1
|
Yehorova D, Alansson N, Shen R, Denson JM, Robinson M, Risso VA, Molina NR, Loria JP, Gaucher EA, Sanchez-Ruiz JM, Hengge AC, Johnson SJ, Kamerlin SCL. Conformational Dynamics and Catalytic Backups in a Hyper-Thermostable Engineered Archaeal Protein Tyrosine Phosphatase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645524. [PMID: 40196513 PMCID: PMC11974932 DOI: 10.1101/2025.03.26.645524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Protein tyrosine phosphatases (PTPs) are a family of enzymes that play important roles in regulating cellular signaling pathways. The activity of these enzymes is regulated by the motion of a catalytic loop that places a critical conserved aspartic acid side chain into the active site for acid-base catalysis upon loop closure. These enzymes also have a conserved phosphate binding loop that is typically highly rigid and forms a well-defined anion binding nest. The intimate links between loop dynamics and chemistry in these enzymes make PTPs an excellent model system for understanding the role of loop dynamics in protein function and evolution. In this context, archaeal PTPs, which have evolved in extremophilic organisms, are highly understudied, despite their unusual biophysical properties. We present here an engineered chimeric PTP (ShufPTP) generated by shuffling the amino acid sequence of five extant hyperthermophilic archaeal PTPs. Despite ShufPTP's high sequence similarity to its natural counterparts, ShufPTP presents a suite of unique properties, including high flexibility of the phosphate binding P-loop, facile oxidation of the active site cysteine, mechanistic promiscuity, and most notably, hyperthermostability, with a denaturation temperature likely >130 °C (>8°C higher than the highest recorded growth temperature of any archaeal strain). Our combined structural, biochemical, biophysical and computational analysis provides insight both into how small steps in evolutionary space can radically modulate the biophysical properties of an enzyme, and showcase the tremendous potential of archaeal enzymes for biotechnology, to generate novel enzymes capable of operating under extreme conditions.
Collapse
Affiliation(s)
- Dariia Yehorova
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | - Nikolas Alansson
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
| | - Ruidan Shen
- Department of Chemistry & Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, USA
| | - Joshua M Denson
- Department of Chemistry & Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, USA
| | - Michael Robinson
- Department of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Valeria A Risso
- Departamento de Química Física, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, Granada, 18071, Spain
| | - Nuria Ramirez Molina
- Department of Biology, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - J Patrick Loria
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, CT, 06520-8107
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Eric A Gaucher
- Department of Biology, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303, USA
| | - Jose M Sanchez-Ruiz
- Departamento de Química Física, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, Granada, 18071, Spain
| | - Alvan C Hengge
- Department of Chemistry & Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, USA
| | - Sean J Johnson
- Department of Chemistry & Biochemistry, Utah State University, 0300 Old Main Hill, Logan, UT 84322-0300, USA
| | - Shina C L Kamerlin
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332, USA
- Department of Chemistry, Lund University, Box 124, 22100 Lund, Sweden
| |
Collapse
|
2
|
Wang X, Ge H, Zhang Y, Wang Y, Zhang P. Ser/Thr Protein Kinase SpkI Affects Photosynthetic Efficiency in Synechocystis sp. PCC 6803 upon Salt Stress. Life (Basel) 2022; 12:life12050713. [PMID: 35629380 PMCID: PMC9143257 DOI: 10.3390/life12050713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
High salinity is a common environmental factor that limits productivity and growth for photosynthetic organisms. Here, we identified a mutant defected in gene sll1770, which encodes a Ser/Thr protein kinase SpkI, with a significantly low maximal quantum yield of PSII under high salt condition in Synechocystis sp. PCC 6803. Physiological characterization demonstrated that the ΔspkI mutant had normal growth and photosynthesis under control condition. And a significantly higher NPQ capacity was also observed in ΔspkI when grown under control condition. However, when grown under high salt condition, ΔspkI exhibited apparently slower growth as well as decreased net photosynthesis and PSII activity. Western blot analysis demonstrated that the amount of major photosynthetic proteins declined sharply in ΔspkI when cells grown under high salt condition. Redox kinetics measurement suggested that the activities of PSI and cytochrome b6f complex were modified in ΔspkI under high salt condition, which resulted in a more reduced PQ pool in ΔspkI. Chlorophyll fluorescence traces suggested that the OA− reoxidation and state transition was also impaired in ΔspkI under high salt condition. Above all, we propose that Ser/Thr protein kinase SpkI plays a role in maintaining high-effective photosynthesis during high-salt acclimation process in Synechocystis.
Collapse
Affiliation(s)
- Xiaoting Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.W.); (Y.Z.)
| | - Haitao Ge
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (H.G.); (Y.W.)
| | - Ye Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.W.); (Y.Z.)
| | - Yingchun Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; (H.G.); (Y.W.)
| | - Pengpeng Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.W.); (Y.Z.)
- Correspondence:
| |
Collapse
|
3
|
Pinkston J, Shen R, Simons CR, Hengge AC. Competitive measurement of β/α naphthyl phosphate catalytic efficiency by phosphatases utilizing quantitative NMR. Anal Biochem 2022; 651:114727. [DOI: 10.1016/j.ab.2022.114727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/01/2022]
|
4
|
Liang W, Yan F, Wang M, Li X, Zhang Z, Ma X, Hu J, Wang J, Wang L. Comprehensive Phosphoproteomic Analysis of Nostoc flagelliforme in Response to Dehydration Provides Insights into Plant ROS Signaling Transduction. ACS OMEGA 2021; 6:13554-13566. [PMID: 34095650 PMCID: PMC8173544 DOI: 10.1021/acsomega.0c06111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/05/2021] [Indexed: 05/27/2023]
Abstract
Terrestrial cyanobacteria, originated from aquatic cyanobacteria, exhibit a unique mechanism for drought adaptation during long-term evolution. To elucidate this diverse adaptive mechanism exhibited by terrestrial cyanobacteria from the post-translation modification aspect, we performed a global phosphoproteome analysis on the abundance of phosphoproteins in response to dehydration using Nostoc flagelliforme, a kind of terrestrial cyanobacteria having strong ecological adaptability to xeric environments. A total of 329 phosphopeptides from 271 phosphoproteins with 1168 phosphorylation sites were identified. Among these, 76 differentially expressed phosphorylated proteins (DEPPs) were identified for each dehydration treatment (30, 75, and 100% water loss), compared to control. The identified DEPPs were functionally categorized to be mainly involved in a two-component signaling pathway, photosynthesis, energy and carbohydrate metabolism, and an antioxidant system. We concluded that protein phosphorylation modifications related to the reactive oxygen species (ROS) signaling pathway might play an important role in coordinating enzyme activity involved in the antioxidant system in N. flagelliforme to adapt to dehydration stress. This study provides deep insights into the extensive modification of phosphorylation in terrestrial cyanobacteria using a phosphoproteomic approach, which may help to better understand the role of protein phosphorylation in key cellular mechanisms in terrestrial cyanobacteria in response to dehydration.
Collapse
Affiliation(s)
- Wenyu Liang
- School
of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Fengkun Yan
- School
of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Meng Wang
- School
of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Xiaoxu Li
- School
of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Zheng Zhang
- School
of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Xiaorong Ma
- School
of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Jinhong Hu
- School
of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Jun Wang
- College
Education for Nationalities, Ningxia University, Yinchuan 750021, China
| | - Lingxia Wang
- School
of Life Sciences, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
5
|
Santos M, Pereira SB, Flores C, Príncipe C, Couto N, Karunakaran E, Cravo SM, Oliveira P, Tamagnini P. Absence of KpsM (Slr0977) Impairs the Secretion of Extracellular Polymeric Substances (EPS) and Impacts Carbon Fluxes in Synechocystis sp. PCC 6803. mSphere 2021; 6:e00003-21. [PMID: 33504656 PMCID: PMC7885315 DOI: 10.1128/msphere.00003-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 12/02/2022] Open
Abstract
Many cyanobacteria produce extracellular polymeric substances (EPS), composed mainly of heteropolysaccharides, that play a variety of physiological roles, being crucial for cell protection, motility, and biofilm formation. However, due to their complexity, the EPS biosynthetic pathways as well as their assembly and export mechanisms are still far from being fully understood. Here, we show that the absence of a putative EPS-related protein, KpsM (Slr0977), has a pleiotropic effect on Synechocystis sp. strain PCC 6803 physiology, with a strong impact on the export of EPS and carbon fluxes. The kpsM mutant exhibits a significant reduction of released polysaccharides and a smaller decrease of capsular polysaccharides, but it accumulates more polyhydroxybutyrate (PHB) than the wild type. In addition, this strain shows a light/cell density-dependent clumping phenotype and exhibits an altered protein secretion capacity. Furthermore, the most important structural component of pili, the protein PilA, was found to have a modified glycosylation pattern in the mutant compared to the wild type. Proteomic and transcriptomic analyses revealed significant changes in the mechanisms of energy production and conversion, namely, photosynthesis, oxidative phosphorylation, and carbon metabolism, in response to the inactivation of slr0977 Overall, this work shows for the first time that cells with impaired EPS secretion undergo transcriptomic and proteomic adjustments, highlighting the importance of EPS as a major carbon sink in cyanobacteria. The accumulation of PHB in cells of the mutant, without affecting significantly its fitness/growth rate, points to its possible use as a chassis for the production of compounds of interest.IMPORTANCE Most cyanobacteria produce extracellular polymeric substances (EPS) that fulfill different biological roles depending on the strain/environmental conditions. The interest in the cyanobacterial EPS synthesis/export pathways has been increasing, not only to optimize EPS production but also to efficiently redirect carbon flux toward the production of other compounds, allowing the implementation of industrial systems based on cyanobacterial cell factories. Here, we show that a Synechocystis kpsM (slr0977) mutant secretes less EPS than the wild type, accumulating more carbon intracellularly, as polyhydroxybutyrate. Further characterization showed a light/cell density-dependent clumping phenotype, altered protein secretion, and modified glycosylation of PilA. The proteome and transcriptome of the mutant revealed significant changes, namely, in photosynthesis and carbon metabolism. Altogether, this work provides a comprehensive overview of the impact of kpsM disruption on Synechocystis physiology, highlighting the importance of EPS as a carbon sink and showing how cells adapt when their secretion is impaired, and the redirection of the carbon fluxes.
Collapse
Affiliation(s)
- Marina Santos
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Celular e Molecular, Universidade do Porto, Porto, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Sara B Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Celular e Molecular, Universidade do Porto, Porto, Portugal
| | - Carlos Flores
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Celular e Molecular, Universidade do Porto, Porto, Portugal
| | - Catarina Príncipe
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Celular e Molecular, Universidade do Porto, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Narciso Couto
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Esther Karunakaran
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Sara M Cravo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Matosinhos, Portugal
- Laboratório de Química Orgânica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Paulo Oliveira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Celular e Molecular, Universidade do Porto, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Paula Tamagnini
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Celular e Molecular, Universidade do Porto, Porto, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| |
Collapse
|
6
|
Sierra-López F, Baylón-Pacheco L, Vanegas-Villa SC, Rosales-Encina JL. Characterization of low molecular weight protein tyrosine phosphatases of Entamoeba histolytica. Biochimie 2021; 180:43-53. [PMID: 33122104 DOI: 10.1016/j.biochi.2020.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 12/12/2022]
Abstract
Entamoeba histolytica is an intestinal protozoan parasite of humans and is endemic in developing countries. E. histolytica has two low molecular weight protein tyrosine phosphatase (LMW-PTP) genes, EhLMW-PTP1 and EhLMW-PTP2, which are expressed in cultured trophozoites, clinical isolates, and cysts. The amino acid sequences of proteins EhLMW-PTP1 and EhLMW-PTP2 showed only one amino acid difference between them at position A85V, respectively. Both genes are expressed in cultured trophozoites, mainly EhLMW-PTP2, and in trophozoites recovered from amoebic liver abscess, the expression of EhLMW-PTP1 is downregulated. We cloned the two genes and purified the corresponding recombinant (rEhLMW-PTPs) proteins. Antibodies anti-rEhLMW-PTP2 showed that during red blood cells uptake by E. histolytica, the EhLMW-PTPs were found in the phagocytic cups based on analysis of fluorescence signals. On the other hand, rEhLMW-PTPs showed an optimum phosphatase activity at pH 6.0 with p-nitrophenyl phosphate as the substrate. They dephosphorylate phosphotyrosine and 3-O-methylfluorescein phosphate, but not phosphoserine or phosphothreonine, and the enzymatic activity is inhibited by orthovanadate. rEhLMW-PTP1 and rEhLMW-PTP2 exhibited optimum temperatures of activities at 60 °C and 58 °C, respectively, with high thermal stability at 50 °C. Also, the rEhLMW-PTPs showed high specific activities and specific km value with pNPP or OMFP as the substrates at the physiological temperature (37 °C).
Collapse
Affiliation(s)
- Francisco Sierra-López
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N., Ciudad de México, Mexico.
| | - Lidia Baylón-Pacheco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N., Ciudad de México, Mexico.
| | - Sonia Cynthia Vanegas-Villa
- Programa de Doctorado en Ciencias Biomédicas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de, Mexico.
| | - José Luis Rosales-Encina
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N., Ciudad de México, Mexico.
| |
Collapse
|
7
|
Pereira SB, Santos M, Leite JP, Flores C, Eisfeld C, Büttel Z, Mota R, Rossi F, De Philippis R, Gales L, Morais‐Cabral JH, Tamagnini P. The role of the tyrosine kinase Wzc (Sll0923) and the phosphatase Wzb (Slr0328) in the production of extracellular polymeric substances (EPS) by Synechocystis PCC 6803. Microbiologyopen 2019; 8:e00753. [PMID: 30675753 PMCID: PMC6562117 DOI: 10.1002/mbo3.753] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 11/10/2022] Open
Abstract
Many cyanobacteria produce extracellular polymeric substances (EPS) mainly composed of heteropolysaccharides with unique characteristics that make them suitable for biotechnological applications. However, manipulation/optimization of EPS biosynthesis/characteristics is hindered by a poor understanding of the production pathways and the differences between bacterial species. In this work, genes putatively related to different pathways of cyanobacterial EPS polymerization, assembly, and export were targeted for deletion or truncation in the unicellular Synechocystis sp. PCC 6803. No evident phenotypic changes were observed for some mutants in genes occurring in multiple copies in Synechocystis genome, namely ∆wzy (∆sll0737), ∆wzx (∆sll5049), ∆kpsM (∆slr2107), and ∆kpsM∆wzy (∆slr2107∆sll0737), strongly suggesting functional redundancy. In contrast, Δwzc (Δsll0923) and Δwzb (Δslr0328) influenced both the amount and composition of the EPS, establishing that Wzc participates in the production of capsular (CPS) and released (RPS) polysaccharides, and Wzb affects RPS production. The structure of Wzb was solved (2.28 Å), revealing structural differences relative to other phosphatases involved in EPS production and suggesting a different substrate recognition mechanism. In addition, Wzc showed the ATPase and autokinase activities typical of bacterial tyrosine kinases. Most importantly, Wzb was able to dephosphorylate Wzc in vitro, suggesting that tyrosine phosphorylation/dephosphorylation plays a role in cyanobacterial EPS production.
Collapse
Affiliation(s)
- Sara B. Pereira
- i3S ‐ Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- IBMC ‐ Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
| | - Marina Santos
- i3S ‐ Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- IBMC ‐ Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- ICBAS – Instituto de Ciências Biomédicas Abel SalazarPortoPortugal
| | - José P. Leite
- i3S ‐ Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- IBMC ‐ Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- ICBAS – Instituto de Ciências Biomédicas Abel SalazarPortoPortugal
| | - Carlos Flores
- i3S ‐ Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- IBMC ‐ Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- ICBAS – Instituto de Ciências Biomédicas Abel SalazarPortoPortugal
| | - Carina Eisfeld
- i3S ‐ Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- IBMC ‐ Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- Present address:
Department of Water ManagementDelft University of TechnologyDelftThe Netherlands
| | - Zsófia Büttel
- IBMC ‐ Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- Present address:
Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Rita Mota
- i3S ‐ Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- IBMC ‐ Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
| | - Federico Rossi
- Department of Agrifood Production and Environmental SciencesUniversity of FlorenceFlorenceItaly
| | - Roberto De Philippis
- Department of Agrifood Production and Environmental SciencesUniversity of FlorenceFlorenceItaly
| | - Luís Gales
- i3S ‐ Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- IBMC ‐ Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- ICBAS – Instituto de Ciências Biomédicas Abel SalazarPortoPortugal
| | - João H. Morais‐Cabral
- i3S ‐ Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- IBMC ‐ Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
| | - Paula Tamagnini
- i3S ‐ Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
- IBMC ‐ Instituto de Biologia Molecular e CelularUniversidade do PortoPortoPortugal
- Faculdade de Ciências, Departamento de BiologiaUniversidade do PortoPortoPortugal
| |
Collapse
|
8
|
Spät P, Klotz A, Rexroth S, Maček B, Forchhammer K. Chlorosis as a Developmental Program in Cyanobacteria: The Proteomic Fundament for Survival and Awakening. Mol Cell Proteomics 2018; 17:1650-1669. [PMID: 29848780 DOI: 10.1074/mcp.ra118.000699] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/25/2018] [Indexed: 11/06/2022] Open
Abstract
Cyanobacteria that do not fix atmospheric nitrogen gas survive prolonged periods of nitrogen starvation in a chlorotic, dormant state where cell growth and metabolism are arrested. Upon nutrient availability, these dormant cells return to vegetative growth within 2-3 days. This resuscitation process is highly orchestrated and relies on the stepwise reinstallation and activation of essential cellular structures and functions. We have been investigating the transition to chlorosis and the return to vegetative growth as a simple model of a cellular developmental process and a fundamental survival strategy in biology. In the present study, we used quantitative proteomics and phosphoproteomics to describe the proteomic landscape of a dormant cyanobacterium and its dynamics during the transition to vegetative growth. We identified intriguing alterations in the set of ribosomal proteins, in RuBisCO components, in the abundance of central regulators and predicted metabolic enzymes. We found O-phosphorylation as an abundant protein modification in the chlorotic state, specifically of metabolic enzymes and proteins involved in photosynthesis. Nondegraded phycobiliproteins were hyperphosphorylated in the chlorotic state. We provide evidence that hyperphosphorylation of the terminal rod linker CpcD increases the lifespan of phycobiliproteins during chlorosis.
Collapse
Affiliation(s)
- Philipp Spät
- From the ‡Interfaculty Institute for Microbiology and Infection Medicine, Eberhard-Karls University Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.,¶Proteome Center Tuebingen, Eberhard-Karls-University Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Alexander Klotz
- From the ‡Interfaculty Institute for Microbiology and Infection Medicine, Eberhard-Karls University Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Sascha Rexroth
- §Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Boris Maček
- ¶Proteome Center Tuebingen, Eberhard-Karls-University Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Karl Forchhammer
- From the ‡Interfaculty Institute for Microbiology and Infection Medicine, Eberhard-Karls University Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany;
| |
Collapse
|
9
|
Ahmad Z, Morona R, Standish AJ. In vitro characterization and identification of potential substrates of a low molecular weight protein tyrosine phosphatase in Streptococcus pneumoniae. MICROBIOLOGY-SGM 2018; 164:697-703. [PMID: 29485030 DOI: 10.1099/mic.0.000631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Streptococcus pneumoniae is a major human pathogen responsible for significant mortality and morbidity worldwide. Within the annotated genome of the pneumococcus lies a previously uncharacterized protein tyrosine phosphatase which shows homology to low molecular weight protein tyrosine phosphatases (LMWPTPs). LMWPTPs modulate many processes critical for the pathogenicity of a number of bacteria including capsular polysaccharide biosynthesis, stress response and persistence in host macrophages. Here, we demonstrate that Spd1837 is indeed a LMWPTP, by purifying the protein, and characterizing its phosphatase activity. Spd1837 showed specific tyrosine phosphatase activity, and it did not form higher order oligomers in contrast to many other LMWPTPs. Substrate-trapping assays using the wild-type and the phosphatase-deficient Spd1837 identified potential substrates/interacting proteins including major metabolic enzymes such as ATP-dependent-6-phosphofructokinase and Hpr kinase/phosphorylase. Given the tight association between the bacterial basic physiology and virulence, this study hopes to prompt further investigation of how the pneumococcus controls its metabolic flux via the LMWPTP Spd1837.
Collapse
Affiliation(s)
- Zuleeza Ahmad
- Research Centre for Infectious Diseases, Department of Molecular and Cellular Biology, School of Biological Sciences, The University of Adelaide, 5005 South Australia, Australia
| | - Renato Morona
- Research Centre for Infectious Diseases, Department of Molecular and Cellular Biology, School of Biological Sciences, The University of Adelaide, 5005 South Australia, Australia
| | - Alistair J Standish
- Research Centre for Infectious Diseases, Department of Molecular and Cellular Biology, School of Biological Sciences, The University of Adelaide, 5005 South Australia, Australia
| |
Collapse
|
10
|
Zhan J, Wang Q. Photoresponse Mechanism in Cyanobacteria: Key Factor in Photoautotrophic Chassis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1080:75-96. [PMID: 30091092 DOI: 10.1007/978-981-13-0854-3_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
As the oldest oxygenic photoautotrophic prokaryotes, cyanobacteria have outstanding advantages as the chassis cell in the research field of synthetic biology. Cognition of photosynthetic mechanism, including the photoresponse mechanism under high-light (HL) conditions, is important for optimization of the cyanobacteria photoautotrophic chassis for synthesizing biomaterials as "microbial cell factories." Cyanobacteria are well-established model organisms for the study of oxygenic photosynthesis and have evolved various acclimatory responses to HL conditions to protect the photosynthetic apparatus from photodamage. Here, we reviewed the latest progress in the mechanism of HL acclimation in cyanobacteria. The subsequent acclimatory responses and the corresponding molecular mechanisms are included: (1) acclimatory responses of PSII and PSI; (2) the degradation of phycobilisome; (3) induction of the photoprotective mechanisms such as state transitions, OCP-dependent non-photochemical quenching, and the induction of HLIP family; and (4) the regulation mechanisms of the gene expression under HL.
Collapse
Affiliation(s)
- Jiao Zhan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Qiang Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan, Hubei, China.
| |
Collapse
|
11
|
Caselli A, Paoli P, Santi A, Mugnaioni C, Toti A, Camici G, Cirri P. Low molecular weight protein tyrosine phosphatase: Multifaceted functions of an evolutionarily conserved enzyme. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1339-55. [PMID: 27421795 DOI: 10.1016/j.bbapap.2016.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 07/05/2016] [Accepted: 07/11/2016] [Indexed: 12/31/2022]
Abstract
Originally identified as a low molecular weight acid phosphatase, LMW-PTP is actually a protein tyrosine phosphatase that acts on many phosphotyrosine-containing cellular proteins that are primarily involved in signal transduction. Differences in sequence, structure, and substrate recognition as well as in subcellular localization in different organisms enable LMW-PTP to exert many different functions. In fact, during evolution, the LMW-PTP structure adapted to perform different catalytic actions depending on the organism type. In bacteria, this enzyme is involved in the biosynthesis of group 1 and 4 capsules, but it is also a virulence factor in pathogenic strains. In yeast, LMW-PTPs dephosphorylate immunophilin Fpr3, a peptidyl-prolyl-cis-trans isomerase member of the protein chaperone family. In humans, LMW-PTP is encoded by the ACP1 gene, which is composed of three different alleles, each encoding two active enzymes produced by alternative RNA splicing. In animals, LMW-PTP dephosphorylates a number of growth factor receptors and modulates their signalling processes. The involvement of LMW-PTP in cancer progression and in insulin receptor regulation as well as its actions as a virulence factor in a number of pathogenic bacterial strains may promote the search for potent, selective and bioavailable LMW-PTP inhibitors.
Collapse
Affiliation(s)
- Anna Caselli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Viale Morgagni 50, 50134 Florence, Italy.
| | - Paolo Paoli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Viale Morgagni 50, 50134 Florence, Italy.
| | - Alice Santi
- Vascular Proteomics, Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK.
| | - Camilla Mugnaioni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Viale Morgagni 50, 50134 Florence, Italy.
| | - Alessandra Toti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Viale Morgagni 50, 50134 Florence, Italy.
| | - Guido Camici
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Viale Morgagni 50, 50134 Florence, Italy.
| | - Paolo Cirri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Viale Morgagni 50, 50134 Florence, Italy.
| |
Collapse
|
12
|
Chen Z, Zhan J, Chen Y, Yang M, He C, Ge F, Wang Q. Effects of Phosphorylation of β Subunits of Phycocyanins on State Transition in the Model Cyanobacterium Synechocystis sp. PCC 6803. PLANT & CELL PHYSIOLOGY 2015; 56:1997-2013. [PMID: 26315596 DOI: 10.1093/pcp/pcv118] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/09/2015] [Indexed: 05/22/2023]
Abstract
Synechocystis sp. PCC 6803 (hereafter Synechocystis) is a model cyanobacterium and has been used extensively for studies concerned with photosynthesis and environmental adaptation. Although dozens of protein kinases and phosphatases with specificity for Ser/Thr/Tyr residues have been predicted, only a few substrate proteins are known in Synechocystis. In this study, we report 194 in vivo phosphorylation sites from 149 proteins in Synechocystis, which were identified using a combination of peptide pre-fractionation, TiO(2) enrichment and liquid chromatograpy-tandem mass spectrometry (LC-MS/MS) analysis. These phosphorylated proteins are implicated in diverse biological processes, such as photosynthesis. Among all identified phosphoproteins involved in photosynthesis, the β subunits of phycocyanins (CpcBs) were found to be phosphorylated on Ser22, Ser49, Thr94 and Ser154. Four non-phosphorylated mutants were constructed by using site-directed mutagenesis. The in vivo characterization of the cpcB mutants showed a slower growth under high light irradiance and displayed fluorescence quenching to a lower level and less efficient energy transfer inside the phycobilisome (PBS). Notably, the non-phosphorylated mutants exhibited a slower state transition than the wild type. The current results demonstrated that the phosphorylation status of CpcBs affects the energy transfer and state transition of photosynthesis in Synechocystis. This study provides novel insights into the molecular mechanisms of protein phosphorylation in the regulation of photosynthesis in cyanobacteria and may facilitate the elucidation of the entire regulatory network by linking kinases to their physiological substrates.
Collapse
Affiliation(s)
- Zhuo Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China These authors contributed equally to this work.
| | - Jiao Zhan
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China University of Chinese Academy of Sciences, Beijing 100094, China These authors contributed equally to this work.
| | - Ying Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| | - Mingkun Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| | - Chenliu He
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| | - Feng Ge
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| | - Qiang Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| |
Collapse
|
13
|
Battchikova N, Angeleri M, Aro EM. Proteomic approaches in research of cyanobacterial photosynthesis. PHOTOSYNTHESIS RESEARCH 2015; 126:47-70. [PMID: 25359503 DOI: 10.1007/s11120-014-0050-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 10/18/2014] [Indexed: 05/03/2023]
Abstract
Oxygenic photosynthesis in cyanobacteria, algae, and plants is carried out by a fabulous pigment-protein machinery that is amazingly complicated in structure and function. Many different approaches have been undertaken to characterize the most important aspects of photosynthesis, and proteomics has become the essential component in this research. Here we describe various methods which have been used in proteomic research of cyanobacteria, and demonstrate how proteomics is implemented into on-going studies of photosynthesis in cyanobacterial cells.
Collapse
Affiliation(s)
- Natalia Battchikova
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland.
| | - Martina Angeleri
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland
| | - Eva-Mari Aro
- Laboratory of Molecular Plant Biology, Department of Biochemistry, University of Turku, 20014, Turku, Finland
| |
Collapse
|
14
|
Lee DG, Kwon J, Eom CY, Kang YM, Roh SW, Lee KB, Choi JS. Directed analysis of cyanobacterial membrane phosphoproteome using stained phosphoproteins and titanium-enriched phosphopeptides. J Microbiol 2015; 53:279-87. [PMID: 25845541 DOI: 10.1007/s12275-015-5021-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 11/26/2022]
Abstract
Gel-free shotgun phosphoproteomics of unicellular cyanobacterium Synechocystis sp. PCC 6803 has not been reported up to now. The purpose of this study is to develop directed membrane phosphoproteomic method in Synechocystis sp. Total Synechocystis membrane proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and phosphoprotein-stained gel bands were selectively subjected to in-gel trypsin digestion. The phosphorylation sites of the resulting peptides were determined by assigning the neutral loss of [M-H(3)PO(4)] to Ser, Thr, and Tyr residues using nano-liquid chromatography 7 Tesla Fourier transform mass spectrometry. As an initial application, 111 proteins and 33 phosphoproteins were identified containing 11 integral membrane proteins. Identified four unknown phosphoproteins with transmembrane helices were suggested to be involved in membrane migration or transporters based on BLASTP search annotations. The overall distribution of hydrophobic amino acids in pTyr was lower in frequency than that of pSer or pThr. Positively charged amino acids were abundantly revealed in the surrounding amino acids centered on pTyr. A directed shotgun membrane phosphoproteomic strategy provided insight into understanding the fundamental regulatory processes underlying Ser, Thr, and Tyr phosphorylation in multi-layered membranous cyanobacteria.
Collapse
Affiliation(s)
- Dong-Gi Lee
- Biological Disaster Analysis Group, Korea Basic Science Institute, Daejeon, 305-806, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
15
|
Andrade A, Valvano MA. A Burkholderia cenocepacia gene encoding a non-functional tyrosine phosphatase is required for the delayed maturation of the bacteria-containing vacuoles in macrophages. Microbiology (Reading) 2014; 160:1332-1345. [DOI: 10.1099/mic.0.077206-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Burkholderia cenocepacia infects patients with cystic fibrosis. We have previously shown that B. cenocepacia can survive in macrophages within membrane vacuoles [B. cenocepacia-containing vacuoles (BcCVs)] that preclude fusion with the lysosome. The bacterial factors involved in B. cenocepacia intracellular survival are not fully elucidated. We report here that deletion of BCAM0628, encoding a predicted low molecular weight protein tyrosine phosphatase (LMW-PTP) that is restricted to B. cenocepacia strains of the transmissible ET-12 clone, accelerates the maturation of the BcCVs. Compared to the parental strain and deletion mutants in other LMW-PTPs that are widely conserved in Burkholderia species, a greater proportion of BcCVs containing the ΔBCAM0628 mutant were targeted to the lysosome. Accelerated BcCV maturation was not due to reduced intracellular viability since ΔBCAM0628 survived and replicated in macrophages similarly to the parental strain. Therefore, BCAM0628 was referred to as dpm (delayed phagosome maturation). We provide evidence that the Dpm protein is secreted during growth in vitro and upon macrophage infection. Dpm secretion requires an N-terminal signal peptide. Heterologous expression of Dpm in Burkholderia multivorans confers to this bacterium a similar phagosomal maturation delay to that found with B. cenocepacia. We demonstrate that Dpm is an inactive phosphatase, suggesting that its contribution to phagosomal maturation arrest must be unrelated to tyrosine phosphatase activity.
Collapse
Affiliation(s)
- Angel Andrade
- Centre for Human Immunology and Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Miguel A. Valvano
- Centre for Infection and Immunity, Queen's University Belfast, Belfast BT9 5AE, UK
- Centre for Human Immunology and Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
16
|
Linford AS, Jiang NM, Edwards TE, Sherman NE, Van Voorhis WC, Stewart LJ, Myler PJ, Staker BL, Petri WA. Crystal structure and putative substrate identification for the Entamoeba histolytica low molecular weight tyrosine phosphatase. Mol Biochem Parasitol 2014; 193:33-44. [PMID: 24548880 PMCID: PMC4022148 DOI: 10.1016/j.molbiopara.2014.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 01/12/2014] [Accepted: 01/22/2014] [Indexed: 11/28/2022]
Abstract
Entamoeba histolytica is a eukaryotic intestinal parasite of humans, and is endemic in developing countries. We have characterized the E. histolytica putative low molecular weight protein tyrosine phosphatase (LMW-PTP). The structure for this amebic tyrosine phosphatase was solved, showing the ligand-induced conformational changes necessary for binding of substrate. In amebae, it was expressed at low but detectable levels as detected by immunoprecipitation followed by immunoblotting. A mutant LMW-PTP protein in which the catalytic cysteine in the active site was replaced with a serine lacked phosphatase activity, and was used to identify a number of trapped putative substrate proteins via mass spectrometry analysis. Seven of these putative substrate protein genes were cloned with an epitope tag and overexpressed in amebae. Five of these seven putative substrate proteins were demonstrated to interact specifically with the mutant LMW-PTP. This is the first biochemical study of a small tyrosine phosphatase in Entamoeba, and sets the stage for understanding its role in amebic biology and pathogenesis.
Collapse
Affiliation(s)
- Alicia S Linford
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA.
| | - Nona M Jiang
- Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Thomas E Edwards
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA; Emerald Bio, Bainbridge Island, WA 98110, USA
| | - Nicholas E Sherman
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Wesley C Van Voorhis
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Lance J Stewart
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA; Emerald Bio, Bainbridge Island, WA 98110, USA
| | - Peter J Myler
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA; Seattle Biomedical Research Institute, Seattle, WA 98109, USA; Departments of Global Health and Medical Education & Biomedical Informatics, University of Washington, Seattle, WA 98195, USA
| | - Bart L Staker
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), USA; Emerald Bio, Bainbridge Island, WA 98110, USA
| | - William A Petri
- Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville, VA 22908, USA; Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
17
|
Mikkat S, Fulda S, Hagemann M. A 2D gel electrophoresis-based snapshot of the phosphoproteome in the cyanobacterium Synechocystis sp. strain PCC 6803. MICROBIOLOGY-SGM 2013; 160:296-306. [PMID: 24275102 DOI: 10.1099/mic.0.074443-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cyanobacteria are photoautotrophic prokaryotes that occur in highly variable environments. Protein phosphorylation is one of the most widespread means to adjust cell metabolism and gene expression to the demands of changing growth conditions. Using a 2D gel electrophoresis-based approach and a phosphoprotein-specific dye, we investigated the protein phosphorylation pattern in cells of the model cyanobacterium Synechocystis sp. strain PCC 6803. The comparison of gels stained for total and phosphorylated proteins revealed that approximately 5 % of the protein spots seemed to be phosphoproteins, from which 32 were identified using MALDI-TOF MS. For eight of them the phosphorylated amino acid residues were mapped by subsequent mass spectrometric investigations of isolated phosphopeptides. Among the phosphoproteins, we found regulatory proteins, mostly putative anti-sigma factor antagonists, and proteins involved in translation. Moreover, a number of enzymes catalysing steps in glycolysis or the Calvin-Benson cycle were found to be phosphorylated, implying that protein phosphorylation might represent an important mechanism for the regulation of the primary carbon metabolism in cyanobacterial cells.
Collapse
Affiliation(s)
- Stefan Mikkat
- Core Facility Proteomanalytik, Universitätsmedizin, Universität Rostock, Schillingallee 69, 18057 Rostock, Germany
| | - Sabine Fulda
- Zellphysiologie, Institut Biowissenschaften, Universität Rostock, Albert-Einstein-Str. 3, 18051 Rostock, Germany
| | - Martin Hagemann
- Pflanzenphysiologie, Institut Biowissenschaften, Universität Rostock, Albert-Einstein-Str. 3, 18051 Rostock, Germany
| |
Collapse
|
18
|
Yang MK, Qiao ZX, Zhang WY, Xiong Q, Zhang J, Li T, Ge F, Zhao JD. Global phosphoproteomic analysis reveals diverse functions of serine/threonine/tyrosine phosphorylation in the model cyanobacterium Synechococcus sp. strain PCC 7002. J Proteome Res 2013; 12:1909-23. [PMID: 23461524 DOI: 10.1021/pr4000043] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Increasing evidence shows that protein phosphorylation on serine (Ser), threonine (Thr), and tyrosine (Tyr) residues is one of the major post-translational modifications in the bacteria, involved in regulating a myriad of physiological processes. Cyanobacteria are one of the largest groups of bacteria and are the only prokaryotes capable of oxygenic photosynthesis. Many cyanobacteria strains contain unusually high numbers of protein kinases and phosphatases with specificity on Ser, Thr, and Tyr residues. However, only a few dozen phosphorylation sites in cyanobacteria are known, presenting a major obstacle for further understanding the regulatory roles of reversible phosphorylation in this group of bacteria. In this study, we carried out a global and site-specific phosphoproteomic analysis on the model cyanobacterium Synechococcus sp. PCC 7002. In total, 280 phosphopeptides and 410 phosphorylation sites from 245 Synechococcus sp. PCC 7002 proteins were identified through the combined use of protein/peptide prefractionation, TiO2 enrichment, and LC-MS/MS analysis. The identified phosphoproteins were functionally categorized into an interaction map and found to be involved in various biological processes such as two-component signaling pathway and photosynthesis. Our data provide the first global survey of phosphorylation in cyanobacteria by using a phosphoproteomic approach and suggest a wide-ranging regulatory scope of this modification. The provided data set may help reveal the physiological functions underlying Ser/Thr/Tyr phosphorylation and facilitate the elucidation of the entire signaling networks in cyanobacteria.
Collapse
Affiliation(s)
- Ming-kun Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan, 430072, China
| | | | | | | | | | | | | | | |
Collapse
|