1
|
Xu K, Fu H, Chen Q, Sun R, Li R, Zhao X, Zhou J, Wang X. Engineering thermostability of industrial enzymes for enhanced application performance. Int J Biol Macromol 2025; 291:139067. [PMID: 39730046 DOI: 10.1016/j.ijbiomac.2024.139067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024]
Abstract
Thermostability is a key factor for the industrial application of enzymes. This review categorizes enzymes by their applications and discusses the importance of engineering thermostability for practical use. It summarizes fundamental theories and recent advancements in enzyme thermostability modification, including directed evolution, semi-rational design, and rational design. Directed evolution uses high-throughput screening to generate random mutations, while semi-rational design combines hotspot identification with screening. Rational design focuses on key residues to enhance stability by improving rigidity, foldability, and reducing aggregation. The review also covers rational strategies like engineering folding energy, surface charge, machine learning methods, and consensus design, along with tools that support these approaches. Practical examples are critically assessed to highlight the benefits and limitations of these strategies. Finally, the challenges and potential contributions of artificial intelligence in enzyme thermostability engineering are discussed.
Collapse
Affiliation(s)
- Kangjie Xu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Haoran Fu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Qiming Chen
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Ruoxi Sun
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Ruosong Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xinyi Zhao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | - Xinglong Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Hamano T, Nagumo Y, Umehara T, Hirono K, Fujiwara K, Taguchi H, Chadani Y, Doi N. STALL-seq: mRNA-display selection of bacterial and eukaryotic translational arrest sequences from large random-sequence libraries. J Biol Chem 2024; 300:107978. [PMID: 39542254 DOI: 10.1016/j.jbc.2024.107978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
The translational arrest is a phenomenon wherein a temporary pause or slowing of the translation elongation reaction occurs due to the interaction between ribosome and nascent peptide. Recent studies have revealed that translational arrest peptides are involved in intracellular protein homeostasis regulatory functions, such as gene expression regulation at the translational level and regulation of cotranslational protein folding. Herein, we established a method for the large-scale in vitro selection of translational arrest peptides from DNA libraries by combining a modified mRNA display method and deep sequencing. We performed in vitro selection of translational arrest sequences from random-sequence libraries via mRNA display based on the Escherichia coli PURE system or wheat germ extract. Following several rounds of affinity selection, we obtained various candidate sequences that were not similar to known arrest peptides and subsequently confirmed their ribosome stalling activity by peptidyl-tRNA detection and toeprinting assay. Following the site-directed mutagenesis of the selected sequences, these clones were found to contain novel arrest peptide motifs. This method, termed STALL-seq (Selection of Translational Arrest sequences from Large Library sequencing), could be useful for the large-scale investigation of translational arrest sequences acting on both bacterial and eukaryotic ribosomes and could help discover novel intracellular regulatory mechanisms.
Collapse
Affiliation(s)
- Tadashi Hamano
- Department of Biosciences and Informatics, Keio University, Yokohama, Japan
| | - Yu Nagumo
- Department of Biosciences and Informatics, Keio University, Yokohama, Japan
| | - Tomofumi Umehara
- Department of Biosciences and Informatics, Keio University, Yokohama, Japan
| | - Kota Hirono
- Department of Biosciences and Informatics, Keio University, Yokohama, Japan
| | - Kei Fujiwara
- Department of Biosciences and Informatics, Keio University, Yokohama, Japan
| | - Hideki Taguchi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yuhei Chadani
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Nobuhide Doi
- Department of Biosciences and Informatics, Keio University, Yokohama, Japan.
| |
Collapse
|
3
|
Cui Z, Ayva CE, Liew YJ, Guo Z, Mutschler R, Dreier B, Fiorito MM, Walden P, Howard CB, Ely F, Plückthun A, Pretorius C, Ungerer JPJ, Buckle AM, Alexandrov K. mRNA Display Pipeline for Protein Biosensor Construction. ACS Sens 2024; 9:2846-2857. [PMID: 38807313 PMCID: PMC11218749 DOI: 10.1021/acssensors.3c02471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/01/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Despite the significant potential of protein biosensors, their construction remains a trial-and-error process. The most obvious approach for addressing this is to utilize modular biosensor architectures where specificity-conferring modalities can be readily generated to recognize new targets. Toward this goal, we established a workflow that uses mRNA display-based selection of hyper-stable monobody domains for the target of choice or ribosome display to select equally stable DARPins. These binders were integrated into a two-component allosteric biosensor architecture based on a calmodulin-reporter chimera. This workflow was tested by developing biosensors for liver toxicity markers such as cytosolic aspartate aminotransferase, mitochondrial aspartate aminotransferase, and alanine aminotransferase 1. We demonstrate that our pipeline consistently produced >103 unique binders for each target within a week. Our analysis revealed that the affinity of the binders for their targets was not a direct predictor of the binder's performance in a biosensor context. The interactions between the binding domains and the reporter module affect the biosensor activity and the dynamic range. We conclude that following binding domain selection, the multiplexed biosensor assembly and prototyping appear to be the most promising approach for identifying biosensors with the desired properties.
Collapse
Affiliation(s)
- Zhenling Cui
- ARC
Centre of Excellence in Synthetic Biology, Brisbane, Queensland 4001, Australia
- Centre
for Agriculture and the Bioeconomy, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
- School
of Biology and Environmental Science, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
| | - Cagla Ergun Ayva
- Centre
for Agriculture and the Bioeconomy, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
- School
of Biology and Environmental Science, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
| | - Yi Jin Liew
- CSIRO
Health & Biosecurity, Westmead, New South Wales 2145,Australia
| | - Zhong Guo
- ARC
Centre of Excellence in Synthetic Biology, Brisbane, Queensland 4001, Australia
- Centre
for Agriculture and the Bioeconomy, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
- School
of Biology and Environmental Science, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
| | - Roxane Mutschler
- Centre
for Agriculture and the Bioeconomy, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
- School
of Biology and Environmental Science, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
| | - Birgit Dreier
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Maria M Fiorito
- Centre
for Agriculture and the Bioeconomy, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
- School
of Biology and Environmental Science, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
| | - Patricia Walden
- Centre
for Agriculture and the Bioeconomy, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
- School
of Biology and Environmental Science, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
| | - Christopher B Howard
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Andreas Plückthun
- Department
of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Carel Pretorius
- Department
of Chemical Pathology, Pathology Queensland, Brisbane, Queensland 4006, Australia
- Faculty
of Health and Behavioural Sciences, The
University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jacobus PJ Ungerer
- Department
of Chemical Pathology, Pathology Queensland, Brisbane, Queensland 4006, Australia
- Faculty
of Health and Behavioural Sciences, The
University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Kirill Alexandrov
- ARC
Centre of Excellence in Synthetic Biology, Brisbane, Queensland 4001, Australia
- Centre
for Agriculture and the Bioeconomy, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
- School
of Biology and Environmental Science, Queensland
University of Technology, Brisbane, Queensland 4001, Australia
| |
Collapse
|
4
|
Fuse-Murakami T, Matsumoto R, Kanamori T. N-Terminal Amino Acid Affects the Translation Efficiency at Lower Temperatures in a Reconstituted Protein Synthesis System. Int J Mol Sci 2024; 25:5264. [PMID: 38791303 PMCID: PMC11120837 DOI: 10.3390/ijms25105264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
The Escherichia coli (E. coli)-based protein synthesis using recombinant elements (PURE) system is a cell-free protein synthesis system reconstituted from purified factors essential for E. coli translation. The PURE system is widely used for basic and synthetic biology applications. One of the major challenges associated with the PURE system is that the protein yield of the system varies depending on the protein. Studies have reported that the efficiency of translation is significantly affected by nucleotide and amino acid sequences, especially in the N-terminal region. Here, we investigated the inherent effect of various N-terminal sequences on protein synthesis using the PURE system. We found that a single amino acid substitution in the N-terminal region significantly altered translation efficiency in the PURE system, especially at low temperatures. This result gives us useful suggestions for the expression of the protein of interest in vitro and in vivo.
Collapse
Affiliation(s)
| | | | - Takashi Kanamori
- GeneFrontier Corporation, 273-1 Kashiwa, Kashiwa-shi 277-0005, Chiba, Japan
| |
Collapse
|
5
|
Nishikawa S, Watanabe H, Terasaka N, Katoh T, Fujishima K. De Novo Single-Stranded RNA-Binding Peptides Discovered by Codon-Restricted mRNA Display. Biomacromolecules 2024; 25:355-365. [PMID: 38051119 PMCID: PMC10777347 DOI: 10.1021/acs.biomac.3c01024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023]
Abstract
RNA-binding proteins participate in diverse cellular processes, including DNA repair, post-transcriptional modification, and cancer progression through their interactions with RNAs, making them attractive for biotechnological applications. While nature provides an array of naturally occurring RNA-binding proteins, developing de novo RNA-binding peptides remains challenging. In particular, tailoring peptides to target single-stranded RNA with low complexity is difficult due to the inherent structural flexibility of RNA molecules. Here, we developed a codon-restricted mRNA display and identified multiple de novo peptides from a peptide library that bind to poly(C) and poly(A) RNA with KDs ranging from micromolar to submicromolar concentrations. One of the newly identified peptides is capable of binding to the cytosine-rich sequences of the oncogenic Cdk6 3'UTR RNA and MYU lncRNA, with affinity comparable to that of the endogenous binding protein. Hence, we present a novel platform for discovering de novo single-stranded RNA-binding peptides that offer promising avenues for regulating RNA functions.
Collapse
Affiliation(s)
- Shota Nishikawa
- Earth-Life
Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- School
of Life Science and Technology, Tokyo Institute
of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Hidenori Watanabe
- Earth-Life
Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Naohiro Terasaka
- Earth-Life
Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Takayuki Katoh
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kosuke Fujishima
- Earth-Life
Science Institute, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Graduate
School of Media and Governance, Keio University, Fujisawa 252-0882, Japan
| |
Collapse
|
6
|
Miles SA, Nillama JA, Hunter L. Tinker, Tailor, Soldier, Spy: The Diverse Roles That Fluorine Can Play within Amino Acid Side Chains. Molecules 2023; 28:6192. [PMID: 37687021 PMCID: PMC10489206 DOI: 10.3390/molecules28176192] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Side chain-fluorinated amino acids are useful tools in medicinal chemistry and protein science. In this review, we outline some general strategies for incorporating fluorine atom(s) into amino acid side chains and for elaborating such building blocks into more complex fluorinated peptides and proteins. We then describe the diverse benefits that fluorine can offer when located within amino acid side chains, including enabling 19F NMR and 18F PET imaging applications, enhancing pharmacokinetic properties, controlling molecular conformation, and optimizing target-binding.
Collapse
Affiliation(s)
| | | | - Luke Hunter
- School of Chemistry, The University of New South Wales (UNSW), Sydney 2052, Australia
| |
Collapse
|
7
|
Umemoto S, Kondo T, Fujino T, Hayashi G, Murakami H. Large-scale analysis of mRNA sequences localized near the start and amber codons and their impact on the diversity of mRNA display libraries. Nucleic Acids Res 2023; 51:7465-7479. [PMID: 37395404 PMCID: PMC10415131 DOI: 10.1093/nar/gkad555] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 07/04/2023] Open
Abstract
Extremely diverse libraries are essential for effectively selecting functional peptides or proteins, and mRNA display technology is a powerful tool for generating such libraries with over 1012-1013 diversity. Particularly, the protein-puromycin linker (PuL)/mRNA complex formation yield is determining for preparing the libraries. However, how mRNA sequences affect the complex formation yield remains unclear. To study the effects of N-terminal and C-terminal coding sequences on the complex formation yield, puromycin-attached mRNAs containing three random codons after the start codon (32768 sequences) or seven random bases next to the amber codon (6480 sequences) were translated. Enrichment scores were calculated by dividing the appearance rate of every sequence in protein-PuL/mRNA complexes by that in total mRNAs. The wide range of enrichment scores (0.09-2.10 for N-terminal and 0.30-4.23 for C-terminal coding sequences) indicated that the N-terminal and C-terminal coding sequences strongly affected the complex formation yield. Using C-terminal GGC-CGA-UAG-U sequences, which resulted in the highest enrichment scores, we constructed highly diverse libraries of monobodies and macrocyclic peptides. The present study provides insights into how mRNA sequences affect the protein/mRNA complex formation yield and will accelerate the identification of functional peptides and proteins involved in various biological processes and having therapeutic applications.
Collapse
Affiliation(s)
- Shun Umemoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Taishi Kondo
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Tomoshige Fujino
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Gosuke Hayashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Hiroshi Murakami
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
8
|
Jacková B, Mottet G, Rudiuk S, Morel M, Baigl D. DNA-Encoded Immunoassay in Picoliter Drops: A Minimal Cell-Free Approach. Adv Biol (Weinh) 2023; 7:e2200266. [PMID: 36750732 DOI: 10.1002/adbi.202200266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/21/2022] [Indexed: 02/09/2023]
Abstract
Immunoassays have emerged as indispensable bioanalytical tools but necessitate long preliminary steps for the selection, production, and purification of the antibody(ies) to be used. Here is explored the paradigm shift of creating a rapid and purification-free assay in picoliter drops where the antibody is expressed from coding DNA and its binding to antigens concomitantly characterized in situ. Efficient synthesis in bulk of various functional variable domains of heavy-chain only antibodies (VHH) using reconstituted cell-free expression media, including an anti-green fluorescent protein VHH, is shown first. A microfluidic device is then used to generate monodisperse drops (30 pL) containing all the assay components, including a capture scaffold, onto which the accumulation of VHH:antigen produces a specific fluorescent signal. This allows to assess, in parallel or sequentially at high throughput (500 Hz), the VHH-antigen binding and its specificity in less than 3 h, directly from a VHH-coding DNA, for multiple VHH sequences, various antigens and down to DNA concentrations as low as 12 plasmids per drop. It is anticipated that the ultraminiaturized format, robustness, and programmability of this novel cell-free immunoassay concept will constitute valuable assets in fields as diverse as antibody discovery, point-of-care diagnostics, synthetic biology, and/or bioanalytical assays.
Collapse
Affiliation(s)
- Barbara Jacková
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, 75005, France
- Large Molecules Research Platform, Sanofi, Vitry-sur-Seine, 94400, France
| | - Guillaume Mottet
- Large Molecules Research Platform, Sanofi, Vitry-sur-Seine, 94400, France
| | - Sergii Rudiuk
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, 75005, France
| | - Mathieu Morel
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, 75005, France
| | - Damien Baigl
- PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, 75005, France
| |
Collapse
|
9
|
Kamalinia G, Grindel BJ, Takahashi TT, Millward SW, Roberts RW. Directing evolution of novel ligands by mRNA display. Chem Soc Rev 2021; 50:9055-9103. [PMID: 34165126 PMCID: PMC8725378 DOI: 10.1039/d1cs00160d] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
mRNA display is a powerful biological display platform for the directed evolution of proteins and peptides. mRNA display libraries covalently link the displayed peptide or protein (phenotype) with the encoding genetic information (genotype) through the biochemical activity of the small molecule puromycin. Selection for peptide/protein function is followed by amplification of the linked genetic material and generation of a library enriched in functional sequences. Iterative selection cycles are then performed until the desired level of function is achieved, at which time the identity of candidate peptides can be obtained by sequencing the genetic material. The purpose of this review is to discuss the development of mRNA display technology since its inception in 1997 and to comprehensively review its use in the selection of novel peptides and proteins. We begin with an overview of the biochemical mechanism of mRNA display and its variants with a particular focus on its advantages and disadvantages relative to other biological display technologies. We then discuss the importance of scaffold choice in mRNA display selections and review the results of selection experiments with biological (e.g., fibronectin) and linear peptide library architectures. We then explore recent progress in the development of "drug-like" peptides by mRNA display through the post-translational covalent macrocyclization and incorporation of non-proteogenic functionalities. We conclude with an examination of enabling technologies that increase the speed of selection experiments, enhance the information obtained in post-selection sequence analysis, and facilitate high-throughput characterization of lead compounds. We hope to provide the reader with a comprehensive view of current state and future trajectory of mRNA display and its broad utility as a peptide and protein design tool.
Collapse
Affiliation(s)
- Golnaz Kamalinia
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA.
| | | | | | | | | |
Collapse
|
10
|
Kondo T, Eguchi M, Kito S, Fujino T, Hayashi G, Murakami H. cDNA TRAP display for rapid and stable in vitro selection of antibody-like proteins. Chem Commun (Camb) 2021; 57:2416-2419. [PMID: 33554979 DOI: 10.1039/d0cc07541h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We developed a cDNA TRAP display for the rapid selection of antibody-like proteins in various conditions. By modifying the original puromycin linker in the TRAP display, a monobody was covalently attached to the cDNA. As a proof-of-concept, we demonstrated a rapid model selection of an anti-EGFR1 monobody in a solution containing ribonuclease.
Collapse
Affiliation(s)
- Taishi Kondo
- Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan.
| | | | | | | | | | | |
Collapse
|
11
|
Reyes SG, Kuruma Y, Fujimi M, Yamazaki M, Eto S, Nishikawa S, Tamaki S, Kobayashi A, Mizuuchi R, Rothschild L, Ditzler M, Fujishima K. PURE mRNA display and cDNA display provide rapid detection of core epitope motif via high-throughput sequencing. Biotechnol Bioeng 2021; 118:1736-1749. [PMID: 33501662 DOI: 10.1002/bit.27696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/02/2021] [Accepted: 01/17/2021] [Indexed: 12/17/2022]
Abstract
The reconstructed in vitro translation system known as the PURE system has been used in a variety of cell-free experiments such as the expression of native and de novo proteins as well as various display methods to select for functional polypeptides. We developed a refined PURE-based display method for the preparation of stable messenger RNA (mRNA) and complementary DNA (cDNA)-peptide conjugates and validated its utility for in vitro selection. Our conjugate formation efficiency exceeded 40%, followed by gel purification to allow minimum carry-over of components from the translation system to the downstream assay enabling clean and efficient random peptide sequence screening. We chose the commercially available anti-FLAG M2 antibody as a target molecule for validation. Starting from approximately 1.7 × 1012 random sequences, a round-by-round high-throughput sequencing showed clear enrichment of the FLAG epitope DYKDDD as well as revealing consensus FLAG epitope motif DYK(D/L/N)(L/Y/D/N/F)D. Enrichment of core FLAG motifs lacking one of the four key residues (DYKxxD) indicates that Tyr (Y) and Lys (K) appear as the two key residues essential for binding. Furthermore, the comparison between mRNA display and cDNA display method resulted in overall similar performance with slightly higher enrichment for mRNA display. We also show that gel purification steps in the refined PURE-based display method improve conjugate formation efficiency and enhance the enrichment rate of FLAG epitope motifs in later rounds of selection especially for mRNA display. Overall, the generalized procedure and consistent performance of two different display methods achieved by the commercially available PURE system will be useful for future studies to explore the sequence and functional space of diverse polypeptides.
Collapse
Affiliation(s)
- Sabrina Galiñanes Reyes
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan.,Extra-cutting-edge Science and Technology Avant-garde Research Program, Japan Agency for Marine-Earth Science and Technology, Kanagawa, Japan.,James Watt School of Engineering, The University of Glasgow, Glasgow, UK
| | - Yutetsu Kuruma
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan.,Extra-cutting-edge Science and Technology Avant-garde Research Program, Japan Agency for Marine-Earth Science and Technology, Kanagawa, Japan.,JST, PRESTO, Saitama, Japan
| | - Mai Fujimi
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | | | - Sumie Eto
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan.,MOLCURE Inc., Shinagawa, Tokyo, Japan
| | - Shota Nishikawa
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | | | - Asaki Kobayashi
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, Evry, France
| | - Ryo Mizuuchi
- JST, PRESTO, Saitama, Japan.,Komaba Institute for Science, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Lynn Rothschild
- Center for the Emergence of Life, NASA Ames Research Center, Moffett Field, California, USA
| | - Mark Ditzler
- Center for the Emergence of Life, NASA Ames Research Center, Moffett Field, California, USA
| | - Kosuke Fujishima
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan.,Graduate School of Media and Governance, Keio University, Fujisawa, Japan
| |
Collapse
|
12
|
Koo J, Yang J, Park H. Cell-free Systems: Recent Advances and Future Outlook. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-020-0013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
The science of puromycin: From studies of ribosome function to applications in biotechnology. Comput Struct Biotechnol J 2020; 18:1074-1083. [PMID: 32435426 PMCID: PMC7229235 DOI: 10.1016/j.csbj.2020.04.014] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/19/2020] [Accepted: 04/19/2020] [Indexed: 11/20/2022] Open
Abstract
Puromycin is a naturally occurring aminonucleoside antibiotic that inhibits protein synthesis by ribosome-catalyzed incorporation into the C-terminus of elongating nascent chains, blocking further extension and resulting in premature termination of translation. It is most commonly known as a selection marker for cell lines genetically engineered to express a resistance transgene, but its additional uses as a probe for protein synthesis have proven invaluable across a wide variety of model systems, ranging from purified ribosomes and cell-free translation to intact cultured cells and whole animals. Puromycin is comprised of a nucleoside covalently bound to an amino acid, mimicking the 3′ end of aminoacylated tRNAs that participate in delivery of amino acids to elongating ribosomes. Both moieties can tolerate some chemical substitutions and modifications without significant loss of activity, generating a diverse toolbox of puromycin-based reagents with added functionality, such as biotin for affinity purification or fluorophores for fluorescent microscopy detection. These reagents, as well as anti-puromycin antibodies, have played a pivotal role in advancing our understanding of the regulation and dysregulation of protein synthesis in normal and pathological processes, including immune response and neurological function. This manuscript reviews the current state of puromycin-based research, including structure and mechanism of action, relevant derivatives, use in advanced methodologies and some of the major insights generated using such techniques both in the lab and the clinic.
Collapse
|
14
|
Ren C, Wen X, Mencius J, Quan S. Selection and screening strategies in directed evolution to improve protein stability. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0288-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractProtein stability is not only fundamental for experimental, industrial, and therapeutic applications, but is also the baseline for evolving novel protein functions. For decades, stability engineering armed with directed evolution has continued its rapid development and inevitably poses challenges. Generally, in directed evolution, establishing a reliable link between a genotype and any interpretable phenotype is more challenging than diversifying genetic libraries. Consequently, we set forth in a small picture to emphasize the screening or selection techniques in protein stability-directed evolution to secure the link. For a more systematic review, two main branches of these techniques, namely cellular or cell-free display and stability biosensors, are expounded with informative examples.
Collapse
|
15
|
Jing X, Jin K. A gold mine for drug discovery: Strategies to develop cyclic peptides into therapies. Med Res Rev 2019; 40:753-810. [PMID: 31599007 DOI: 10.1002/med.21639] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/05/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022]
Abstract
As a versatile therapeutic modality, peptides attract much attention because of their great binding affinity, low toxicity, and the capability of targeting traditionally "undruggable" protein surfaces. However, the deficiency of cell permeability and metabolic stability always limits the success of in vitro bioactive peptides as drug candidates. Peptide macrocyclization is one of the most established strategies to overcome these limitations. Over the past decades, more than 40 cyclic peptide drugs have been clinically approved, the vast majority of which are derived from natural products. The de novo discovered cyclic peptides on the basis of rational design and in vitro evolution, have also enabled the binding with targets for which nature provides no solutions. The current review summarizes different classes of cyclic peptides with diverse biological activities, and presents an overview of various approaches to develop cyclic peptide-based drug candidates, drawing upon series of examples to illustrate each strategy.
Collapse
Affiliation(s)
- Xiaoshu Jing
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Kang Jin
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Jinan, Shandong, China
| |
Collapse
|
16
|
Anzai H, Terai T, Jayathilake C, Suzuki T, Nemoto N. A novel immuno-PCR method using cDNA display. Anal Biochem 2019; 578:1-6. [PMID: 31028717 DOI: 10.1016/j.ab.2019.04.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/22/2019] [Accepted: 04/22/2019] [Indexed: 01/18/2023]
Abstract
Immuno-PCR (IPCR) provides sensitive and versatile detection of a variety of antigens by conjugating a PCR-amplifiable DNA reporter to a specific antibody or an aptamer. Several methodologies have been developed to prepare appropriate DNA-antibody conjugates, but in most cases, it remains difficult to label polypeptides with high site-specificity and fixed stoichiometry. To address this issue, we first demonstrated the feasibility of IPCR based on cDNA display, a 1:1 covalent complex of a polypeptide and its encoding cDNA via puromycin at the single molecule level. Several other in vitro display technologies (e.g., ribosome display, mRNA display) have similar simple nucleic acid-peptide linkage. However, they should be unsuitable for diagnostic applications because of their lability against heat and RNase. The newly developed system here, termed cDNA display mediated immuno-PCR (cD-IPCR), proved to work in direct- and sandwich-type detection of target proteins. Detection of a target in serum was also possible, using a VHH (variable domain of the heavy chain of a heavy chain antibody) antibody as a binding molecule. Although further improvement on sensitivity and quantitativity is necessary before the method becomes useful, we believe this work demonstrated a potential of cD-IPCR as an alternative novel format of IPCR.
Collapse
Affiliation(s)
- Hiroki Anzai
- Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama, 338-8570, Japan
| | - Takuya Terai
- Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama, 338-8570, Japan
| | - Chathuni Jayathilake
- Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama, 338-8570, Japan
| | - Takeru Suzuki
- Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama, 338-8570, Japan
| | - Naoto Nemoto
- Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama, 338-8570, Japan; Epsilon Molecular Engineering, Inc., 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan.
| |
Collapse
|
17
|
Arslan M, Karadağ D, Kalyoncu S. Protein engineering approaches for antibody fragments: directed evolution and rational design approaches. ACTA ACUST UNITED AC 2019; 43:1-12. [PMID: 30930630 PMCID: PMC6426644 DOI: 10.3906/biy-1809-28] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The number of therapeutic antibodies in preclinical, clinical, or approved phases has been increasing exponentially, mostly due to their known successes. Development of antibody engineering methods has substantially hastened the development of therapeutic antibodies. A variety of protein engineering techniques can be applied to antibodies to improve their afinity and/or biophysical properties such as solubility and stability. Antibody fragments (where all or some parts of constant regions are eliminated while the essential antigen binding region is preserved) are more suitable for protein engineering techniques because there are many in vitro screening technologies available for antibody fragments but not full-length antibodies. Improvement of biophysical characteristics is important in the early development phase because most antibodies fail at the later stage of development and this leads to loss of resources and time. Here, we review directed evolution and rational design methods to improve antibody properties. Recent developments in rational design approaches and antibody display technologies, and especially phage display, which was recently awarded the 2018 Nobel Prize, are discussed to be used in antibody research and development.
Collapse
Affiliation(s)
- Merve Arslan
- İzmir Biomedicine and Genome Center , İzmir , Turkey.,İzmir Biomedicine and Genome Institute, Dokuz Eylül University , İzmir , Turkey
| | | | | |
Collapse
|
18
|
Cyclic Peptides: Promising Scaffolds for Biopharmaceuticals. Genes (Basel) 2018; 9:genes9110557. [PMID: 30453533 PMCID: PMC6267108 DOI: 10.3390/genes9110557] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 12/31/2022] Open
Abstract
To date, small molecules and macromolecules, including antibodies, have been the most pursued substances in drug screening and development efforts. Despite numerous favorable features as a drug, these molecules still have limitations and are not complementary in many regards. Recently, peptide-based chemical structures that lie between these two categories in terms of both structural and functional properties have gained increasing attention as potential alternatives. In particular, peptides in a circular form provide a promising scaffold for the development of a novel drug class owing to their adjustable and expandable ability to bind a wide range of target molecules. In this review, we discuss recent progress in methodologies for peptide cyclization and screening and use of bioactive cyclic peptides in various applications.
Collapse
|
19
|
Expanding biological applications using cell-free metabolic engineering: An overview. Metab Eng 2018; 50:156-172. [PMID: 30367967 DOI: 10.1016/j.ymben.2018.09.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 11/21/2022]
Abstract
Expanding the concept of cell-free biology, implemented both with purified components and crude extracts, is continuing to deepen our appreciation of biological fundamentals while enlarging the range of applications. We are no longer intimidated by the complexity of crude extracts and complicated reaction systems with hundreds of active components, and, instead, coordinately activate and inactivate metabolic processes to focus and expand the capabilities of natural biological processes. This, in turn, dramatically increases the range of benefits offered by new products, both natural and supernatural, that were previously infeasible and/or unimaginable. This overview of cell-free metabolic engineering provides a broad range of examples and insights to guide and motivate continued research that will further expand fundamental understanding and beneficial applications. However, this survey also reveals how far we are from fully unlocking the potential offered by natural and engineered biological components and systems. This is an exciting conclusion, but metabolic engineering by itself is not sufficient. Going forward, innovative metabolic engineering must be intimately combined with creative process engineering to fully realize potential contributions toward a sustainable global civilization.
Collapse
|
20
|
Takahashi K, Sunohara M, Terai T, Kumachi S, Nemoto N. Enhanced mRNA-protein fusion efficiency of a single-domain antibody by selection of mRNA display with additional random sequences in the terminal translated regions. Biophys Physicobiol 2017; 14:23-28. [PMID: 28275529 PMCID: PMC5325054 DOI: 10.2142/biophysico.14.0_23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/08/2017] [Indexed: 12/15/2022] Open
Abstract
In vitro display technologies such as mRNA and cDNA display are powerful tools to create and select functional peptides. However, in some cases, efficiency of mRNA-protein fusion is very low, which results in decreased library size and lower chance of successful selection. In this study, to improve mRNA-protein fusion efficiency, we prepared an mRNA display library of a protein with random N- and C-terminal coding regions consisting of 12 nucleotides (i.e. four amino acids), and performed an electrophoresis mobility shift assay (EMSA)-based selection of successfully formed mRNA display molecules. A single-domain antibody (Nanobody, or VHH) was used as a model protein, and as a result, a pair of sequences was identified that increased mRNA-protein fusion efficiency of this protein by approximately 20%. Interestingly, enhancement of the fusion efficiency induced by the identified sequences was protein-specific, and different results were obtained for other proteins including VHHs with different CDRs. The results suggested that conformation of mRNA as a whole, rather than the amino acid sequence of the translated peptide, is an important factor to determine mRNA-protein fusion efficiency.
Collapse
Affiliation(s)
- Kazuki Takahashi
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Masato Sunohara
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Takuya Terai
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Shigefumi Kumachi
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Naoto Nemoto
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| |
Collapse
|
21
|
Nakayama M, Komiya S, Fujiwara K, Horisawa K, Doi N. In vitro selection of bispecific diabody fragments using covalent bicistronic DNA display. Biochem Biophys Res Commun 2016; 478:606-11. [PMID: 27473655 DOI: 10.1016/j.bbrc.2016.07.113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 07/25/2016] [Indexed: 12/25/2022]
Abstract
Bispecific antibodies with two different antigen-binding sites have been widely used for a variety of medical applications. The activity and stability of antibody fragments can be improved by in vitro evolution. Although the affinity and stability of small bispecific antibody fragments such as diabodies can be further optimized by in vitro display technologies, cell-free display of bispecific antibody fragments has not been reported. In this study, we applied a covalent bicistronic DNA display for the in vitro selection of heterodimeric diabodies. First, we confirmed the antigen-binding activities of a diabody synthesized by an in vitro transcription and translation system. However, when we performed DNA-display selection of a model diabody library in a proof-of-principle experiment, no enrichment of the diabody gene was observed, likely due to a low yield of the diabody heterodimer. To overcome this issue, we introduced cysteine residues at the VH-VL interface of the diabody heterodimer. Using the disulfide-stabilized diabodies, we successfully enriched the diabody gene from a model library. Our results indicate that the covalent bicistronic DNA display technique could be useful for improving the stability and affinity of bispecific diabody fragments.
Collapse
Affiliation(s)
- Masanao Nakayama
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| | - Shoko Komiya
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| | - Kei Fujiwara
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| | - Kenichi Horisawa
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| | - Nobuhide Doi
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan.
| |
Collapse
|