1
|
Guiré R, Salo P, Zongo E, Ramadan MF, Koama BK, Meda RNT, Al-Asmari F, Rahim MA. The inhibitory activities of two compounds from Securidaca longepedunculata Fresen on the acetylcholinesterase from wheat pest Schizaphis graminum Rondani: in silico analysis. PLANT SIGNALING & BEHAVIOR 2025; 20:2444311. [PMID: 39701807 DOI: 10.1080/15592324.2024.2444311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/09/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
Wheat is the third most widely consumed cereal in the world, after maize and rice. However, it is regularly attacked by the wheat aphid (Schizaphis graminum), causing considerable damage to wheat crops. The acetylcholinesterase enzyme, which plays a key role in the transmission of the synaptic cholinergic signal, has emerged as a promising target for the development of pest control strategies. Inhibition of this enzyme leads to the paralysis or even death of the aphid. The objective of this study is to identify the bioactive compounds in Securidaca longepedunculata (S. longepedunculata) that are capable of interacting with acetylcholinesterase from Schizaphis graminum and inhibiting its activity. Furthermore, a computer simulation of these compounds in interaction with the key protein was conducted. First, the secondary metabolites of S. longepedunculata were selected on the basis of GC-MS data available from specific reference sources. Subsequently, the compounds were subjected to virtual screening based on their docking scores in order to identify those with inhibitory properties. The compounds with the highest scores were subjected to molecular dynamics simulation over a 50 ns trajectory. Subsequently, MMGBSA free energy calculations were conducted. The results demonstrated that eight compounds exhibited inhibitory properties, four of which (echimidine, populin, salidroside, and farrerol) demonstrated superior stabilizing effects on proteins compared to the remaining compounds. In terms of free energy by MMGBSA and molecular simulation, it was observed that echimidine and populin formed robust and stable hydrogen bonds with the amino acids of the acetylcholinesterase enzyme. This study identifies and attempts to validate the potential inhibitory activities of echimidine and populin against acetylcholinesterase, with a view to developing potent insecticides and unique treatment strategies.
Collapse
Affiliation(s)
- Rasmané Guiré
- Laboratory of Research and Teaching in Animal Health and Biotechnology, Universite Nazi Boni, Bobo-Dioulasso, Burkina Faso
| | - Pousbila Salo
- Laboratory of Research and Teaching in Animal Health and Biotechnology, Universite Nazi Boni, Bobo-Dioulasso, Burkina Faso
| | - Eliasse Zongo
- Laboratory of Research and Teaching in Animal Health and Biotechnology, Universite Nazi Boni, Bobo-Dioulasso, Burkina Faso
| | - Mohamed Fawzy Ramadan
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Benjamin Kouliga Koama
- Laboratory of Research and Teaching in Animal Health and Biotechnology, Universite Nazi Boni, Bobo-Dioulasso, Burkina Faso
| | - Roland Nag-Tiero Meda
- Laboratory of Research and Teaching in Animal Health and Biotechnology, Universite Nazi Boni, Bobo-Dioulasso, Burkina Faso
| | - Fahad Al-Asmari
- Department of Food and Nutrition Sciences, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Muhammad Abdul Rahim
- Department of Food Science & Nutrition, Faculty of Medicine and Allied Health Sciences, Times Institute, Multan, Pakistan
| |
Collapse
|
2
|
Mottet C, Caddoux L, Fontaine S, Plantamp C, Bass C, Barrès B. Myzus persicae resistance to neonicotinoids-unravelling the contribution of different mechanisms to phenotype. PEST MANAGEMENT SCIENCE 2024; 80:5852-5863. [PMID: 39041680 DOI: 10.1002/ps.8316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Deciphering the mechanisms underlying insecticide resistance is key to devising appropriate strategies against this economically important trait. Myzus persicae, the green peach-potato aphid, is a major pest that has evolved resistance to many insecticide classes, including neonicotinoids. M. persicae resistance to neonicotinoids has previously been shown to result from two main mechanisms: metabolic resistance resulting from P450 overexpression and a targetsite mutation, R81T. However, their respective contribution to resistant phenotypes remains unclear. RESULTS By combining extensive insecticide bioassays with and without addition of the synergist PBO, and gene copy number and expression quantification of two key P450 enzymes (CYP6CY3 and CYP6CY4) in a 23 clone collection, we, (i) confirmed that metabolic resistance is correlated with P450 expression level, up to a threshold, (ii) demonstrated that the R81T mutation, in the homozygous state and in combination with P450 overexpression, leads to high levels of resistance to neonicotinoids, and, (iii) showed that there is a synergistic interaction between the P450 and R81T mechanisms, and that this interaction has the strongest impact on the strength of resistance phenotypes. However, even though the R81T mutation has a great effect on the resistance phenotype, different R81T genotypes can exhibit variation in the level of resistance, explained only partially by P450 overexpression. CONCLUSION To comprehend resistance phenotypes, it is important to take into account every mechanism at play, as well as the way these mechanisms interact. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Claire Mottet
- Université de Lyon, Anses, INRAE, USC CASPER, Lyon, France
| | | | | | | | - Chris Bass
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Benoît Barrès
- Université de Lyon, Anses, INRAE, USC CASPER, Lyon, France
| |
Collapse
|
3
|
Yuan H, Wu M, Deng J, Zhou M, Wickham JD, Zhang L. Swift regulation of nicotinic acetylcholine receptors (nAChRs) and glutathione S-transferase (GST) enables the rapid detoxification of thiacloprid in pine sawyer beetles. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:105996. [PMID: 39084770 DOI: 10.1016/j.pestbp.2024.105996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024]
Abstract
Thiacloprid, a neonicotinoid insecticide, has become one of the major control agents for the pine sawyer beetle, Monochamus alternatus Hope, however, the mechanism of detoxification is unknown. We demonstrate that glutathione S-transferases (GSTs) and nicotinic acetylcholine receptors (nAChRs) are involved in the rapid detoxification of thiacloprid in M. alternatus larvae. The activity of detoxification enzyme GSTs was significantly higher, while the activity of acetylcholinesterase (AChE) was inhibited under thiacloprid exposure. The inhibition of AChE activity led to lethal over-stimulation of the cholinergic synapse, which was then released by the rapid downregulation of nAChRs. Meanwhile, GSTs were overexpressed to detoxify thiacloprid accordingly. A total of 3 nAChR and 12 GST genes were identified from M. alternatus, among which ManAChRα2 and MaGSTs1 were predicted to confer thiacloprid tolerance. RNA interference (RNAi) was subsequently conducted to confirm the function of ManAChRα2 and MaGSTs1 genes in thiacloprid detoxification. The successful knock-down of the ManAChRα2 gene led to lower mortality of M. alternatus under LC30 thiacloprid treatment, and the suppression of the MaGSTs1 gene increased the mortality rate of M. alternatus. However, the mortality rate has no significant difference with controls when thiacloprid was fed together with both dsMaGSTs1 and dsManAChRα2. Molecular docking modeled the molecular basis for interaction between MaGSTs1/ManAChR and thiacloprid. This study highlights the important roles that ManAChRα2 and MaGSTs1 genes play in thiacloprid detoxification through transcriptional regulation and enzymatic metabolization, and proposes a new avenue for integrated pest management that combines pesticides and RNAi technology as an efficient strategy for M. alternatus control.
Collapse
Affiliation(s)
- Hang Yuan
- Anhui Provincial Key Laboratory of Forest Resources and Silviculture, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory of Microbial Control, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Mengting Wu
- Anhui Provincial Key Laboratory of Forest Resources and Silviculture, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory of Microbial Control, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Jundan Deng
- Anhui Provincial Key Laboratory of Forest Resources and Silviculture, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory of Microbial Control, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Min Zhou
- Anhui Provincial Key Laboratory of Forest Resources and Silviculture, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory of Microbial Control, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Jacob D Wickham
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninsky Prospect, Moscow 119071, Russia
| | - Longwa Zhang
- Anhui Provincial Key Laboratory of Forest Resources and Silviculture, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China; Anhui Province Laboratory of Microbial Control, Engineering Research Center of Fungal Biotechnology, Ministry of Education, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
4
|
Stará J, Hovorka T, Horská T, Zusková E, Kocourek F. Pyrethroid and carbamate resistance in Czech populations of Myzus persicae (Sulzer) from oilseed rape. PEST MANAGEMENT SCIENCE 2024; 80:2342-2352. [PMID: 37402271 DOI: 10.1002/ps.7646] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 05/17/2023] [Accepted: 07/04/2023] [Indexed: 07/06/2023]
Abstract
BACKGROUND Failures in controlling Myzus persicae by pyrethroids and carbamates have been observed in Czechia since 2018. Eleven populations collected from Czech oilseed rape fields during 2018-2021 were tested for susceptibility to 11 insecticides. The presence of a single nucleotide polymorphism (SNP) leading to knockdown resistance in M. persicae populations was screened using allelic discriminating quantitative real-time polymerase chain reaction (qPCR). The presence of mutations related with the resistance of M. persicae to pyrethroids and carbamates was detected by sequencing paratype voltage-gated sodium channel and acetylcholinesterase 2 genes, respectively. RESULTS Resistance to alpha-cypermethrin and pirimicarb was detected in most of the tested populations. The L1014F mutation was detected in 44.5% of M. persicae individuals surviving the field-recommended dose of alpha-cypermethrin. Sequencing of partial para gene for paratype voltage-gated sodium channel detected five different SNPs leading to four amino acid substitutions (kdr L1014F; s-kdr M918L; s-kdr M918T; and L932F). No pyrethroid-sensitive genotype was detected. The S431F amino acid substitution conferring resistance to carbamates was detected in 11 of 20 individuals with different pyrethroid-resistance genotypes. CONCLUSION Resistance of M. persicae to both pyrethroids and carbamates was detected in nine of 11 populations. High resistance of M. persicae was correlated with mutations of the sodium channel. Sulfoxaflor, flonicamid, and spirotetramat are proposed as effective compounds to control pyrethroid- and carbamate-resistant populations of M. persicae. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jitka Stará
- Department of Integrated Crop Protection against Pests, Crop Research Institute, Prague, Czechia
| | - Tomáš Hovorka
- Department of Plant Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Department of Entomology, National Museum, Prague, Czechia
| | - Tereza Horská
- Department of Integrated Crop Protection against Pests, Crop Research Institute, Prague, Czechia
| | - Eva Zusková
- Department of Plant Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - František Kocourek
- Department of Integrated Crop Protection against Pests, Crop Research Institute, Prague, Czechia
| |
Collapse
|
5
|
Sabra SG, Abbas N, Hafez AM. First monitoring of resistance and corresponding mechanisms in the green peach aphid, Myzus persicae (Sulzer), to registered and unregistered insecticides in Saudi Arabia. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105504. [PMID: 37532324 DOI: 10.1016/j.pestbp.2023.105504] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/10/2023] [Accepted: 06/18/2023] [Indexed: 08/04/2023]
Abstract
Insecticides are widely used as the primary management strategy for controlling Myzus persicae, the devastating pest ravaging various vegetables, fruits, crops, and ornamentals. This study examined the susceptibility of M. persicae field populations to bifenthrin, fosthiazate, acetamiprid, spirotetramat, afidopyropen, and flonicamid while exploring the possible metabolic mechanisms of resistance. The study findings revealed that M. persicae field populations exhibited susceptible-to-moderate resistance to bifenthrin (resistance ratio (RR) = 0.94-19.65) and acetamiprid (RR = 1.73-12.91), low-to-moderate resistance to fosthiazate (RR = 3.67-17.00), and susceptible-to-low resistance to spirotetramat (RR = 0.70-6.68). However, all M. persicae field populations were susceptible to afidopyropen (RR = 0.44-2.25) and flonicamid (RR = 0.40-2.08). As determined by the biochemical assays, carboxylesterases were involved in the resistance cases to bifenthrin and fosthiazate, whereas cytochrome P450 monooxygenases were implicated in the resistance cases to acetamiprid. However, glutathione S-transferases were not implicated in the documented resistance of M. persicae field populations. Overall, the susceptibility of M. persicae field populations to flonicamid and afidopyropen-two unregistered insecticides in Saudi Arabia-suggests their potential as promising chemicals that can expand the various alternatives available for controlling this devastating pest. Although the detected moderate levels of resistance to bifenthrin, fosthiazate, and acetamiprid indicate a shift in the selection pressure of insecticides for M. persicae due to Saudi regulations, which have resulted in eventual obsolescence of conventional insecticides in favor of novel insecticides. Finally, rotational use of aforementioned insecticides can help in managing insecticide resistance in M. persicae.
Collapse
Affiliation(s)
- Safwat G Sabra
- Pesticides and Environmental Toxicology Laboratory, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Naeem Abbas
- Pesticides and Environmental Toxicology Laboratory, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulwahab M Hafez
- Pesticides and Environmental Toxicology Laboratory, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
6
|
Mezei I, Valverde-Garcia P, Siebert MW, Gomez LE, Torne M, Watson GB, Raquel AM, Fereres A, Sparks TC. Impact of the nicotinic acetylcholine receptor mutation R81T on the response of European Myzus persicae populations to imidacloprid and sulfoxaflor in laboratory and in the field. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105187. [PMID: 36127049 DOI: 10.1016/j.pestbp.2022.105187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Sulfoxaflor (Isoclast™ active) is a sulfoximine insecticide that is active on a broad range of sap-feeding insects, including species that exhibit reduced susceptibility to currently available insecticides. Colonies of Myzus persicae (green peach aphid) were established from aphids collected in the field from peach (Prunus persica) and nectarine (Prunus persica var. nucipersica) orchards in France, Italy and Spain. The presence of the nicotinic acetylcholine receptor (nAChR) point mutation R81T was determined for all the colonies. Eight of the 35 colonies collected were susceptible relative to R81T (i.e., R81T absent), three of the colonies were found to be homozygous for R81T while 24 colonies had R81T present in some proportion (heterozygous). Sulfoxaflor and imidacloprid were tested in the laboratory against these M. persicae field colonies, which exhibited a wide range of susceptibilities (sulfoxaflor RR = 0.6 to 61, imidacloprid RR = 0.7 to 986) (resistance ratios, RR) to both insecticides. Although sulfoxaflor was consistently more active than imidacloprid against these field collected M. persicae, there was a statistically significant correlation across all colonies between the RRs for imidacloprid and sulfoxaflor (Pearson's r = 0.939, p < 0.0001). However, when a larger group of the colonies from Spain possessing R81T were analyzed, there was no correlation observed for the RRs between imidacloprid and sulfoxaflor (r = 0.2901, p = 0.3604). Thus, consistent with prior studies, the presence of R81T by itself is not well correlated with altered susceptibility to sulfoxaflor. In field trials, sulfoxaflor (24 and 36 gai/ha) was highly effective (~avg. 88-96% control) against M. persicae, demonstrating similar levels of efficacy as flonicamid (60-70 gai/ha) and spirotetramat (100-180 gai/ha) at 13-15 days after application, in contrast to imidacloprid (110-190 gai/ha) and acetamiprid (50-75 gai/ha) with lower levels of efficacy (~avg. 62-67% control). Consequently, sulfoxaflor is an effective tool for use in insect pest management programs for M. persicae. However, it is recommended that sulfoxaflor be used in the context of an insecticide resistance management program as advocated by the Insecticide Resistance Action Committee involving rotation with insecticides possessing other modes of action (i.e., avoiding rotation with other Group 4 insecticides) to minimize the chances for resistance development and to extend its future utility.
Collapse
Affiliation(s)
- Imre Mezei
- Corteva Agriscience, Neumann János u.1, 2040 Budaőrs, Hungary.
| | - Pablo Valverde-Garcia
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN 46268, United States of America
| | - Melissa W Siebert
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN 46268, United States of America
| | - Luis E Gomez
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN 46268, United States of America
| | - Maria Torne
- Corteva Agriscience, Joaquín Turina 2, Oficina 6, 28224 Pozuelo de Alarcón, Spain
| | - Gerald B Watson
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN 46268, United States of America
| | - Abad M Raquel
- Corteva Agriscience, Joaquín Turina 2, Oficina 6, 28224 Pozuelo de Alarcón, Spain
| | - Alberto Fereres
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Cient.ficas, ICA-CSIC, Calle Serrano 115 dpdo, 28006 Madrid, Spain
| | - Thomas C Sparks
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN 46268, United States of America
| |
Collapse
|
7
|
Roy L, Barrès B, Capderrey C, Mahéo F, Micoud A, Hullé M, Simon J. Host plants and insecticides shape the evolution of genetic and clonal diversity in a major aphid crop pest. Evol Appl 2022; 15:1653-1669. [PMID: 36330297 PMCID: PMC9624068 DOI: 10.1111/eva.13417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 11/28/2022] Open
Abstract
Understanding the spatiotemporal dynamics of pesticide resistance at the landscape scale is essential to anticipate the evolution and spread of new resistance phenotypes. In crop mosaics, host plant specialization in pest populations is likely to dampen the spread of pesticide resistance between different crops even in mobile pests such as aphids. Here, we assessed the contribution of host-based genetic differentiation to the dynamics of resistance alleles in Myzus persicae, a major aphid pest which displays several insecticide resistance mechanisms. We obtained a representative sample of aphids from a crop mosaic through a suction trap for 7 years and from various crops as a reference collection. We genotyped these aphids at 14 microsatellite markers and four insecticide-resistant loci, analyzed the genetic structure, and assigned host-based genetic groups from field-collected aphids. Four well-defined genetic clusters were found in aerial samples, three of which with strong association with host-plants. The fourth group was exclusive to aerial samples and highly divergent from the others, suggesting mixture with a closely related taxon of M. persicae associated with unsampled plants. We found a sharp differentiation between individuals from peach and herbaceous plants. Individuals from herbaceous hosts were separated into two genetic clusters, one more strongly associated with tobacco. The 4-loci resistance genotypes showed a strong association with the four genetic clusters, indicative of barriers to the spread of resistance. However, we found a small number of clones with resistant alleles on multiple host-plant species, which may spread insecticide resistance between crops. The 7-year survey revealed a rapid turn-over of aphid genotypes as well as the emergence, frequency increase and persistence of clones with resistance to several families of insecticides. This study highlights the importance of considering landscape-scale population structure to identify the risk of emergence and spread of insecticide resistance for a particular crop.
Collapse
Affiliation(s)
- Lise Roy
- Université de Lyon, Anses, INRAE, USC CASPERLyonFrance
- CEFE, University of Montpellier, CNRS, EPHE, IRDUniv Paul Valéry Montpellier 3MontpellierFrance
| | - Benoit Barrès
- Université de Lyon, Anses, INRAE, USC CASPERLyonFrance
| | | | | | - Annie Micoud
- Université de Lyon, Anses, INRAE, USC CASPERLyonFrance
| | | | | |
Collapse
|
8
|
Xu X, Ding Q, Wang X, Wang R, Ullah F, Gao X, Song D. V101I and R81T mutations in the nicotinic acetylcholine receptor β1 subunit are associated with neonicotinoid resistance in Myzus persicae. PEST MANAGEMENT SCIENCE 2022; 78:1500-1507. [PMID: 34962090 DOI: 10.1002/ps.6768] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND The peach-potato aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae), is a major pest worldwide. The intensive use of insecticides has led to the development of resistance against neonicotinoid insecticides. The R81T mutation in the nicotinic acetylcholine receptor (nAChR) beta1 subunit is considered a crucial mechanism adaptation to neonicotinoid resistance in M. persicae and Aphis gossypii. RESULTS Resistance-related mutations (R81T and V101I) were detected in the imidacloprid-resistant M. persicae AH19 population. The V101I mutation is reported for the first time. The V101I and R81T mutations existed separately, indicating that the two mutations evolved independently. Imidacloprid resistance in the AH19 population was stable without insecticide exposure. Four mutant strains were selected from the population with stable resistance. The resistance of the AH19-T, AH19-I, and AH19-TI strains to imidacloprid, thiamethoxam, and dinotefuran was significantly increased compared with the AH19-W strain. Synergism bioassays showed that the inhibition of three detoxification enzymes did not affect imidacloprid resistance in the AH19-T and AH19-I strains. Expression of nAChR β1 subunits in the AH19-W, AH19-T, and AH19-I strains remained unchanged. CONCLUSION The V101I mutation is associated with neonicotinoid resistance in M. persicae. The resistance of the AH19-T and AH19-I strains to neonicotinoids appears to be mainly due to the R81T and V101I mutations, whereas these mutations, together with changes in the cytochrome P450 monooxygenases and nAChR expression may be responsible for the development of neonicotinoid resistance in the AH19-TI strain. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Entomology, China Agricultural University, Beijing, China
| | - Qian Ding
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xiu Wang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Ruijie Wang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Farman Ullah
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, China
| | - Dunlun Song
- Department of Entomology, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Sial MU, Mehmood K, Saeed S, Husain M, Rasool KG, Aldawood AS. Neonicotinoid’s resistance monitoring, diagnostic mechanisms and cytochrome P450 expression in green peach aphid [Myzus persicae (Sulzer) (Hemiptera: Aphididae)]. PLoS One 2022; 17:e0261090. [PMID: 35020740 PMCID: PMC8766173 DOI: 10.1371/journal.pone.0261090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022] Open
Abstract
Green peach aphid [Myzus persicae (Sulzer) (Hemiptera: Aphididae)] is a significant pest with a known history of insecticide resistance. Neonicotinoids could manage this pest; however, their frequent use led to the evolution of resistance in field populations of M. persicae. Toxicity data for neonicotinoid insecticides synergized with pipernyl butoxide (PBO) in a field population (FP) were collected and compared to a laboratory susceptible clone (SC) of aphids. The enhanced expression of metabolic resistance-related cytochrome P450 gene CYP6CY3 and an arginine-threonine substitution were detected in FP, causing a single point mutation (R81T) at β1 subunit of nicotinic acetylcholine receptor (nAChR) within D loop. High level of resistance to imidacloprid was developed in FP with 101-fold resistance ratio and moderate resistance level (10.9-fold) to acetamiprid. The results of PBO synergized bioassay suggested that cytochrome P450 enzymes were involved in the resistance to neonicotinoids. The mRNA transcriptional level of CYP6CY3 gene was significantly higher (3.74 fold) in FP compared to SC. The R81T mutation associated with neonicotinoid resistance had 26% resistant allele frequency in FP. Both P450 enzymes and R81T mutation of nAChR were found in field-evolved neonicotinoid resistance. It is concluded that field-evolved resistance in green peach aphid could be managed by using appropriate synergists such as PBO.
Collapse
Affiliation(s)
- Muhammad Umair Sial
- Institute of Plant Protection, Muhammad Nawaz Shareef (MNS) University of Agriculture Multan, Punjab, Pakistan
- Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agriproduct Quality and Safety, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, PR China
- * E-mail:
| | - Khalid Mehmood
- Institute of Plant Protection, Muhammad Nawaz Shareef (MNS) University of Agriculture Multan, Punjab, Pakistan
| | - Shafqat Saeed
- Institute of Plant Protection, Muhammad Nawaz Shareef (MNS) University of Agriculture Multan, Punjab, Pakistan
| | - Mureed Husain
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Khawaja Ghulam Rasool
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman Saad Aldawood
- Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Lu W, Liu Z, Fan X, Zhang X, Qiao X, Huang J. Nicotinic acetylcholine receptor modulator insecticides act on diverse receptor subtypes with distinct subunit compositions. PLoS Genet 2022; 18:e1009920. [PMID: 35045067 PMCID: PMC8803171 DOI: 10.1371/journal.pgen.1009920] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/31/2022] [Accepted: 12/23/2021] [Indexed: 11/18/2022] Open
Abstract
Insect nicotinic acetylcholine receptors (nAChRs) are pentameric ligand-gated ion channels mainly expressed in the central nervous system of insects. They are the directed targets of many insecticides, including neonicotinoids, which are the most widely used insecticides in the world. However, the development of resistance in pests and the negative impacts on bee pollinators affect the application of insecticides and have created a demand for alternatives. Thus, it is very important to understand the mode of action of these insecticides, which is not fully understood at the molecular level. In this study, we systematically examined the susceptibility of ten Drosophila melanogaster nAChR subunit mutants to eleven insecticides acting on nAChRs. Our results showed that there are several subtypes of nAChRs with distinct subunit compositions that are responsible for the toxicity of different insecticides. At least three of them are the major molecular targets of seven structurally similar neonicotinoids in vivo. Moreover, spinosyns may act exclusively on the α6 homomeric pentamers but not any other nAChRs. Behavioral assays using thermogenetic tools further confirmed the bioassay results and supported the idea that receptor activation rather than inhibition leads to the insecticidal effects of neonicotinoids. The present findings reveal native nAChR subunit interactions with various insecticides and have important implications for the management of resistance and the development of novel insecticides targeting these important ion channels. Neonicotinoids and spinosyns account for approximately 24% and 3% of the world market value of insecticides, respectively. However, the negative effects of neonicotinoids on pollinators have led to the development of novel insecticides, such as sulfoxaflor, flupyradifurone and triflumezopyrim. Although all act via insect nicotinic acetylcholine receptors, their modes of action are not fully understood. Our work shows that these insecticides act on diverse receptor subtypes with distinct subunit compositions. This finding could lead to the development of more selective insecticides to control pests with minimal effects on beneficial insects.
Collapse
Affiliation(s)
- Wanjun Lu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zhihan Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xinyu Fan
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xinzhong Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaomu Qiao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jia Huang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
11
|
Troczka BJ, Singh KS, Zimmer CT, Vontas J, Nauen R, Hayward A, Bass C. Molecular innovations underlying resistance to nicotine and neonicotinoids in the aphid Myzus persicae. PEST MANAGEMENT SCIENCE 2021; 77:5311-5320. [PMID: 34270160 DOI: 10.1002/ps.6558] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
The green peach aphid, Myzus persicae, is a globally distributed highly damaging crop pest. This species has demonstrated an exceptional ability to evolve resistance to both synthetic insecticides used for control, and natural insecticides produced by certain plants as a chemical defense against insect attack. Here we review work characterizing the evolution of resistance in M. persicae to the natural insecticide nicotine and the structurally related class of synthetic neonicotinoid insecticides. We outline how research on this topic has provided insights into long-standing questions of both evolutionary and applied importance. These include questions pertaining to the origins of novel traits, the number and nature of mutational events or 'adaptive steps' underlying the evolution of new phenotypes, and whether host plant adaptations can be co-opted to confer resistance to synthetic insecticides. Finally, research on the molecular mechanisms underlying insecticide resistance in M. persicae has generated several outstanding questions on the genetic architecture of resistance to both natural and synthetic xenobiotics, and we conclude by identifying key knowledge gaps for future research. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Bartlomiej J Troczka
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, UK
| | - Kumar Saurabh Singh
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, UK
| | - Christoph T Zimmer
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, UK
| | - John Vontas
- Institute of Molecular Biology & Biotechnology, Foundation for Research & Technology Hellas, Crete, Greece
- Department of Crop Science, Agricultural University of Athens, Athens, Greece
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Monheim, Germany
| | - Alex Hayward
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, UK
| | - Chris Bass
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, UK
| |
Collapse
|
12
|
Furlan L, Pozzebon A, Duso C, Simon-Delso N, Sánchez-Bayo F, Marchand PA, Codato F, Bijleveld van Lexmond M, Bonmatin JM. An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 3: alternatives to systemic insecticides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11798-11820. [PMID: 29478160 PMCID: PMC7921064 DOI: 10.1007/s11356-017-1052-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 12/13/2017] [Indexed: 05/14/2023]
Abstract
Over-reliance on pesticides for pest control is inflicting serious damage to the environmental services that underpin agricultural productivity. The widespread use of systemic insecticides, neonicotinoids, and the phenylpyrazole fipronil in particular is assessed here in terms of their actual use in pest management, effects on crop yields, and the development of pest resistance to these compounds in many crops after two decades of usage. Resistance can only be overcome in the longterm by implementing methods that are not exclusively based on synthetic pesticides. A diverse range of pest management tactics is already available, all of which can achieve efficient pest control below the economic injury level while maintaining the productivity of the crops. A novel insurance method against crop failure is shown here as an example of alternative methods that can protect farmer's crops and their livelihoods without having to use insecticides. Finally, some concluding remarks about the need for a new framework for a truly sustainable agriculture that relies mainly on natural ecosystem services instead of chemicals are included; this reinforcing the previous WIA conclusions (van der Sluijs et al. Environ Sci Pollut Res 22:148-154, 2015).
Collapse
Affiliation(s)
| | - Alberto Pozzebon
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020, Legnaro (PD), Italy
| | - Carlo Duso
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Viale dell'Università 16, 35020, Legnaro (PD), Italy
| | - Noa Simon-Delso
- Beekeeping Research and Information Centre, Louvain la Neuve, Belgium
| | - Francisco Sánchez-Bayo
- School of Life and Environmental Sciences, The University of Sydney, 1 Central Avenue, Eveleigh, NSW, 2015, Australia
| | - Patrice A Marchand
- Institut Technique de l'Agriculture Biologique (ITAB), 149 Rue de Bercy, 75595, Paris, France
| | - Filippo Codato
- Condifesa Veneto, Associazione regionale dei ccnsorzi di difesa del Veneto, Via F.S. Orologio 6, 35129, Padova (PD), Italy
| | | | - Jean-Marc Bonmatin
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique (CNRS), Rue Charles Sadron, 45071, Orléans, France.
| |
Collapse
|
13
|
Margaritopoulos JT, Kati AN, Voudouris CC, Skouras PJ, Tsitsipis JA. Long-term studies on the evolution of resistance of Myzus persicae (Hemiptera: Aphididae) to insecticides in Greece. BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 111:1-16. [PMID: 32539892 DOI: 10.1017/s0007485320000334] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The aphid Myzus persicae s.l. (Hemiptera: Aphididae) is an important pest of many crops worldwide with a complex life cycle, intensely controlled by chemical pesticides, and has developed resistance to almost all used insecticides. In Greece, the aphid exhibits high genetic variation and adaptability and it is a classic example of evolution in the making. We have been studying M. persicae for over 20 years, on different host plants and varying geographical areas, analyzing its bio-ecology and the ability to develop resistance to insecticides. In this review, we present new and historical data on the effectiveness of insecticides from seven chemical groups used to control the aphid in Greece and the incidence of seven resistance mechanisms, including the new fast-spreading R81T point mutation of the postsynaptic nicotinic acetylcholine receptor. Thousands of samples were tested by biological, biochemical and molecular assays. The aphid populations were found to have developed and maintain resistance at medium to high levels to organophosphates, carbamates, pyrethroids and neonicotinoids for decades. In the latter group, a marked increase is recorded during an ~10-year period. The data analyzed and the extensive bibliography, advocate the difficulty to control the aphid making the design and application of IPM/IRM programs a challenge. We discuss principles and recommendations for the management of resistance, including the use of compounds such as flonicamid, spirotetramat, flupyradifurone and sulfoxaflor. We emphasize that resistance is a dynamic phenomenon, changing in time and space, requiring, therefore, continuous monitoring.
Collapse
Affiliation(s)
- John T Margaritopoulos
- Department of Plant Protection, Institute of Industrial and Fodder Crops, Hellenic Agricultural Organization-DEMETER, Volos, Greece
| | - A N Kati
- Plant Pathology Laboratory, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - C Ch Voudouris
- Department of Plant Protection, Institute of Industrial and Fodder Crops, Hellenic Agricultural Organization-DEMETER, Volos, Greece
| | - P J Skouras
- Laboratory of Agricultural Entomology and Zoology, Department of Agricultural Technologies, University of Peloponnese, Antikalamos, Greece
| | | |
Collapse
|
14
|
Mezei I, Bielza P, Siebert MW, Torne M, Gomez LE, Valverde-Garcia P, Belando A, Moreno I, Grávalos C, Cifuentes D, Sparks TC. Sulfoxaflor efficacy in the laboratory against imidacloprid-resistant and susceptible populations of the green peach aphid, Myzus persicae: Impact of the R81T mutation in the nicotinic acetylcholine receptor. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 166:104582. [PMID: 32448428 DOI: 10.1016/j.pestbp.2020.104582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
A key to effective insect pest management and insecticide resistance management is to provide growers with a range of new tools as potential alternatives to existing compounds or approaches. Sulfoxaflor (Isoclast™ active) is a new sulfoximine insecticide which is active on a broad range of sap-feeding insects, including species that have reduced susceptibility to currently used insecticides, such as imidacloprid from the neonicotinoid class. Sulfoxaflor (SFX) and imidacloprid (IMI) were tested in laboratory bioassays to compare the susceptibility of field populations of green peach aphid, Myzus persicae (Sulzer), exhibiting varying degrees of resistance involving an alteration (R81T) to the insect nicotinic acetylcholine receptor. The LC50 values for M. persicae exposed to SFX ranged from 0.09 to 1.31 (mg litre-1), whereas when the same populations were exposed to IMI the LC50 values ranged from 0.6 to 76.2 (mg litre-1). M. persicae were significantly more sensitive to SFX as compared to IMI for nine of the 13 populations tested. For M. persicae populations confirmed to be homozygous susceptible (ss) or heterozygous rs) for the R81T point mutation, there was no significant differences in the observed LC50 values for either SFX or IMI relative to the susceptible reference population (15LP1). However, in all M persicae populations that were homozygous (rr) for the R81T point mutation, susceptibility was significantly less to IMI as compared to the reference population with resistance ratios ranging from 22.1 to 63.5-fold. In contrast, only one homozygous resistant population (15MP9) exhibited a statistically significant change in susceptibility (RR = 10-fold) to SFX as compared to the reference population, which was far less than the 56-fold observed for imidacloprid in that same population. Thus, this study indicates there is no specific correlation between the laboratory efficacy of SFX and IMI in field collected populations in Spain displaying varying degrees of resistance to IMI. Furthermore, the presence of target site resistance in M. persicae to IMI, in the form of the R81T mutation, does not a priori translate to a reduction in sensitivity to sulfoxaflor. Consequently, SFX can be an effective tool for use in insect pest management programs for green peach aphid. These data also serve as a baseline reference for green peach aphid sensitivity to SFX prior to commercial uses in Spain.
Collapse
Affiliation(s)
- Imre Mezei
- Corteva Agriscience, Neumann János u.1, 2040 Budaőrs, Hungary.
| | - Pablo Bielza
- Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain
| | - Melissa W Siebert
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN 46268, United States of America
| | - Maria Torne
- Corteva Agriscience, Joaquín Turina 2, Oficina 6, 28224 Pozuelo de Alarcón, Spain
| | - Luis E Gomez
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN 46268, United States of America
| | - Pablo Valverde-Garcia
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN 46268, United States of America
| | - Ana Belando
- Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain
| | - Inmaculada Moreno
- Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain
| | - Carolina Grávalos
- Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain
| | - Dina Cifuentes
- Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain
| | - Thomas C Sparks
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN 46268, United States of America
| |
Collapse
|
15
|
Brenard N, Bosmans L, Leirs H, De Bruyn L, Sluydts V, Moerkens R. Is leaf pruning the key factor to successful biological control of aphids in sweet pepper? PEST MANAGEMENT SCIENCE 2020; 76:676-684. [PMID: 31347277 DOI: 10.1002/ps.5565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/06/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Aphids (Hemiptera: Aphididae) are a problematic pest in global sweet pepper cultivation. Control of aphids often relies on insecticides, leading to widespread resistance. Biological control of aphids is mainly based on releasing specialist natural enemies, but they often fail to control outbreaks. Macrolophus pygmaeus Rambur (Hemiptera: Miridae) is a zoophytophagous generalist which attacks several sweet pepper pests, including aphids. Previous research showed that M. pygmaeus is capable of strongly reducing aphid populations in sweet pepper, but complete control was seldom achieved. Sweet pepper plants continue to grow during the season, reaching > 3 m high in Belgian and Dutch greenhouses. Dense foliage and large vertical distance from the flowers to the lower leaves impede the search efficiency of the predator. Leaf pruning may improve aphid predation by M. pygmaeus by increasing the probability of encountering prey. RESULTS Four and five treatments (foliage range: 100 cm to full length) respectively were tested in a semi-commercial sweet pepper greenhouse in 2017 and 2018. Aphid populations in pruned treatments grew more slowly than in the control and M. pygmaeus was eventually able to control aphids in all pruned treatments in 2018. There was no difference in aphid control between the pruned treatments. Sweet pepper production was lower in the treatments with the shortest foliage lengths. CONCLUSION Leaf pruning up to 160 or 190 cm foliage length improves aphid control by M. pygmaeus in sweet pepper without affecting production. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nathalie Brenard
- Evolutionary Ecology Group, University of Antwerp, Wilrijk, Belgium
| | - Lien Bosmans
- Research Centre Hoogstraten, Hoogstraten, Belgium
| | - Herwig Leirs
- Evolutionary Ecology Group, University of Antwerp, Wilrijk, Belgium
| | - Luc De Bruyn
- Evolutionary Ecology Group, University of Antwerp, Wilrijk, Belgium
- Research Institute of Nature and Forest (INBO), Brussels, Belgium
| | - Vincent Sluydts
- Evolutionary Ecology Group, University of Antwerp, Wilrijk, Belgium
| | | |
Collapse
|
16
|
Tian J, Zhang Q, An X, Liu H, Liu Y, Liu H. Molecular Dynamics Simulations Study on the Resistant Mechanism of Insects to Imidacloprid due to Y151-S and R81T Mutations in nAChRs. Mol Inform 2019; 38:e1800125. [PMID: 31294911 DOI: 10.1002/minf.201800125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Indexed: 12/15/2022]
Abstract
Imidacloprid (IMI) is the first widely used neonicotinoid insecticide due to its high insecticidal activity and low toxicity. However, as its extensive use in crop protection, many insects are resistant to IMI. One of the main resistance mechanisms of insects to IMI is Y151-S and R81T mutations in nicotinic acetylcholine receptor (nAChR). However, how these two mutations affect the interaction of IMI with nAChR is unknown. Here, to uncover the resistant mechanism of nAChR to IMI due to Y151-S and R81T mutations, molecular dynamics simulations and molecular mechanics/generalized Born surface area (MM-GBSA) calculation, residue interaction network (RIN) analysis were performed. Due that the structure of nAChR is still unkonwn, the crystal structure of lymnaea stagnalis acetylcholine binding protein (Ls-AChBP) was used here to simulate nAChR. Y151 and R81 in nAChR correspond to H145 and Q55 in Ls-AChBP, respectively. The calculated binding free energy indicated that two mutations reduced the binding ability of IMI with Ls-AChBP. Q55T mutation reduced the contribution of several key residues, such as W53, T55, Y113, T144 and C187. As for H145-S mutation, the contribution of W53, Q55 and Y113 residues also decreased. RIN analysis showed that two mutants changed the binding pocket by changing the conformation of residues that interact directly with the mutated residues. The obtained resistance mechanism of IMI will be helpful for the design of potent insecticides.
Collapse
Affiliation(s)
- Jiaqi Tian
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Qianqian Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoli An
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Hongli Liu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Yingqian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
17
|
Charaabi K, Boukhris-Bouhachem S, Makni M, Denholm I. Occurrence of target-site resistance to neonicotinoids in the aphid Myzus persicae in Tunisia, and its status on different host plants. PEST MANAGEMENT SCIENCE 2018; 74:1297-1301. [PMID: 29266681 DOI: 10.1002/ps.4833] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/17/2017] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The R81T mutation conferring target-site resistance to neonicotinoid insecticides in Myzus persicae was first detected in France and has since spread across much of southern Europe. In response to recent claims of control failure with neonicotinoids in Tunisia, we have used a molecular assay to investigate the presence and distribution of this target-site mutation in samples collected from six locations and six crops attacked by M. persicae. RESULTS The resistance allele containing R81T was present at substantial frequencies (32-55%) in aphids collected between 2014 and 2016 from northern Tunisia but was much rarer further south. It occurred in aphids collected from the aphid's primary host (peach) and four secondary crop hosts (potato, pepper, tomato and melon). Its absence in aphids from tobacco highlights complexities in the systematics of M. persicae that require further investigation. CONCLUSION This first report of R81T from North Africa reflects a continuing expansion of its range around the Mediterranean Basin, although it remains unrecorded elsewhere in the world. Loss of efficacy of neonicotinoids presents a serious threat to the sustainability of aphid control. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kamel Charaabi
- Laboratory of Biotechnology and Nuclear Technologies, National Center of Nuclear Sciences and Technologies, Biotechpole of Sidi Thabet, Sidi Thabet, Ariana, Tunisia
| | - Sonia Boukhris-Bouhachem
- Plant Protection Laboratory of National Institute of Agricultural Research of Tunisia, Ariana, Tunisia
| | - Mohamed Makni
- Unit of Research on the Genetics of Crop Insect Pests, Faculty of Sciences of Tunis, University of Tunis El-Manar, El-Manar, Tunis, Tunisia
| | - Ian Denholm
- Department of Biological and Environmental Sciences, University of Hertfordshire, Hatfield, UK
| |
Collapse
|
18
|
Voudouris CC, Williamson MS, Skouras PJ, Kati AN, Sahinoglou AJ, Margaritopoulos JT. Evolution of imidacloprid resistance in Myzus persicae in Greece and susceptibility data for spirotetramat. PEST MANAGEMENT SCIENCE 2017; 73:1804-1812. [PMID: 28139069 DOI: 10.1002/ps.4539] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/15/2017] [Accepted: 01/25/2017] [Indexed: 06/06/2023]
Abstract
BACKGROUND Myzus persicae s.l. is a major crop pest globally and has evolved resistance to a range of insecticide classes making it increasingly difficult to control in some areas. Here we compare bioassay monitoring data for two important compounds, imidacloprid and spirotetramat, on field samples/clones collected in Greece. RESULTS A total of 122 aphid samples/clones from central and northern Greece were examined in dose-response bioassays with imidacloprid. There was an overall increase in the level of resistance (resistance factor = 15-40) within tobacco-collected samples from 78.7% in 2007 to 86.7% in 2015. The corresponding frequencies for peach samples were 13.3% and 6.7%. These results were confounded however by the first identification of the R81T target mutation in Greece during 2015 (4.3% as heterozygotes in peach) and 2016 (21.3% as heterozygotes in peach). No resistance to spirotetramat was found at the 60 clones collected in 2015. CONCLUSION Resistance to imidacloprid is continuing to increase within Greek M. persicae s.l. populations and the situation is likely to deteriorate further with the recent identification of the R81T resistance mutation. Resistance to spirotetramat has not been found and is therefore a good alternative to neonicotinoids for resistance management. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Costas Ch Voudouris
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
- Department of Plant Protection, Institute of Industrial and Fodder Crops, Hellenic Agricultural Organization-DEMETER, Volos, Greece
| | - Martin S Williamson
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden, UK
| | - Panagiotis J Skouras
- Laboratory of Agricultural Entomology and Zoology, Department of Agricultural Technologies, Technological Educational Institute of Peloponnese, Antikalamos, Greece
| | - Amalia N Kati
- Plant Pathology Laboratory, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastasia J Sahinoglou
- Department of Plant Protection, Institute of Industrial and Fodder Crops, Hellenic Agricultural Organization-DEMETER, Volos, Greece
| | - John T Margaritopoulos
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
- Department of Plant Protection, Institute of Industrial and Fodder Crops, Hellenic Agricultural Organization-DEMETER, Volos, Greece
| |
Collapse
|
19
|
Chen X, Li F, Chen A, Ma K, Liang P, Liu Y, Song D, Gao X. Both point mutations and low expression levels of the nicotinic acetylcholine receptor β1 subunit are associated with imidacloprid resistance in an Aphis gossypii (Glover) population from a Bt cotton field in China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 141:1-8. [PMID: 28911734 DOI: 10.1016/j.pestbp.2016.11.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/25/2016] [Accepted: 11/14/2016] [Indexed: 05/27/2023]
Abstract
Aphis gossypii Glover is a destructive pest of numerous crops throughout the world. Although the expansion of Bt cotton cultivation has helped to control some insect pests, the damage from cotton aphids has not been mitigated. The evolution of aphid resistance to imidacloprid has made its chemical control more difficult since its introduction in 1991. Field populations of A. gossypii that were collected from different transgenic (Bt) cotton planting areas of China in 2014 developed different levels of resistance to imidacloprid. The IMI_R strain has developed high resistance to imidacloprid with the resistance ratio >1200-fold. Compared with the susceptible IMI_S strain, the IMI_R strain also developed a high level cross resistance to sulfoxaflor and acetamiprid. The limited synergism with either PBO or DEF suggests that resistance may be due to the site mutation of molecular target rather than to enhanced detoxification. Three target-site mutations within the nicotinic acetylcholine receptor (nAChR) β1 subunit were detected in the IMI_R strain. The R81T mutation has been reported to be responsible for imidacloprid resistance in A. gossypii and M. persicae. Both V62I and K264E were first detected in A. gossypii. These point mutations are also present in field populations, suggesting that they play a role in the resistance to imidacloprid. Furthermore, the expression level of transcripts encoding β1 subunit was decreased significantly in the IMI_R strain compared with the IMI_S strain, suggesting that both point mutations and the down-regulation of nAChR β1 subunit expression may be involved in the resistance mechanism for imidacloprid in A. gossypii. These results should be useful for the management of imidacloprid-resistant cotton aphids in Bt cotton fields in China.
Collapse
Affiliation(s)
- Xuewei Chen
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Fen Li
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Anqi Chen
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Kangsheng Ma
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Pingzhuo Liang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Ying Liu
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Dunlun Song
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
20
|
de Little SC, Edwards O, van Rooyen AR, Weeks A, Umina PA. Discovery of metabolic resistance to neonicotinoids in green peach aphids (Myzus persicae) in Australia. PEST MANAGEMENT SCIENCE 2017; 73:1611-1617. [PMID: 27888606 DOI: 10.1002/ps.4495] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/23/2016] [Accepted: 11/25/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Myzus persicae is a serious pest that attacks a broad range of agricultural crops. This species has developed chemical resistance to many insecticides globally, and within Australia resistance to multiple chemical groups has been identified. Resistance to neonicotinoid insecticides has been discovered in several countries, but has not previously been confirmed in Australia. We use biomolecular assays and bioassays on field-collected populations to investigate neonicotinoid resistance in M. persicae within Australia. RESULTS Several geographically and genetically distinct populations showed evidence for resistance in bioassays. Genetic markers identified that the mechanism of neonicotinoid resistance in Australia is metabolic resistance through the enhanced expression of a cytochrome P450 gene, CYP6CY3. CONCLUSION M. persicae populations in parts of Australia are now resistant to four different insecticide chemical groups, raising concerns about the long-term management of this pest. While higher copy numbers of CYP6CY3 were seen in all resistant populations, the number of gene copies was not strongly correlated with the level of resistance as determined by LD50 values generated through bioassays. This finding sheds further light on the complexity of the P450 genes in regulating neonicotinoid resistance. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Owain Edwards
- CSIRO Land & Water, Floreat, Western Australia, Australia
| | | | - Andrew Weeks
- Cesar pty ltd, Parkville, Victoria, Australia
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Paul A Umina
- Cesar pty ltd, Parkville, Victoria, Australia
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|