1
|
Shen J, Lyu X, Xu X, Wang Z, Zhang Y, Wang C, Munaiz ED, Zhang M, Havey MJ, Shou W. A nuclear-encoded endonuclease governs the paternal transmission of mitochondria in Cucumis plants. Nat Commun 2025; 16:4266. [PMID: 40341554 PMCID: PMC12062418 DOI: 10.1038/s41467-025-59568-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 04/22/2025] [Indexed: 05/10/2025] Open
Abstract
Non-Mendelian transmission of mitochondria has been well established across most eukaryotes, however the genetic mechanism that governs this uniparental inheritance remains unclear. Plants in the genus Cucumis, specifically melon and cucumber, exhibit paternal transmission of the mitochondrial (mt) DNA, making them excellent models for exploring the molecular mechanisms underlying mitochondrial transmission. Here, we develop a toolkit to screen for mutants in mitochondrial inheritance (mti), and use fine mapping to successfully identify a mitochondrially targeted endonuclease gene (MTI1) controlling mitochondrial transmission. Knockout of MTI1 results in a shift from paternal to bi-parental inheritance of the mtDNA, confirming the crucial role of MTI1 in uniparental inheritance of mitochondria. Moreover, we demonstrate that MTI1 exhibits robust endonuclease activity both in vitro and in vivo, specifically expresses in mitochondria of the fertilized ovule within 24 h of pollination. Collectively, this study reveals that a nuclear-encoded but mitochondria-targeted gene plays a causative role in governing the non-Mendelian mitochondrial inheritance, revolutionizing our knowledge about mitochondrial DNA transmission.
Collapse
Affiliation(s)
- Jia Shen
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Vegetable Germplasm Innovation and Quality Breeding in the Province, Hangzhou, China
| | - Xiaolong Lyu
- Key Laboratory of Vegetable Germplasm Innovation and Quality Breeding in the Province, Hangzhou, China
- Laboratory of Vegetable Germplasm Innovation & Molecular Breeding, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
- Laboratory of Plant Genome & Evolutionary Biology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
| | - Xinyang Xu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Vegetable Germplasm Innovation and Quality Breeding in the Province, Hangzhou, China
| | - Zheng Wang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Vegetable Germplasm Innovation and Quality Breeding in the Province, Hangzhou, China
| | - Yuejian Zhang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Vegetable Germplasm Innovation and Quality Breeding in the Province, Hangzhou, China
| | - Chenhao Wang
- Key Laboratory of Vegetable Germplasm Innovation and Quality Breeding in the Province, Hangzhou, China
- Laboratory of Vegetable Germplasm Innovation & Molecular Breeding, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
- Laboratory of Plant Genome & Evolutionary Biology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
| | - Eduardo D Munaiz
- UniLaSalle, Agrosciences College, AGHYLE UP 2018.C101, Beauvais, France
| | - Mingfang Zhang
- Key Laboratory of Vegetable Germplasm Innovation and Quality Breeding in the Province, Hangzhou, China.
- Laboratory of Vegetable Germplasm Innovation & Molecular Breeding, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China.
- Laboratory of Plant Genome & Evolutionary Biology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China.
- Hainan Institute of Zhejiang University, Sanya, China.
| | - Michael J Havey
- Department of Plant and Agroecosystem Sciences, University of Wisconsin, Madison, WI, USA.
| | - Weisong Shou
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
- Key Laboratory of Vegetable Germplasm Innovation and Quality Breeding in the Province, Hangzhou, China.
| |
Collapse
|
2
|
Characterization of the mitochondrial genome of Cucumis hystrix and comparison with other cucurbit crops. Gene 2022; 823:146342. [PMID: 35219813 DOI: 10.1016/j.gene.2022.146342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 11/20/2022]
Abstract
The mitochondria ofCucumis genus contain several intriguing features such as paternal inheritance and three-ring genome structure. However, the evolutionary relationships of mitochondria inCucumisremain elusive. Here, we assembled the mitochondrial genome ofC. hystrixand performed a comparative genomic analysis with other crops inthe Cucurbitaceae. The mitochondrial genome ofC. hystrixhas three circular-mapping chromosomes of lengths 1,113,461 bp, 110,683 bp, and 92,288 bp, which contain 73 genes including 38 protein-coding genes, 31tRNAgenes, and 4rRNAgenes. Repeat sequences, RNA editing, and horizontal gene transfer events were identified. The results of phylogenetic analyses, collinearity and gene clusters revealed thatC. hystrixis closer toC. sativus than to C. melo. Meanwhile, wedemonstrated mitochondrial paternal inheritance inC. hystrixbymolecular markers. In comparison with other cucurbitcrops, wefound amarker foridentification of germplasm resources ofCucumis. Collectively, our findings provide a tool to help clarify the paternal lineage within that genus in the evolution of Cucumis.
Collapse
|
3
|
Yamagishi H, Hashimoto A, Fukunaga A, Bang SW, Terachi T. Intraspecific variations of the cytoplasmic male sterility genes orf108 and orf117 in Brassica maurorum and Moricandia arvensis, and the specificity of the mRNA processing. Genome 2021; 64:1081-1089. [PMID: 34129801 DOI: 10.1139/gen-2021-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mitochondrial gene orf108 co-transcribed with atp1 and causes cytoplasmic male sterility in Brassica crops, is widely distributed across wild species and genera of Brassicaceae. However, intraspecific variations in the presence of orf108 have not yet been studied, and the mechanisms for the wide distribution of the gene remain unclear. We analyzed the presence and sequence variations of orf108 in two wild species, Brassica maurorum and Moricandia arvensis. After polymerase chain reaction amplification of the 5' region of atp1 and the coding sequence of orf108, we determined the DNA sequences. B. maurorum and M. arvensis showed variations for the presence of orf108 or orf117 (orf108V117) both between and within accessions, and were not fixed to the mitochondrial type having the male sterile genes. Sequencing of the amplicons clarified that B. maurorum has orf108V117 instead of orf108. Sequencing also indicated mitochondrial heteroplasmy in the two species; particularly, in B. maurorum, one plant possessed both the orf108 and orf108V117 sequences. The results suggested that substoichiometric shifting of the mitochondrial genomes leads to the acquisition or loss of orf108. Furthermore, fertility restorer genes of the two species were involved in the processing of the mRNA of the male sterility genes at different sites.
Collapse
Affiliation(s)
| | | | | | | | - Toru Terachi
- Dept. Biotech., Fac. Eng., Kyoto Sangyo Univ., Motoyama, Kamigamo, Kyoto, Kyoto, Japan, 603-8555;
| |
Collapse
|
4
|
Mignerot L, Nagasato C, Peters AF, Perrineau MM, Scornet D, Pontheaux F, Djema W, Badis Y, Motomura T, Coelho SM, Cock JM. Unusual Patterns of Mitochondrial Inheritance in the Brown Alga Ectocarpus. Mol Biol Evol 2019; 36:2778-2789. [PMID: 31504759 DOI: 10.1093/molbev/msz186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Most eukaryotes inherit their mitochondria from only one of their parents. When there are different sexes, it is almost always the maternal mitochondria that are transmitted. Indeed, maternal uniparental inheritance has been reported for the brown alga Ectocarpus but we show in this study that different strains of Ectocarpus can exhibit different patterns of inheritance: Ectocarpus siliculosus strains showed maternal uniparental inheritance, as expected, but crosses using different Ectocarpus species 7 strains exhibited either paternal uniparental inheritance or an unusual pattern of transmission where progeny inherited either maternal or paternal mitochondria, but not both. A possible correlation between the pattern of mitochondrial inheritance and male gamete parthenogenesis was investigated. Moreover, in contrast to observations in the green lineage, we did not detect any change in the pattern of mitochondrial inheritance in mutant strains affected in life cycle progression. Finally, an analysis of field-isolated strains provided evidence of mitochondrial genome recombination in both Ectocarpus species.
Collapse
Affiliation(s)
- Laure Mignerot
- Sorbonne Université, CNRS, Algal Genetics Group, UMR 8227 Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | | | | | - Marie-Mathilde Perrineau
- Sorbonne Université, CNRS, Algal Genetics Group, UMR 8227 Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
- The Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, Scotland
| | - Delphine Scornet
- Sorbonne Université, CNRS, Algal Genetics Group, UMR 8227 Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Florian Pontheaux
- Sorbonne Université, CNRS, Algal Genetics Group, UMR 8227 Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Walid Djema
- Inria Sophia-Antipolis, Côte d'Azur University, Bicore and McTAO Teams, France
| | - Yacine Badis
- Sorbonne Université, CNRS, Algal Genetics Group, UMR 8227 Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
- The Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, Scotland
| | | | - Susana M Coelho
- Sorbonne Université, CNRS, Algal Genetics Group, UMR 8227 Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - J Mark Cock
- Sorbonne Université, CNRS, Algal Genetics Group, UMR 8227 Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| |
Collapse
|
5
|
Shen J, Shou W, Zhang Y, Yuan G, Zhao Y, Chen J, Havey MJ. Rare maternal and biparental transmission of the cucumber mitochondrial DNA reveals sorting of polymorphisms among progenies. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1223-1233. [PMID: 30758532 DOI: 10.1007/s00122-018-03274-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 12/22/2018] [Indexed: 05/28/2023]
Abstract
We used a mitochondrial (mt) mutant of cucumber to document rare maternal transmission of mt polymorphisms and demonstrate that polymorphisms can become more prevalent and sort to progenies to increase mt DNA diversity. The mitochondrial (mt) DNAs of most angiosperms show maternal inheritance, although relatively rare biparental or paternal transmission has been documented. The mt DNAs of plants in the genus Cucumis (family Cucurbitaceae) are paternally transmitted in intra- and interspecific crosses. MSC16 is an inbred line of cucumber (Cucumis sativus) with a mitochondrially associated mosaic (MSC) phenotype. MSC16 was crossed as the male parent to wild-type cultivar Calypso, and hybrid progenies were evaluated for the wild-type phenotype in order to screen for rare maternal or biparental transmission of the mt DNA. We then used standard and droplet digital (dd) PCR to study the transmission of polymorphic mt markers across three generations. We observed evidence for occasional maternal and biparental transmission of the mt DNA in cucumber. The transmission of specific regions of the maternal mt DNA could be as high as 17.8%, although the amounts of these maternal regions were often much lower relative to paternally transmitted regions. Different combinations of maternal and paternal mt polymorphisms were detected in progenies across generations, indicating that relatively rare maternal regions can be transmitted to progenies and become predominant to increase mt DNA diversity over generations.
Collapse
Affiliation(s)
- Jia Shen
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weisong Shou
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yuejian Zhang
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Gaoya Yuan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Zhao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinfeng Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Michael J Havey
- USDA-ARS and Department of Horticulture, University of Wisconsin, Madison, WI, 53706, USA.
| |
Collapse
|
6
|
Del Valle-Echevarria AR, Sanseverino W, Garcia-Mas J, Havey MJ. Pentatricopeptide repeat 336 as the candidate gene for paternal sorting of mitochondria (Psm) in cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1951-9. [PMID: 27423873 PMCID: PMC5085266 DOI: 10.1007/s00122-016-2751-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/02/2016] [Indexed: 05/22/2023]
Abstract
Pentatricopeptide repeat (PPR) 336 was identified as the candidate gene for Paternal Sorting of Mitochondria ( Psm ), a nuclear locus that affects the predominant mitochondria transmitted to progenies. Cucumber (Cucumis sativus L.) is a useful plant to study organellar-nuclear interactions because its organelles show differential transmission, maternal for chloroplasts and paternal for mitochondria. The mitochondrial DNA (mtDNA) of cucumber is relatively large due in part to accumulation of repetitive DNAs and recombination among these repetitive regions produces structurally polymorphic mtDNAs associated with paternally transmitted mosaic (MSC) phenotypes. The mitochondrial mutant MSC16 possesses an under-representation of ribosomal protein S7 (rps7), a key component of the small ribosomal subunit in the mitochondrion. A nuclear locus, Paternal Sorting of Mitochondria (Psm), affects the predominant mitochondria transmitted to progenies generated from crosses with MSC16 as the male parent. Using single nucleotide polymorphisms, Psm was mapped to a 170 kb region on chromosome 3 of cucumber and pentatricopeptide repeat (PPR) 336 was identified as the likely candidate gene. PPR336 stabilizes mitochondrial ribosomes in Arabidopsis thaliana and because MSC16 shows reduced transcription of rps7, the cucumber homolog of PPR336 (CsPPR336) as the candidate for Psm is consistent with a nuclear effect on ribosome assembly or stability in the mitochondrion. We used polymorphisms in CsPPR336 to genotype progenies segregating at Psm and recovered only one Psm -/- plant with the MSC phenotype, indicating that the combination of the Psm- allele with mitochondria from MSC16 is almost always lethal. This research illustrates the usefulness of the MSC mutants of cucumber to reveal and study unique interactions between the mitochondrion and nucleus.
Collapse
Affiliation(s)
| | - W Sanseverino
- IRTA, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193, Barcelona, Spain
| | - J Garcia-Mas
- IRTA, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193, Barcelona, Spain
| | - M J Havey
- USDA-ARS and Department of Horticulture, University of Wisconsin-Madison, 1575 Linden Drive, Madison, USA.
| |
Collapse
|
7
|
Pawełkowicz M, Zieliński K, Zielińska D, Pląder W, Yagi K, Wojcieszek M, Siedlecka E, Bartoszewski G, Skarzyńska A, Przybecki Z. Next generation sequencing and omics in cucumber (Cucumis sativus L.) breeding directed research. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 242:77-88. [PMID: 26566826 DOI: 10.1016/j.plantsci.2015.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/29/2015] [Accepted: 07/28/2015] [Indexed: 05/10/2023]
Abstract
In the post-genomic era the availability of genomic tools and resources is leading us to novel generation methods in plant breeding, as they facilitate the study of the genotype and its relationship with the phenotype, in particular for complex traits. In this study we have mainly concentrated on the Cucumis sativus and (but much less) Cucurbitaceae family several important vegetable crops. There are many reports on research conducted in Cucurbitaceae plant breeding programs on the ripening process, phloem transport, disease resistance, cold tolerance and fruit quality traits. This paper presents the role played by new omic technologies in the creation of knowledge on the mechanisms of the formation of the breeding features. The analysis of NGS (NGS-next generation sequencing) data allows the discovery of new genes and regulatory sequences, their positions, and makes available large collections of molecular markers. Genome-wide expression studies provide breeders with an understanding of the molecular basis of complex traits. Firstly a high density map should be created for the reference genome, then each re-sequencing data could be mapped and new markers brought out into breeding populations. The paper also presents methods that could be used in the future for the creation of variability and genomic modification of the species in question. It has been shown also the state and usefulness in breeding the chloroplastomic and mitochondriomic study.
Collapse
Affiliation(s)
- Magdalena Pawełkowicz
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Konrad Zieliński
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Wojciech Pląder
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Kouhei Yagi
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Michał Wojcieszek
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Ewa Siedlecka
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Grzegorz Bartoszewski
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Agnieszka Skarzyńska
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Zbigniew Przybecki
- Department of Plant Genetics, Breeding and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| |
Collapse
|
8
|
Abstract
Mitochondrial DNA (mtDNA) is predominantly maternally inherited in eukaryotes. Diverse molecular mechanisms underlying the phenomenon of strict maternal inheritance (SMI) of mtDNA have been described, but the evolutionary forces responsible for its predominance in eukaryotes remain to be elucidated. Exceptions to SMI have been reported in diverse eukaryotic taxa, leading to the prediction that several distinct molecular mechanisms controlling mtDNA transmission are present among the eukaryotes. We propose that these mechanisms will be better understood by studying the deviations from the predominating pattern of SMI. This minireview summarizes studies on eukaryote species with unusual or rare mitochondrial inheritance patterns, i.e., other than the predominant SMI pattern, such as maternal inheritance of stable heteroplasmy, paternal leakage of mtDNA, biparental and strictly paternal inheritance, and doubly uniparental inheritance of mtDNA. The potential genes and mechanisms involved in controlling mitochondrial inheritance in these organisms are discussed. The linkage between mitochondrial inheritance and sex determination is also discussed, given that the atypical systems of mtDNA inheritance examined in this minireview are frequently found in organisms with uncommon sexual systems such as gynodioecy, monoecy, or andromonoecy. The potential of deviations from SMI for facilitating a better understanding of a number of fundamental questions in biology, such as the evolution of mtDNA inheritance, the coevolution of nuclear and mitochondrial genomes, and, perhaps, the role of mitochondria in sex determination, is considerable.
Collapse
Affiliation(s)
- Sophie Breton
- a Department of Biological Sciences, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Donald T Stewart
- b Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada
| |
Collapse
|
9
|
Calderon CI, Yandell BS, Havey MJ. Genetic mapping of paternal sorting of mitochondria in cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:11-18. [PMID: 22350175 DOI: 10.1007/s00122-012-1812-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 01/31/2012] [Indexed: 05/31/2023]
Abstract
Mitochondria are organelles that have their own DNA; serve as the powerhouses of eukaryotic cells; play important roles in stress responses, programmed cell death, and ageing; and in the vast majority of eukaryotes, are maternally transmitted. Strict maternal transmission of mitochondria makes it difficult to select for better-performing mitochondria, or against deleterious mutations in the mitochondrial DNA. Cucumber is a useful plant for organellar genetics because its mitochondria are paternally transmitted and it possesses one of the largest mitochondrial genomes among all eukaryotes. Recombination among repetitive motifs in the cucumber mitochondrial DNA produces rearrangements associated with strongly mosaic (MSC) phenotypes. We previously reported nuclear control of sorting among paternally transmitted mitochondrial DNAs. The goal of this project was to map paternal sorting of mitochondria as a step towards its eventual cloning. We crossed single plants from plant introduction (PI) 401734 and Cucumis sativus var. hardwickii and produced an F(2) family. A total of 425 F(2) plants were genotyped for molecular markers and testcrossed as the female with MSC16. Testcross families were scored for frequencies of wild-type versus MSC progenies. Discrete segregations for percent wild-type progenies were not observed and paternal sorting of mitochondria was therefore analyzed as a quantitative trait. A major quantitative trait locus (QTL; LOD >23) was mapped between two simple sequence repeats encompassing a 459-kb region on chromosome 3. Nuclear genes previously shown to affect the prevalence of mitochondrial DNAs (MSH1, OSB1, and RECA homologs) were not located near this major QTL on chromosome 3. Sequencing of this region from PI 401734, together with improved annotation of the cucumber genome, should result in the eventual cloning of paternal sorting of mitochondria and provide insights about nuclear control of organellar-DNA sorting.
Collapse
Affiliation(s)
- Claudia I Calderon
- Department of Horticulture, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
10
|
|
11
|
Woloszynska M. Heteroplasmy and stoichiometric complexity of plant mitochondrial genomes--though this be madness, yet there's method in't. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:657-71. [PMID: 19995826 DOI: 10.1093/jxb/erp361] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mitochondrial heteroplasmy is defined as the coexistence of divergent mitochondrial genotypes in a cell. The ratio of the alternative genomes may be variable, but in plants, the usually prevalent main genome is accompanied by sublimons--substoichiometric mitochondrial DNA (mtDNA) molecules. Plant mitochondrial heteroplasmy was originally viewed as being associated with pathological mutations or was found in non-natural plant populations. Currently, it is considered to be a common situation in plants. Recent years have changed the previous view on the role of homologous recombination, small-scale mutations, and paternal leakage of mtDNA in the generation of heteroplasmy. Newly developed sensitive techniques have allowed the precise estimation of mtDNA stoichiometry. Mechanisms of maintenance and transmission of heteroplasmic genomes, including DNA recombination and replication, as well as mitochondrial fusion and fission, have been studied. This review describes the high level of plant mitochondrial genome complication--the 'madness' resulting from the heteroplasmic state and explains the method hidden in this madness. Heteroplasmy is described as the evolutionary strategy of uniparentally inherited plant mitochondrial genomes which do not undergo sexual recombination. In order to compensate for this deficiency, alternative types of mtDNA are substoichiometrically accumulated as a reservoir of genetic variability and may undergo accelerated evolution. Occasionally, sublimons are selected and amplified in the process called substoichiometric shifting, to take over the role of the main genome. Alternative mitochondrial genomes may recombine, yielding new mtDNA variants, or segregate during plant growth resulting in plants with mosaic phenotypes. Two opposite roles of mitochondrial heteroplasmy with respect to acceleration or counteracting of mutation accumulation are also discussed. Finally, nuclear control of heteroplasmy and substoichiometric shifting is described.
Collapse
Affiliation(s)
- Magdalena Woloszynska
- Laboratory of Molecular Cell Biology, Faculty of Biotechnology, University of Wroclaw, ul. Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| |
Collapse
|
12
|
Dickinson HG, Grant-Downton R. Bridging the generation gap: flowering plant gametophytes and animal germlines reveal unexpected similarities. Biol Rev Camb Philos Soc 2009; 84:589-615. [DOI: 10.1111/j.1469-185x.2009.00088.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Bartoszewski G, Gawronski P, Szklarczyk M, Verbakel H, Havey MJ. A one-megabase physical map provides insights on gene organization in the enormous mitochondrial genome of cucumber. Genome 2009; 52:299-307. [DOI: 10.1139/g09-006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cucumber ( Cucumis sativus ) has one of the largest mitochondrial genomes known among all eukaryotes, due in part to the accumulation of short 20 to 60 bp repetitive DNA motifs. Recombination among these repetitive DNAs produces rearrangements affecting organization and expression of mitochondrial genes. To more efficiently identify rearrangements in the cucumber mitochondrial DNA, we built two nonoverlapping 800 and 220 kb BAC contigs and assigned major mitochondrial genes to these BACs. Polymorphism carried on the largest BAC contig was used to confirm paternal transmission. Mitochondrial genes were distributed across BACs and physically distant, although occasional clustering was observed. Introns in the nad1, nad4, and nad7 genes were larger than those reported in other plants, due in part to accumulation of short repetitive DNAs and indicating that increased intron sizes contributed to mitochondrial genome expansion in cucumber. Mitochondrial genes atp6 and atp9 are physically close to each other and cotranscribed. These physical contigs will be useful for eventual sequencing of the cucumber mitochondrial DNA, which can be exploited to more efficiently screen for unique rearrangements affecting mitochondrial gene expression.
Collapse
Affiliation(s)
- Grzegorz Bartoszewski
- Department of Plant Genetics, Breeding, and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of the Life Sciences, ul. Nowoursynowska 159, 02-776 Warsaw, Poland
- Department of Genetics, Plant Breeding, and Seed Production, Agricultural University of Krakow, al. 29 Listopada 54, 31-425 Krakow, Poland
- Keygene N.V, Agro Business Park 90, 6708 PW Wageningen, The Netherlands
- US Department of Agriculture, Department of Horticulture, Agricultural Research Service, Vegetable Crops Unit, 1575 Linden Drive, University of Wisconsin, Madison, WI 53706, USA
| | - Piotr Gawronski
- Department of Plant Genetics, Breeding, and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of the Life Sciences, ul. Nowoursynowska 159, 02-776 Warsaw, Poland
- Department of Genetics, Plant Breeding, and Seed Production, Agricultural University of Krakow, al. 29 Listopada 54, 31-425 Krakow, Poland
- Keygene N.V, Agro Business Park 90, 6708 PW Wageningen, The Netherlands
- US Department of Agriculture, Department of Horticulture, Agricultural Research Service, Vegetable Crops Unit, 1575 Linden Drive, University of Wisconsin, Madison, WI 53706, USA
| | - Marek Szklarczyk
- Department of Plant Genetics, Breeding, and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of the Life Sciences, ul. Nowoursynowska 159, 02-776 Warsaw, Poland
- Department of Genetics, Plant Breeding, and Seed Production, Agricultural University of Krakow, al. 29 Listopada 54, 31-425 Krakow, Poland
- Keygene N.V, Agro Business Park 90, 6708 PW Wageningen, The Netherlands
- US Department of Agriculture, Department of Horticulture, Agricultural Research Service, Vegetable Crops Unit, 1575 Linden Drive, University of Wisconsin, Madison, WI 53706, USA
| | - Henk Verbakel
- Department of Plant Genetics, Breeding, and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of the Life Sciences, ul. Nowoursynowska 159, 02-776 Warsaw, Poland
- Department of Genetics, Plant Breeding, and Seed Production, Agricultural University of Krakow, al. 29 Listopada 54, 31-425 Krakow, Poland
- Keygene N.V, Agro Business Park 90, 6708 PW Wageningen, The Netherlands
- US Department of Agriculture, Department of Horticulture, Agricultural Research Service, Vegetable Crops Unit, 1575 Linden Drive, University of Wisconsin, Madison, WI 53706, USA
| | - Michael J. Havey
- Department of Plant Genetics, Breeding, and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw University of the Life Sciences, ul. Nowoursynowska 159, 02-776 Warsaw, Poland
- Department of Genetics, Plant Breeding, and Seed Production, Agricultural University of Krakow, al. 29 Listopada 54, 31-425 Krakow, Poland
- Keygene N.V, Agro Business Park 90, 6708 PW Wageningen, The Netherlands
- US Department of Agriculture, Department of Horticulture, Agricultural Research Service, Vegetable Crops Unit, 1575 Linden Drive, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
14
|
Al-Faifi S, Meyer JDF, Garcia-Mas J, Monforte AJ, Havey MJ. Exploiting synteny in Cucumis for mapping of Psm: a unique locus controlling paternal mitochondrial sorting. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 117:523-9. [PMID: 18521565 DOI: 10.1007/s00122-008-0796-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 05/05/2008] [Indexed: 05/06/2023]
Abstract
The three genomes of cucumber show different modes of transmission, nuclear DNA bi-parentally, plastid DNA maternally, and mitochondrial DNA paternally. The mosaic (MSC) phenotype of cucumber is associated with mitochondrial DNA rearrangements and is a valuable tool for studying mitochondrial transmission. A nuclear locus (Psm) has been identified in cucumber that controls sorting of paternally transmitted mitochondrial DNA. Comparative sequencing and mapping of cucumber and melon revealed extensive synteny on the recombinational and sequence levels near Psm and placed this locus on linkage group R of cucumber and G10 of melon. However, the cucumber genomic region near Psm was surprisingly monomorphic with an average of one SNP every 25 kb, requiring that a family from a more diverse cross is produced for fine mapping and eventual cloning of Psm. The cucumber ortholog of Arabidopsis mismatch repair (MSH1) was cloned and it segregated independently of Psm, revealing that this candidate gene is not Psm.
Collapse
Affiliation(s)
- Sulieman Al-Faifi
- Department of Horticulture, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
15
|
Bartoszewski G, Havey MJ, Ziółkowska A, Długosz M, Malepszy S. The selection of mosaic (MSC) phenotype after passage of cucumber (Cucumis sativus L.) through cell culture — a method to obtain plant mitochondrial mutants. J Appl Genet 2007; 48:1-9. [PMID: 17272856 DOI: 10.1007/bf03194652] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mosaic (MSC) mutants of cucumber (Cucumis sativus L.) appear after passage through cell cultures. The MSC phenotype shows paternal transmission and is associated with mitochondrial DNA rearrangements. This review describes the origins and phenotypes of independently produced MSC mutants of cucumber, including current knowledge on their mitochondrial DNA rearrangements, and similarities of MSC with other plant mitochondrial mutants. Finally we propose that passage of cucumber through cell culture can be used as a unique and efficient method to generate mitochondrial mutants of a higher plant in a highly homozygous nuclear background.
Collapse
Affiliation(s)
- Grzegorz Bartoszewski
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture and Landscape Architecture, Warsaw Agricultural University, Nowoursynowska 159, 02-776 Warszawa, Poland.
| | | | | | | | | |
Collapse
|
16
|
Kmiec B, Woloszynska M, Janska H. Heteroplasmy as a common state of mitochondrial genetic information in plants and animals. Curr Genet 2006; 50:149-59. [PMID: 16763846 DOI: 10.1007/s00294-006-0082-1] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 05/11/2006] [Accepted: 05/13/2006] [Indexed: 10/24/2022]
Abstract
Plant and animal mitochondrial genomes, although quite distinct in size, structure, expression and evolutionary dynamics both may exhibit the state of heteroplasmy--the presence of more than one type of mitochondrial genome in an organism. This review is focused on heteroplasmy in plants, but we also highlight the most striking similarities and differences between plant and animal heteroplasmy. First we summarize the information on heteroplasmy generation and methods of its detection. Then we describe examples of quantitative changes in heteroplasmic populations of mitochondrial DNA (mtDNA) and consequences of such events. We also summarize the current knowledge about transmission and somatic segregation of heteroplasmy in plants and animals. Finally, factors which influence the stoichiometry of heteroplasmic mtDNA variants are discussed. Despite the apparent differences between the plant and animal heteroplasmy, the observed similarities allow one to conclude that this condition must play an important role in the mitochondrial biology of living organisms.
Collapse
Affiliation(s)
- Beata Kmiec
- Institute of Biochemistry and Molecular Biology, Department of Cell Molecular Biology, University of Wroclaw, ul Przybyszewskiego 63/77, Wroclaw, Poland
| | | | | |
Collapse
|