1
|
Athanassiou CG, Brabec D, Olmstead M, Kavallieratos NG, Oppert B. Short Exposures to Phosphine Trigger Differential Gene Expression in Phosphine-Susceptible and -Resistant Strains of Tribolium castaneum. Genes (Basel) 2025; 16:324. [PMID: 40149475 PMCID: PMC11942322 DOI: 10.3390/genes16030324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Phosphine resistance in insects involves a complex interplay of genetic and physiological factors, which are often poorly understood. Resistance to high concentrations of phosphine worldwide poses a formidable challenge for stored-product pest management and affects global food security. Understanding the genetic basis of phosphine resistance in the red flour beetle, Tribolium castaneum, is urgent because of the species' status as a notorious insect pest of stored grains and their resistance to major classes of insecticides. In this study, we take advantage of T. castaneum as a model species for biological and genetic studies. METHODS To tease apart genetic mutations and the differential expression of genes responding to phosphine intoxication, we set up 16 different exposure tests to compare the effects of phosphine dose, exposure time, and sampling time on gene expression in phosphine-susceptible and -resistant T. castaneum adults. RESULTS We examined the enrichment of gene ontology terms in genes that were differentially expressed and found that the data further distinguished differences in gene expression by insect strain, phosphine dose, exposure time, and recovery from phosphine exposure. The gene-encoding cytochrome P450 9e2 was expressed more in phosphine-resistant compared to phosphine-susceptible insects under all treatment conditions and was significantly higher in expression in resistant insects that were sampled after short or long phosphine exposures. Therefore, this gene may serve as a new phosphine resistance marker in T. castaneum and can further be utilized as a diagnostic tool for resistance detection. CONCLUSIONS These data are important to understand the complex molecular changes in insects that have reduced sensitivity to phosphine to develop new monitoring and resistance prevention strategies.
Collapse
Affiliation(s)
- Christos G. Athanassiou
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Phytokou Str., 38446 Nea Ionia, Greece;
| | - Daniel Brabec
- USDA Agricultural Research Service, Center for Grain and Animal Health Research, 1515 College Ave., Manhattan, KS 66502, USA;
| | - Morgan Olmstead
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA;
| | - Nickolas G. Kavallieratos
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Str., 11855 Athens, Greece;
| | - Brenda Oppert
- USDA Agricultural Research Service, Center for Grain and Animal Health Research, 1515 College Ave., Manhattan, KS 66502, USA;
| |
Collapse
|
2
|
Nagarjuna Reddy KV, Ramasamy GG, Selvamani SB, Pathak J, Negi N, Thiruvengadam V, Mohan M, Rana DK. Gene expression changes in Maconellicoccus hirsutus in response to sublethal dose of buprofezin. CHEMOSPHERE 2024; 367:143523. [PMID: 39406270 DOI: 10.1016/j.chemosphere.2024.143523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024]
Abstract
The pink or hibiscus mealybug, Maconellicoccus hirsutus, is a serious pest of grapes, jute, and mesta, causing severe yield losses in India and other countries. Chemical control remains the foremost choice for farmers to manage this pest. As insecticides break down over time due to biotic and abiotic factors, insects are exposed to varying levels of these exogenous compounds. Several studies have reported that sublethal doses affect insect physiology, but only a few have examined the changes in gene expression at the molecular level. Therefore, the present study was conducted to elucidate the molecular mechanisms in M. hirsutus exposed to sublethal doses of buprofezin 25 SC. Life table analysis revealed increased fecundity in M. hirsutus exposed to the sublethal dose. A total of 1,744 differentially expressed genes were identified between the buprofezin-treated and untreated samples using transcriptome analysis. These genes were primarily associated with ribosomal proteins, proteases, cuticular proteins, and cytoskeletal structures. Ribosomes and phagosomes were the most highly enriched pathways. Interestingly, most of the DEGs were involved in restoring homeostasis rather than detoxification. To validate our RNA-sequencing results, qRT-PCR validation was performed on ten randomly selected genes. Overall, our findings provide valuable insights into intermittent changes in stress-coping genes, apart from detoxification genes.
Collapse
Affiliation(s)
- K V Nagarjuna Reddy
- Division of Genomic Resources, ICAR-NBAIR, Hebbal, Bengaluru, India, 560024; Department of Entomology, College of Agriculture, IGKV, Raipur, Chhattisgarh, India, 492012; School of Agriculture, Lovely Professional University, Phagwara, Punjab, India, 144411
| | | | | | - Jyoti Pathak
- Division of Genomic Resources, ICAR-NBAIR, Hebbal, Bengaluru, India, 560024
| | - Nikita Negi
- Division of Genomic Resources, ICAR-NBAIR, Hebbal, Bengaluru, India, 560024; Department of Entomology, College of Agriculture, IGKV, Raipur, Chhattisgarh, India, 492012
| | | | - Muthugounder Mohan
- Division of Genomic Resources, ICAR-NBAIR, Hebbal, Bengaluru, India, 560024
| | - Dhanendra Kumar Rana
- Department of Entomology, College of Agriculture, IGKV, Raipur, Chhattisgarh, India, 492012
| |
Collapse
|
3
|
Li WJ, Xu CK, Ong SQ, Majid AHA, Wang JG, Li XZ. Comparative analyses of the transcriptome among three development stages of Zeugodacus tau larvae (Diptera: Tephritidae). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101333. [PMID: 39326209 DOI: 10.1016/j.cbd.2024.101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/31/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Studying differences in transcriptomes across various development stages of insects is necessary to uncover the physiological and molecular mechanism underlying development and metamorphosis. We here present the first transcriptome data generated under Illumina Hiseq platform concerning Zeugodacus tau (Walker) larvae from Nanchang, China. In total, 11,702 genes were identified from 9 transcriptome libraries of three development stages of Z. tau larvae. 7219 differentially expressed genes (DEGs) were screened out from the comparisons between each two development stages of Z. tau larvae, and their roles in development and metabolism were analyzed. Comparative analyses of transcriptome data showed that there are 5333 DEGs between 1-day and 7-day old larvae, consisting of 1609 up-regulated and 3724 down-regulated genes. Expressions of DEGs were more abundant in L7 than in L1 and L3, which might be associated with metamorphosis. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis suggested the enrichment of metabolic process. KOG annotation further confirmed that 20-hydroxyecdysone (20E) pathway related genes Cyp4ac1_1, Cyp4aa1, Cyp313a4_3 were critical for the biosynthesis, transport, and catabolism of secondary metabolites and lipid transport and metabolism. Expression patterns of 8 DEGs were verified using quantitative real-time PCR (RT-qPCR). This study elucidated the DEGs and their roles underlying three development stages of Z. tau larvae, which provided valuable information for further functional genomic research.
Collapse
Affiliation(s)
- Wei-Jun Li
- Department of Plant Protection, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Surveillance and Management for Horticultural Crop Pests, Jiangxi Agricultural University, Nanchang 330045, China
| | - Cui-Kang Xu
- Department of Plant Protection, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Song-Quan Ong
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah 88400, Malaysia
| | - Abdul Hafiz Ab Majid
- Household and Structural Urban Entomology Laboratory, Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Jian-Guo Wang
- Department of Plant Protection, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiao-Zhen Li
- Department of Plant Protection, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; Nanchang Key Laboratory of Surveillance and Management for Horticultural Crop Pests, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
4
|
Smith RJ, Chen Y, Lafleur CI, Kaur D, Bede JC. Effect of sublethal concentrations of the bioinsecticide spinosyn treatment of Trichoplusia ni eggs on the caterpillar and its parasitoid, Trichogramma brassicae. PEST MANAGEMENT SCIENCE 2024; 80:2965-2975. [PMID: 38298017 DOI: 10.1002/ps.8004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND Integrated Pest Management (IPM) seeks to combine multiple management strategies for optimal pest control. One method that is successfully employed in IPM is the use of beneficial organisms. However, in severe circumstances when pest insects exceed threshold limits, insecticides may still need to be implemented. Thus, understanding the effects of insecticides on biocontrol agents, such as parasitoid wasps, is paramount to ensure sustainable agroecosystems. Sublethal effects of the bioinsecticide spinosyn, a mixture of the bacterial Saccharopolyspora spinosa (Mertz and Yao) fermentation products spinosyn A and D, on eggs of Trichoplusia ni (Hübner), a cruciferous crop pest, and its egg parasitoid Trichogramma brassicae (Bezdenko) was investigated. RESULTS The LC50 for spinosyn A and D (dissolved in ethanol) on T. ni eggs is 54 ng mL-1. Transcriptomics on caterpillars (1st and 3rd instars) that hatched from eggs treated with sublethal concentrations of spinosyn identified the upregulation of several genes encoding proteins that may be involved in insecticide resistance including detoxification enzymes, such as cytochrome P450s, glutathione S-transferases and esterases. Sublethal T. ni egg treatments did not affect parasitoid emergence, however, there was a marked increase in the size of T. brassicae hind tibia and wings that emerged from spinosyn-treated eggs. CONCLUSIONS For the caterpillar, treatment of eggs with sublethal concentrations of spinosyn may induce insecticide resistance mechanisms. For the parasitoids, their increased size when reared in spinosyn-treated eggs suggests that the emerged wasps may have higher performance. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Ryan J Smith
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, Canada
| | - Yinting Chen
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, Canada
| | | | - Diljot Kaur
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, Canada
| | - Jacqueline C Bede
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, Canada
| |
Collapse
|
5
|
Kaplanoglu E, Scott IM, Vickruck J, Donly C. Role of CYP9E2 and a long non-coding RNA gene in resistance to a spinosad insecticide in the Colorado potato beetle, Leptinotarsa decemlineata. PLoS One 2024; 19:e0304037. [PMID: 38787856 PMCID: PMC11125468 DOI: 10.1371/journal.pone.0304037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
Spinosads are insecticides used to control insect pests, especially in organic farming where limited tools for pest management exist. However, resistance has developed to spinosads in economically important pests, including Colorado potato beetle (CPB), Leptinotarsa decemlineata. In this study, we used bioassays to determine spinosad sensitivity of two field populations of CPB, one from an organic farm exposed exclusively to spinosad and one from a conventional farm exposed to a variety of insecticides, and a reference insecticide naïve population. We found the field populations exhibited significant levels of resistance compared with the sensitive population. Then, we compared transcriptome profiles between the two field populations to identify genes associated primarily with spinosad resistance and found a cytochrome P450, CYP9E2, and a long non-coding RNA gene, lncRNA-2, were upregulated in the exclusively spinosad-exposed population. Knock-down of these two genes simultaneously in beetles of the spinosad-exposed population using RNA interference (RNAi) resulted in a significant increase in mortality when gene knock-down was followed by spinosad exposure, whereas single knock-downs of each gene produced smaller effects. In addition, knock-down of the lncRNA-2 gene individually resulted in significant reduction in CYP9E2 transcripts. Finally, in silico analysis using an RNA-RNA interaction tool revealed that CYP9E2 mRNA contains multiple binding sites for the lncRNA-2 transcript. Our results imply that CYP9E2 and lncRNA-2 jointly contribute to spinosad resistance in CPB, and lncRNA-2 is involved in regulation of CYP9E2 expression. These results provide evidence that metabolic resistance, driven by overexpression of CYP and lncRNA genes, contributes to spinosad resistance in CPB.
Collapse
Affiliation(s)
- Emine Kaplanoglu
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Ian M. Scott
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Jessica Vickruck
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, Canada
| | - Cam Donly
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
6
|
Wang B, Zhang Y, Zhang C, Liao M, Cao H, Gao Q. Identification and functional characterization of two antenna-specifc odorant-binding proteins in Plutella xylostella response to 2,3-dimethyl-6-(1-hydroxy)-pyrazine. Int J Biol Macromol 2024; 262:130031. [PMID: 38331072 DOI: 10.1016/j.ijbiomac.2024.130031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Plutella xylostella is an important cruciferous crop pest with a serious resistance to multiple insecticides, a novel natural compound, 2,3-dimethyl-6-(1-hydroxy)-pyrazine were isolated, that showed significant repellent activity against P. xylostella with olfactory system as a potential target. Eight odorant-binding proteins (OBPs) were determined as candidate target genes using RT-qPCR (Quantitative reverse transcription PCR), most of them were clustered with OBPs from Spodoptera frugiperda. Fluorescence competitive binding assays showed that PxylPBP2 (Pheromone binding protein) and PxylOBP3 had Ki values of 7.13 ± 0.41 μM and 9.56 ± 0.35 μM, indicating a high binding affinity to the pyrazine. Moreover, the binding style between these two OBPs and the pyrazine was determined as a hydrophobic interaction by using molecular docking. The binding between PxylPBP2 and the pyrazine was found to be more stable, and the carbon atoms of C-2 and C-3 in this pyrazine showed potential optimization characteristics. Both PxylPBP2 and PxylOBP3 were highly expressed in the antennae of both sexes. These results can be used to design and develop novel green pesticides with the pyrazine as the active or lead compound to reduce the utilization of chemical pesticides and postpone development of resistance.
Collapse
Affiliation(s)
- Buguo Wang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, Hefei 230036, China
| | - Yongjie Zhang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, Hefei 230036, China
| | - Chenyang Zhang
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, Hefei 230036, China
| | - Min Liao
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, Hefei 230036, China
| | - Haiqun Cao
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, Hefei 230036, China
| | - Quan Gao
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, Hefei 230036, China.
| |
Collapse
|