnostic fragmentation filtering is a rapid, easy-to-perform postacquisition metabolomics strategy for inferring structural features and prioritizing new compounds for further study and dereplication. More work on cyanopeptolin occurrence and toxicity is needed because their concentrations in freshwater lakes after blooms can be similar to those of microcystins. Environ Toxicol Chem 2021;40:1087-1097. © 2020 SETAC.
Collapse
Affiliation(s)
| | - Justin B Renaud
- London Research and Development Center, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Frances R Pick
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - J David Miller
- Department of Chemistry, Carleton University, Ottawa, Ontario, Canada
| | - Mark W Sumarah
- London Research and Development Center, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - David R McMullin
- Department of Chemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
10
|
Köcher S, Resch S, Kessenbrock T, Schrapp L, Ehrmann M, Kaiser M. From dolastatin 13 to cyanopeptolins, micropeptins, and lyngbyastatins: the chemical biology of Ahp-cyclodepsipeptides. Nat Prod Rep 2021; 37:163-174. [PMID: 31451830 DOI: 10.1039/c9np00033j] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: 1989 up to 2019 Ahp-cyclodepsipeptides (also known as Ahp-containing cyclodepsipeptides, cyanopeptolins, micropeptins, microginines, and lyngbyastatins, and by many other names) are a family of non-ribosomal peptide synthesis (NRPS)-derived natural products with potent serine protease inhibitory properties. Here, we review their isolation and structural elucidation from natural sources as well as studies of their biosynthesis, molecular mode of action, and use in drug discovery efforts. Accordingly, this summary aims to provide a comprehensive overview of the current state-of-the-art Ahp-cyclodepsipeptide research.
Collapse
Affiliation(s)
- Steffen Köcher
- Chemical Biology, Zentrum für Medizinische Biotechnologie (ZMB), Faculty of Biology, Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany.
| | - Sarah Resch
- Chemical Biology, Zentrum für Medizinische Biotechnologie (ZMB), Faculty of Biology, Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany.
| | - Till Kessenbrock
- Chemical Biology, Zentrum für Medizinische Biotechnologie (ZMB), Faculty of Biology, Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany.
| | - Lukas Schrapp
- Chemical Biology, Zentrum für Medizinische Biotechnologie (ZMB), Faculty of Biology, Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany.
| | - Michael Ehrmann
- Microbiology, Zentrum für Medizinische Biotechnologie (ZMB), Faculty of Biology, Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Markus Kaiser
- Chemical Biology, Zentrum für Medizinische Biotechnologie (ZMB), Faculty of Biology, Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany.
| |
Collapse
|
11
|
Fidor A, Grabski M, Gawor J, Gromadka R, Węgrzyn G, Mazur-Marzec H. Nostoc edaphicum CCNP1411 from the Baltic Sea-A New Producer of Nostocyclopeptides. Mar Drugs 2020; 18:E442. [PMID: 32858999 PMCID: PMC7551626 DOI: 10.3390/md18090442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022] Open
Abstract
Nostocyclopeptides (Ncps) constitute a small class of nonribosomal peptides, exclusively produced by cyanobacteria of the genus Nostoc. The peptides inhibit the organic anion transporters, OATP1B3 and OATP1B1, and prevent the transport of the toxic microcystins and nodularin into hepatocytes. So far, only three structural analogues, Ncp-A1, Ncp-A2 and Ncp-M1, and their linear forms were identified in Nostoc strains as naturally produced cyanometabolites. In the current work, the whole genome sequence of the new Ncps producer, N. edaphicum CCNP1411 from the Baltic Sea, has been determined. The genome consists of the circular chromosome (7,733,505 bps) and five circular plasmids (from 44.5 kb to 264.8 kb). The nostocyclopeptide biosynthetic gene cluster (located between positions 7,609,981-7,643,289 bps of the chromosome) has been identified and characterized in silico. The LC-MS/MS analyzes of N. edaphicum CCNP1411 cell extracts prepared in aqueous methanol revealed several products of the genes. Besides the known peptides, Ncp-A1 and Ncp-A2, six other compounds putatively characterized as new noctocyclopeptide analogues were detected. This includes Ncp-E1 and E2 and their linear forms (Ncp-E1-L and E2-L), a cyclic Ncp-E3 and a linear Ncp-E4-L. Regardless of the extraction conditions, the cell contents of the linear nostocyclopeptides were found to be higher than the cyclic ones, suggesting a slow rate of the macrocyclization process.
Collapse
Affiliation(s)
- Anna Fidor
- Division of Marine Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, Marszałka J. Piłsudskiego 46, PL-81378 Gdynia, Poland;
| | - Michał Grabski
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (M.G.); (G.W.)
| | - Jan Gawor
- DNA Sequencing and Oligonucleotide Synthesis Laboratory, Polish Academy of Sciences, Institute of Biochemistry and Biophysics, 02-106 Warsaw, Poland; (J.G.); (R.G.)
| | - Robert Gromadka
- DNA Sequencing and Oligonucleotide Synthesis Laboratory, Polish Academy of Sciences, Institute of Biochemistry and Biophysics, 02-106 Warsaw, Poland; (J.G.); (R.G.)
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (M.G.); (G.W.)
| | - Hanna Mazur-Marzec
- Division of Marine Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, Marszałka J. Piłsudskiego 46, PL-81378 Gdynia, Poland;
| |
Collapse
|
12
|
Draft Genome Sequences of Four Microcystis aeruginosa Strains (NIES-3787, NIES-3804, NIES-3806, and NIES-3807) Isolated from Lake Kasumigaura, Japan. Microbiol Resour Announc 2020; 9:9/14/e00052-20. [PMID: 32241856 PMCID: PMC7118182 DOI: 10.1128/mra.00052-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microcystis aeruginosa is a bloom-forming cyanobacterium found in freshwater environments. The draft genomes of the M. aeruginosa strains NIES-3787, NIES-3804, NIES-3806, and NIES-3807, which were isolated from Lake Kasumigaura, Japan, were sequenced. The genome sizes of NIES-3787, NIES-3804, NIES-3806, and NIES-3807 were 4,524,637, 4,522,701, 4,370,004, and 4,378,226 bp, respectively. Microcystis aeruginosa is a bloom-forming cyanobacterium found in freshwater environments. The draft genomes of the M. aeruginosa strains NIES-3787, NIES-3804, NIES-3806, and NIES-3807, which were isolated from Lake Kasumigaura, Japan, were sequenced. The genome sizes of NIES-3787, NIES-3804, NIES-3806, and NIES-3807 were 4,524,637, 4,522,701, 4,370,004, and 4,378,226 bp, respectively.
Collapse
|
13
|
Yamaguchi H, Suzuki S, Osana Y, Kawachi M. Genomic Characteristics of the Toxic Bloom-Forming Cyanobacterium Microcystis aeruginosa NIES-102. J Genomics 2020; 8:1-6. [PMID: 31892993 PMCID: PMC6930136 DOI: 10.7150/jgen.40978] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/20/2019] [Indexed: 01/10/2023] Open
Abstract
Microcystis aeruginosa, a bloom-forming cyanobacterium distributed mainly in freshwater environments, can be divided into at least 12 groups (A-K and X) based on multi-locus phylogenetic analyses. In this study, we characterized the genome of microcystin-producing M. aeruginosa NIES-102, assigned to group A, isolated from Lake Kasumigaura, Japan. The complete genome sequence of M. aeruginosa NIES-102 comprised a 5.87-Mbp circular chromosome containing 5,330 coding sequences. The genome was the largest among all sequenced genomes for the species. In a comparison with the genome of M. aeruginosa NIES-843, which belongs to the same group, the microcystin biosynthetic gene cluster and CRISPR-Cas locus were highly similar. A synteny analysis revealed small-scale rearrangements between the two genomes. Genes encoding transposases were more abundant in these two genomes than in other Microcystis genomes. Our results improve our understanding of structural genomic changes and adaptation to a changing environment in the species.
Collapse
Affiliation(s)
- Haruyo Yamaguchi
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Shigekatsu Suzuki
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Yasunori Osana
- Department of Electrical and Electronics Engineering, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa 903-0213, Japan
| | - Masanobu Kawachi
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| |
Collapse
|
14
|
Huang IS, Zimba PV. Cyanobacterial bioactive metabolites-A review of their chemistry and biology. HARMFUL ALGAE 2019; 86:139-209. [PMID: 31358273 DOI: 10.1016/j.hal.2019.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/14/2018] [Accepted: 11/16/2018] [Indexed: 06/10/2023]
Abstract
Cyanobacterial blooms occur when algal densities exceed baseline population concentrations. Cyanobacteria can produce a large number of secondary metabolites. Odorous metabolites affect the smell and flavor of aquatic animals, whereas bioactive metabolites cause a range of lethal and sub-lethal effects in plants, invertebrates, and vertebrates, including humans. Herein, the bioactivity, chemistry, origin, and biosynthesis of these cyanobacterial secondary metabolites were reviewed. With recent revision of cyanobacterial taxonomy by Anagnostidis and Komárek as part of the Süβwasserflora von Mitteleuropa volumes 19(1-3), names of many cyanobacteria that produce bioactive compounds have changed, thereby confusing readers. The original and new nomenclature are included in this review to clarify the origins of cyanobacterial bioactive compounds. Due to structural similarity, the 157 known bioactive classes produced by cyanobacteria have been condensed to 55 classes. This review will provide a basis for more formal procedures to adopt a logical naming system. This review is needed for efficient management of water resources to understand, identify, and manage cyanobacterial harmful algal bloom impacts.
Collapse
Affiliation(s)
- I-Shuo Huang
- Center for Coastal Studies, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.
| | - Paul V Zimba
- Center for Coastal Studies, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| |
Collapse
|
15
|
Huang IS, Zimba PV. Cyanobacterial bioactive metabolites-A review of their chemistry and biology. HARMFUL ALGAE 2019; 83:42-94. [PMID: 31097255 DOI: 10.1016/j.hal.2018.11.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/14/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
Cyanobacterial blooms occur when algal densities exceed baseline population concentrations. Cyanobacteria can produce a large number of secondary metabolites. Odorous metabolites affect the smell and flavor of aquatic animals, whereas bioactive metabolites cause a range of lethal and sub-lethal effects in plants, invertebrates, and vertebrates, including humans. Herein, the bioactivity, chemistry, origin, and biosynthesis of these cyanobacterial secondary metabolites were reviewed. With recent revision of cyanobacterial taxonomy by Anagnostidis and Komárek as part of the Süβwasserflora von Mitteleuropa volumes 19(1-3), names of many cyanobacteria that produce bioactive compounds have changed, thereby confusing readers. The original and new nomenclature are included in this review to clarify the origins of cyanobacterial bioactive compounds. Due to structural similarity, the 157 known bioactive classes produced by cyanobacteria have been condensed to 55 classes. This review will provide a basis for more formal procedures to adopt a logical naming system. This review is needed for efficient management of water resources to understand, identify, and manage cyanobacterial harmful algal bloom impacts.
Collapse
Affiliation(s)
- I-Shuo Huang
- Center for Coastal Studies, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.
| | - Paul V Zimba
- Center for Coastal Studies, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| |
Collapse
|
16
|
Ootsuka M, Nishizawa T, Hasegawa M, Kurusu Y, Ohta H. Comparative Analysis of the Genetic Basis of Branched Nonylphenol Degradation by Sphingobium amiense DSM 16289 T and Sphingobium cloacae JCM 10874 T. Microbes Environ 2018; 33:450-454. [PMID: 30518740 PMCID: PMC6308004 DOI: 10.1264/jsme2.me18077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Branched nonylphenol (BNP), a degradation product of nonylphenol polyethoxylates, exerts estrogenic effects on various organisms. The genes underlying BNP degradation by Sphingobium amiense DSM 16289T were analyzed by complete genome sequencing and compared with those of the versatile BNP-degrading Sphingobium cloacae JCM 10874T. An opdA homolog (opdADSM16289) encoding BNP degradation activity was identified in DSM 16289T, in contrast with JCM 10874T, possessing both the opdA homolog and nmoA. The degradation profile of different BNP isomers was examined by Escherichia coli transformants harboring opdADSM16289, opdAJCM10874, and nmoAJCM10874 to characterize and compare the expression activities of these genes.
Collapse
Affiliation(s)
- Mina Ootsuka
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology
| | - Tomoyasu Nishizawa
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology.,Ibaraki University College of Agriculture
| | - Morifumi Hasegawa
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology.,Ibaraki University College of Agriculture
| | - Yasurou Kurusu
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology.,Ibaraki University College of Agriculture
| | - Hiroyuki Ohta
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology.,Ibaraki University College of Agriculture
| |
Collapse
|
17
|
Hacker C, Cai X, Kegler C, Zhao L, Weickhmann AK, Wurm JP, Bode HB, Wöhnert J. Structure-based redesign of docking domain interactions modulates the product spectrum of a rhabdopeptide-synthesizing NRPS. Nat Commun 2018; 9:4366. [PMID: 30341296 PMCID: PMC6195595 DOI: 10.1038/s41467-018-06712-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 09/21/2018] [Indexed: 12/18/2022] Open
Abstract
Several peptides in clinical use are derived from non-ribosomal peptide synthetases (NRPS). In these systems multiple NRPS subunits interact with each other in a specific linear order mediated by specific docking domains (DDs), whose structures are not known yet, to synthesize well-defined peptide products. In contrast to classical NRPSs, single-module NRPS subunits responsible for the generation of rhabdopeptide/xenortide-like peptides (RXPs) can act in different order depending on subunit stoichiometry thereby producing peptide libraries. To define the basis for their unusual interaction patterns, we determine the structures of all N-terminal DDs (NDDs) as well as of an NDD-CDD complex and characterize all putative DD interactions thermodynamically for such a system. Key amino acid residues for DD interactions are identified that upon their exchange change the DD affinity and result in predictable changes in peptide production. Recognition rules for DD interactions are identified that also operate in other megasynthase complexes. Rhabdopeptides are synthesized by non-ribosomal peptide synthetases (NRPSs) and the multiple NRPS subunits interact through docking domains (DD). Here the authors provide insights into DD interaction patterns and present the structures of three N-terminal docking domains (NDD) and a NDD-CDD complex and derive a set of recognition rules for DD interactions.
Collapse
Affiliation(s)
- Carolin Hacker
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Xiaofeng Cai
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Carsten Kegler
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Lei Zhao
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - A Katharina Weickhmann
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, 60438, Frankfurt am Main, Germany
| | - Jan Philip Wurm
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.,Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93053, Regensburg, Germany
| | - Helge B Bode
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438, Frankfurt am Main, Germany. .,Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| | - Jens Wöhnert
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
18
|
Kodani S, Komaki H, Hemmi H, Miyake Y, Kaweewan I, Dohra H. Streptopeptolin, a Cyanopeptolin-Type Peptide from Streptomyces olivochromogenes. ACS OMEGA 2018; 3:8104-8110. [PMID: 30087936 PMCID: PMC6072256 DOI: 10.1021/acsomega.8b01042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
Cyanopeptolin-type peptides are cyclic depsipeptides that commonly have 3-amino-6-hydroxy-2-piperidone (Ahp) unit in the molecules. So far, cyanopeptolin-type peptides have been isolated as protease inhibitors from a wide variety of cyanobacteria. In the course of screening for new peptides, a new peptide streptopeptolin, which had the similar structure to cyanopeptolin, was isolated from the extract of Streptomyces olivochromogenes NBRC 3561. Streptopeptolin is the first cyanopeptolin-type peptide isolated from actinobacteria. The structure of streptopeptolin was determined by the analysis of electrospray ionization mass spectrometry and NMR to be cyclic depsipeptide containing unusual amino acids, Ahp, and N-methyl tyrosine. As a result of protease inhibition test, streptopeptolin showed inhibitory activity against chymotrypsin. The whole genome sequence data of S. olivochromogenes revealed the biosynthetic gene cluster for streptopeptolin, which encoded a nonribosomal peptide synthetase. We proposed a biosynthetic pathway of streptopeptolin based on bioinformatics analysis.
Collapse
Affiliation(s)
- Shinya Kodani
- Academic
Institute, Graduate School of Integrated Science and Technology, Graduate School of
Science and Technology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Shizuoka 422-8529, Japan
| | - Hisayuki Komaki
- Biological
Resource Center, National Institute of Technology
and Evaluation (NBRC), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Hikaru Hemmi
- Food
Research
Institute, National Agriculture and Food
Research Organization (NARO), 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Yuto Miyake
- Academic
Institute, Graduate School of Integrated Science and Technology, Graduate School of
Science and Technology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Shizuoka 422-8529, Japan
| | - Issara Kaweewan
- Academic
Institute, Graduate School of Integrated Science and Technology, Graduate School of
Science and Technology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Shizuoka 422-8529, Japan
| | - Hideo Dohra
- Academic
Institute, Graduate School of Integrated Science and Technology, Graduate School of
Science and Technology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Shizuoka 422-8529, Japan
| |
Collapse
|
19
|
Microbial Diversity and Toxin Risk in Tropical Freshwater Reservoirs of Cape Verde. Toxins (Basel) 2018; 10:toxins10050186. [PMID: 29734762 PMCID: PMC5983242 DOI: 10.3390/toxins10050186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 01/12/2023] Open
Abstract
The Cape Verde islands are part of the African Sahelian arid belt that possesses an erratic rain pattern prompting the need for water reservoirs, which are now critical for the country’s sustainability. Worldwide, freshwater cyanobacterial blooms are increasing in frequency due to global climate change and the eutrophication of water bodies, particularly in reservoirs. To date, there have been no risk assessments of cyanobacterial toxin production in these man-made structures. We evaluated this potential risk using 16S rRNA gene amplicon sequencing and full metagenome sequencing in freshwater reservoirs of Cape Verde. Our analysis revealed the presence of several potentially toxic cyanobacterial genera in all sampled reservoirs. Faveta potentially toxic and bloom-forming Microcystis sp., dominated our samples, while a Cryptomonas green algae and Gammaproteobacteria dominated Saquinho and Poilão reservoirs. We reconstructed and assembled the Microcystis genome, extracted from the metagenome of bulk DNA from Faveta water. Phylogenetic analysis of Microcystis cf. aeruginosa CV01’s genome revealed its close relationship with other Microcystis genomes, as well as clustering with other continental African strains, suggesting geographical coherency. In addition, it revealed several clusters of known toxin-producing genes. This survey reinforces the need to better understand the country’s microbial ecology as a whole of water reservoirs on the rise.
Collapse
|
20
|
Yamaguchi H, Suzuki S, Osana Y, Kawachi M. Complete Genome Sequence of Microcystis aeruginosa NIES-2481 and Common Genomic Features of Group G M. aeruginosa. J Genomics 2018; 6:30-33. [PMID: 29576807 PMCID: PMC5865083 DOI: 10.7150/jgen.24935] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 02/21/2018] [Indexed: 11/05/2022] Open
Abstract
Microcystis aeruginosa is a freshwater bloom-forming cyanobacterium that is distributed worldwide. M. aeruginosa can be divided into at least 8 phylogenetic groups (A-G and X) at the intraspecific level. Here, we report the complete genome sequence of M. aeruginosa NIES-2481, which was isolated from Lake Kasumigaura, Japan, and is assigned to group G. The complete genome sequence of M. aeruginosa NIES-2481 comprises a 4.29-Mbp circular chromosome and a 147,539-bp plasmid; the circular chromosome and the plasmid contain 4,332 and 167 protein-coding genes, respectively. Comparative analysis with the complete genome of M. aeruginosa NIES-2549, which belongs to the same group with NIES-2481, showed that the genome size is the smallest level in previously sequenced M. aeruginosa strains, and the genomes do not contain a microcystin biosynthetic gene cluster in common. Synteny analysis revealed only small-scale rearrangements between the two genomes.
Collapse
Affiliation(s)
- Haruyo Yamaguchi
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Shigekatsu Suzuki
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Yasunori Osana
- Department of Electrical and Electronics Engineering, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Okinawa 903-0213, Japan
| | - Masanobu Kawachi
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| |
Collapse
|
21
|
Inhibitors of Serine Proteases from a Microcystis sp. Bloom Material Collected from Timurim Reservoir, Israel. Mar Drugs 2017; 15:md15120371. [PMID: 29194403 PMCID: PMC5742831 DOI: 10.3390/md15120371] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/19/2017] [Accepted: 11/20/2017] [Indexed: 01/13/2023] Open
Abstract
Two new natural products, micropeptin TR1058 (1) and aeruginosin TR642 (2), were isolated from the hydrophilic extract of bloom material of Microcystis sp. collected from the Timurim water reservoir in Israel. The structures of compounds 1 and 2 were determined using 1D and 2D NMR spectroscopy and HR ESI MS and MS/MS techniques. Micropeptin TR1058 (1) was extremely unstable under the isolation conditions, and several degradation products were identified. NMR analysis of aeruginosin TR642 (2) revealed a mixture of eight isomers, and elucidation of its structure was challenging. Aeruginosin TR642 contains a 4,5-didehydroaraginal subunit that has not been described before. Micropeptin TR1058 (1) inhibited chymotrypsin with an IC50 of 6.78 µM, and aeruginosin TR642 (2) inhibited trypsin and thrombin with inhibition concentration (IC50) values of 3.80 and 0.85 µM, respectively. The structures and biological activities of the new compounds are discussed.
Collapse
|
22
|
FVIIa-sTF and Thrombin Inhibitory Activities of Compounds Isolated from Microcystis aeruginosa K-139. Mar Drugs 2017; 15:md15090275. [PMID: 28867804 PMCID: PMC5618414 DOI: 10.3390/md15090275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/11/2017] [Accepted: 08/25/2017] [Indexed: 01/09/2023] Open
Abstract
The rise of bleeding and bleeding complications caused by oral anticoagulant use are serious problems nowadays. Strategies that block the initiation step in blood coagulation involving activated factor VII-tissue factor (fVIIa-TF) have been considered. This study explores toxic Microcystis aeruginosa K-139, from Lake Kasumigaura, Ibaraki, Japan, as a promising cyanobacterium for isolation of fVIIa-sTF inhibitors. M. aeruginosa K-139 underwent reversed-phase solid-phase extraction (ODS-SPE) from 20% MeOH to MeOH elution with 40%-MeOH increments, which afforded aeruginosin K-139 in the 60% MeOH fraction; micropeptin K-139 and microviridin B in the MeOH fraction. Aeruginosin K-139 displayed an fVIIa-sTF inhibitory activity of ~166 µM, within a 95% confidence interval. Micropeptin K-139 inhibited fVIIa-sTF with EC50 10.62 µM, which was more efficient than thrombin inhibition of EC50 26.94 µM. The thrombin/fVIIa-sTF ratio of 2.54 in micropeptin K-139 is higher than those in 4-amidinophenylmethane sulfonyl fluoride (APMSF) and leupeptin, when used as positive controls. This study proves that M. aeruginosa K-139 is a new source of fVIIa-sTF inhibitors. It also opens a new avenue for micropeptin K-139 and related depsipeptides as fVIIa-sTF inhibitors.
Collapse
|
23
|
Two novel cyclic hexapeptides from the genetically engineered Actinosynnema pretiosum. Appl Microbiol Biotechnol 2016; 101:2273-2279. [DOI: 10.1007/s00253-016-8017-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/08/2016] [Accepted: 11/20/2016] [Indexed: 10/20/2022]
|
24
|
Nishizawa T, Neagari Y, Miura T, Asayama M, Murata K, Harada KI, Shirai M. Molecular Analysis of the Cyanobacterial Community in Gastric Contents of Egrets with Symptoms of Steatitis. Open Microbiol J 2015; 9:160-6. [PMID: 26668668 PMCID: PMC4676040 DOI: 10.2174/1874285801509010160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 05/03/2015] [Accepted: 08/01/2015] [Indexed: 11/22/2022] Open
Abstract
Many deaths of wild birds that have drunk water contaminated with hepatotoxic microcystin-producing cyanobacteria have been reported. A mass death of egrets and herons with steatitis were found at the agricultural reservoir occurring cyanobacterial waterblooms. This study aimed to verify a hypothesis that the egrets and herons which died in the reservoir drink microcystin-producing cyanobacteria and microcystin involves in the cause of death as well as the symptoms of steatitis. The cyanobacterial community in gastric contents of egrets and herons that died from steatitis was assessed using cyanobacterial 16S rRNA-based terminal-restriction fragment length polymorphism (T-RFLP) profiling and a cyanobacterial 16S rRNA-based clone library analysis. In addition, PCR amplification of the mcyB-C region and the mcyG gene, involved in microcystin biosynthesis, was examined. The cyanobacterial community in the gastric contents of two birds showed a simplistic composition. A comparison of cyanobacterial T-RFLP profiling and cloned sequences suggested that the genus Microcystis predominated in both samples of egrets died. Although we confirmed that two egrets which died in the reservoir have taken in cyanobacterial waterblooms containing the genus Microcystis, no mcy gene was detected in both samples according to the mcy gene-based PCR analysis. This study is the first to show the profiling and traceability of a cyanobacterial community in the gastric contents of wild birds by molecular analysis. Additionally, we consider causing symptoms of steatitis in the dead egrets.
Collapse
Affiliation(s)
| | - Yasuko Neagari
- Laboratory for Intellectual Fundamentals for Environmental Studies, National Institute for Environmental Studies, Ibaraki 305-8506, Japan
| | - Takamasa Miura
- College of Agriculture, Ibaraki University, Ibaraki 300-0393, Japan
| | - Munehiko Asayama
- College of Agriculture, Ibaraki University, Ibaraki 300-0393, Japan
| | - Koichi Murata
- College of Bioresource Sciences, Nihon University, Kanagawa 252-0880, Japan
| | - Ken-Ichi Harada
- Graduate School of Environmental and Human Science and Faculty of Pharmacy, Meijo University, Aichi 468-8503, Japan
| | - Makoto Shirai
- College of Agriculture, Ibaraki University, Ibaraki 300-0393, Japan
| |
Collapse
|
25
|
Labby KJ, Watsula SG, Garneau-Tsodikova S. Interrupted adenylation domains: unique bifunctional enzymes involved in nonribosomal peptide biosynthesis. Nat Prod Rep 2015; 32:641-53. [PMID: 25622971 DOI: 10.1039/c4np00120f] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nonribosomal peptides (NRPs) account for a large portion of drugs and drug leads currently available in the pharmaceutical industry. They are one of two main families of natural products biosynthesized on megaenzyme assembly-lines composed of multiple modules that are, in general, each comprised of three core domains and on occasion of accompanying auxiliary domains. The core adenylation (A) domains are known to delineate the identity of the specific chemical components to be incorporated into the growing NRPs. Previously believed to be inactive, A domains interrupted by auxiliary enzymes have recently been proven to be active and capable of performing two distinct chemical reactions. This highlight summarizes current knowledge on A domains and presents the various interrupted A domains found in a number of nonribosomal peptide synthetase (NRPS) assembly-lines, their predicted or proven dual functions, and their potential for manipulation and engineering for chemoenzymatic synthesis of new pharmaceutical agents with increased potency.
Collapse
Affiliation(s)
- Kristin J Labby
- Beloit College, Department of Chemistry, 700 College Street, Beloit, WI 53511, USA
| | | | | |
Collapse
|
26
|
Al-Mestarihi AH, Villamizar G, Fernández J, Zolova OE, Lombó F, Garneau-Tsodikova S. Adenylation and S-methylation of cysteine by the bifunctional enzyme TioN in thiocoraline biosynthesis. J Am Chem Soc 2014; 136:17350-4. [PMID: 25409494 DOI: 10.1021/ja510489j] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The antitumor agent thiocoraline is a nonribosomally biosynthesized bisintercalator natural product, which contains in its peptidic backbone two S-methylated l-cysteine residues. S-Methylation occurs very rarely in nature, and is observed extremely rarely in nonribosomal peptide scaffolds. We have proposed that during thiocoraline biosynthesis, TioN, a stand-alone adenylation domain interrupted by the S-adenosyl-l-methionine binding region of a methyltransferase enzyme, is capable of performing two functions: the adenylation and S-methylation of l-cysteine. Herein, by preparation of knockouts of TioN and its MbtH-like protein partner TioT, we confirmed their role in thiocoraline biosynthesis. We also co-expressed recombinant TioN and TioT and biochemically investigated three potential pathways involving activation, methylation, and loading of l-cysteine onto the TioN partner thiolation domain, TioS(T4). The valuable insights gained into the pathway(s) followed for the production of S-Me-l-Cys-S-TioS(T4) will serve as a guide for the development of novel engineered interrupted adenylation enzymes for combinatorial biosynthesis.
Collapse
Affiliation(s)
- Ahmad H Al-Mestarihi
- Department of Pharmaceutical Sciences, University of Kentucky , Lexington, Kentucky 40536-0596, United States
| | | | | | | | | | | |
Collapse
|
27
|
Three aeruginosins and a microviridin from a bloom assembly of Microcystis spp. collected from a fishpond near Kibbutz Lehavot HaBashan, Israel. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.07.057] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Penn K, Wang J, Fernando SC, Thompson JR. Secondary metabolite gene expression and interplay of bacterial functions in a tropical freshwater cyanobacterial bloom. THE ISME JOURNAL 2014; 8:1866-78. [PMID: 24646695 PMCID: PMC4139720 DOI: 10.1038/ismej.2014.27] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/08/2014] [Accepted: 01/17/2014] [Indexed: 11/09/2022]
Abstract
Cyanobacterial harmful algal blooms (cyanoHABs) appear to be increasing in frequency on a global scale. The Cyanobacteria in blooms can produce toxic secondary metabolites that make freshwater dangerous for drinking and recreation. To characterize microbial activities in a cyanoHAB, transcripts from a eutrophic freshwater reservoir in Singapore were sequenced for six samples collected over one day-night period. Transcripts from the Cyanobacterium Microcystis dominated all samples and were accompanied by at least 533 genera primarily from the Cyanobacteria, Proteobacteria, Bacteroidetes and Actinobacteria. Within the Microcystis population, abundant transcripts were from genes for buoyancy, photosynthesis and synthesis of the toxin microviridin, suggesting that these are necessary for competitive dominance in the Reservoir. During the day, Microcystis transcripts were enriched in photosynthesis and energy metabolism while at night enriched pathways included DNA replication and repair and toxin biosynthesis. Microcystis was the dominant source of transcripts from polyketide and non-ribosomal peptide synthase (PKS and NRPS, respectively) gene clusters. Unexpectedly, expression of all PKS/NRPS gene clusters, including for the toxins microcystin and aeruginosin, occurred throughout the day-night cycle. The most highly expressed PKS/NRPS gene cluster from Microcystis is not associated with any known product. The four most abundant phyla in the reservoir were enriched in different functions, including photosynthesis (Cyanobacteria), breakdown of complex organic molecules (Proteobacteria), glycan metabolism (Bacteroidetes) and breakdown of plant carbohydrates, such as cellobiose (Actinobacteria). These results provide the first estimate of secondary metabolite gene expression, functional partitioning and functional interplay in a freshwater cyanoHAB.
Collapse
Affiliation(s)
- Kevin Penn
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jia Wang
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Samodha C Fernando
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Janelle R Thompson
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
29
|
Miura T, Nishizawa A, Nishizawa T, Asayama M, Takahashi H, Shirai M. Construction of a stepwise gene integration system by transient expression of actinophage R4 integrase in cyanobacterium Synechocystis sp. PCC 6803. Mol Genet Genomics 2014; 289:615-23. [DOI: 10.1007/s00438-014-0838-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/26/2014] [Indexed: 02/04/2023]
|
30
|
Isaacs JD, Strangman WK, Barbera AE, Mallin MA, McIver MR, Wright JLC. Microcystins and two new micropeptin cyanopeptides produced by unprecedented Microcystis aeruginosa blooms in North Carolina's Cape Fear River. HARMFUL ALGAE 2014; 31:82-86. [PMID: 28040114 DOI: 10.1016/j.hal.2013.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 09/24/2013] [Accepted: 09/24/2013] [Indexed: 06/06/2023]
Abstract
The Cape Fear River is the largest river system in North Carolina. It is heavily used as a source of drinking water for humans and livestock as well as a source of irrigation water for crops, and production water for industry. It also serves as a major fishery for both commercial and recreational use. In recent years, possibly related to increased eutrophication of the river, massive blooms of cyanobacteria, identified as Microcystis aeruginosa have been observed. Bloom samples collected in 2009 and 2012 were chemically analyzed to determine if they contained cyanobacterial toxins known as microcystins. Both blooms were found to produce microcystins in high yields. Microcystins are potent hepatotoxins that can be bio-accumulated in the food chain. Recent biological studies have also shown a host of other potentially harmful effects of low level microcystin exposure. Detailed chemical analysis of these blooms led us to discover that these blooms produce an additional family of cyanobacterial peptides know as the micropeptins, including two new members named micropeptins 1106 and 1120. The biological activities of these new molecules have not yet been determined, although protease activity has been well documented for this peptide group. These data indicate a need for thorough monitoring of toxin levels especially during bloom events in addition to additional biological testing of other cyanopeptides present in blooms.
Collapse
Affiliation(s)
- Justin D Isaacs
- UNC Wilmington Center for Marine Science, 5600 Marvin Moss Lane, Wilmington, NC 28409, United States
| | - Wendy K Strangman
- UNC Wilmington Center for Marine Science, 5600 Marvin Moss Lane, Wilmington, NC 28409, United States
| | - Amy E Barbera
- UNC Wilmington Center for Marine Science, 5600 Marvin Moss Lane, Wilmington, NC 28409, United States
| | - Michael A Mallin
- UNC Wilmington Center for Marine Science, 5600 Marvin Moss Lane, Wilmington, NC 28409, United States
| | - Matthew R McIver
- UNC Wilmington Center for Marine Science, 5600 Marvin Moss Lane, Wilmington, NC 28409, United States
| | - Jeffrey L C Wright
- UNC Wilmington Center for Marine Science, 5600 Marvin Moss Lane, Wilmington, NC 28409, United States.
| |
Collapse
|
31
|
New structural variants of aeruginosin produced by the toxic bloom forming cyanobacterium Nodularia spumigena. PLoS One 2013; 8:e73618. [PMID: 24040002 PMCID: PMC3765200 DOI: 10.1371/journal.pone.0073618] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/18/2013] [Indexed: 11/29/2022] Open
Abstract
Nodularia spumigena is a filamentous diazotrophic cyanobacterium that forms blooms in brackish water bodies. This cyanobacterium produces linear and cyclic peptide protease inhibitors which are thought to be part of a chemical defense against grazers. Here we show that N. spumigena produces structurally novel members of the aeruginosin family of serine protease inhibitors. Extensive chemical analyses including NMR demonstrated that the aeruginosins are comprised of an N-terminal short fatty acid chain, L-Tyr, L-Choi and L-argininal and in some cases pentose sugar. The genome of N. spumigena CCY9414 contains a compact 18-kb aeruginosin gene cluster encoding a peptide synthetase with a reductive release mechanism which offloads the aeruginosins as reactive peptide aldehydes. Analysis of the aeruginosin and spumigin gene clusters revealed two different strategies for the incorporation of N-terminal protecting carboxylic acids. These results demonstrate that strains of N. spumigena produce aeruginosins and spumigins, two families of structurally similar linear peptide aldehydes using separate peptide synthetases. The aeruginosins were chemically diverse and we found 11 structural variants in 16 strains from the Baltic Sea and Australia. Our findings broaden the known structural diversity of the aeruginosin peptide family to include peptides with rare N-terminal short chain (C2–C10) fatty acid moieties.
Collapse
|
32
|
Whole-Genome Sequence of Microcystis aeruginosa TAIHU98, a Nontoxic Bloom-Forming Strain Isolated from Taihu Lake, China. GENOME ANNOUNCEMENTS 2013; 1:1/3/e00333-13. [PMID: 23766403 PMCID: PMC3707574 DOI: 10.1128/genomea.00333-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Microcystis aeruginosa is a dominant bloom-forming cyanobacterium in many freshwater lakes. This report describes the first whole-genome sequence of the nontoxic strain of M. aeruginosa TAIHU98, which was isolated from Taihu Lake in eastern China.
Collapse
|
33
|
Letzel AC, Pidot SJ, Hertweck C. A genomic approach to the cryptic secondary metabolome of the anaerobic world. Nat Prod Rep 2012; 30:392-428. [PMID: 23263685 DOI: 10.1039/c2np20103h] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A total of 211 complete and published genomes from anaerobic bacteria are analysed for the presence of secondary metabolite biosynthesis gene clusters, in particular those tentatively coding for polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS). We investigate the distribution of these gene clusters according to bacterial phylogeny and, if known, correlate these to the type of metabolic pathways they encode. The potential of anaerobes as secondary metabolite producers is highlighted.
Collapse
Affiliation(s)
- Anne-Catrin Letzel
- Leibniz Institute for Natural Product Research and Infection Biology HKI, Beutenbergstr. 11a, Jena, 07745, Germany
| | | | | |
Collapse
|
34
|
New aeruginazoles, a group of thiazole-containing cyclic peptides from Microcystis aeruginosa blooms. Tetrahedron 2012. [DOI: 10.1016/j.tet.2011.12.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|