1
|
Esquivel-Román A, Baena-Díaz F, Bustos-Segura C, De Gasperin O, González-Tokman D. Synergistic effects of elevated temperature with pesticides on reproduction, development and survival of dung beetles. ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:207-218. [PMID: 39521745 DOI: 10.1007/s10646-024-02825-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
In times of global change, high temperatures can increase the negative effects of pesticides and other stressors. The goal of this study was to evaluate, under controlled laboratory conditions, the effect of a moderate increase in temperature in combination with ivermectin (an antiparasitic medication used in cattle that is excreted in dung), an herbicide, and parasitic pressure, on the reproductive success, development time and adult survival of dung beetles Euoniticellus intermedius. Whereas high temperature increased the number and proportion of emerged offspring, it had synergistic negative effects in combination with the ivermectin, herbicide and parasite treatments. Moreover, high temperature in combination with ivermectin and with parasitism caused a synergistic increase of adult offspring mortality and, in combination with the herbicide, it synergistically accelerated development. These results indicate that high temperatures can enhance the negative effects of other stressors and act synergistically with them, harming dung beetles, a group with high ecological and economic value in natural and productive ecosystems. Although adult sex ratio was not affected by experimental treatments, contrasting responses were found between males and females, supporting the idea that both sexes use different physiological mechanisms to cope with the same environmental challenges. The effects that combined stressors have on insects deepen our understanding of why we are losing beneficial species and their functions in times of drastic environmental changes.
Collapse
Affiliation(s)
| | - Fernanda Baena-Díaz
- Red de Ecoetología, Instituto de Ecología, A.C. El Haya, Xalapa, Veracruz, Mexico
| | - Carlos Bustos-Segura
- University of Neuchâtel, Neuchâtel, Switzerland
- Sensory Ecology Department, Institute of Ecology and Environmental Sciences of Paris, INRAE, Versailles, France
| | - Ornela De Gasperin
- Red de Ecoetología, Instituto de Ecología, A.C. El Haya, Xalapa, Veracruz, Mexico
- Laboratorio Nacional CONAHCyT de Biología del Cambio Climático (LNCBioCC), Benito Juárez, México
| | | |
Collapse
|
2
|
Urrutia MA, Cortez V, Verdú JR. Ivermectin causes adverse effects on the metabolic rate and thermoregulatory capacity of Dung beetles. Sci Rep 2025; 15:6906. [PMID: 40011672 PMCID: PMC11865313 DOI: 10.1038/s41598-025-91375-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/20/2025] [Indexed: 02/28/2025] Open
Abstract
Ivermectin (IVM), a commonly used endectocide in livestock, has been shown to produce adverse effects in dung beetle ecology, physiology, reproduction, and even their ecosystem services. However, the ever-growing ecological importance of thermoregulation and its associated metabolic demand in dung beetles has not received as much focus regarding the effects of this drug. Here, we evaluated experimentally the effects caused by IVM in the metabolic rate and thermoregulation of Ateuchetus cicatricosus (Lucas, 1846), using a standardized ecotoxicity test based on thermolimit respirometry combined with infrared thermography (TLR-IR). The total capacity of excess heat regulation (iTR) and the caloric metabolic rate (MR) gave the most sensitive responses to IVM ingestion. The inhibition concentration at 50% (IC50), a relevant toxicity threshold used to calculate the concentration of IVM that provokes a response half way among the inhibition responses obtained showed that iTR was impacted at 0.39 µg g-1, while the MR was compromised at 0.24 µg g-1. Applying a TLR-IR procedure has not only revealed how the MR of active thermoregulators is crucial for their adaptation in warm and competitive environments, but also shown the potential of this method to be applied in real-world scenarios like cattle-farming regions, where the need to assess the direct impact of endectocides like IVM is vital to update and enhance regulation guidelines of these pharmaceuticals.
Collapse
Affiliation(s)
- M A Urrutia
- Research Institute CIBIO (Centro Iberoamericano de la Biodiversidad), Universidad de Alicante, Science Park, Alicante, Spain
| | - V Cortez
- Research Institute CIBIO (Centro Iberoamericano de la Biodiversidad), Universidad de Alicante, Science Park, Alicante, Spain
| | - J R Verdú
- Research Institute CIBIO (Centro Iberoamericano de la Biodiversidad), Universidad de Alicante, Science Park, Alicante, Spain.
| |
Collapse
|
3
|
Grunst ML, Grunst AS, Grémillet D, Fort J. Combined threats of climate change and contaminant exposure through the lens of bioenergetics. GLOBAL CHANGE BIOLOGY 2023; 29:5139-5168. [PMID: 37381110 DOI: 10.1111/gcb.16822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/17/2023] [Indexed: 06/30/2023]
Abstract
Organisms face energetic challenges of climate change in combination with suites of natural and anthropogenic stressors. In particular, chemical contaminant exposure has neurotoxic, endocrine-disrupting, and behavioral effects which may additively or interactively combine with challenges associated with climate change. We used a literature review across animal taxa and contaminant classes, but focused on Arctic endotherms and contaminants important in Arctic ecosystems, to demonstrate potential for interactive effects across five bioenergetic domains: (1) energy supply, (2) energy demand, (3) energy storage, (4) energy allocation tradeoffs, and (5) energy management strategies; and involving four climate change-sensitive environmental stressors: changes in resource availability, temperature, predation risk, and parasitism. Identified examples included relatively equal numbers of synergistic and antagonistic interactions. Synergies are often suggested to be particularly problematic, since they magnify biological effects. However, we emphasize that antagonistic effects on bioenergetic traits can be equally problematic, since they can reflect dampening of beneficial responses and result in negative synergistic effects on fitness. Our review also highlights that empirical demonstrations remain limited, especially in endotherms. Elucidating the nature of climate change-by-contaminant interactive effects on bioenergetic traits will build toward determining overall outcomes for energy balance and fitness. Progressing to determine critical species, life stages, and target areas in which transformative effects arise will aid in forecasting broad-scale bioenergetic outcomes under global change scenarios.
Collapse
Affiliation(s)
- Melissa L Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Andrea S Grunst
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - David Grémillet
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Percy FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, South Africa
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| |
Collapse
|
4
|
Thermal limits of Africanized honey bees are influenced by temperature ramping rate but not by other experimental conditions. J Therm Biol 2022; 110:103369. [DOI: 10.1016/j.jtherbio.2022.103369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
|
5
|
Gonzalez VH, Oyen K, Aguilar ML, Herrera A, Martin RD, Ospina R. High thermal tolerance in high-elevation species and laboratory-reared colonies of tropical bumble bees. Ecol Evol 2022; 12:e9560. [PMID: 36479027 PMCID: PMC9720000 DOI: 10.1002/ece3.9560] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022] Open
Abstract
Bumble bees are key pollinators with some species reared in captivity at a commercial scale, but with significant evidence of population declines and with alarming predictions of substantial impacts under climate change scenarios. While studies on the thermal biology of temperate bumble bees are still limited, they are entirely absent from the tropics where the effects of climate change are expected to be greater. Herein, we test whether bees' thermal tolerance decreases with elevation and whether the stable optimal conditions used in laboratory-reared colonies reduces their thermal tolerance. We assessed changes in the lower (CTMin) and upper (CTMax) critical thermal limits of four species at two elevations (2600 and 3600 m) in the Colombian Andes, examined the effect of body size, and evaluated the thermal tolerance of wild-caught and laboratory-reared individuals of Bombus pauloensis. We also compiled information on bumble bees' thermal limits and assessed potential predictors for broadscale patterns of variation. We found that CTMin decreased with increasing elevation, while CTMax was similar between elevations. CTMax was slightly higher (0.84°C) in laboratory-reared than in wild-caught bees while CTMin was similar, and CTMin decreased with increasing body size while CTMax did not. Latitude is a good predictor for CTMin while annual mean temperature, maximum and minimum temperatures of the warmest and coldest months are good predictors for both CTMin and CTMax. The stronger response in CTMin with increasing elevation, and similar CTMax, supports Brett's heat-invariant hypothesis, which has been documented in other taxa. Andean bumble bees appear to be about as heat tolerant as those from temperate areas, suggesting that other aspects besides temperature (e.g., water balance) might be more determinant environmental factors for these species. Laboratory-reared colonies are adequate surrogates for addressing questions on thermal tolerance and global warming impacts.
Collapse
Affiliation(s)
- Victor H. Gonzalez
- Undergraduate Biology Program and Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansasUSA
| | - Kennan Oyen
- Department of Biological Sciences, McMicken College of Arts and SciencesUniversity of CincinnatiCincinnatiOhioUSA
| | | | - Andres Herrera
- Undergraduate Biology Program and Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansasUSA
| | | | - Rodulfo Ospina
- Laboratorio de Investigaciones en AbejasUniversidad Nacional de ColombiaSanta Fé de BogotáColombia
| |
Collapse
|
6
|
Eigenbrode SD, Adhikari S, Kistner-Thomas E, Neven L. Introduction to the Collection: Climate Change, Insect Pests, and Beneficial Arthropods in Production Systems. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1315-1319. [PMID: 35899796 DOI: 10.1093/jee/toac107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Climate change is expected to alter pressure from insect pests and the abundance and effectiveness of insect pollinators across diverse agriculture and forestry systems. In response to warming, insects are undergoing or are projected to undergo shifts in their geographic ranges, voltinism, abundance, and phenology. Drivers include direct effects on the focal insects and indirect effects mediated by their interactions with species at higher or lower trophic levels. These climate-driven effects are complex and variable, sometimes increasing pest pressure or reducing pollination and sometimes with opposite effects depending on climatic baseline conditions and the interplay of these drivers. This special collection includes several papers illustrative of these biological effects on pests and pollinators. In addition, in response to or anticipating climate change, producers are modifying production systems by introducing more or different crops into rotations or as cover crops or intercrops or changing crop varieties, with potentially substantial effects on associated insect communities, an aspect of climate change that is relatively understudied. This collection includes several papers illustrating these indirect production system-level effects. Together, biological and management-related effects on insects comprise the necessary scope for anticipating and responding to the effects of climate change on insects in agriculture and forest systems.
Collapse
Affiliation(s)
- Sanford D Eigenbrode
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA
| | - Subodh Adhikari
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, USA
| | - Erica Kistner-Thomas
- Institute of Food Production and Sustainability, National Institute of Food and Agriculture, Kansas City, MO, USA
| | - Lisa Neven
- USDA-ARS, Temperate Tree Fruit and Vegetable Research Unit, Wapato, WA, USA
| |
Collapse
|
7
|
Ling YF, Bonebrake TC. Consistent heat tolerance under starvation across seasonal morphs in Mycalesis mineus (Lepidoptera: Nymphalidae). Comp Biochem Physiol A Mol Integr Physiol 2022; 271:111261. [PMID: 35728756 DOI: 10.1016/j.cbpa.2022.111261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/26/2022]
Abstract
Heat tolerance is a key trait for understanding insect responses to extreme heat events, but tolerance may be modulated by changes in food availability and seasonal variability in temperature. Differences in sensitivity and resistance across life stages are also important determinants of species responses. Using a full-factorial experimental design, we here investigated the effects of larval starvation, adult starvation, and seasonal morph (developmental temperature) on heat tolerance of a seasonally polyphenic butterfly, Mycalesis mineus, in both larval and adult stages. While starvation and rearing temperature profoundly influenced various life history traits in the insect, none of the treatments affected adult heat tolerance. There was also no evidence of reduced heat tolerance in larvae under starvation stress, though larval thermal tolerance was higher by ~1 °C at the higher developmental temperature. The lack of a starvation effect was unexpected given the general physiological cost of heat tolerance mechanisms. This might be attributed to the ability to tolerate heat being preserved under resource-based trade-offs due to its critical role in ensuring insect survival. Invariant heat tolerance in M. mineus shows that some insects may have thermal capacity to cope with extreme heat under short-term starvation and seasonality disruptions, though more prolonged changes may have greater consequences. The capacity to maintain key physiological function under multiple stressors will be crucial for species resilience in future novel environments.
Collapse
Affiliation(s)
- Yuet Fung Ling
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | - Timothy C Bonebrake
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region.
| |
Collapse
|
8
|
Gonzalez VH, Hranitz JM, McGonigle MB, Manweiler RE, Smith DR, Barthell JF. Acute exposure to sublethal doses of neonicotinoid insecticides increases heat tolerance in honey bees. PLoS One 2022; 17:e0240950. [PMID: 35213539 PMCID: PMC8880832 DOI: 10.1371/journal.pone.0240950] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/12/2022] [Indexed: 11/24/2022] Open
Abstract
The European honey bee, Apis mellifera L., is the single most valuable managed pollinator in the world. Poor colony health or unusually high colony losses of managed honey bees result from a myriad of stressors, which are more harmful in combination. Climate change is expected to accentuate the effects of these stressors, but the physiological and behavioral responses of honey bees to elevated temperatures while under simultaneous influence of one or more stressors remain largely unknown. Here we test the hypothesis that exposure to acute, sublethal doses of neonicotinoid insecticides reduce thermal tolerance in honey bees. We administered to bees oral doses of imidacloprid and acetamiprid at 1/5, 1/20, and 1/100 of LD50 and measured their heat tolerance 4 h post-feeding, using both dynamic and static protocols. Contrary to our expectations, acute exposure to sublethal doses of both insecticides resulted in higher thermal tolerance and greater survival rates of bees. Bees that ingested the higher doses of insecticides displayed a critical thermal maximum from 2 ˚C to 5 ˚C greater than that of the control group, and 67%–87% reduction in mortality. Our study suggests a resilience of honey bees to high temperatures when other stressors are present, which is consistent with studies in other insects. We discuss the implications of these results and hypothesize that this compensatory effect is likely due to induction of heat shock proteins by the insecticides, which provides temporary protection from elevated temperatures.
Collapse
Affiliation(s)
- Victor H. Gonzalez
- Undergraduate Biology Program and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
- * E-mail:
| | - John M. Hranitz
- Biological and Allied Health Sciences, Bloomsburg University, Bloomsburg, Pennsylvania, United States of America
| | - Mercedes B. McGonigle
- Undergraduate Biology Program and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Rachel E. Manweiler
- Undergraduate Biology Program and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Deborah R. Smith
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - John F. Barthell
- Department of Biology, University of Central Oklahoma, Edmond, Oklahoma, United States of America
| |
Collapse
|