1
|
Ouellet-Fagg CL, Easton AA, Parsons KJ, Danzmann RG, Ferguson MM. Complex and Dynamic Gene-by-Age and Gene-by-Environment Interactions Underlie Functional Morphological Variation in Adaptive Divergence in Arctic Charr (Salvelinus alpinus). Evol Dev 2025; 27:e70000. [PMID: 39723482 DOI: 10.1111/ede.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/20/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024]
Abstract
The evolution of adaptive phenotypic divergence requires heritable genetic variation. However, it is underappreciated that trait heritability is molded by developmental processes interacting with the environment. We hypothesized that the genetic architecture of divergent functional traits was dependent on age and foraging environment. Thus, we induced plasticity in full-sib families of Arctic charr (Salvelinus alpinus) morphs from two Icelandic lakes by mimicking prey variation in the wild. We characterized variation in body shape and size at two ages and investigated their genetic architecture with quantitative trait locus (QTL) analysis. Age had a greater effect on body shape than diet in most families, suggesting that development strongly influences phenotypic variation available for selection. Consistent with our hypothesis, multiple QTL were detected for all traits and their location depended on age and diet. Many of the genome-wide QTL were located within a subset of duplicated chromosomal regions suggesting that ancestral whole genome duplication events have played a role in the genetic control of functional morphological variation in the species. Moreover, the detection of two body shape QTL after controlling for the effects of age provides additional evidence for genetic variation in the plastic response of morphological traits to environmental variation. Thus, functional morphological traits involved in phenotypic divergence are molded by complex genetic interactions with development and environment.
Collapse
Affiliation(s)
| | - Anne A Easton
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
- Ontario Aquaculture Research Centre, Office of Research, University of Guelph, Elora, Ontario, Canada
| | - Kevin J Parsons
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, Scotland
| | - Roy G Danzmann
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Moira M Ferguson
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
2
|
Ouellet-Fagg CL, Easton AA, Parsons KJ, Nugent CM, Danzmann RG, Ferguson MM. The evolution of genomic organization through chromosomal rearrangements in Arctic charr ( Salvelinus alpinus). Genome 2025; 68:1-19. [PMID: 40338075 DOI: 10.1139/gen-2024-0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Chromosomal rearrangements (CRs) can play an important role in evolutionary diversification by preserving linkage among favourable alleles through reduced recombination and/or by reducing hybrid fitness due to genomic incompatibilities. Our goal was to determine to what extent CRs contribute to known patterns of genetic variation in Arctic charr (Salvelinus alpinus). To address this goal, we compared genetic linkage maps to identify whole arm CRs and smaller scale structural variants (SVs) such as translocations/transpositions and inversions found in groups of populations that reflect the temporal sequence of geographic isolation events. If CRs contribute to genetic differentiation, we expected that CRs would be specific to glacial lineages, geographic clusters of populations within lineages, and sympatric morphs. We detected fusions and fissions of whole chromosome arms and SV involving translocations/transpositions of the sex-determining gene (sdY) and inversions. Several CRs were shared across populations from the Arctic and Atlantic glacial lineages, Canadian and Icelandic populations within the Atlantic lineage, between two Icelandic populations and sympatric morphs within Icelandic populations, suggesting that their origin predates geographic isolation in glacial refugia. Other CRs were specific to single populations, which suggests a more recent origin of these variants in refugia, during post-glacial recolonization and/or in contemporary populations. Thus, CRs contribute relatively little to known patterns of genetic differentiation at different geographic scales but represent a pool of standing genetic variation for evolution.
Collapse
Affiliation(s)
| | - Anne A Easton
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Kevin J Parsons
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, Scotland
| | - Cameron M Nugent
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Roy G Danzmann
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Moira M Ferguson
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
3
|
Li H, Durbin R. Genome assembly in the telomere-to-telomere era. Nat Rev Genet 2024; 25:658-670. [PMID: 38649458 DOI: 10.1038/s41576-024-00718-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 04/25/2024]
Abstract
Genome sequences largely determine the biology and encode the history of an organism, and de novo assembly - the process of reconstructing the genome sequence of an organism from sequencing reads - has been a central problem in bioinformatics for four decades. Until recently, genomes were typically assembled into fragments of a few megabases at best, but now technological advances in long-read sequencing enable the near-complete assembly of each chromosome - also known as telomere-to-telomere assembly - for many organisms. Here, we review recent progress on assembly algorithms and protocols, with a focus on how to derive near-telomere-to-telomere assemblies. We also discuss the additional developments that will be required to resolve remaining assembly gaps and to assemble non-diploid genomes.
Collapse
Affiliation(s)
- Heng Li
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| | - Richard Durbin
- Department of Genetics, Cambridge University, Cambridge, UK.
| |
Collapse
|
4
|
Phillips AR. Variant calling in polyploids for population and quantitative genetics. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11607. [PMID: 39184203 PMCID: PMC11342233 DOI: 10.1002/aps3.11607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/03/2024] [Accepted: 04/10/2024] [Indexed: 08/27/2024]
Abstract
Advancements in genome assembly and sequencing technology have made whole genome sequence (WGS) data and reference genomes accessible to study polyploid species. Compared to popular reduced-representation sequencing approaches, the genome-wide coverage and greater marker density provided by WGS data can greatly improve our understanding of polyploid species and polyploid biology. However, biological features that make polyploid species interesting also pose challenges in read mapping, variant identification, and genotype estimation. Accounting for characteristics in variant calling like allelic dosage uncertainty, homology between subgenomes, and variance in chromosome inheritance mode can reduce errors. Here, I discuss the challenges of variant calling in polyploid WGS data and discuss where potential solutions can be integrated into a standard variant calling pipeline.
Collapse
Affiliation(s)
- Alyssa R. Phillips
- Department of Evolution and EcologyUniversity of California, DavisDavis95616CaliforniaUSA
| |
Collapse
|
5
|
Tengstedt ANB, Liu S, Jacobsen MW, Gundlund C, Møller PR, Berg S, Bekkevold D, Hansen MM. Genomic insights on conservation priorities for North Sea houting and European lake whitefish (Coregonus spp.). Mol Ecol 2024:e17367. [PMID: 38686435 DOI: 10.1111/mec.17367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
Population genomics analysis holds great potential for informing conservation of endangered populations. We focused on a controversial case of European whitefish (Coregonus spp.) populations. The endangered North Sea houting is the only coregonid fish that tolerates oceanic salinities and was previously considered a species (C. oxyrhinchus) distinct from European lake whitefish (C. lavaretus). However, no firm evidence for genetic-based salinity adaptation has been available. Also, studies based on microsatellite and mitogenome data suggested surprisingly recent divergence (c. 2500 years bp) between houting and lake whitefish. These data types furthermore have provided no evidence for possible inbreeding. Finally, a controversial taxonomic revision recently classified all whitefish in the region as C. maraena, calling conservation priorities of houting into question. We used whole-genome and ddRAD sequencing to analyse six lake whitefish populations and the only extant indigenous houting population. Demographic inference indicated post-glacial expansion and divergence between lake whitefish and houting occurring not long after the Last Glaciation, implying deeper population histories than previous analyses. Runs of homozygosity analysis suggested not only high inbreeding (FROH up to 30.6%) in some freshwater populations but also FROH up to 10.6% in the houting prompting conservation concerns. Finally, outlier scans provided evidence for adaptation to high salinities in the houting. Applying a framework for defining conservation units based on current and historical reproductive isolation and adaptive divergence led us to recommend that the houting be treated as a separate conservation unit regardless of species status. In total, the results underscore the potential of genomics to inform conservation practices, in this case clarifying conservation units and highlighting populations of concern.
Collapse
Affiliation(s)
| | - Shenglin Liu
- Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Magnus W Jacobsen
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | | | - Peter Rask Møller
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Søren Berg
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Dorte Bekkevold
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | | |
Collapse
|
6
|
Brekke C, Johnston SE, Knutsen TM, Berg P. Genetic architecture of individual meiotic crossover rate and distribution in Atlantic Salmon. Sci Rep 2023; 13:20481. [PMID: 37993527 PMCID: PMC10665409 DOI: 10.1038/s41598-023-47208-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023] Open
Abstract
Meiotic recombination through chromosomal crossovers ensures proper segregation of homologous chromosomes during meiosis, while also breaking down linkage disequilibrium and shuffling alleles at loci located on the same chromosome. Rates of recombination can vary between species, but also between and within individuals, sex and chromosomes within species. Indeed, the Atlantic salmon genome is known to have clear sex differences in recombination with female biased heterochiasmy and markedly different landscapes of crossovers between males and females. In male meiosis, crossovers occur strictly in the telomeric regions, whereas in female meiosis crossovers tend to occur closer to the centromeres. However, little is known about the genetic control of these patterns and how this differs at the individual level. Here, we investigate genetic variation in individual measures of recombination in > 5000 large full-sib families of a Norwegian Atlantic salmon breeding population with high-density SNP genotypes. We show that females had 1.6 × higher crossover counts (CC) than males, with autosomal linkage maps spanning a total of 2174 cM in females and 1483 cM in males. However, because of the extreme telomeric bias of male crossovers, female recombination is much more important for generation of new haplotypes with 8 × higher intra-chromosomal genetic shuffling than males. CC was heritable in females (h2 = 0.11) and males (h2 = 0.10), and shuffling was also heritable in both sex but with a lower heritability in females (h2 = 0.06) than in males (h2 = 0.11). Inter-sex genetic correlations for both traits were close to zero, suggesting that rates and distribution of crossovers are genetically distinct traits in males and females, and that there is a potential for independent genetic change in both sexes in the Atlantic Salmon. Together, these findings give novel insights into the genetic architecture of recombination in salmonids and contribute to a better understanding of how rates and distribution of recombination may evolve in eukaryotes more broadly.
Collapse
Affiliation(s)
- Cathrine Brekke
- Institute of Ecology and Evolution, School of Biology, University of Edinburgh, Edinburgh, EH9 3FL, UK.
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Post Box 5003, 1433, Ås, Norway.
| | - Susan E Johnston
- Institute of Ecology and Evolution, School of Biology, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | | | - Peer Berg
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Post Box 5003, 1433, Ås, Norway
| |
Collapse
|
7
|
Gao G, Waldbieser GC, Youngblood RC, Zhao D, Pietrak MR, Allen MS, Stannard JA, Buchanan JT, Long RL, Milligan M, Burr G, Mejía-Guerra K, Sheehan MJ, Scheffler BE, Rexroad CE, Peterson BC, Palti Y. The generation of the first chromosome-level de novo genome assembly and the development and validation of a 50K SNP array for the St. John River aquaculture strain of North American Atlantic salmon. G3 (BETHESDA, MD.) 2023; 13:jkad138. [PMID: 37335943 PMCID: PMC10468304 DOI: 10.1093/g3journal/jkad138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023]
Abstract
Atlantic salmon (Salmo salar) in Northeastern US and Eastern Canada has high economic value for the sport fishing and aquaculture industries. Large differences exist between the genomes of Atlantic salmon of European origin and North American (N.A.) origin. Given the genetic and genomic differences between the 2 lineages, it is crucial to develop unique genomic resources for N.A. Atlantic salmon. Here, we describe the resources that we recently developed for genomic and genetic research in N.A. Atlantic salmon aquaculture. Firstly, a new single nucleotide polymorphism (SNP) database for N.A. Atlantic salmon consisting of 3.1 million putative SNPs was generated using data from whole-genome resequencing of 80 N.A. Atlantic salmon individuals. Secondly, a high-density 50K SNP array enriched for the genic regions of the genome and containing 3 sex determination and 61 putative continent of origin markers was developed and validated. Thirdly, a genetic map composed of 27 linkage groups with 36K SNP markers was generated from 2,512 individuals in 141 full-sib families. Finally, a chromosome-level de novo genome assembly from a male N.A. Atlantic salmon from the St. John River aquaculture strain was generated using PacBio long reads. Information from Hi-C proximity ligation sequences and Bionano optical mapping was used to concatenate the contigs into scaffolds. The assembly contains 1,755 scaffolds and only 1,253 gaps, with a total length of 2.83 Gb and N50 of 17.2 Mb. A BUSCO analysis detected 96.2% of the conserved Actinopterygii genes in the assembly, and the genetic linkage information was used to guide the formation of 27 chromosome sequences. Comparative analysis with the reference genome assembly of the European Atlantic salmon confirmed that the karyotype differences between the 2 lineages are caused by a fission in chromosome Ssa01 and 3 chromosome fusions including the p arm of chromosome Ssa01 with Ssa23, Ssa08 with Ssa29, and Ssa26 with Ssa28. The genomic resources we have generated for Atlantic salmon provide a crucial boost for genetic research and for management of farmed and wild populations in this highly valued species.
Collapse
Affiliation(s)
- Guangtu Gao
- USDA-ARS National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| | - Geoffrey C Waldbieser
- USDA-ARS Warmwater Aquaculture Research Unit, 141 Experimental Station Road, Stoneville, MS 38776, USA
| | - Ramey C Youngblood
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Dongyan Zhao
- Breeding Insight, 119 CALS Surge Facility, Cornell University, 525 Tower Road, Ithaca, NY 14853, USA
| | - Michael R Pietrak
- USDA-ARS National Cold Water Marine Aquaculture Center, 25 Salmon Farm Road, Franklin, ME 04634, USA
| | - Melissa S Allen
- Center for Aquaculture Technologies, 8395 Camino Santa Fe, San Diego, CA 92121, USA
| | - Jason A Stannard
- Center for Aquaculture Technologies, 8395 Camino Santa Fe, San Diego, CA 92121, USA
| | - John T Buchanan
- Center for Aquaculture Technologies, 8395 Camino Santa Fe, San Diego, CA 92121, USA
| | - Roseanna L Long
- USDA-ARS National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| | - Melissa Milligan
- USDA-ARS National Cold Water Marine Aquaculture Center, 25 Salmon Farm Road, Franklin, ME 04634, USA
| | - Gary Burr
- USDA-ARS National Cold Water Marine Aquaculture Center, 25 Salmon Farm Road, Franklin, ME 04634, USA
| | - Katherine Mejía-Guerra
- Breeding Insight, 119 CALS Surge Facility, Cornell University, 525 Tower Road, Ithaca, NY 14853, USA
| | - Moira J Sheehan
- Breeding Insight, 119 CALS Surge Facility, Cornell University, 525 Tower Road, Ithaca, NY 14853, USA
| | - Brian E Scheffler
- USDA-ARS Genomics and Bioinformatics Research Unit, 141 Experimental Station Road, Stoneville, MS 38776, USA
| | - Caird E Rexroad
- USDA-ARS Office of National Programs, George Washington Carver Center Room 4-2106, 5601 Sunnyside Avenue, Beltsville, MD 20705, USA
| | - Brian C Peterson
- USDA-ARS National Cold Water Marine Aquaculture Center, 25 Salmon Farm Road, Franklin, ME 04634, USA
| | - Yniv Palti
- USDA-ARS National Center for Cool and Cold Water Aquaculture, 11861 Leetown Road, Kearneysville, WV 25430, USA
| |
Collapse
|
8
|
Allendorf FW, Ryman N, Waples RS. In Memoriam: Fred M. Utter, a founder of fisheries genetics. J Hered 2023; 114:580-584. [PMID: 37115729 DOI: 10.1093/jhered/esad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 04/29/2023] Open
Abstract
Fred Utter died in his sleep during the night of 5 March 2023 at the age of 91. In this paper, 3 friends and colleagues of Fred describe the important role that his genetics research has played in the management and conservation of fish populations.
Collapse
Affiliation(s)
- Fred W Allendorf
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Nils Ryman
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Robin S Waples
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States
| |
Collapse
|
9
|
Rondeau EB, Christensen KA, Johnson HA, Sakhrani D, Biagi CA, Wetklo M, Despins CA, Leggatt RA, Minkley DR, Withler RE, Beacham TD, Koop BF, Devlin RH. Insights from a chum salmon (Oncorhynchus keta) genome assembly regarding whole-genome duplication and nucleotide variation influencing gene function. G3 (BETHESDA, MD.) 2023; 13:jkad127. [PMID: 37293843 PMCID: PMC10411575 DOI: 10.1093/g3journal/jkad127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/30/2023] [Accepted: 06/04/2023] [Indexed: 06/10/2023]
Abstract
Chum salmon are ecologically important to Pacific Ocean ecosystems and commercially important to fisheries. To improve the genetic resources available for this species, we sequenced and assembled the genome of a male chum salmon using Oxford Nanopore read technology and the Flye genome assembly software (contig N50: ∼2 Mbp, complete BUSCOs: ∼98.1%). We also resequenced the genomes of 59 chum salmon from hatchery sources to better characterize the genome assembly and the diversity of nucleotide variants impacting phenotype variation. With genomic sequences from a doubled haploid individual, we were able to identify regions of the genome assembly that have been collapsed due to high sequence similarity between homeologous (duplicated) chromosomes. The homeologous chromosomes are relics of an ancient salmonid-specific genome duplication. These regions were enriched with genes whose functions are related to the immune system and responses to toxins. From analyzing nucleotide variant annotations of the resequenced genomes, we were also able to identify genes that have increased levels of variants thought to moderately impact gene function. Genes related to the immune system and the detection of chemical stimuli (olfaction) had increased levels of these variants based on a gene ontology enrichment analysis. The tandem organization of many of the enriched genes raises the question of why they have this organization.
Collapse
Affiliation(s)
- Eric B Rondeau
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2, Canada
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC V9T 6N7, Canada
| | - Kris A Christensen
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2, Canada
| | - Hollie A Johnson
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2, Canada
| | - Dionne Sakhrani
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada
| | - Carlo A Biagi
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada
| | - Mike Wetklo
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC V9T 6N7, Canada
| | - Cody A Despins
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2, Canada
| | - Rosalind A Leggatt
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada
| | - David R Minkley
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2, Canada
| | - Ruth E Withler
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC V9T 6N7, Canada
| | - Terry D Beacham
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC V9T 6N7, Canada
| | - Ben F Koop
- Department of Biology, University of Victoria, 3800 Finnerty Road, Victoria, BC V8W 2Y2, Canada
| | - Robert H Devlin
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada
| |
Collapse
|
10
|
Deb SK, Edger PP, Pires JC, McKain MR. Patterns, mechanisms, and consequences of homoeologous exchange in allopolyploid angiosperms: a genomic and epigenomic perspective. THE NEW PHYTOLOGIST 2023; 238:2284-2304. [PMID: 37010081 DOI: 10.1111/nph.18927] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 03/16/2023] [Indexed: 05/19/2023]
Abstract
Allopolyploids result from hybridization between different evolutionary lineages coupled with genome doubling. Homoeologous chromosomes (chromosomes with common shared ancestry) may undergo recombination immediately after allopolyploid formation and continue over successive generations. The outcome of this meiotic pairing behavior is dynamic and complex. Homoeologous exchanges (HEs) may lead to the formation of unbalanced gametes, reduced fertility, and selective disadvantage. By contrast, HEs could act as sources of novel evolutionary substrates, shifting the relative dosage of parental gene copies, generating novel phenotypic diversity, and helping the establishment of neo-allopolyploids. However, HE patterns vary among lineages, across generations, and even within individual genomes and chromosomes. The causes and consequences of this variation are not fully understood, though interest in this evolutionary phenomenon has increased in the last decade. Recent technological advances show promise in uncovering the mechanistic basis of HEs. Here, we describe recent observations of the common patterns among allopolyploid angiosperm lineages, underlying genomic and epigenomic features, and consequences of HEs. We identify critical research gaps and discuss future directions with far-reaching implications in understanding allopolyploid evolution and applying them to the development of important phenotypic traits of polyploid crops.
Collapse
Affiliation(s)
- Sontosh K Deb
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
- Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, 48823, USA
- Genetics and Genome Sciences Program, Michigan State University, East Lansing, MI, 48823, USA
| | - J Chris Pires
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Michael R McKain
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| |
Collapse
|
11
|
Griswold CK, Asif S. Meiosis at three loci in autotetraploids: Probabilities of gamete modes and genotypes without and with preferential cross-over formation. Heredity (Edinb) 2023; 130:223-235. [PMID: 36739333 PMCID: PMC10076307 DOI: 10.1038/s41437-023-00595-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/06/2023] Open
Abstract
A long-standing goal in the field of polyploid biology has been the derivation of mathematical models of gamete mode formation. These models form the basis of statistical inference and evolutionary theory. Here, we present 3-locus models of gamete mode formation in autotetraploids without and with preferential cross-over formation. The three loci are assumed to occur on one arm of the same chromosome. For preferential cross-over formation, one of the three loci affects the tendency for sets of sister chromatids to pair and therefore affects rates of recombination. The models are derived such that the process of double reduction is a function of rates of synaptic partner switches and recombination, as opposed to being independent of these processes. We assume potentially one synaptic partner switch per meiosis. We also assume the coefficient of coincidence is one, such that cross-over events are independent, given a set of cross-over rates. Illustrative cases are examined demonstrating differences in the gamete mode probabilities without and with preferential cross-over formation. Lastly, we explore the accuracy of maximum likelihood estimates of the probability of synaptic partner switches and preferential cross-over formation when the locus controlling preference is at a proximal, middle, or distal location on the chromosome arm. All Supplementary Information is available at https://github.com/ckgriswold/3-locus-autotetraploid-meiosis .
Collapse
Affiliation(s)
- Cortland K Griswold
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Saira Asif
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
12
|
Mérot C, Stenløkk KSR, Venney C, Laporte M, Moser M, Normandeau E, Árnyasi M, Kent M, Rougeux C, Flynn JM, Lien S, Bernatchez L. Genome assembly, structural variants, and genetic differentiation between lake whitefish young species pairs (Coregonus sp.) with long and short reads. Mol Ecol 2023; 32:1458-1477. [PMID: 35416336 DOI: 10.1111/mec.16468] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 11/26/2022]
Abstract
Nascent pairs of ecologically differentiated species offer an opportunity to get a better glimpse at the genetic architecture of speciation. Of particular interest is our recent ability to consider a wider range of genomic variants, not only single-nucleotide polymorphisms (SNPs), thanks to long-read sequencing technology. We can now identify structural variants (SVs) such as insertions, deletions and other rearrangements, allowing further insights into the genetic architecture of speciation and how different types of variants are involved in species differentiation. Here, we investigated genomic patterns of differentiation between sympatric species pairs (Dwarf and Normal) belonging to the lake whitefish (Coregonus clupeaformis) species complex. We assembled the first reference genomes for both C. clupeaformis sp. Normal and C. clupeaformis sp. Dwarf, annotated the transposable elements and analysed the genomes in the light of related coregonid species. Next, we used a combination of long- and short-read sequencing to characterize SVs and genotype them at the population scale using genome-graph approaches, showing that SVs cover five times more of the genome than SNPs. We then integrated both SNPs and SVs to investigate the genetic architecture of species differentiation in two different lakes and highlighted an excess of shared outliers of differentiation. In particular, a large fraction of SVs differentiating the two species correspond to insertions or deletions of transposable elements (TEs), suggesting that TE accumulation may represent a key component of genetic divergence between the Dwarf and Normal species. Together, our results suggest that SVs may play an important role in speciation and that, by combining second- and third-generation sequencing, we now have the ability to integrate SVs into speciation genomics.
Collapse
Affiliation(s)
- Claire Mérot
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada.,UMR 6553 Ecobio, OSUR, CNRS, Université de Rennes, Rennes, France
| | - Kristina S R Stenløkk
- Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Clare Venney
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| | - Martin Laporte
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada.,Ministère des Forêts, de la Faune et des Parcs (MFFP) du Québec, Québec, Québec, Canada
| | - Michel Moser
- Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Eric Normandeau
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| | - Mariann Árnyasi
- Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Matthew Kent
- Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Clément Rougeux
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| | - Jullien M Flynn
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Sigbjørn Lien
- Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Louis Bernatchez
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| |
Collapse
|
13
|
Rougemont Q, Xuereb A, Dallaire X, Moore JS, Normandeau E, Perreault-Payette A, Bougas B, Rondeau EB, Withler RE, Van Doornik DM, Crane PA, Naish KA, Garza JC, Beacham TD, Koop BF, Bernatchez L. Long-distance migration is a major factor driving local adaptation at continental scale in Coho salmon. Mol Ecol 2023; 32:542-559. [PMID: 35000273 DOI: 10.1111/mec.16339] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/19/2021] [Accepted: 12/23/2021] [Indexed: 01/25/2023]
Abstract
Inferring the genomic basis of local adaptation is a long-standing goal of evolutionary biology. Beyond its fundamental evolutionary implications, such knowledge can guide conservation decisions for populations of conservation and management concern. Here, we investigated the genomic basis of local adaptation in the Coho salmon (Oncorhynchus kisutch) across its entire North American range. We hypothesized that extensive spatial variation in environmental conditions and the species' homing behaviour may promote the establishment of local adaptation. We genotyped 7829 individuals representing 217 sampling locations at more than 100,000 high-quality RADseq loci to investigate how recombination might affect the detection of loci putatively under selection and took advantage of the precise description of the demographic history of the species from our previous work to draw accurate population genomic inferences about local adaptation. The results indicated that genetic differentiation scans and genetic-environment association analyses were both significantly affected by variation in recombination rate as low recombination regions displayed an increased number of outliers. By taking these confounding factors into consideration, we revealed that migration distance was the primary selective factor driving local adaptation and partial parallel divergence among distant populations. Moreover, we identified several candidate single nucleotide polymorphisms associated with long-distance migration and altitude including a gene known to be involved in adaptation to altitude in other species. The evolutionary implications of our findings are discussed along with conservation applications.
Collapse
Affiliation(s)
- Quentin Rougemont
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada.,CEFE, Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175, CNRS, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier, Montpellier, France
| | - Amanda Xuereb
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| | - Xavier Dallaire
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| | - Jean-Sébastien Moore
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| | - Eric Normandeau
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| | - Alysse Perreault-Payette
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| | - Bérénice Bougas
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| | - Eric B Rondeau
- Department of Fisheries and Ocean, Pacific Biological Station, Nanaimo, British Columbia, Canada.,Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Ruth E Withler
- Department of Fisheries and Ocean, Pacific Biological Station, Nanaimo, British Columbia, Canada
| | - Donald M Van Doornik
- National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northwest Fisheries Science Center, Manchester Research Station, Port Orchard, Washington, USA
| | - Penelope A Crane
- Conservation Genetics Laboratory, U.S. Fish and Wildlife Service, Anchorage, Alaska, USA
| | - Kerry A Naish
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| | - John Carlos Garza
- Department of Ocean Sciences and Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, California, USA
| | - Terry D Beacham
- Department of Fisheries and Ocean, Pacific Biological Station, Nanaimo, British Columbia, Canada
| | - Ben F Koop
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Louis Bernatchez
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec, Canada
| |
Collapse
|
14
|
Dysin AP, Shcherbakov YS, Nikolaeva OA, Terletskii VP, Tyshchenko VI, Dementieva NV. Salmonidae Genome: Features, Evolutionary and Phylogenetic Characteristics. Genes (Basel) 2022; 13:genes13122221. [PMID: 36553488 PMCID: PMC9778375 DOI: 10.3390/genes13122221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/19/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The salmon family is one of the most iconic and economically important fish families, primarily possessing meat of excellent taste as well as irreplaceable nutritional and biological value. One of the most common and, therefore, highly significant members of this family, the Atlantic salmon (Salmo salar L.), was not without reason one of the first fish species for which a high-quality reference genome assembly was produced and published. Genomic advancements are becoming increasingly essential in both the genetic enhancement of farmed salmon and the conservation of wild salmon stocks. The salmon genome has also played a significant role in influencing our comprehension of the evolutionary and functional ramifications of the ancestral whole-genome duplication event shared by all Salmonidae species. Here we provide an overview of the current state of research on the genomics and phylogeny of the various most studied subfamilies, genera, and individual salmonid species, focusing on those studies that aim to advance our understanding of salmonid ecology, physiology, and evolution, particularly for the purpose of improving aquaculture production. This review should make potential researchers pay attention to the current state of research on the salmonid genome, which should potentially attract interest in this important problem, and hence the application of new technologies (such as genome editing) in uncovering the genetic and evolutionary features of salmoniforms that underlie functional variation in traits of commercial and scientific importance.
Collapse
Affiliation(s)
- Artem P. Dysin
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
- Correspondence:
| | - Yuri S. Shcherbakov
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Olga A. Nikolaeva
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Valerii P. Terletskii
- All-Russian Research Veterinary Institute of Poultry Science-Branch of the Federal Scientific Center, All-Russian Research and Technological Poultry Institute (ARRVIPS), Lomonosov, 198412 St. Petersburg, Russia
| | - Valentina I. Tyshchenko
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| | - Natalia V. Dementieva
- Russian Research Institute of Farm Animal Genetics and Breeding-Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, Pushkin, 196601 St. Petersburg, Russia
| |
Collapse
|
15
|
Hao Y, Fleming J, Petterson J, Lyons E, Edger PP, Pires JC, Thorne JL, Conant GC. Convergent evolution of polyploid genomes from across the eukaryotic tree of life. G3 (BETHESDA, MD.) 2022; 12:jkac094. [PMID: 35451464 PMCID: PMC9157103 DOI: 10.1093/g3journal/jkac094] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/15/2022] [Indexed: 11/14/2022]
Abstract
By modeling the homoeologous gene losses that occurred in 50 genomes deriving from ten distinct polyploidy events, we show that the evolutionary forces acting on polyploids are remarkably similar, regardless of whether they occur in flowering plants, ciliates, fishes, or yeasts. We show that many of the events show a relative rate of duplicate gene loss before the first postpolyploidy speciation that is significantly higher than in later phases of their evolution. The relatively weak selective constraint experienced by the single-copy genes these losses produced leads us to suggest that most of the purely selectively neutral duplicate gene losses occur in the immediate postpolyploid period. Nearly all of the events show strong evidence of biases in the duplicate losses, consistent with them being allopolyploidies, with 2 distinct progenitors contributing to the modern species. We also find ongoing and extensive reciprocal gene losses (alternative losses of duplicated ancestral genes) between these genomes. With the exception of a handful of closely related taxa, all of these polyploid organisms are separated from each other by tens to thousands of reciprocal gene losses. As a result, it is very unlikely that viable diploid hybrid species could form between these taxa, since matings between such hybrids would tend to produce offspring lacking essential genes. It is, therefore, possible that the relatively high frequency of recurrent polyploidies in some lineages may be due to the ability of new polyploidies to bypass reciprocal gene loss barriers.
Collapse
Affiliation(s)
- Yue Hao
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85281, USA
| | - Jonathon Fleming
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| | - Joanna Petterson
- Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Eric Lyons
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
- Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI 48824, USA
| | - J Chris Pires
- International Plant Science Center, New York Botanical Garden, Bronx, NY 10458, USA
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Jeffrey L Thorne
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
- Program in Genetics, North Carolina State University, Raleigh, NC 27695, USA
- Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Gavin C Conant
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
- Program in Genetics, North Carolina State University, Raleigh, NC 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
16
|
Sharbrough J, Conover JL, Fernandes Gyorfy M, Grover CE, Miller ER, Wendel JF, Sloan DB. Global Patterns of Subgenome Evolution in Organelle-Targeted Genes of Six Allotetraploid Angiosperms. Mol Biol Evol 2022; 39:msac074. [PMID: 35383845 PMCID: PMC9040051 DOI: 10.1093/molbev/msac074] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Whole-genome duplications (WGDs) are a prominent process of diversification in eukaryotes. The genetic and evolutionary forces that WGD imposes on cytoplasmic genomes are not well understood, despite the central role that cytonuclear interactions play in eukaryotic function and fitness. Cellular respiration and photosynthesis depend on successful interaction between the 3,000+ nuclear-encoded proteins destined for the mitochondria or plastids and the gene products of cytoplasmic genomes in multi-subunit complexes such as OXPHOS, organellar ribosomes, Photosystems I and II, and Rubisco. Allopolyploids are thus faced with the critical task of coordinating interactions between the nuclear and cytoplasmic genes that were inherited from different species. Because the cytoplasmic genomes share a more recent history of common descent with the maternal nuclear subgenome than the paternal subgenome, evolutionary "mismatches" between the paternal subgenome and the cytoplasmic genomes in allopolyploids might lead to the accelerated rates of evolution in the paternal homoeologs of allopolyploids, either through relaxed purifying selection or strong directional selection to rectify these mismatches. We report evidence from six independently formed allotetraploids that the subgenomes exhibit unequal rates of protein-sequence evolution, but we found no evidence that cytonuclear incompatibilities result in altered evolutionary trajectories of the paternal homoeologs of organelle-targeted genes. The analyses of gene content revealed mixed evidence for whether the organelle-targeted genes are lost more rapidly than the non-organelle-targeted genes. Together, these global analyses provide insights into the complex evolutionary dynamics of allopolyploids, showing that the allopolyploid subgenomes have separate evolutionary trajectories despite sharing the same nucleus, generation time, and ecological context.
Collapse
Affiliation(s)
- Joel Sharbrough
- Department of Biology, Colorado State University, Fort Collins, CO, USA
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro, NM, USA
| | - Justin L. Conover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | | | - Corrinne E. Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Emma R. Miller
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
17
|
Gundappa MK, To TH, Grønvold L, Martin SAM, Lien S, Geist J, Hazlerigg D, Sandve SR, Macqueen DJ. Genome-Wide Reconstruction of Rediploidization Following Autopolyploidization across One Hundred Million Years of Salmonid Evolution. Mol Biol Evol 2022; 39:msab310. [PMID: 34718723 PMCID: PMC8760942 DOI: 10.1093/molbev/msab310] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The long-term evolutionary impacts of whole-genome duplication (WGD) are strongly influenced by the ensuing rediploidization process. Following autopolyploidization, rediploidization involves a transition from tetraploid to diploid meiotic pairing, allowing duplicated genes (ohnologs) to diverge genetically and functionally. Our understanding of autopolyploid rediploidization has been informed by a WGD event ancestral to salmonid fishes, where large genomic regions are characterized by temporally delayed rediploidization, allowing lineage-specific ohnolog sequence divergence in the major salmonid clades. Here, we investigate the long-term outcomes of autopolyploid rediploidization at genome-wide resolution, exploiting a recent "explosion" of salmonid genome assemblies, including a new genome sequence for the huchen (Hucho hucho). We developed a genome alignment approach to capture duplicated regions across multiple species, allowing us to create 121,864 phylogenetic trees describing genome-wide ohnolog divergence across salmonid evolution. Using molecular clock analysis, we show that 61% of the ancestral salmonid genome experienced an initial "wave" of rediploidization in the late Cretaceous (85-106 Ma). This was followed by a period of relative genomic stasis lasting 17-39 My, where much of the genome remained tetraploid. A second rediploidization wave began in the early Eocene and proceeded alongside species diversification, generating predictable patterns of lineage-specific ohnolog divergence, scaling in complexity with the number of speciation events. Using gene set enrichment, gene expression, and codon-based selection analyses, we provide insights into potential functional outcomes of delayed rediploidization. This study enhances our understanding of delayed autopolyploid rediploidization and has broad implications for future studies of WGD events.
Collapse
Affiliation(s)
- Manu Kumar Gundappa
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, United Kingdom
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Thu-Hien To
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences, Ås, Norway
| | - Lars Grønvold
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences, Ås, Norway
| | - Samuel A M Martin
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Sigbjørn Lien
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences, Ås, Norway
| | - Juergen Geist
- Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - David Hazlerigg
- Department of Arctic and Marine Biology, Faculty of BioSciences Fisheries & Economy, University of Tromsø, Norway
| | - Simen R Sandve
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences, Ås, Norway
| | - Daniel J Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
18
|
Setzke C, Wong C, Russello MA. Genome-wide assessment of kokanee salmon stock diversity, population history and hatchery representation at the northern range margin. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01418-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Takvam M, Denker E, Gharbi N, Kryvi H, Nilsen TO. Sulfate homeostasis in Atlantic salmon is associated with differential regulation of salmonid-specific paralogs in gill and kidney. Physiol Rep 2021; 9:e15059. [PMID: 34617680 PMCID: PMC8495805 DOI: 10.14814/phy2.15059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 11/27/2022] Open
Abstract
Sulfate ( SO 4 2 - ) regulation is challenging for euryhaline species as they deal with large fluctuations of SO 4 2 - during migratory transitions between freshwater (FW) and seawater (SW), while maintaining a stable plasma SO 4 2 - concentration. Here, we investigated the regulation and potential role of sulfate transporters in Atlantic salmon during the preparative switch from SO 4 2 - uptake to secretion. A preparatory increase in kidney and gill sodium/potassium ATPase (Nka) enzyme activity during smolt development indicate preparative osmoregulatory changes. In contrast to gill Nka activity a transient decrease in kidney Nka after direct SW exposure was observed and may be a result of reduced glomerular filtration rates and tubular flow through the kidney. In silico analyses revealed that Atlantic salmon genome comprises a single slc13a1 gene and additional salmonid-specific duplications of slc26a1 and slc26a6a, leading to new paralogs, namely the slc26a1a and -b, and slc26a6a1 and -a2. A kidney-specific increase in slc26a6a1 and slc26a1a during smoltification and SW transfer, suggests an important role of these sulfate transporters in the regulatory shift from absorption to secretion in the kidney. Plasma SO 4 2 - in FW smolts was 0.70 mM, followed by a transient increase to 1.14 ± 0.33 mM 2 days post-SW transfer, further decreasing to 0.69 ± 0.041 mM after 1 month in SW. Our findings support the vital role of the kidney in SO 4 2 - excretion through the upregulated slc26a6a1, the most likely secretory transport candidate in fish, which together with the slc26a1a transporter likely removes excess SO 4 2 - , and ultimately enable the regulation of normal plasma SO 4 2 - levels in SW.
Collapse
Affiliation(s)
- Marius Takvam
- NORCENorwegian Research CenterNORCE EnvironmentBergenNorway
- Department of Biological ScienceUniversity of BergenBergenNorway
| | - Elsa Denker
- Department of Biological ScienceUniversity of BergenBergenNorway
| | - Naouel Gharbi
- NORCENorwegian Research CenterNORCE EnvironmentBergenNorway
| | - Harald Kryvi
- Department of Biological ScienceUniversity of BergenBergenNorway
| | - Tom O. Nilsen
- NORCENorwegian Research CenterNORCE EnvironmentBergenNorway
- Department of Biological ScienceUniversity of BergenBergenNorway
| |
Collapse
|
20
|
Lind BM, Lu M, Obreht Vidakovic D, Singh P, Booker TR, Aitken SN, Yeaman S. Haploid, diploid, and pooled exome capture recapitulate features of biology and paralogy in two non-model tree species. Mol Ecol Resour 2021; 22:225-238. [PMID: 34270863 PMCID: PMC9292622 DOI: 10.1111/1755-0998.13474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/18/2021] [Accepted: 04/27/2021] [Indexed: 11/30/2022]
Abstract
Despite their suitability for studying evolution, many conifer species have large and repetitive giga‐genomes (16–31 Gbp) that create hurdles to producing high coverage SNP data sets that capture diversity from across the entirety of the genome. Due in part to multiple ancient whole genome duplication events, gene family expansion and subsequent evolution within Pinaceae, false diversity from the misalignment of paralog copies creates further challenges in accurately and reproducibly inferring evolutionary history from sequence data. Here, we leverage the cost‐saving benefits of pool‐seq and exome‐capture to discover SNPs in two conifer species, Douglas‐fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco, Pinaceae) and jack pine (Pinus banksiana Lamb., Pinaceae). We show, using minimal baseline filtering, that allele frequencies estimated from pooled individuals show a strong, positive correlation with those estimated by sequencing the same population as individuals (r > .948), on par with such comparisons made in model organisms. Further, we highlight the utility of haploid megagametophyte tissue for identifying sites that are probably due to misaligned paralogs. Together with additional minor filtering, we show that it is possible to remove many of the loci with large frequency estimate discrepancies between individual and pooled sequencing approaches, improving the correlation further (r > .973). Our work addresses bioinformatic challenges in non‐model organisms with large and complex genomes, highlights the use of megagametophyte tissue for the identification of paralogous artefacts, and suggests the combination of pool‐seq and exome capture to be robust for further evolutionary hypothesis testing in these systems.
Collapse
Affiliation(s)
- Brandon M Lind
- Department of Forest and Conservation Sciences, Centre for Forest Conservation Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Mengmeng Lu
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Dragana Obreht Vidakovic
- Department of Forest and Conservation Sciences, Centre for Forest Conservation Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Pooja Singh
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Tom R Booker
- Department of Forest and Conservation Sciences, Centre for Forest Conservation Genetics, University of British Columbia, Vancouver, BC, Canada.,Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Sally N Aitken
- Department of Forest and Conservation Sciences, Centre for Forest Conservation Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Sam Yeaman
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
21
|
Gao G, Magadan S, Waldbieser GC, Youngblood RC, Wheeler PA, Scheffler BE, Thorgaard GH, Palti Y. A long reads-based de-novo assembly of the genome of the Arlee homozygous line reveals chromosomal rearrangements in rainbow trout. G3-GENES GENOMES GENETICS 2021; 11:6146524. [PMID: 33616628 DOI: 10.1093/g3journal/jkab052] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/12/2021] [Indexed: 12/11/2022]
Abstract
Currently, there is still a need to improve the contiguity of the rainbow trout reference genome and to use multiple genetic backgrounds that will represent the genetic diversity of this species. The Arlee doubled haploid line was originated from a domesticated hatchery strain that was originally collected from the northern California coast. The Canu pipeline was used to generate the Arlee line genome de-novo assembly from high coverage PacBio long-reads sequence data. The assembly was further improved with Bionano optical maps and Hi-C proximity ligation sequence data to generate 32 major scaffolds corresponding to the karyotype of the Arlee line (2 N = 64). It is composed of 938 scaffolds with N50 of 39.16 Mb and a total length of 2.33 Gb, of which ∼95% was in 32 chromosome sequences with only 438 gaps between contigs and scaffolds. In rainbow trout the haploid chromosome number can vary from 29 to 32. In the Arlee karyotype the haploid chromosome number is 32 because chromosomes Omy04, 14 and 25 are divided into six acrocentric chromosomes. Additional structural variations that were identified in the Arlee genome included the major inversions on chromosomes Omy05 and Omy20 and additional 15 smaller inversions that will require further validation. This is also the first rainbow trout genome assembly that includes a scaffold with the sex-determination gene (sdY) in the chromosome Y sequence. The utility of this genome assembly is shown through the improved annotation of the duplicated genome loci that harbor the IGH genes on chromosomes Omy12 and Omy13.
Collapse
Affiliation(s)
- Guangtu Gao
- USDA-ARS National Center for Cool and Cold Water Aquaculture, Kearneysville, WV 25430, USA
| | - Susana Magadan
- Centro de Investigaciones Biomédicas, Universidade de Vigo, Campus Universitario Lagoas Marcosende, 36310 Vigo, España
| | | | - Ramey C Youngblood
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, MS 39762, USA
| | - Paul A Wheeler
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164-4236, USA
| | - Brian E Scheffler
- USDA-ARS Genomics and Bioinformatics Research Unit, Stoneville, MS 38776, USA
| | - Gary H Thorgaard
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164-4236, USA
| | - Yniv Palti
- USDA-ARS National Center for Cool and Cold Water Aquaculture, Kearneysville, WV 25430, USA
| |
Collapse
|
22
|
Comparative Genomic Analyses and a Novel Linkage Map for Cisco ( Coregonus artedi) Provide Insights into Chromosomal Evolution and Rediploidization Across Salmonids. G3-GENES GENOMES GENETICS 2020; 10:2863-2878. [PMID: 32611547 PMCID: PMC7407451 DOI: 10.1534/g3.120.401497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Whole-genome duplication (WGD) is hypothesized to be an important evolutionary mechanism that can facilitate adaptation and speciation. Genomes that exist in states of both diploidy and residual tetraploidy are of particular interest, as mechanisms that maintain the ploidy mosaic after WGD may provide important insights into evolutionary processes. The Salmonidae family exhibits residual tetraploidy, and this, combined with the evolutionary diversity formed after an ancestral autotetraploidization event, makes this group a useful study system. In this study, we generate a novel linkage map for cisco (Coregonus artedi), an economically and culturally important fish in North America and a member of the subfamily Coregoninae, which previously lacked a high-density haploid linkage map. We also conduct comparative genomic analyses to refine our understanding of chromosomal fusion/fission history across salmonids. To facilitate this comparative approach, we use the naming strategy of protokaryotype identifiers (PKs) to associate duplicated chromosomes to their putative ancestral state. The female linkage map for cisco contains 20,292 loci, 3,225 of which are likely within residually tetraploid regions. Comparative genomic analyses revealed that patterns of residual tetrasomy are generally conserved across species, although interspecific variation persists. To determine the broad-scale retention of residual tetrasomy across the salmonids, we analyze sequence similarity of currently available genomes and find evidence of residual tetrasomy in seven of the eight chromosomes that have been previously hypothesized to show this pattern. This interspecific variation in extent of rediploidization may have important implications for understanding salmonid evolutionary histories and informing future conservation efforts.
Collapse
|
23
|
Kelson SJ, Miller MR, Thompson TQ, O'Rourke SM, Carlson SM. Temporal dynamics of migration-linked genetic variation are driven by streamflows and riverscape permeability. Mol Ecol 2020; 29:870-885. [PMID: 32012393 PMCID: PMC7078995 DOI: 10.1111/mec.15367] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/17/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Abstract
Landscape permeability is often explored spatially, but may also vary temporally. Landscape permeability, including partial barriers, influences migratory animals that move across the landscape. Partial barriers are common in rivers where barrier passage varies with streamflow. We explore the influence of partial barriers on the spatial and temporal distribution of migration‐linked genotypes of Oncorhynchus mykiss, a salmonid fish with co‐occurring resident and migratory forms, in tributaries to the South Fork Eel River, California, USA, Elder and Fox Creeks. We genotyped >4,000 individuals using RAD‐capture and classified individuals as resident, heterozygous or migratory genotypes using life history‐associated loci. Across four years of study (2014–2017), the permeability of partial barriers varied across dry and wet years. In Elder Creek, the largest waterfall was passable for adults migrating up‐river 4–39 days each year. In this stream, the overall spatial pattern, with fewer migratory genotypes above the waterfall, remained true across dry and wet years (67%–76% of migratory alleles were downstream of the waterfall). We also observed a strong relationship between distance upstream and proportion of migratory alleles. In Fox Creek, the primary barrier is at the mouth, and we found that the migratory allele frequency varied with the annual timing of high flow events. In years when rain events occurred during the peak breeding season, migratory allele frequency was high (60%–68%), but otherwise it was low (30% in two years). We highlight that partial barriers and landscape permeability can be temporally dynamic, and this effect can be observed through changing genotype frequencies in migratory animals.
Collapse
Affiliation(s)
- Suzanne J Kelson
- Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Michael R Miller
- Department of Animal Science, University of California, Davis, CA, USA
| | - Tasha Q Thompson
- Department of Animal Science, University of California, Davis, CA, USA
| | - Sean M O'Rourke
- Department of Animal Science, University of California, Davis, CA, USA
| | - Stephanie M Carlson
- Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| |
Collapse
|
24
|
Abstract
Salmon were among the first nonmodel species for which systematic population genetic studies of natural populations were conducted, often to support management and conservation. The genomics revolution has improved our understanding of the evolutionary ecology of salmon in two major ways: (a) Large increases in the numbers of genetic markers (from dozens to 104-106) provide greater power for traditional analyses, such as the delineation of population structure, hybridization, and population assignment, and (b) qualitatively new insights that were not possible with traditional genetic methods can be achieved by leveraging detailed information about the structure and function of the genome. Studies of the first type have been more common to date, largely because it has taken time for the necessary tools to be developed to fully understand the complex salmon genome. We expect that the next decade will witness many new studies that take full advantage of salmonid genomic resources.
Collapse
Affiliation(s)
- Robin S Waples
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington 98112, USA;
| | - Kerry A Naish
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington 98195-5020, USA;
| | - Craig R Primmer
- Organismal & Evolutionary Biology Research Program and Biotechnology Institute, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
25
|
Gabián M, Morán P, Fernández AI, Villanueva B, Chtioui A, Kent MP, Covelo-Soto L, Fernández A, Saura M. Identification of genomic regions regulating sex determination in Atlantic salmon using high density SNP data. BMC Genomics 2019; 20:764. [PMID: 31640542 PMCID: PMC6805462 DOI: 10.1186/s12864-019-6104-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 09/13/2019] [Indexed: 02/07/2023] Open
Abstract
Background A complete understanding of the genetic basis for sexual determination and differentiation is necessary in order to implement efficient breeding schemes at early stages of development. Atlantic salmon belongs to the family Salmonidae of fishes and represents a species of great commercial value. Although the species is assumed to be male heterogametic with XY sex determination, the precise genetic basis of sexual development remains unclear. The complexity is likely associated to the relatively recent salmonid specific whole genome duplication that may be responsible for certain genome instability. This instability together with the capacity of the sex-determining gene to move across the genome as reported by previous studies, may explain that sexual development genes are not circumscribed to the same chromosomes in all members of the species. In this study, we have used a 220 K SNP panel developed for Atlantic salmon to identify the chromosomes explaining the highest proportion of the genetic variance for sex as well as candidate regions and genes associated to sexual development in this species. Results Results from regional heritability analysis showed that the chromosomes explaining the highest proportion of variance in these populations were Ssa02 (heritability = 0.42, SE = 0.12) and Ssa21 (heritability = 0.26, SE = 0.11). After pruning by linkage disequilibrium, genome-wide association analyses revealed 114 SNPs that were significantly associated with sex, being Ssa02 the chromosome containing a greatest number of regions. Close examination of the candidate regions evidenced important genes related to sex in other species of Class Actinopterygii, including SDY, genes from family SOX, RSPO1, ESR1, U2AF2A, LMO7, GNRH-R, DND and FIGLA. Conclusions The combined results from regional heritability analysis and genome-wide association have provided new advances in the knowledge of the genetic regulation of sex determination in Atlantic salmon, supporting that Ssa02 is the candidate chromosome for sex in this species and suggesting an alternative population lineage in Spanish wild populations according to the results from Ssa21.
Collapse
Affiliation(s)
- María Gabián
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, Vigo, 36310, Spain
| | - Paloma Morán
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, Vigo, 36310, Spain
| | - Ana I Fernández
- Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña km 7,5, 28040, Madrid, Spain
| | - Beatriz Villanueva
- Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña km 7,5, 28040, Madrid, Spain
| | - Amel Chtioui
- Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña km 7,5, 28040, Madrid, Spain
| | - Matthew P Kent
- Center for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Bioscience, Norwegian University of Life Sciences (NMBU), 1430, Ås, Norway
| | - Lara Covelo-Soto
- Departamento de Bioquímica, Genética e Inmunología, Facultad de Biología, Universidad de Vigo, Vigo, 36310, Spain
| | - Almudena Fernández
- Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña km 7,5, 28040, Madrid, Spain
| | - María Saura
- Departamento de Mejora Genética Animal, INIA, Carretera de la Coruña km 7,5, 28040, Madrid, Spain.
| |
Collapse
|
26
|
Euclide PT, McKinney GJ, Bootsma M, Tarsa C, Meek MH, Larson WA. Attack of the PCR clones: Rates of clonality have little effect on RAD‐seq genotype calls. Mol Ecol Resour 2019; 20:66-78. [DOI: 10.1111/1755-0998.13087] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/12/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Peter T. Euclide
- Wisconsin Cooperative Fishery Research Unit College of Natural Resources University of Wisconsin‐Stevens Point Stevens Point WI USA
| | - Garrett J. McKinney
- School of Aquatic and Fishery Sciences University of Washington Seattle WA USA
| | - Matthew Bootsma
- Wisconsin Cooperative Fishery Research Unit College of Natural Resources University of Wisconsin‐Stevens Point Stevens Point WI USA
| | - Charlene Tarsa
- Department of Integrative Biology and AgBio Research Michigan State University East Lansing MI USA
| | - Mariah H. Meek
- Department of Integrative Biology and AgBio Research Michigan State University East Lansing MI USA
| | - Wesley A. Larson
- U.S. Geological Survey Wisconsin Cooperative Fishery Research Unit College of Natural Resources University of Wisconsin‐Stevens Point Stevens Point WI USA
| |
Collapse
|
27
|
Campbell MA, Hale MC, McKinney GJ, Nichols KM, Pearse DE. Long-Term Conservation of Ohnologs Through Partial Tetrasomy Following Whole-Genome Duplication in Salmonidae. G3 (BETHESDA, MD.) 2019; 9:2017-2028. [PMID: 31010824 PMCID: PMC6553544 DOI: 10.1534/g3.119.400070] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/18/2019] [Indexed: 01/01/2023]
Abstract
Whole-genome duplications (WGDs) have occurred repeatedly and broadly throughout the evolutionary history of eukaryotes. However, the effects of WGD on genome function and evolution remain unclear. The salmonid WGD that occurred approximately 88 million years ago presents an excellent opportunity for studying the effects of WGD as ∼10-15% of each salmonid genome still exhibits tetrasomic inheritance. Herein, we utilized the rainbow trout (Oncorhynchus mykiss) genome assembly and brain transcriptome data to examine the fate of gene pairs (ohnologs) following the salmonid whole-genome duplication. We find higher sequence identity between ohnologs located within known tetrasomic regions than between ohnologs found in disomic regions, and that tetrasomically inherited ohnologs showed greater similarity in patterns of gene expression and per ohnolog were lower expressed, than disomically inherited ohnologs. Enrichment testing for Gene Ontology terms identified 49 over-represented terms in tetrasomically inherited ohnologs compared to disomic ohnologs. However, why these ohnologs are retained as tetrasomic is difficult to answer. It could be that we have identified salmonid specific "dangerous duplicates", that is, genes that cannot take on new roles following WGD. Alternatively, there may be adaptive advantages for retaining genes as functional duplicates in tetrasomic regions, as presumably, movement of these genes into disomic regions would affect both their sequence identity and their gene expression patterns.
Collapse
Affiliation(s)
- Matthew A Campbell
- Fisheries Ecology Division, Southwest Fisheries Science Center, Santa Cruz, CA 95060
| | - Matthew C Hale
- Department of Biology, Texas Christian University, Fort Worth, TX 76129
| | - Garrett J McKinney
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, and
| | - Krista M Nichols
- Conservation Biology Division, Northwest Fisheries Science Center, Seattle, WA 98112
| | - Devon E Pearse
- Fisheries Ecology Division, Southwest Fisheries Science Center, Santa Cruz, CA 95060
| |
Collapse
|
28
|
Christensen KA, Sakhrani D, Rondeau EB, Richards J, Koop BF, Devlin RH. Effect of triploidy on liver gene expression in coho salmon (Oncorhynchus kisutch) under different metabolic states. BMC Genomics 2019; 20:336. [PMID: 31053056 PMCID: PMC6500012 DOI: 10.1186/s12864-019-5655-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/27/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Triploid coho salmon are excellent models for studying gene dosage and the effects of increased cell volume on gene expression. Triploids have an additional haploid genome in each cell and have fewer but larger cells than diploid coho salmon to accommodate the increased genome size. Studying gene expression in triploid coho salmon provides insight into how gene expression may have been affected after the salmonid-specific genome duplication which occurred some 90 MYA. Triploid coho salmon are sterile and consequently can live longer and grow larger than diploid congeners in many semelparous species (spawning only once) because they never reach maturity and post-spawning mortality is averted. Triploid fishes are also of interest to the commercial sector (larger fish are more valuable) and to fisheries management since sterile fish can potentially minimize negative impacts of escaped fish in the wild. RESULTS The vast majority of genes in liver tissue had similar expression levels between diploid and triploid coho salmon, indicating that the same amount of mRNA transcripts were being produced per gene copy (positive gene dosage effects) within a larger volume cell. Several genes related to nutrition and compensatory growth were differentially expressed between diploid and triploid salmon, indicating that some loci are sensitive to cell size and/or DNA content per cell. To examine how robust expression between ploidies is under different conditions, a genetic/metabolic modifier in the form of different doses of a growth hormone transgene was used to assess gene expression under conditions that the genome has not naturally experienced or adapted to. While many (up to 1400) genes were differentially expressed between non-transgenic and transgenic fish, relatively few genes were differentially expressed between diploids and triploids with similar doses of the transgene. These observations indicate that the small effect of ploidy on gene expression is robust to large changes in physiological state. CONCLUSIONS These findings are of interest from a gene regulatory perspective, but also valuable for understanding phenotypic effects in triploids, transgenics, and triploid transgenics that could affect their utility in culture conditions and their fitness and potential consequences of release into nature.
Collapse
Affiliation(s)
- Kris A Christensen
- Fisheries and Oceans Canada, West Vancouver, BC, Canada.,Department of Biology, University of Victoria, Victoria, BC, Canada
| | | | - Eric B Rondeau
- Fisheries and Oceans Canada, West Vancouver, BC, Canada.,Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Jeffery Richards
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Ben F Koop
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | | |
Collapse
|
29
|
Lehnert SJ, Bentzen P, Kess T, Lien S, Horne JB, Clément M, Bradbury IR. Chromosome polymorphisms track trans‐Atlantic divergence and secondary contact in Atlantic salmon. Mol Ecol 2019; 28:2074-2087. [DOI: 10.1111/mec.15065] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/12/2019] [Accepted: 02/19/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Sarah J. Lehnert
- Fisheries and Oceans Canada Northwest Atlantic Fisheries Centre St. John's Newfoundland Canada
| | - Paul Bentzen
- Biology Department Dalhousie University Halifax Nova Scotia Canada
| | - Tony Kess
- Fisheries and Oceans Canada Northwest Atlantic Fisheries Centre St. John's Newfoundland Canada
| | - Sigbjørn Lien
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences Norwegian University of Life Sciences Ås Norway
| | - John B. Horne
- Gulf Coast Research Laboratory University of Southern Mississippi Ocean Springs Mississippi USA
| | - Marie Clément
- Centre for Fisheries Ecosystems Research, Fisheries and Marine Institute Memorial University of Newfoundland St. John's Newfoundland Canada
- Labrador Institute Memorial University of Newfoundland Happy Valley‐Goose Bay Newfoundland Canada
| | - Ian R. Bradbury
- Fisheries and Oceans Canada Northwest Atlantic Fisheries Centre St. John's Newfoundland Canada
- Biology Department Dalhousie University Halifax Nova Scotia Canada
| |
Collapse
|
30
|
Holmes RS. Polyploidy among salmonid aldehyde dehydrogenase genes and proteins. Chem Biol Interact 2019; 303:22-26. [PMID: 30776359 DOI: 10.1016/j.cbi.2019.01.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/17/2019] [Accepted: 01/25/2019] [Indexed: 01/22/2023]
Abstract
Bioinformatic analyses of salmon (Salmo salar) ALDH amino acid sequences supported the presence of at least 30 ALDH genes, which is more than for any other higher vertebrate and is greater than the 19 human ALDH genes currently reported. These included 8 polyploid ALDH genes and proteins: ALDH1A2 (chromosomes 11 and 26); ALDH1L2 (chromosomes 7 and 17); ALDH2, encoding mitochondrial ALDH2 (chromosomes 2 and 5); ALDH3A2 (chromosomes 4, 9 and 20), for which evidence for 5 genes was obtained; ALDH3B1 (chromosomes 3, 6 and 24); ALDH4A1 (chromosomes 12 and 22); ALDH6A1 (chromosomes 1, 6 and 15); and ALDH18A1 (chromosomes 19 and 28). In contrast, 7 salmon ALDH gene families (ALDH1A1, ALDH1A3, ALDH5, ALDH7, ALDH8, ALDH9 and ALDH16) possessed only one gene family member. Phylogenetic studies of salmon and rainbow trout ALDH3A2 genes and proteins suggested that salmonid gene tetraploidy has occurred in at least 2 distinct stages of ALDH3A2 gene evolution.
Collapse
Affiliation(s)
- Roger S Holmes
- Griffith Institute for Drug Discovery and School of Environment and Science, Griffith University, Nathan, 4111, QLD, Australia.
| |
Collapse
|
31
|
Seeb LW, McKinney GJ, Seeb JE. "Chromosomes and genes, spawned these fateful scenes": Rapid adaptation in an introduced fish. Mol Ecol 2019; 27:3965-3967. [PMID: 30353598 DOI: 10.1111/mec.14797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/14/2018] [Indexed: 01/17/2023]
Abstract
Humans by their very nature alter the distribution of species. Be it introduction of exotic species, habitat alterations or construction of barriers, anthropogenic changes provide novel experimental systems for the molecular ecologist to study evolutionary change. These events often provide a contradiction. Effective population sizes are generally low, and introduced populations are typically characterized by reduced diversity consistent with theoretical predictions of population bottlenecks and founder effects. However, despite reduced diversity, rapid change sometimes occurs. Identification of genomic regions associated with these rapid adaptive responses to novel selection pressures provides a window into genomic regions important in adaptive diversity, both in the novel and native ranges. These studies also provide an important means to estimate the pace of evolutionary change. In this issue, Willoughby et al. () compared the heterozygosity of steelhead (the anadromous form of rainbow trout Oncorhynchus mykiss) introduced into Lake Michigan in the late 1880s to the putative source population from the ancestral California range. After 25 generations of isolation in Lake Michigan, Willoughby et al. () found consistent genomewide reductions in genetic diversity as estimated by a measure of pooled heterozygosity. Despite this overall reduction in heterozygosity, three chromosomal regions showed signals of rapid adaptation and contained genes associated with osmoregulatory and wound-healing functions.
Collapse
Affiliation(s)
- Lisa W Seeb
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington
| | - Garrett J McKinney
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington
| | - James E Seeb
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
32
|
Houston RD, Macqueen DJ. Atlantic salmon (Salmo salar L.) genetics in the 21st century: taking leaps forward in aquaculture and biological understanding. Anim Genet 2019; 50:3-14. [PMID: 30426521 PMCID: PMC6492011 DOI: 10.1111/age.12748] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2018] [Indexed: 12/17/2022]
Abstract
Atlantic salmon (Salmo salar L.) is among the most iconic and economically important fish species and was the first member of Salmonidae to have a high-quality reference genome assembly published. Advances in genomics have become increasingly central to the genetic improvement of farmed Atlantic salmon as well as conservation of wild salmon stocks. The salmon genome has also been pivotal in shaping our understanding of the evolutionary and functional consequences arising from an ancestral whole-genome duplication event characterising all Salmonidae members. Here, we provide a review of the current status of Atlantic salmon genetics and genomics, focussed on progress made from genome-wide research aimed at improving aquaculture production and enhancing understanding of salmonid ecology, physiology and evolution. We present our views on the future direction of salmon genomics, including the role of emerging technologies (e.g. genome editing) in elucidating genetic features that underpin functional variation in traits of commercial and evolutionary importance.
Collapse
Affiliation(s)
- R. D. Houston
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghMidlothianEH25 9RGUK
| | - D. J. Macqueen
- School of Biological SciencesUniversity of AberdeenAberdeenAB24 2TZUK
| |
Collapse
|
33
|
Marburger S, Alexandrou MA, Taggart JB, Creer S, Carvalho G, Oliveira C, Taylor MI. Whole genome duplication and transposable element proliferation drive genome expansion in Corydoradinae catfishes. Proc Biol Sci 2019; 285:rspb.2017.2732. [PMID: 29445022 PMCID: PMC5829208 DOI: 10.1098/rspb.2017.2732] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/25/2018] [Indexed: 01/12/2023] Open
Abstract
Genome size varies significantly across eukaryotic taxa and the largest changes are typically driven by macro-mutations such as whole genome duplications (WGDs) and proliferation of repetitive elements. These two processes may affect the evolutionary potential of lineages by increasing genetic variation and changing gene expression. Here, we elucidate the evolutionary history and mechanisms underpinning genome size variation in a species-rich group of Neotropical catfishes (Corydoradinae) with extreme variation in genome size—0.6 to 4.4 pg per haploid cell. First, genome size was quantified in 65 species and mapped onto a novel fossil-calibrated phylogeny. Two evolutionary shifts in genome size were identified across the tree—the first between 43 and 49 Ma (95% highest posterior density (HPD) 36.2–68.1 Ma) and the second at approximately 19 Ma (95% HPD 15.3–30.14 Ma). Second, restriction-site-associated DNA (RAD) sequencing was used to identify potential WGD events and quantify transposable element (TE) abundance in different lineages. Evidence of two lineage-scale WGDs was identified across the phylogeny, the first event occurring between 54 and 66 Ma (95% HPD 42.56–99.5 Ma) and the second at 20–30 Ma (95% HPD 15.3–45 Ma) based on haplotype numbers per contig and between 35 and 44 Ma (95% HPD 30.29–64.51 Ma) and 20–30 Ma (95% HPD 15.3–45 Ma) based on SNP read ratios. TE abundance increased considerably in parallel with genome size, with a single TE-family (TC1-IS630-Pogo) showing several increases across the Corydoradinae, with the most recent at 20–30 Ma (95% HPD 15.3–45 Ma) and an older event at 35–44 Ma (95% HPD 30.29–64.51 Ma). We identified signals congruent with two WGD duplication events, as well as an increase in TE abundance across different lineages, making the Corydoradinae an excellent model system to study the effects of WGD and TEs on genome and organismal evolution.
Collapse
Affiliation(s)
- Sarah Marburger
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK.,School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Markos A Alexandrou
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK.,Wildlands Conservation Science, LLC PO Box 1846, Lompoc, CA 93438, USA
| | - John B Taggart
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK
| | - Simon Creer
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK
| | - Gary Carvalho
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2UW, UK
| | - Claudio Oliveira
- Departamento de Morfologia, Instituto de Biociências/UNESP, Rua Professor Doutor Antonio Celso Wagner Zanin, s/n°18618-689 Botucatu, São Paulo, Brazil
| | - Martin I Taylor
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| |
Collapse
|
34
|
Christensen KA, Rondeau EB, Minkley DR, Leong JS, Nugent CM, Danzmann RG, Ferguson MM, Stadnik A, Devlin RH, Muzzerall R, Edwards M, Davidson WS, Koop BF. The Arctic charr (Salvelinus alpinus) genome and transcriptome assembly. PLoS One 2018; 13:e0204076. [PMID: 30212580 PMCID: PMC6136826 DOI: 10.1371/journal.pone.0204076] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/31/2018] [Indexed: 01/17/2023] Open
Abstract
Arctic charr have a circumpolar distribution, persevere under extreme environmental conditions, and reach ages unknown to most other salmonids. The Salvelinus genus is primarily composed of species with genomes that are structured more like the ancestral salmonid genome than most Oncorhynchus and Salmo species of sister genera. It is thought that this aspect of the genome may be important for local adaptation (due to increased recombination) and anadromy (the migration of fish from saltwater to freshwater). In this study, we describe the generation of a new genetic map, the sequencing and assembly of the Arctic charr genome (GenBank accession: GCF_002910315.2) using the newly created genetic map and a previous genetic map, and present several analyses of the Arctic charr genes and genome assembly. The newly generated genetic map consists of 8,574 unique genetic markers and is similar to previous genetic maps with the exception of three major structural differences. The N50, identified BUSCOs, repetitive DNA content, and total size of the Arctic charr assembled genome are all comparable to other assembled salmonid genomes. An analysis to identify orthologous genes revealed that a large number of orthologs could be identified between salmonids and many appear to have highly conserved gene expression profiles between species. Comparing orthologous gene expression profiles may give us a better insight into which genes are more likely to influence species specific phenotypes.
Collapse
Affiliation(s)
- Kris A. Christensen
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, West Vancouver, British Columbia, Canada
- University of Victoria, Department of Biology, Victoria, British Columbia, Canada
- Simon Fraser University, Molecular Biology and Biochemistry, Burnaby, British Columbia, Canada
| | - Eric B. Rondeau
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, West Vancouver, British Columbia, Canada
- University of Victoria, Department of Biology, Victoria, British Columbia, Canada
| | - David R. Minkley
- University of Victoria, Department of Biology, Victoria, British Columbia, Canada
| | - Jong S. Leong
- University of Victoria, Department of Biology, Victoria, British Columbia, Canada
| | - Cameron M. Nugent
- University of Guelph, Department of Integrative Biology, Guelph, Ontario, Canada
| | - Roy G. Danzmann
- University of Guelph, Department of Integrative Biology, Guelph, Ontario, Canada
| | - Moira M. Ferguson
- University of Guelph, Department of Integrative Biology, Guelph, Ontario, Canada
| | - Agnieszka Stadnik
- Simon Fraser University, Molecular Biology and Biochemistry, Burnaby, British Columbia, Canada
| | - Robert H. Devlin
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, West Vancouver, British Columbia, Canada
| | | | | | - William S. Davidson
- Simon Fraser University, Molecular Biology and Biochemistry, Burnaby, British Columbia, Canada
| | - Ben F. Koop
- University of Victoria, Department of Biology, Victoria, British Columbia, Canada
| |
Collapse
|
35
|
Inferring phylogenetic structure, hybridization and divergence times within Salmoninae (Teleostei: Salmonidae) using RAD-sequencing. Mol Phylogenet Evol 2018; 124:82-99. [DOI: 10.1016/j.ympev.2018.02.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/11/2018] [Accepted: 02/20/2018] [Indexed: 11/24/2022]
|
36
|
Duranton M, Allal F, Fraïsse C, Bierne N, Bonhomme F, Gagnaire PA. The origin and remolding of genomic islands of differentiation in the European sea bass. Nat Commun 2018; 9:2518. [PMID: 29955054 PMCID: PMC6023918 DOI: 10.1038/s41467-018-04963-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/23/2018] [Indexed: 01/06/2023] Open
Abstract
Speciation is a complex process that leads to the progressive establishment of reproductive isolation barriers between diverging populations. Genome-wide comparisons between closely related species have revealed the existence of heterogeneous divergence patterns, dominated by genomic islands of increased divergence supposed to contain reproductive isolation loci. However, this divergence landscape only provides a static picture of the dynamic process of speciation, during which confounding mechanisms unrelated to speciation can interfere. Here we use haplotype-resolved whole-genome sequences to identify the mechanisms responsible for the formation of genomic islands between Atlantic and Mediterranean sea bass lineages. Local ancestry patterns show that genomic islands first emerged in allopatry through linked selection acting on a heterogeneous recombination landscape. Then, upon secondary contact, preexisting islands were strongly remolded by differential introgression, revealing variable fitness effects among regions involved in reproductive isolation. Interestingly, we find that divergent regions containing ancient polymorphisms conferred the strongest resistance to introgression. The speciation process tends to generate ‘genomic islands’ of increased divergence. Here, the authors use haplotype–resolved whole-genome sequences of European sea bass lineages to infer divergence history and show that linked selection generated genomic islands that resist introgression at secondary contact.
Collapse
Affiliation(s)
- Maud Duranton
- Institut des Sciences de l'Evolution de Montpellier - UMR5554 UM-CNRS-IRD-EPHE, Place Eugène Bataillon, 34095, Montpellier, France. .,Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France.
| | - François Allal
- Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France.,MARBEC, Université de Montpellier, Ifremer-CNRS-IRD-UM, 34250, Palavas-les-Flots, France
| | - Christelle Fraïsse
- Institut des Sciences de l'Evolution de Montpellier - UMR5554 UM-CNRS-IRD-EPHE, Place Eugène Bataillon, 34095, Montpellier, France.,Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France
| | - Nicolas Bierne
- Institut des Sciences de l'Evolution de Montpellier - UMR5554 UM-CNRS-IRD-EPHE, Place Eugène Bataillon, 34095, Montpellier, France.,Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France
| | - François Bonhomme
- Institut des Sciences de l'Evolution de Montpellier - UMR5554 UM-CNRS-IRD-EPHE, Place Eugène Bataillon, 34095, Montpellier, France.,Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France
| | - Pierre-Alexandre Gagnaire
- Institut des Sciences de l'Evolution de Montpellier - UMR5554 UM-CNRS-IRD-EPHE, Place Eugène Bataillon, 34095, Montpellier, France.,Université de Montpellier, Place Eugène Bataillon, 34095, Montpellier, France
| |
Collapse
|
37
|
|
38
|
Gao G, Nome T, Pearse DE, Moen T, Naish KA, Thorgaard GH, Lien S, Palti Y. A New Single Nucleotide Polymorphism Database for Rainbow Trout Generated Through Whole Genome Resequencing. Front Genet 2018; 9:147. [PMID: 29740479 PMCID: PMC5928233 DOI: 10.3389/fgene.2018.00147] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/09/2018] [Indexed: 11/13/2022] Open
Abstract
Single-nucleotide polymorphisms (SNPs) are highly abundant markers, which are broadly distributed in animal genomes. For rainbow trout (Oncorhynchus mykiss), SNP discovery has been previously done through sequencing of restriction-site associated DNA (RAD) libraries, reduced representation libraries (RRL) and RNA sequencing. Recently we have performed high coverage whole genome resequencing with 61 unrelated samples, representing a wide range of rainbow trout and steelhead populations, with 49 new samples added to 12 aquaculture samples from AquaGen (Norway) that we previously used for SNP discovery. Of the 49 new samples, 11 were double-haploid lines from Washington State University (WSU) and 38 represented wild and hatchery populations from a wide range of geographic distribution and with divergent migratory phenotypes. We then mapped the sequences to the new rainbow trout reference genome assembly (GCA_002163495.1) which is based on the Swanson YY doubled haploid line. Variant calling was conducted with FreeBayes and SAMtools mpileup, followed by filtering of SNPs based on quality score, sequence complexity, read depth on the locus, and number of genotyped samples. Results from the two variant calling programs were compared and genotypes of the double haploid samples were used for detecting and filtering putative paralogous sequence variants (PSVs) and multi-sequence variants (MSVs). Overall, 30,302,087 SNPs were identified on the rainbow trout genome 29 chromosomes and 1,139,018 on unplaced scaffolds, with 4,042,723 SNPs having high minor allele frequency (MAF > 0.25). The average SNP density on the chromosomes was one SNP per 64 bp, or 15.6 SNPs per 1 kb. Results from the phylogenetic analysis that we conducted indicate that the SNP markers contain enough population-specific polymorphisms for recovering population relationships despite the small sample size used. Intra-Population polymorphism assessment revealed high level of polymorphism and heterozygosity within each population. We also provide functional annotation based on the genome position of each SNP and evaluate the use of clonal lines for filtering of PSVs and MSVs. These SNPs form a new database, which provides an important resource for a new high density SNP array design and for other SNP genotyping platforms used for genetic and genomics studies of this iconic salmonid fish species.
Collapse
Affiliation(s)
- Guangtu Gao
- National Center for Cool and Cold Water Aquaculture, ARS-USDA, Kearneysville, WV, United States
| | - Torfinn Nome
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Centre of Integrative Genetics, Norwegian University of Life Sciences, Ås, Norway
| | - Devon E Pearse
- Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, Santa Cruz, CA, United States
| | | | - Kerry A Naish
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States
| | - Gary H Thorgaard
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| | - Sigbjørn Lien
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Centre of Integrative Genetics, Norwegian University of Life Sciences, Ås, Norway
| | - Yniv Palti
- National Center for Cool and Cold Water Aquaculture, ARS-USDA, Kearneysville, WV, United States
| |
Collapse
|
39
|
Christensen KA, Leong JS, Sakhrani D, Biagi CA, Minkley DR, Withler RE, Rondeau EB, Koop BF, Devlin RH. Chinook salmon (Oncorhynchus tshawytscha) genome and transcriptome. PLoS One 2018; 13:e0195461. [PMID: 29621340 PMCID: PMC5886536 DOI: 10.1371/journal.pone.0195461] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/22/2018] [Indexed: 11/18/2022] Open
Abstract
When unifying genomic resources among studies and comparing data between species, there is often no better resource than a genome sequence. Having a reference genome for the Chinook salmon (Oncorhynchus tshawytscha) will enable the extensive genomic resources available for Pacific salmon, Atlantic salmon, and rainbow trout to be leveraged when asking questions related to the Chinook salmon. The Chinook salmon's wide distribution, long cultural impact, evolutionary history, substantial hatchery production, and recent wild-population decline make it an important research species. In this study, we sequenced and assembled the genome of a Chilliwack River Hatchery female Chinook salmon (gynogenetic and homozygous at all loci). With a reference genome sequence, new questions can be asked about the nature of this species, and its role in a rapidly changing world.
Collapse
Affiliation(s)
- Kris A. Christensen
- Fisheries and Oceans Canada, West Vancouver, BC, Canada
- University of Victoria, Victoria, BC, Canada
| | | | | | | | | | - Ruth E. Withler
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC, Canada
| | | | - Ben F. Koop
- University of Victoria, Victoria, BC, Canada
| | | |
Collapse
|
40
|
Ahmad F, Debes PV, Palomar G, Vasemägi A. Association mapping reveals candidate loci for resistance and anaemic response to an emerging temperature-driven parasitic disease in a wild salmonid fish. Mol Ecol 2018; 27:1385-1401. [PMID: 29411465 DOI: 10.1111/mec.14509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 01/08/2018] [Indexed: 02/06/2023]
Abstract
Even though parasitic infections are often costly or deadly for the host, we know very little which genes influence parasite susceptibility and disease severity. Proliferative kidney disease is an emerging and, at elevated water temperatures, potentially deadly disease of salmonid fishes that is caused by the myxozoan parasite Tetracapsuloides bryosalmonae. By screening >7.6 K SNPs in 255 wild brown trout (Salmo trutta) and combining association mapping and Random Forest approaches, we identified several candidate genes for both the parasite resistance (inverse of relative parasite load; RPL) and the severe anaemic response to the parasite. The strongest RPL-associated SNP mapped to a noncoding region of the congeneric Atlantic salmon (S. salar) chromosome 10, whereas the second strongest RPL-associated SNP mapped to an intronic region of PRICKLE2 gene, which is a part of the planar cell polarity signalling pathway involved in kidney development. The top SNP associated with anaemia mapped to the intron of the putative PRKAG2 gene. The human ortholog of this gene has been associated with haematocrit and other blood-related traits, making it a prime candidate influencing parasite-triggered anaemia in brown trout. Our findings demonstrate the power of association mapping to pinpoint genomic regions and potential causative genes underlying climate change-driven parasitic disease resistance and severity. Furthermore, this work illustrates the first steps towards dissecting genotype-phenotype links in a wild fish population using closely related genome information.
Collapse
Affiliation(s)
- F Ahmad
- Department of Biology, University of Turku, Turku, Finland
| | - P V Debes
- Department of Biology, University of Turku, Turku, Finland.,Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - G Palomar
- Research Unit of Biodiversity (UO-CSIC-PA), Mieres, Asturias, Spain.,Department of Biology of Organisms and Systems, University of Oviedo, Oviedo, Asturias, Spain
| | - A Vasemägi
- Department of Biology, University of Turku, Turku, Finland.,Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
41
|
McKinney GJ, Waples RK, Pascal CE, Seeb LW, Seeb JE. Resolving allele dosage in duplicated loci using genotyping-by-sequencing data: A path forward for population genetic analysis. Mol Ecol Resour 2018; 18:570-579. [DOI: 10.1111/1755-0998.12763] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Garrett J. McKinney
- School of Aquatic and Fishery Sciences; University of Washington; Seattle WA USA
| | - Ryan K. Waples
- School of Aquatic and Fishery Sciences; University of Washington; Seattle WA USA
| | - Carita E. Pascal
- School of Aquatic and Fishery Sciences; University of Washington; Seattle WA USA
| | - Lisa W. Seeb
- School of Aquatic and Fishery Sciences; University of Washington; Seattle WA USA
| | - James E. Seeb
- School of Aquatic and Fishery Sciences; University of Washington; Seattle WA USA
| |
Collapse
|
42
|
Betto-Colliard C, Hofmann S, Sermier R, Perrin N, Stöck M. Profound genetic divergence and asymmetric parental genome contributions as hallmarks of hybrid speciation in polyploid toads. Proc Biol Sci 2018; 285:rspb.2017.2667. [PMID: 29436499 PMCID: PMC5829204 DOI: 10.1098/rspb.2017.2667] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/17/2018] [Indexed: 01/19/2023] Open
Abstract
The evolutionary causes and consequences of allopolyploidization, an exceptional pathway to instant hybrid speciation, are poorly investigated in animals. In particular, when and why hybrid polyploids versus diploids are produced, and constraints on sources of paternal and maternal ancestors, remain underexplored. Using the Palearctic green toad radiation (including bisexually reproducing species of three ploidy levels) as model, we generate a range-wide multi-locus phylogeny of 15 taxa and present four new insights: (i) at least five (up to seven) distinct allotriploid and allotetraploid taxa have evolved in the Pleistocene; (ii) all maternal and paternal ancestors of hybrid polyploids stem from two deeply diverged nuclear clades (6 Mya, 3.1-9.6 Mya), with distinctly greater divergence than the parental species of diploid hybrids found at secondary contact zones; (iii) allotriploid taxa possess two conspecific genomes and a deeply diverged allospecific one, suggesting that genomic imbalance and divergence are causal for their partly clonal reproductive mode; (iv) maternal versus paternal genome contributions exhibit asymmetry, with the maternal nuclear (and mitochondrial) genome of polyploids always coming from the same clade, and the paternal genome from the other. We compare our findings with similar patterns in diploid/polyploid vertebrates, and suggest deep ancestral divergence as a precondition for successful allopolyploidization.
Collapse
Affiliation(s)
- Caroline Betto-Colliard
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Sylvia Hofmann
- Department of Conservation Biology, UFZ Helmholtz-Centre for Environmental Research, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Roberto Sermier
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587 Berlin, Germany
| |
Collapse
|
43
|
Meirmans PG, Liu S, van Tienderen PH. The Analysis of Polyploid Genetic Data. J Hered 2018; 109:283-296. [DOI: 10.1093/jhered/esy006] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/20/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- Patrick G Meirmans
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Shenglin Liu
- Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Peter H van Tienderen
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
44
|
Spatiotemporal genetic structure of anadromous Arctic char (Salvelinus alpinus) populations in a region experiencing pronounced climate change. CONSERV GENET 2018. [DOI: 10.1007/s10592-018-1047-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Kovach RP, Hand BK, Hohenlohe PA, Cosart TF, Boyer MC, Neville HH, Muhlfeld CC, Amish SJ, Carim K, Narum SR, Lowe WH, Allendorf FW, Luikart G. Vive la résistance: genome-wide selection against introduced alleles in invasive hybrid zones. Proc Biol Sci 2017; 283:rspb.2016.1380. [PMID: 27881749 DOI: 10.1098/rspb.2016.1380] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/25/2016] [Indexed: 12/11/2022] Open
Abstract
Evolutionary and ecological consequences of hybridization between native and invasive species are notoriously complicated because patterns of selection acting on non-native alleles can vary throughout the genome and across environments. Rapid advances in genomics now make it feasible to assess locus-specific and genome-wide patterns of natural selection acting on invasive introgression within and among natural populations occupying diverse environments. We quantified genome-wide patterns of admixture across multiple independent hybrid zones of native westslope cutthroat trout and invasive rainbow trout, the world's most widely introduced fish, by genotyping 339 individuals from 21 populations using 9380 species-diagnostic loci. A significantly greater proportion of the genome appeared to be under selection favouring native cutthroat trout (rather than rainbow trout), and this pattern was pervasive across the genome (detected on most chromosomes). Furthermore, selection against invasive alleles was consistent across populations and environments, even in those where rainbow trout were predicted to have a selective advantage (warm environments). These data corroborate field studies showing that hybrids between these species have lower fitness than the native taxa, and show that these fitness differences are due to selection favouring many native genes distributed widely throughout the genome.
Collapse
Affiliation(s)
- Ryan P Kovach
- Northern Rocky Mountain Science Center, US Geological Survey, Missoula, MT 59802, USA
| | - Brian K Hand
- Flathead Biological Station, University of Montana, Polson, MT 59860, USA
| | - Paul A Hohenlohe
- Institute for Bioinformatics and Evolutionary Studies, Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Ted F Cosart
- Flathead Biological Station, University of Montana, Polson, MT 59860, USA.,Fish and Wildlife Genomics Group, Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | | | | | - Clint C Muhlfeld
- Northern Rocky Mountain Science Center, US Geological Survey, Missoula, MT 59802, USA.,Flathead Biological Station, University of Montana, Polson, MT 59860, USA
| | - Stephen J Amish
- Flathead Biological Station, University of Montana, Polson, MT 59860, USA.,Fish and Wildlife Genomics Group, Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Kellie Carim
- Wildlife Biology Program, University of Montana, Missoula, MT 59812, USA
| | - Shawn R Narum
- Hagerman Genetics Laboratory, Columbia River Inter-Tribal Fish Commission, Hagerman, ID 83332, USA
| | - Winsor H Lowe
- Fish and Wildlife Genomics Group, Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Fred W Allendorf
- Fish and Wildlife Genomics Group, Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Gordon Luikart
- Flathead Biological Station, University of Montana, Polson, MT 59860, USA.,Fish and Wildlife Genomics Group, Division of Biological Sciences, University of Montana, Missoula, MT, USA
| |
Collapse
|
46
|
Sutherland BJG, Rico C, Audet C, Bernatchez L. Sex Chromosome Evolution, Heterochiasmy, and Physiological QTL in the Salmonid Brook Charr Salvelinus fontinalis. G3 (BETHESDA, MD.) 2017; 7:2749-2762. [PMID: 28626004 PMCID: PMC5555479 DOI: 10.1534/g3.117.040915] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/13/2017] [Indexed: 02/06/2023]
Abstract
Whole-genome duplication (WGD) can have large impacts on genome evolution, and much remains unknown about these impacts. This includes the mechanisms of coping with a duplicated sex determination system and whether this has an impact on increasing the diversity of sex determination mechanisms. Other impacts include sexual conflict, where alleles having different optimums in each sex can result in sequestration of genes into nonrecombining sex chromosomes. Sex chromosome development itself may involve sex-specific recombination rate (i.e., heterochiasmy), which is also poorly understood. The family Salmonidae is a model system for these phenomena, having undergone autotetraploidization and subsequent rediploidization in most of the genome at the base of the lineage. The salmonid master sex determining gene is known, and many species have nonhomologous sex chromosomes, putatively due to transposition of this gene. In this study, we identify the sex chromosome of Brook Charr Salvelinus fontinalis and compare sex chromosome identities across the lineage (eight species and four genera). Although nonhomology is frequent, homologous sex chromosomes and other consistencies are present in distantly related species, indicating probable convergence on specific sex and neo-sex chromosomes. We also characterize strong heterochiasmy with 2.7-fold more crossovers in maternal than paternal haplotypes with paternal crossovers biased to chromosome ends. When considering only rediploidized chromosomes, the overall heterochiasmy trend remains, although with only 1.9-fold more recombination in the female than the male. Y chromosome crossovers are restricted to a single end of the chromosome, and this chromosome contains a large interspecific inversion, although its status between males and females remains unknown. Finally, we identify quantitative trait loci (QTL) for 21 unique growth, reproductive, and stress-related phenotypes to improve knowledge of the genetic architecture of these traits important to aquaculture and evolution.
Collapse
Affiliation(s)
- Ben J G Sutherland
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| | - Ciro Rico
- School of Marine Studies, Molecular Diagnostics Laboratory, University of the South Pacific, Suva, Fiji
- Department of Wetland Ecology, Estación Biológica de Doñana (EBD-CSIC), 41092 Sevilla, Spain
| | - Céline Audet
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Quebec G5L 3A1, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec G1V 0A6, Canada
| |
Collapse
|
47
|
Limborg MT, Larson WA, Seeb LW, Seeb JE. Screening of duplicated loci reveals hidden divergence patterns in a complex salmonid genome. Mol Ecol 2017; 26:4509-4522. [DOI: 10.1111/mec.14201] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/03/2017] [Accepted: 04/10/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Morten T. Limborg
- School of Aquatic and Fishery Sciences University of Washington Seattle WA USA
| | - Wesley A. Larson
- School of Aquatic and Fishery Sciences University of Washington Seattle WA USA
| | - Lisa W. Seeb
- School of Aquatic and Fishery Sciences University of Washington Seattle WA USA
| | - James E. Seeb
- School of Aquatic and Fishery Sciences University of Washington Seattle WA USA
| |
Collapse
|
48
|
Robertson FM, Gundappa MK, Grammes F, Hvidsten TR, Redmond AK, Lien S, Martin SAM, Holland PWH, Sandve SR, Macqueen DJ. Lineage-specific rediploidization is a mechanism to explain time-lags between genome duplication and evolutionary diversification. Genome Biol 2017; 18:111. [PMID: 28615063 PMCID: PMC5470254 DOI: 10.1186/s13059-017-1241-z] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/19/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The functional divergence of duplicate genes (ohnologues) retained from whole genome duplication (WGD) is thought to promote evolutionary diversification. However, species radiation and phenotypic diversification are often temporally separated from WGD. Salmonid fish, whose ancestor underwent WGD by autotetraploidization ~95 million years ago, fit such a 'time-lag' model of post-WGD radiation, which occurred alongside a major delay in the rediploidization process. Here we propose a model, 'lineage-specific ohnologue resolution' (LORe), to address the consequences of delayed rediploidization. Under LORe, speciation precedes rediploidization, allowing independent ohnologue divergence in sister lineages sharing an ancestral WGD event. RESULTS Using cross-species sequence capture, phylogenomics and genome-wide analyses of ohnologue expression divergence, we demonstrate the major impact of LORe on salmonid evolution. One-quarter of each salmonid genome, harbouring at least 4550 ohnologues, has evolved under LORe, with rediploidization and functional divergence occurring on multiple independent occasions >50 million years post-WGD. We demonstrate the existence and regulatory divergence of many LORe ohnologues with functions in lineage-specific physiological adaptations that potentially facilitated salmonid species radiation. We show that LORe ohnologues are enriched for different functions than 'older' ohnologues that began diverging in the salmonid ancestor. CONCLUSIONS LORe has unappreciated significance as a nested component of post-WGD divergence that impacts the functional properties of genes, whilst providing ohnologues available solely for lineage-specific adaptation. Under LORe, which is predicted following many WGD events, the functional outcomes of WGD need not appear 'explosively', but can arise gradually over tens of millions of years, promoting lineage-specific diversification regimes under prevailing ecological pressures.
Collapse
Affiliation(s)
- Fiona M Robertson
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Manu Kumar Gundappa
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Fabian Grammes
- Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, Ås, NO-1432, Norway
| | - Torgeir R Hvidsten
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, 1432, Ås, Norway.,Umeå Plant Science Centre, Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE-90187, Umeå, Sweden
| | - Anthony K Redmond
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.,Centre for Genome-Enabled Biology & Medicine, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, Ås, NO-1432, Norway
| | - Samuel A M Martin
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Peter W H Holland
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Simen R Sandve
- Centre for Integrative Genetics (CIGENE), Faculty of Biosciences, Norwegian University of Life Sciences, Ås, NO-1432, Norway
| | - Daniel J Macqueen
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| |
Collapse
|
49
|
Homoeologous chromosome pairing across the eukaryote phylogeny. Mol Phylogenet Evol 2017; 117:83-94. [PMID: 28602622 DOI: 10.1016/j.ympev.2017.05.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 11/21/2022]
Abstract
During the past quarter century, molecular phylogenetic inferences have significantly resolved evolutionary relationships spanning the eukaryotic tree of life. With improved phylogenies in hand, the focus of systematics will continue to expand from estimating species relationships toward examining the evolution of specific, fundamental traits across the eukaryotic tree. Undoubtedly, this will expose knowledge gaps in the evolution of key traits, particularly with respect to non-model lineages. Here, we examine one such trait across eukaryotes-the regulation of homologous chromosome pairing during meiosis-as an illustrative example. Specifically, we present an overview of the breakdown of homologous chromosome pairing in model eukaryotes and provide a discussion of various meiotic aberrations that result in the failure of homolog recognition, with a particular focus on lineages with a history of hybridization and polyploidization, across major eukaryotic clades. We then explore what is known about these processes in natural and non-model eukaryotic taxa, thereby exposing disparities in our understanding of this key trait among non-model groups.
Collapse
|
50
|
Waples RK, Seeb JE, Seeb LW. Congruent population structure across paralogous and nonparalogous loci in Salish Sea chum salmon (Oncorhynchus keta). Mol Ecol 2017; 26:4131-4144. [PMID: 28452089 DOI: 10.1111/mec.14163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 04/01/2017] [Accepted: 04/10/2017] [Indexed: 12/19/2022]
Abstract
Whole-genome duplications are major evolutionary events with a lasting impact on genome structure. Duplication events complicate genetic analyses as paralogous sequences are difficult to distinguish; consequently, paralogs are often excluded from studies. The effects of an ancient whole-genome duplication (approximately 88 MYA) are still evident in salmonids through the persistence of numerous paralogous gene sequences and partial tetrasomic inheritance. We use restriction site-associated DNA sequencing on 10 collections of chum salmon from the Salish Sea in the USA and Canada to investigate genetic diversity and population structure in both tetrasomic and rediploidized regions of the genome. We use a pedigree and high-density linkage map to identify paralogous loci and to investigate genetic variation across the genome. By applying multivariate statistical methods, we show that it is possible to characterize paralogous loci and that they display similar patterns of population structure as the diploidized portion of the genome. We find genetic associations with the adaptively important trait of run-timing in both sets of loci. By including paralogous loci in genome scans, we can observe evolutionary signals in genomic regions that have routinely been excluded from population genetic studies in other polyploid-derived species.
Collapse
Affiliation(s)
- R K Waples
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - J E Seeb
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - L W Seeb
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|