1
|
Ma Y, Qin M, Zeng Y, Shen Y, Lai Y, Lu G. Isolation, Identification, Biological Characterization, and Pathogenicity of Entomopathogenic Fungus from the Larvae of the Evergestis extimalis (Scopoli) (Lepidoptera: Pyralidae). BIOLOGY 2025; 14:467. [PMID: 40427656 DOI: 10.3390/biology14050467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025]
Abstract
At Qinghai agriculture districts, Evergestis extimalis poses a significant threat to spring rapeseed cultivation through its larvae burring into the rapeseed kernels and feeding seeds. To protect the ecological environment of the Qinghai-Tibet Plateau, it is essential to research and develop biological control technologies for pest management. In this study, we isolated and purified a new entomopathogenic fungus from the carcasses of E. extimalis larvae, which was identified as Mucor hiemalis based on morphological characteristics combined with ITS rDNA and 18S rDNA sequence analyses. Subsequently, the optimal growth conditions for the strain were determined as follows: SDAY medium, fructose as the carbon source, peptone as the nitrogen source, 25 °C, pH 6.0-7.0, and a 0:24 (light:dark) photoperiod.However, UV can significantly reduce fungal spore production. The bioassay result shows its pathogenicity was a concentration-dependent effect on E. extimalis, and younger larvae were more susceptible. With 1 × 108 spores/mL inoculated, survival of second instar larvae decreased by the greenhouse pot experiment. In conclusion, M. hiemalis exhibits a significant biocontrol potential against E. extimalis.
Collapse
Affiliation(s)
- Youhua Ma
- Key Laboratory of Agricultural Integrated Pest Management of Qinghai Province, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China
| | - Minggang Qin
- Key Laboratory of Agricultural Integrated Pest Management of Qinghai Province, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China
| | - Yuanfang Zeng
- Key Laboratory of Agricultural Integrated Pest Management of Qinghai Province, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China
| | - Yinyin Shen
- Key Laboratory of Agricultural Integrated Pest Management of Qinghai Province, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China
| | - Youpeng Lai
- Key Laboratory of Agricultural Integrated Pest Management of Qinghai Province, Qinghai Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, China
| | - Guangxin Lu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| |
Collapse
|
2
|
Boulamtat R, El Fakhouri K, Jaber H, Oubayoucef A, Ramdani C, Fikraoui N, Al-Jaboobi M, El Fadil M, Maafa I, Mesfioui A, Ahmed Kemal S, El Bouhssini M. Pathogenicity of entomopathogenic Beauveria bassiana strains on Helicoverpa armigera (Hübner). FRONTIERS IN INSECT SCIENCE 2025; 5:1552694. [PMID: 40291120 PMCID: PMC12022900 DOI: 10.3389/finsc.2025.1552694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 03/20/2025] [Indexed: 04/30/2025]
Abstract
The destructive pest of chickpeas, Helicoverpa armigera (Hübner), is difficult to control using synthetic insecticides. The current research examined the entomopathogenic and endophytic colonisation effects of three fungal strains of Beauveria bassiana (HASS; RFSL10; SP-IR-566) against H. armigera larvae under laboratory, greenhouse, and field conditions. Four inoculation methods were used in the greenhouse: Root Dipping (RD), Leaf Spraying (LS), Stem Injection (SI), and Seed Coating (SC), while spray application was used for laboratory and field treatments. Under laboratory conditions, the highest entomopathogenic effect was recorded by HASS and RFSL10 strains applied as a direct spray at 108 conidia mL-1 with 100% mortality, followed by SP-IR-566 with 96%, 12 days after treatment. Furthermore, foliar application in the field reduced larval population by an average ranging from 82 to 100%, confirming the significant effects of the three tested strains. In terms of endophytic colonisation under greenhouse setting, both stem injection and root dipping methods expressed low to moderate mortality rates ranging from 32 to 40%, 15 days after application. These findings suggested that B. bassiana strains, investigated as foliar application, had a potential as an effective strategy to control H. armigera. This study also offers new insights into the potential of the endophytic entomopathogens approach as a viable and safe alternative to chemical pesticides.
Collapse
Affiliation(s)
- Rachid Boulamtat
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Karim El Fakhouri
- AgroBioSciences Program, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Hassna Jaber
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Ali Oubayoucef
- AgroBioSciences Program, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Chaimae Ramdani
- AgroBioSciences Program, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Nabil Fikraoui
- Biology Department, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Muamar Al-Jaboobi
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Meryem El Fadil
- AgroBioSciences Program, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Ilyass Maafa
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Biology and Health, Department of Biology, Faculty of Science, Ibn-Tofail University, Kenitra, Morocco
| | - Seid Ahmed Kemal
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Mustapha El Bouhssini
- AgroBioSciences Program, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
3
|
Liu L, Liu S, Meng Q, Chen B, Zhang J, Zhang X, Lin Z, Zou Z. Evaluating Beauveria bassiana Strains for Insect Pest Control and Endophytic Colonization in Wheat. INSECTS 2025; 16:287. [PMID: 40266821 PMCID: PMC11943200 DOI: 10.3390/insects16030287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/23/2025] [Accepted: 03/06/2025] [Indexed: 04/25/2025]
Abstract
Certain entomopathogenic fungi, such as Beauveria bassiana, are highly pathogenic to arthropod pests and are able to colonize plant tissues, thereby enhancing both plant growth and disease resistance. This study assessed three B. bassiana strains (CBM1, CBM2, and CBM3) for their pathogenicity toward insect larvae and colonization potential in wheat. The insecticidal activity of the fungi against the larvae of the major lepidopteran pests Helicoverpa armigera, Spodoptera frugiperda, Mythimna separata, and Plutella xylostella was determined. The fungi were then applied to wheat plants using seed immersion and soil drench methods; their colonization rates were compared, and the impacts of fungal colonization on wheat growth and survival were evaluated. The results demonstrated that all three strains were effective in reducing insect damage, with B. bassiana CBM1 exhibiting the highest pathogenicity followed by CBM3 and CBM2. B. bassiana CBM1 was particularly effective, with a significantly higher colonization rate achieved through soil drenching compared to seed immersion. The soil inoculation of B. bassiana resulted in increased plant height at 30 days after sowing (DAS) and root length at 15 DAS compared to the control group. B. bassiana CBM1-colonized wheat increased the mortality of fall armyworm. This research has enriched the biological control microbial resource pool and highlights the potential of B. bassiana in integrated pest management strategies.
Collapse
Affiliation(s)
- Lulu Liu
- Institutes of Life Science and Green Development, School of Life Science, Hebei University, Baoding 071002, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shiming Liu
- Jilin Provincial Key Laboratory of Insect Biodiversity and Ecosystem Function of Changbai Mountains, Forestry College, Beihua University, Jilin 132013, China
- Institute of Forestry Engineering, Guangxi Eco-Engineering Vocational and Technical College, Liuzhou 545004, China
| | - Qingfan Meng
- Jilin Provincial Key Laboratory of Insect Biodiversity and Ecosystem Function of Changbai Mountains, Forestry College, Beihua University, Jilin 132013, China
| | - Bing Chen
- Institutes of Life Science and Green Development, School of Life Science, Hebei University, Baoding 071002, China
| | - Junjie Zhang
- Engineering Research Center of Natural Enemies, Institute of Biological Control, Jilin Agricultural University, Changchun 130118, China
| | - Xue Zhang
- Engineering Research Center of Natural Enemies, Institute of Biological Control, Jilin Agricultural University, Changchun 130118, China
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
4
|
Chen Z, Mu H, Peng Y, Huo R, Xie J. The Susceptibility of Two Beauveria bassiana Strains on Rice Pests Nilaparvata lugens and Sogatella furcifera. J Fungi (Basel) 2025; 11:128. [PMID: 39997422 PMCID: PMC11857057 DOI: 10.3390/jof11020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/20/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Entomopathogenic fungi represent a valuable natural resource with significant potential as biological agents for pest management. However, different species or strains of fungi demonstrate varying effectiveness against specific targets. In this study, we assessed the impact of two fungal strains, Beauveria bassiana KN801 and KN802, on the rice planthoppers Ninaparvata lugens and Sogatella furcifera, in combination with insecticides. Our findings indicate that both B. bassiana strains can effectively infect the nymphs and adults of N. lugens and S. furcifera, resulting in a significantly higher mortality rate compared to the control groups. Notably, the B. bassiana strain KN801 demonstrated greater virulence than B. bassiana KN802 against these pests. However, no significant differences were observed when using different concentrations of the same fungal strain (B. bassiana KN801 or B. bassiana KN802) against these targets. Additionally, both fungi showed a germination rate of over 90% after treatment when combined with several common insecticides like chlorfenapyr and dinotefuran. The combined application of B. bassiana with chlorfenapyr or dinotefuran could improve pest control efficacy for these two pests. This study suggests that the two B. bassiana strains have the potential to infect rice planthoppers N. lugens and S. furcifera, indicating their promise as agents for the control of these pests.
Collapse
Affiliation(s)
- Zhongwei Chen
- School of Life Sciences, Genetic Engineering Research Center, Chongqing University, Chongqing 400044, China; (Z.C.); (H.M.)
| | - Hanqing Mu
- School of Life Sciences, Genetic Engineering Research Center, Chongqing University, Chongqing 400044, China; (Z.C.); (H.M.)
| | - Yifan Peng
- Wuhan Kernel Bio-tech Co., Ltd., Guannanyuan Road No.17, Guannan Industrial Park, Wuhan 430074, China; (Y.P.); (R.H.)
| | - Rui Huo
- Wuhan Kernel Bio-tech Co., Ltd., Guannanyuan Road No.17, Guannan Industrial Park, Wuhan 430074, China; (Y.P.); (R.H.)
| | - Jiaqin Xie
- School of Life Sciences, Genetic Engineering Research Center, Chongqing University, Chongqing 400044, China; (Z.C.); (H.M.)
- National Engineering Research Center of Microbial Pesticides (Joint Institute-Chongqing University) and Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 400044, China
- Key Laboratory of Gene Function and Regulation Technology Under Chongqing Municipal Education Commission, Chongqing 400044, China
| |
Collapse
|
5
|
Perumal V, Kannan S, Alford L, Pittarate S, Krutmuang P. Study on the virulence of Metarhizium anisopliae against Spodoptera frugiperda (J. E. Smith, 1797). J Basic Microbiol 2024; 64:e2300599. [PMID: 38308078 DOI: 10.1002/jobm.202300599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/19/2023] [Accepted: 01/13/2024] [Indexed: 02/04/2024]
Abstract
This study examined the impact of Metarhizium anisopliae (Hypocreales: Clavicipitaceae) conidia on the eggs, larvae, pupae, and adults of Spodoptera frugiperda. The results showed that eggs, larvae, pupae, and adults exhibited mortality rates that were dependent on the dose. An increased amount of conidia (1.5 × 109 conidia/mL) was found to be toxic to larvae, pupae, and adults after 9 days of treatment, resulting in a 100% mortality rate in eggs, 98% in larvae, 76% in pupae, and 85% in adults. A study using earthworms as bioindicators found that after 3 days of exposure, M. anisopliae conidia did not cause any harmful effects on the earthworms. In contrast, the chemical treatment (positive control) resulted in 100% mortality at a concentration of 40 ppm. Histopathological studies showed that earthworm gut tissues treated with fungal conidia did not show significant differences compared with those of the negative control. The gut tissues of earthworms treated with monocrotophos exhibited significant damage, and notable differences were observed in the chemical treatment. The treatments with 70 and 100 µg/mL solutions of Eudrilus eugeniae epidermal mucus showed no fungal growth. An analysis of the enzymes at a biochemical level revealed a decrease in the levels of acetylcholinesterase, α-carboxylesterase, and β-carboxylesterase in S. frugiperda larvae after exposure to fungal conidia. This study found that M. anisopliae is effective against S. frugiperda, highlighting the potential of this entomopathogenic fungus in controlling this agricultural insect pest.
Collapse
Affiliation(s)
- Vivekanandhan Perumal
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Insect Pathology Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Mueang, Chiang Mai, Thailand
| | - Swathy Kannan
- Insect Pathology Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Mueang, Chiang Mai, Thailand
| | - Lucy Alford
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, UK
| | - Sarayut Pittarate
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Insect Pathology Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Mueang, Chiang Mai, Thailand
| | - Patcharin Krutmuang
- Insect Pathology Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Mueang, Chiang Mai, Thailand
| |
Collapse
|
6
|
Islam SMN, Chowdhury MZH, Mim MF, Momtaz MB, Islam T. Biocontrol potential of native isolates of Beauveria bassiana against cotton leafworm Spodoptera litura (Fabricius). Sci Rep 2023; 13:8331. [PMID: 37221248 DOI: 10.1038/s41598-023-35415-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/17/2023] [Indexed: 05/25/2023] Open
Abstract
The entomopathogenic fungus (EPF), Beauveria bassiana, is reported as the most potent biological control agent against a wide range of insect families. This study aimed to isolate and characterize the native B. bassiana from various soil habitats in Bangladesh and to evaluate the bio-efficacy of these isolates against an important vegetable insect pest, Spodoptera litura. Seven isolates from Bangladeshi soils were characterized as B. bassiana using genomic analysis. Among the isolates, TGS2.3 showed the highest mortality rate (82%) against the 2nd instar larvae of S. litura at 7 days after treatment (DAT). This isolate was further bioassayed against different stages of S. litura and found that TGS2.3 induced 81, 57, 94, 84, 75, 65, and 57% overall mortality at egg, neonatal 1st, 2nd, 3rd, 4th, and 5th instar larvae, respectively, over 7 DAT. Interestingly, treatment with B. bassiana isolate TGS2.3 resulted in pupal and adult deformities as well as decreased adult emergence of S. litura. Taken together, our results suggest that a native isolate of B. bassiana TGS2.3 is a potential biocontrol agent against the destructive insect pest S. litura. However, further studies are needed to evaluate the bio-efficacy of this promising native isolate in planta and field conditions.
Collapse
Affiliation(s)
- Shah Mohammad Naimul Islam
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh.
| | - Md Zahid Hasan Chowdhury
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Mahjabin Ferdaous Mim
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Milia Bente Momtaz
- Cotton Research Training and Seed Multiplication Farm, Gazipur, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh.
| |
Collapse
|
7
|
Park SE, Kim JC, Im Y, Kim JS. Pathogenesis and defense mechanism while Beauveria bassiana JEF-410 infects poultry red mite, Dermanyssus gallinae. PLoS One 2023; 18:e0280410. [PMID: 36800366 PMCID: PMC9937463 DOI: 10.1371/journal.pone.0280410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/28/2022] [Indexed: 02/18/2023] Open
Abstract
The poultry red mite, Dermanyssus gallinae (Mesostigmata: Dermanyssidae), is a major pest that causes great damage to chicken egg production. In one of our previous studies, the management of red mites using entomopathogenic fungi was evaluated, and the acaricidal fungus Beauveria bassiana JEF-410 was selected for further research. In this study, we tried to elucidate the pathogenesis of B. bassiana JEF-410 and the defense mechanisms of red mites at a transcriptome level. Red mites collected from a chicken farm were treated with B. bassiana JEF-410. When the mortality of infected red mites reached 50%, transcriptome analyses were performed to determine the interaction between B. bassiana JEF-410 and red mites. Uninfected red mites and non-infecting fungus served as controls. In B. bassiana JEF-410, up-regulated gene expression was observed in tryptophan metabolism and secondary metabolite biosynthesis pathways. Genes related to acetyl-CoA synthesis were up-regulated in tryptophan metabolism, suggesting that energy metabolism and stress management were strongly activated. Secondary metabolites associated with fungal up-regulated DEGs were related to the production of substances toxic to insects such as beauvericin and beauveriolide, efflux pump of metabolites, energy production, and resistance to stress. In red mites, physical and immune responses that strengthen the cuticle against fungal infection were highly up-regulated. From these gene expression analyses, we identified essential factors for fungal infection and subsequent defenses of red mites. These results will serve as a strong platform for explaining the interaction between B. bassiana JEF-410 and red mites in the stage of active infection.
Collapse
Affiliation(s)
- So Eun Park
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju, Korea
| | - Jong-Cheol Kim
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju, Korea
| | - Yeram Im
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju, Korea
| | - Jae Su Kim
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju, Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Korea
- * E-mail:
| |
Collapse
|
8
|
Perumal V, Kannan S, Alford L, Pittarate S, Geedi R, Elangovan D, Marimuthu R, Krutmuang P. First report on the enzymatic and immune response of Metarhizium majus bag formulated conidia against Spodoptera frugiperda: An ecofriendly microbial insecticide. Front Microbiol 2023; 14:1104079. [PMID: 36937255 PMCID: PMC10019823 DOI: 10.3389/fmicb.2023.1104079] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/30/2023] [Indexed: 03/06/2023] Open
Abstract
Entomopathogenic fungi from microbial sources are a powerful tool for combating insecticide resistance in insect pests. The purpose of the current study was to isolate, identify, and evaluate bag-formulated entomopathogenic fungal conidial virulence against insect pests. We further investigated the enzymatic responses induced by the entomopathogenic fungi as well as the effect on a non-target species. Entomopathogenic fungi were isolated from the Palamalai Hills, India, using the insect bait method, and the Metarhizium majus (MK418990.1) entomopathogen was identified using biotechnological techniques (genomic DNA isolation and 18S rDNA amplification). Bag-formulated fungal conidial efficacy (2.5 × 103, 2.5 × 104, 2.5 × 105, 2.5 × 106, and 2.5 × 107 conidia/ml) was evaluated against third instar larvae of Spodoptera frugiperda at 3, 6, 9, and 12 days of treatment, and acid and alkaline phosphatases, catalase, and superoxide dismutase enzymatic responses were evaluated at 3 days post-treatment. After 12 days of treatment, non-target assays on the earthworm Eudrilus eugeniae were performed using an artificial soil assay. Results of the bag formulated fungal conidial treatment showed that S. frugiperda had high susceptibility rates at higher concentrations (2.5 × 107 conidia/ml) of M. majus. Lower concentration of 2.5 × 103 conidia/ml caused 68.6% mortality, while 2.5 × 107 conidia/ml caused 100% mortality at 9 days post treatment. Investigation into enzymatic responses revealed that at 3 days post M. majus conidia exposure (2.5 × 103 conidia/ml), insect enzyme levels had significantly changed, with acid and alkaline phosphatases, and catalase enzymes significantly reduced and superoxide dismutase enzymes significantly raised relative to the control. After 12 days of treatment, no sublethal effects of M. majus conidia were observed on E. eugeniae, with no observed damage to gut tissues including lumen and epithelial cells, the nucleus, setae, coelom, mitochondria, and muscles. This study offers support for the use of fungal conidia in the target-specific control of insect pests.
Collapse
Affiliation(s)
- Vivekanandhan Perumal
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
- *Correspondence: Vivekanandhan Perumal,
| | - Swathy Kannan
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Lucy Alford
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Sarayut Pittarate
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Ruchika Geedi
- Geedi-Horticultural Insects Research Laboratory, USDA- Agricultural Research Services, Wooster, OH, United States
| | - Dilipan Elangovan
- Department of Physiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Ramachandran Marimuthu
- Department of Botany, School of Life Sciences, Periyar University, Salem, Tamil Nadu, India
| | - Patcharin Krutmuang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Patcharin Krutmuang,
| |
Collapse
|
9
|
Idrees A, Afzal A, Qadir ZA, Li J. Bioassays of Beauveria bassiana Isolates against the Fall Armyworm, Spodoptera frugiperda. J Fungi (Basel) 2022; 8:jof8070717. [PMID: 35887472 PMCID: PMC9324617 DOI: 10.3390/jof8070717] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 12/04/2022] Open
Abstract
The control of Spodoptera frugiperda, the key invasive pest of maize, is a serious concern due to its biology and the current global restriction on applying synthetic pesticides. Entomopathogenic fungi are considered to be a potential biological control strategy. The pathogenicity of 12 isolates of Beauveria bassiana in the immature stages and feeding efficacy of S. frugiperda were evaluated. The B. bassiana isolates QB-3.45, QB-3.46 and QB-3.428 caused the highest egg mortality rates of 87.3, 82.7 and 79.3%, respectively, when applied at a concentration of 1 × 108 conidia/mL and measured at 7 days post-treatment. Neonate mortality rates of 45.6 to 53.6% were observed with the same isolates. The B. bassiana isolates caused significant cumulative mortality rates ranging from 71.3 to 93.3% at 14 days post-treatment and reduced larval feeding efficacy from 69.4 to 77.8% at 48 h post-treatment. This study supports using the effective B. bassiana isolates as a biological control agent against S. frugiperda. The significant mortality of the eggs and neonatal larvae and the reduction in the feeding efficacy of the second instar larvae of the S. frugiperda that were treated with isolates of B. bassiana supports the application of entomopathogenic fungi as a biocontrol agent for the effective control of the S. frugiperda population.
Collapse
Affiliation(s)
- Atif Idrees
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (A.I.); (A.A.)
| | - Ayesha Afzal
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (A.I.); (A.A.)
- Institute of Molecular Biology and Biotechnology, The University of Lahore, 1-Km Defense Road, Lahore 54000, Pakistan
| | - Ziyad Abdul Qadir
- Honeybee Research Institute, National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan;
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE 19716, USA
| | - Jun Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (A.I.); (A.A.)
- Correspondence:
| |
Collapse
|
10
|
Faria M, Souza DA, Sanches MM, Schmidt FGV, Oliveira CM, Benito NP, Lopes RB. Evaluation of key parameters for developing a Metarhizium rileyi-based biopesticide against Spodoptera frugiperda (Lepidoptera: Noctuidae) in maize: laboratory, greenhouse, and field trials. PEST MANAGEMENT SCIENCE 2022; 78:1146-1154. [PMID: 34811883 DOI: 10.1002/ps.6729] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The entomopathogenic fungus Metarhizium rileyi is known to cause natural infections in some caterpillars. In this multiyear study, we carried out laboratory, greenhouse and three field trials with the aim of developing a sustainable option for control of the fall armyworm (FAW) in maize. Association of M. rileyi with Spodoptera frugiperda baculovirus (SfMNPV) and delivery strategies were also investigated. RESULTS The selected isolate (CG381) was effective in the laboratory at a low concentration (~ 4 × 103 conidia cm-2 ), killing >95% of FAW larvae within 8 days. In the greenhouse assay, applications of conidia suspended in water or as dry powder in maize whorls (~ 6.3 × 106 conidia per plant) produced similar larval mortalities (88%-96%). In the field trials, conventional spraying of unformulated conidia (0.6 and 1.2 × 1012 conidia ha-1 ) caused low larval mortalities (27-31%). Simultaneous application of either unformulated or oil-based formulations of M. rileyi conidia and S. frugiperda baculovirus (SfMNPV) to plant rows caused larval mortalities comparable with each of the pathogens applied alone. However, when a formulation containing both pathogens was sprayed directly into the whorls, the overall mortality of S. frugiperda larvae due to pathogens (mostly to M. rileyi infections) reached ~ 59%, twofold higher than the other treatments with conventional spraying, whereas in the control, the overall mortality was only 1%. CONCLUSION Optimizing exposure of S. frugiperda larvae to an inoculum of virulent entomopathogens through directed applications to maize whorls is critical to produce satisfactory mortality levels and is promising for integrated pest management.
Collapse
Affiliation(s)
- Marcos Faria
- EMBRAPA Genetic Resources and Biotechnology, Brasília, Brazil
| | | | | | | | | | | | | |
Collapse
|
11
|
Idrees A, Qadir ZA, Akutse KS, Afzal A, Hussain M, Islam W, Waqas MS, Bamisile BS, Li J. Effectiveness of Entomopathogenic Fungi on Immature Stages and Feeding Performance of Fall Armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) Larvae. INSECTS 2021; 12:1044. [PMID: 34821844 PMCID: PMC8624455 DOI: 10.3390/insects12111044] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022]
Abstract
Maize is a major staple crop in China, and the sustainable productivity of this primary crop has been recently threatened by fall armyworm (FAW), Spodoptera frugiperda, invasion. The five fungal isolates, Aspergillus sp. BM-3 and SE-2-1, Cladosporium tenuissimum SE-10, Penicillium citrinum CTD-24, and Beauveria bassiana ZK-5 were assessed for their efficacy in causing mortality against first to sixth instar eggs and neonate larvae seven days post-treatment, and their effects on the feeding performance of sixth instar S. frugiperda larvae at 48 h post-treatment at three concentrations (1 × 106, 1 × 107, and 1 × 108 conidia mL-1) were also assessed. The six instar S. frugiperda larvae were not susceptible to the five tested fungal isolates. However, B. bassiana ZK-5 caused the highest egg mortality of 40, 70, and 85.6% at 1 × 106, 1 × 107, and 1 × 108 conidia mL-1, respectively, followed by P. citrinum CTD-24 (30.6, 50, and 75.6%) and C. tenuissimum SE-10 (25.6, 40, and 55.6%). In addition, B. bassiana ZK-5 caused the highest neonate mortality of 54.3% at 1 × 108 conidia mL-1. B. bassiana ZK-5 and P. citrinum CTD-24 caused cumulative mortality, including 93.3 and 83.3% mortality of eggs and neonates, respectively, at 1 × 108 conidia mL-1. Furthermore, B. bassiana ZK-5 reduced the feeding efficacy of first to third instar S. frugiperda larvae by 66.7 to 78.6%, while P. citrinum CTD-24 and C. tenuissimum SE-10 reduced larval feeding by 48.3 to 57.1% at 1 × 108 conidia mL-1. However, these fungal isolates were less potent in reducing the feeding activity of fourth to sixth instar S. frugiperda larvae (>46% with B. bassiana at 48 h post-treatment). The tested fungal isolates could play an essential role as microbial biopesticides in suppressing the S. frugiperda population in China after further investigations on their efficacy are obtained in the field.
Collapse
Affiliation(s)
- Atif Idrees
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China;
| | - Ziyad Abdul Qadir
- Honeybee Research Institute, National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan;
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE 19716, USA
| | - Komivi Senyo Akutse
- Plant Health Theme, International Centre of Insect Physiology and Ecology, Nairobi P.O. Box 30772-00100, Kenya;
| | - Ayesha Afzal
- Institute of Molecular Biology and Biotechnology, The University of Lahore, 1-Km Defense Road, Lahore 54000, Pakistan;
| | - Mubasher Hussain
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Engineering Research Center for Mineral oil pesticides, Institute of Zoology, Guangdong Academy of Science, Guangzhou 510260, China;
| | - Waqar Islam
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muhammad Saad Waqas
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pest in Guiyang, Institute of Entomology, Ministry of Agricultural and Rural Affairs, Guizhou University, Guiyang 550025, China;
| | - Bamisope Steve Bamisile
- Laboratory of Quarantine and Invasive Pests, Department of Entomology, South China Agricultural University, Guangzhou 510642, China;
| | - Jun Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China;
| |
Collapse
|
12
|
Flonc B, Barbercheck M, Ahmad I. Observations on the Relationships between Endophytic Metarhizium robertsii, Spodoptera frugiperda (Lepidoptera: Noctuidae), and Maize. Pathogens 2021; 10:713. [PMID: 34200234 PMCID: PMC8230249 DOI: 10.3390/pathogens10060713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 11/17/2022] Open
Abstract
Fungi in the genus Metarhizium are entomopathogens that can establish endophytically inside plants and benefit them through growth promotion and pest suppression. Lab- and greenhouse-based experiments were conducted to examine the effects of endophytic M. robertsii colonization in maize (Zea mays) on fall armyworm (FAW) (Spodoptera frugiperda). Maize seeds were inoculated with M. robertsii conidia, plants were evaluated for endophytic colonization, and then relative growth rate (RGR) and feeding behavior of larval FAW fed leaves from inoculated and uninoculated maize were measured. Endophytic M. robertsii was recovered from 60.5% of inoculated maize. In feeding bioassays, the RGR of larval FAW fed leaves of inoculated maize was no different than the RGR of larvae fed leaves from uninoculated maize. The RGR of larval FAW was positively correlated with the proportion of endophytic colonization of maize leaf and root tissues; however, in feeding assays, FAW larvae demonstrated no preference for consuming leaf tissue from inoculated or uninoculated maize. The proportion of leaf tissue consumed was unrelated to the proportion of M. robertsii-colonization of leaf or root tissue from source plants. We discuss possible reasons why FAW were not affected by endophytic M. robertsii in the context of assay methodology, FAW physiology, and induced maize defenses.
Collapse
Affiliation(s)
- Brianna Flonc
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA; (B.F.); (M.B.)
- United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS)—Plant Protection and Quarantine (PPQ), Carlisle, PA 17013, USA
| | - Mary Barbercheck
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA; (B.F.); (M.B.)
| | - Imtiaz Ahmad
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA; (B.F.); (M.B.)
| |
Collapse
|
13
|
Akutse KS, Khamis FM, Ambele FC, Kimemia JW, Ekesi S, Subramanian S. Combining insect pathogenic fungi and a pheromone trap for sustainable management of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). J Invertebr Pathol 2020; 177:107477. [PMID: 33053399 DOI: 10.1016/j.jip.2020.107477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 11/25/2022]
Abstract
Fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), is a key invasive pest of maize and other crops in Africa. Entomopathogenic fungi play an important role in regulating the immature stages of this invasive pest as opposed to synthetic pesticides that are hazardous to human, environment and biodiversity. To tackle the adult stage of the pest (the moth) and to improve on the application strategy of the fungal-based biopesticides, this study evaluated the effect of various entomopathogenic fungi isolates on S. frugiperda moths. Twenty-two isolates (16 Metarhizium anisopliae and 6 Beauveria bassiana) were screened in the laboratory to assess their pathogenicity and virulence against S. frugiperda moths. The compatibility of the most pathogenic isolates with S. frugiperda pheromone FALLTRACT lure, the horizontal transmission of the inoculum among S. frugiperda moths, and the effect on oviposition were also determined under laboratory conditions. All 22 fungal isolates screened were pathogenic to the moths, but the mortality varied significantly among the isolates (P < 0.0001) seven days post-treatment. Beauveria bassiana ICIPE 621 and M. anisopliae ICIPE 7 outperformed all the other isolates by causing 100% mortality of the moths with the lowest LT50 values of 3.6 ± 0.1 and 3.9 ± 0.0 days, respectively. Both isolates were also found compatible with FALLTRACT lure, as the lure had no effect on the conidial germination in the laboratory. Male and female moths were able to horizontally transmit conidia of both fungal isolates to untreated moths, causing high mortality of S. frugiperda in 'donor' and 'recipient' groups. In addition, the oviposition, hatchability of eggs and longevity of larvae were significantly affected on the fungal infected females. Although single moths still retained high conidial numbers 72 h post-inoculation, the number of conidia decreased with time. These results suggest that ICIPE 7 and ICIPE 621 could be used in combination with S. frugiperda pheromone in an autodissemination approach to suppress S. frugiperda population.
Collapse
Affiliation(s)
- Komivi S Akutse
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya.
| | - Fathiya M Khamis
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Felicitas C Ambele
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya; Food Security and Safety, Faculty of Agriculture, Science and Technology, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2745, South Africa
| | - Jane W Kimemia
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Sunday Ekesi
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Sevgan Subramanian
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| |
Collapse
|
14
|
Microbiomes in agricultural and mining soils contaminated with arsenic in Guanajuato, Mexico. Arch Microbiol 2020; 203:499-511. [PMID: 32964256 DOI: 10.1007/s00203-020-01973-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/28/2020] [Accepted: 07/02/2020] [Indexed: 10/23/2022]
Abstract
In this report, physical and chemical properties, and total arsenic (As) concentrations were analyzed in agricultural (MASE) and mining soils (SMI) in the State of Guanajuato, México. Additionally, a metagenomic analysis of both types of soils was the bases for the identification and selection of bacteria and fungi resistant to As. The SMI soil showed higher concentration of As (39 mg kg-1) as compared to MASE soil (15 mg kg-1). The metagenome showed a total of 175,240 reads from both soils. MASE soil showed higher diversity of bacteria, while the SMI soil showed higher diversity of fungi. 16S rRNA analysis showed that the phylum Proteobacteria showed the highest proportion (39.6% in MASE and 36.4% in SMI) and Acidobacteria was the second most representative (24.2% in SMI and 11.6% in MASE). 18S rRNA analysis, showed that the phylum Glomeromycota was found only in the SMI soils (11.6%), while Ascomycota was the most abundant, followed by Basidiomycota, and Zygomycota, in both soils. Genera Bacillus and Penicillium were able to grow in As concentrations as high as 5 and 10 mM, reduced As (V) to As (III), and removed As at 9.8% and 12.1% rates, respectively. When aoxB, arsB, ACR3(1), ACR3(2,) and arrA genes were explored, only the arsB gene was identified in Bacillus sp., B. simplex, and B. megaterium. In general, SMI soils showed more microorganisms resistant to As than MASE soils. Bacteria and fungi selected in this work may show potential to be used as bioremediation agents in As contaminated soils.
Collapse
|
15
|
Meta-Transcriptome Profiling of Novel Invasive Pest Spodoptera frugiperda in Yunnan, China. Virol Sin 2020; 35:240-244. [PMID: 31916023 DOI: 10.1007/s12250-019-00188-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/01/2019] [Indexed: 10/25/2022] Open
|