1
|
Ouellet-Fagg CL, Easton AA, Parsons KJ, Nugent CM, Danzmann RG, Ferguson MM. The evolution of genomic organization through chromosomal rearrangements in Arctic charr ( Salvelinus alpinus). Genome 2025; 68:1-19. [PMID: 40338075 DOI: 10.1139/gen-2024-0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Chromosomal rearrangements (CRs) can play an important role in evolutionary diversification by preserving linkage among favourable alleles through reduced recombination and/or by reducing hybrid fitness due to genomic incompatibilities. Our goal was to determine to what extent CRs contribute to known patterns of genetic variation in Arctic charr (Salvelinus alpinus). To address this goal, we compared genetic linkage maps to identify whole arm CRs and smaller scale structural variants (SVs) such as translocations/transpositions and inversions found in groups of populations that reflect the temporal sequence of geographic isolation events. If CRs contribute to genetic differentiation, we expected that CRs would be specific to glacial lineages, geographic clusters of populations within lineages, and sympatric morphs. We detected fusions and fissions of whole chromosome arms and SV involving translocations/transpositions of the sex-determining gene (sdY) and inversions. Several CRs were shared across populations from the Arctic and Atlantic glacial lineages, Canadian and Icelandic populations within the Atlantic lineage, between two Icelandic populations and sympatric morphs within Icelandic populations, suggesting that their origin predates geographic isolation in glacial refugia. Other CRs were specific to single populations, which suggests a more recent origin of these variants in refugia, during post-glacial recolonization and/or in contemporary populations. Thus, CRs contribute relatively little to known patterns of genetic differentiation at different geographic scales but represent a pool of standing genetic variation for evolution.
Collapse
Affiliation(s)
| | - Anne A Easton
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Kevin J Parsons
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, Scotland
| | - Cameron M Nugent
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Roy G Danzmann
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Moira M Ferguson
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
2
|
Zhou W, Furey NM, Soisook P, Thong VD, Lim BK, Rossiter SJ, Mao X. Diversification and introgression in four chromosomal taxa of the Pearson's horseshoe bat (Rhinolophus pearsoni) group. Mol Phylogenet Evol 2023; 183:107784. [PMID: 37040825 DOI: 10.1016/j.ympev.2023.107784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/11/2023] [Accepted: 04/07/2023] [Indexed: 04/13/2023]
Abstract
Chromosomal variation among closely related taxa is common in both plants and animals, and can reduce rates of introgression as well as promote reproductive isolation and speciation. In mammals, studies relating introgression to chromosomal variation have tended to focus on a few model systems and typically characterized levels of introgression using small numbers of loci. Here we took a genome-wide approach to examine how introgression rates vary among four closely related horseshoe bats (Rhinolophus pearsoni group) that possess different diploid chromosome numbers (2n = 42, 44, 46, and 60) resulting from Robertsonian (Rb) changes (fissions/fusions). Using a sequence capture we obtained orthologous loci for thousands of nuclear loci, as well as mitogenomes, and performed phylogenetic and population genetic analyses. We found that the taxon with 2n = 60 was the first to diverge in this group, and that the relationships among the three other taxa (2n = 42, 44 and 46) showed discordance across our different analyses. Our results revealed signatures of multiple ancient introgression events between the four taxa, with evidence of mitonuclar discordance in phylogenetic trees and reticulation events in their evolutionary history. Despite this, we found no evidence of recent and/or ongoing introgression between taxa. Overall, our results indicate that the effects of Rb changes on the reduction of introgression are complicated and that these may contribute to reproductive isolation and speciation in concert with other factors (e.g. phenotypic and genic divergence).
Collapse
Affiliation(s)
- Weiwei Zhou
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200062, China
| | - Neil M Furey
- Fauna & Flora International (Cambodia), PO Box 1380, No. 19, Street 360, Boeng Keng Kong 1, Phnom Penh 12000, Cambodia
| | - Pipat Soisook
- Princess Maha Chakri Sirindhorn Natural History Museum, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Vu D Thong
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, Viet Nam; Graduate University of Science and Technology, VAST, Viet Nam
| | - Burton K Lim
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario M5S 2C6, Canada
| | - Stephen J Rossiter
- School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK.
| | - Xiuguang Mao
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
3
|
Zhang XM, Yan M, Yang Z, Xiang H, Tang W, Cai X, Wu Q, Liu X, Pei G, Li J. Creation of artificial karyotypes in mice reveals robustness of genome organization. Cell Res 2022; 32:1026-1029. [PMID: 36127403 PMCID: PMC9652337 DOI: 10.1038/s41422-022-00722-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/30/2022] [Indexed: 01/31/2023] Open
Affiliation(s)
- Xiaoyu Merlin Zhang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Meng Yan
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Zhenhua Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hao Xiang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Tang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xindong Cai
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Qigui Wu
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xin Liu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Gang Pei
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
4
|
Sigeman H, Zhang H, Ali Abed S, Hansson B. A novel neo-sex chromosome in Sylvietta brachyura (Macrosphenidae) adds to the extraordinary avian sex chromosome diversity among Sylvioidea songbirds. J Evol Biol 2022; 35:1797-1805. [PMID: 36156325 PMCID: PMC10087220 DOI: 10.1111/jeb.14096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/03/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Abstract
We report the discovery of a novel neo-sex chromosome in an African warbler, Sylvietta brachyura (northern crombec; Macrosphenidae). This species is part of the Sylvioidea superfamily, where four separate autosome-sex chromosome translocation events have previously been discovered via comparative genomics of 11 of the 22 families in this clade. Our discovery here resulted from analyses of genomic data of single species-representatives from three additional Sylvioidea families (Macrosphenidae, Pycnonotidae and Leiothrichidae). In all three species, we confirmed the translocation of a part of chromosome 4A to the sex chromosomes, which originated basally in Sylvioidea. In S. brachyura, we found that a part of chromosome 8 has been translocated to the sex chromosomes, forming a unique neo-sex chromosome in this lineage. Furthermore, the non-recombining part of 4A in S. brachyura is smaller than in other Sylvioidea species, which suggests that recombination continued along this region after the fusion event in the Sylvioidea ancestor. These findings reveal additional sex chromosome diversity among the Sylvioidea, where five separate translocation events are now confirmed.
Collapse
Affiliation(s)
- Hanna Sigeman
- Department of Biology, Lund University, Lund, Sweden.,Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Hongkai Zhang
- Department of Biology, Lund University, Lund, Sweden
| | | | - Bengt Hansson
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Morgan AP, Hughes JJ, Didion JP, Jolley WJ, Campbell KJ, Threadgill DW, Bonhomme F, Searle JB, de Villena FPM. Population structure and inbreeding in wild house mice (Mus musculus) at different geographic scales. Heredity (Edinb) 2022; 129:183-194. [PMID: 35764696 PMCID: PMC9411160 DOI: 10.1038/s41437-022-00551-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/08/2022] Open
Abstract
House mice (Mus musculus) have spread globally as a result of their commensal relationship with humans. In the form of laboratory strains, both inbred and outbred, they are also among the most widely used model organisms in biomedical research. Although the general outlines of house mouse dispersal and population structure are well known, details have been obscured by either limited sample size or small numbers of markers. Here we examine ancestry, population structure, and inbreeding using SNP microarray genotypes in a cohort of 814 wild mice spanning five continents and all major subspecies of Mus, with a focus on M. m. domesticus. We find that the major axis of genetic variation in M. m. domesticus is a south-to-north gradient within Europe and the Mediterranean. The dominant ancestry component in North America, Australia, New Zealand, and various small offshore islands are of northern European origin. Next we show that inbreeding is surprisingly pervasive and highly variable, even between nearby populations. By inspecting the length distribution of homozygous segments in individual genomes, we find that inbreeding in commensal populations is mostly due to consanguinity. Our results offer new insight into the natural history of an important model organism for medicine and evolutionary biology.
Collapse
Affiliation(s)
- Andrew P Morgan
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
- Department of Medicine, Duke University Hospital, Durham, NC, USA.
| | - Jonathan J Hughes
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - John P Didion
- Department of Genetics and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Independent Scientist, San Diego, CA, USA
| | | | | | - David W Threadgill
- Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, USA
| | - Francois Bonhomme
- Institut des Sciences de l'Évolution Montpellier, Université de Montpellier, Montpellier, France
| | - Jeremy B Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
6
|
Li Q, Kong D, Wang Y, Dou Z, Huang W, Hu B, Dong F, Jiang H, Lv Q, Zheng Y, Ren Y, Liu G, Liu P, Jiang Y. Characterization of a rare clinical isolate of A. spinulosporus following a central nervous system infection. Microbes Infect 2022; 24:104973. [DOI: 10.1016/j.micinf.2022.104973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/08/2022] [Accepted: 03/23/2022] [Indexed: 10/18/2022]
|
7
|
Bakloushinskaya I. Chromosome Changes in Soma and Germ Line: Heritability and Evolutionary Outcome. Genes (Basel) 2022; 13:genes13040602. [PMID: 35456408 PMCID: PMC9029507 DOI: 10.3390/genes13040602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/13/2022] Open
Abstract
The origin and inheritance of chromosome changes provide the essential foundation for natural selection and evolution. The evolutionary fate of chromosome changes depends on the place and time of their emergence and is controlled by checkpoints in mitosis and meiosis. Estimating whether the altered genome can be passed to subsequent generations should be central when we consider a particular genome rearrangement. Through comparative analysis of chromosome rearrangements in soma and germ line, the potential impact of macromutations such as chromothripsis or chromoplexy appears to be fascinating. What happens with chromosomes during the early development, and which alterations lead to mosaicism are other poorly studied but undoubtedly essential issues. The evolutionary impact can be gained most effectively through chromosome rearrangements arising in male meiosis I and in female meiosis II, which are the last divisions following fertilization. The diversity of genome organization has unique features in distinct animals; the chromosome changes, their internal relations, and some factors safeguarding genome maintenance in generations under natural selection were considered for mammals.
Collapse
Affiliation(s)
- Irina Bakloushinskaya
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
8
|
Wolfgramm H, Martens J, Töpfer T, Vamberger M, Pathak A, Stuckas H, Päckert M. Asymmetric allelic introgression across a hybrid zone of the coal tit ( Periparus ater) in the central Himalayas. Ecol Evol 2021; 11:17332-17351. [PMID: 34938512 PMCID: PMC8668783 DOI: 10.1002/ece3.8369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 11/07/2022] Open
Abstract
In the Himalayas, a number of secondary contact zones have been described for vicariant vertebrate taxa. However, analyses of genetic divergence and admixture are missing for most of these examples. In this study, we provide a population genetic analysis for the coal tit (Periparus ater) hybrid zone in Nepal. Intermediate phenotypes between the distinctive western "spot-winged tit" (P. a. melanolophus) and Eastern Himalayan coal tits (P. a. aemodius) occur across a narrow range of <100 km in western Nepal. As a peculiarity, another distinctive cinnamon-bellied form is known from a single population so far. Genetic admixture of western and eastern mitochondrial lineages was restricted to the narrow zone of phenotypically intermediate populations. The cline width was estimated 46 km only with a center close to the population of the cinnamon-bellied phenotype. In contrast, allelic introgression of microsatellite loci was asymmetrical from eastern P. a. aemodius into far western populations of phenotypic P. a. melanolophus but not vice versa. Accordingly, the microsatellite cline was about 3.7 times wider than the mitochondrial one.
Collapse
Affiliation(s)
- Hannes Wolfgramm
- Senckenberg Natural History Collections DresdenDresdenGermany
- Present address:
Department of Functional GenomicsInterfaculty Institute of Genetics and Functional GenomicsUniversity Medicine GreifswaldGreifswaldGermany
| | - Jochen Martens
- Institute of Organismic and Molecular Evolution (iomE)Johannes Gutenberg UniversityMainzGermany
| | - Till Töpfer
- Leibniz Institute for the Analysis of Biodiversity ChangeZoological Research Museum Alexander KoenigBonnGermany
| | | | - Abhinaya Pathak
- Department of National Parks and Wildlife ConservationKathmanduNepal
| | - Heiko Stuckas
- Senckenberg Natural History Collections DresdenDresdenGermany
| | - Martin Päckert
- Senckenberg Natural History Collections DresdenDresdenGermany
| |
Collapse
|
9
|
Spatial and Temporal Dynamics of Contact Zones Between Chromosomal Races of House Mice, Mus musculus domesticus, on Madeira Island. Genes (Basel) 2020; 11:genes11070748. [PMID: 32640559 PMCID: PMC7397221 DOI: 10.3390/genes11070748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 01/29/2023] Open
Abstract
Analysis of contact zones between parapatric chromosomal races can help our understanding of chromosomal divergence and its influence on the speciation process. Monitoring the position and any movement of contact zones can allow particular insights. This study investigates the present (2012-2014) and past (1998-2002) distribution of two parapatric house mouse chromosomal races-PEDC (Estreito da Calheta) and PADC (Achadas da Cruz)-on Madeira Island, aiming to identify changes in the location and width of their contact. We also extended the 1998-2002 sampling area into the range of another chromosomal race-PLDB (Lugar de Baixo). Clinal analysis indicates no major geographic alterations in the distribution and chromosomal characteristics of the PEDC and PADC races but exhibited a significant shift in position of the Rb (7.15) fusion, resulting in the narrowing of the contact zone over a 10+ year period. We discuss how this long-lasting contact zone highlights the role of landscape on mouse movements, in turn influencing the chromosomal characteristics of populations. The expansion of the sampling area revealed new chromosomal features in the north and a new contact zone in the southern range involving the PEDC and PLDB races. We discuss how different interacting mechanisms (landscape resistance, behaviour, chromosomal incompatibilities, meiotic drive) may help to explain the pattern of chromosomal variation at these contacts between chromosomal races.
Collapse
|
10
|
Mérot C, Oomen RA, Tigano A, Wellenreuther M. A Roadmap for Understanding the Evolutionary Significance of Structural Genomic Variation. Trends Ecol Evol 2020; 35:561-572. [PMID: 32521241 DOI: 10.1016/j.tree.2020.03.002] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022]
Abstract
Structural genomic variants (SVs) are ubiquitous and play a major role in adaptation and speciation. Yet, comparative and population genomics have focused predominantly on gene duplications and large-effect inversions. The lack of a common framework for studying all SVs is hampering progress towards a more systematic assessment of their evolutionary significance. Here we (i) review how different types of SVs affect ecological and evolutionary processes; (ii) suggest unifying definitions and recommendations for future studies; and (iii) provide a roadmap for the integration of SVs in ecoevolutionary studies. In doing so, we lay the foundation for population genomics, theoretical, and experimental approaches to understand how the full spectrum of SVs impacts ecological and evolutionary processes.
Collapse
Affiliation(s)
- Claire Mérot
- Université Laval, Institut de Biologie Intégrative des Systèmes, 1030 Avenue de la Médecine, G1V 0A6, Québec, QC, Canada.
| | - Rebekah A Oomen
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Blindernveien 31, 0371 Oslo, Norway; Centre for Coastal Research, University of Agder, Universitetsveien 25, 4630 Kristiansand, Norway.
| | - Anna Tigano
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA; Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH, USA.
| | - Maren Wellenreuther
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand; The New Zealand Institute for Plant & Food Research Ltd, Nelson, New Zealand.
| |
Collapse
|
11
|
Ribagorda M, Berríos S, Solano E, Ayarza E, Martín-Ruiz M, Gil-Fernández A, Parra MT, Viera A, Rufas JS, Capanna E, Castiglia R, Fernández-Donoso R, Page J. Meiotic behavior of a complex hexavalent in heterozygous mice for Robertsonian translocations: insights for synapsis dynamics. Chromosoma 2019; 128:149-163. [PMID: 30826871 DOI: 10.1007/s00412-019-00695-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/27/2019] [Accepted: 02/18/2019] [Indexed: 12/11/2022]
Abstract
Natural populations of the house mouse Mus musculus domesticus show great diversity in chromosomal number due to the presence of chromosomal rearrangements, mainly Robertsonian translocations. Breeding between two populations with different chromosomal configurations generates subfertile or sterile hybrid individuals due to impaired meiotic development. In this study, we have analyzed prophase-I spermatocytes of hybrids formed by crossing mice from Vulcano and Lipari island populations. Both populations have a 2n = 26 karyotype but different combinations of Robertsonian translocations. We studied the progress of synapsis, recombination, and meiotic silencing of unsynapsed chromosomes during prophase-I through the immunolocalization of the proteins SYCP3, SYCP1, γH2AX, RAD51, and MLH1. In these hybrids, a hexavalent is formed that, depending on the degree of synapsis between chromosomes, can adopt an open chain, a ring, or a closed configuration. The frequency of these configurations varies throughout meiosis, with the maximum degree of synapsis occurring at mid pachytene. In addition, we observed the appearance of heterologous synapsis between telocentric and metacentric chromosomes; however, this synapsis seems to be transient and unstable and unsynapsed regions are frequently observed in mid-late pachytene. Interestingly, we found that chiasmata are frequently located at the boundaries of unsynapsed chromosomal regions in the hexavalent during late pachytene. These results provide new clues about synapsis dynamics during meiosis. We propose that mechanical forces generated along chromosomes may induce premature desynapsis, which, in turn, might be counteracted by the location of chiasmata. Despite these and additional meiotic features, such as the accumulation of γH2AX on unsynapsed chromosome regions, we observed a large number of cells that progressed to late stages of prophase-I, indicating that synapsis defects may not trigger a meiotic crisis in these hybrids.
Collapse
Affiliation(s)
- Marta Ribagorda
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Soledad Berríos
- Programa de Genética Humana, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Emanuela Solano
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università degli Studi di Roma La Sapienza, Rome, Italy
| | - Eliana Ayarza
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marta Martín-Ruiz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana Gil-Fernández
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Teresa Parra
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Viera
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Julio S Rufas
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ernesto Capanna
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università degli Studi di Roma La Sapienza, Rome, Italy
| | - Riccardo Castiglia
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università degli Studi di Roma La Sapienza, Rome, Italy
| | - Raúl Fernández-Donoso
- Programa de Genética Humana, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jesús Page
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
12
|
Faria R, Chaube P, Morales HE, Larsson T, Lemmon AR, Lemmon EM, Rafajlović M, Panova M, Ravinet M, Johannesson K, Westram AM, Butlin RK. Multiple chromosomal rearrangements in a hybrid zone between Littorina saxatilis ecotypes. Mol Ecol 2019; 28:1375-1393. [PMID: 30537056 PMCID: PMC6518922 DOI: 10.1111/mec.14972] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/07/2018] [Accepted: 10/08/2018] [Indexed: 12/22/2022]
Abstract
Both classical and recent studies suggest that chromosomal inversion polymorphisms are important in adaptation and speciation. However, biases in discovery and reporting of inversions make it difficult to assess their prevalence and biological importance. Here, we use an approach based on linkage disequilibrium among markers genotyped for samples collected across a transect between contrasting habitats to detect chromosomal rearrangements de novo. We report 17 polymorphic rearrangements in a single locality for the coastal marine snail, Littorina saxatilis. Patterns of diversity in the field and of recombination in controlled crosses provide strong evidence that at least the majority of these rearrangements are inversions. Most show clinal changes in frequency between habitats, suggestive of divergent selection, but only one appears to be fixed for different arrangements in the two habitats. Consistent with widespread evidence for balancing selection on inversion polymorphisms, we argue that a combination of heterosis and divergent selection can explain the observed patterns and should be considered in other systems spanning environmental gradients.
Collapse
Affiliation(s)
- Rui Faria
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Pragya Chaube
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Hernán E Morales
- Department of Marine Sciences, Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
| | - Tomas Larsson
- Department of Marine Sciences, Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Tallahassee, Florida
| | - Emily M Lemmon
- Department of Biological Science, Florida State University, Tallahassee, Florida
| | - Marina Rafajlović
- Department of Marine Sciences, Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
| | - Marina Panova
- Department of Marine Sciences at Tjärnö, Centre for Marine Evolutionary Biology, University of Gothenburg, Strömstad, Sweden
| | - Mark Ravinet
- Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - Kerstin Johannesson
- Department of Marine Sciences at Tjärnö, Centre for Marine Evolutionary Biology, University of Gothenburg, Strömstad, Sweden
| | - Anja M Westram
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.,IST Austria, Klosterneuburg, Austria
| | - Roger K Butlin
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.,Department of Marine Sciences at Tjärnö, Centre for Marine Evolutionary Biology, University of Gothenburg, Strömstad, Sweden
| |
Collapse
|
13
|
Tritsch C, Stuckas H, Martens J, Pentzold S, Kvist L, Lo Valvo M, Giacalone G, Tietze DT, Nazarenko AA, PÄckert M. Gene flow in the European coal tit, Periparus ater (Aves: Passeriformes): low among Mediterranean populations but high in a continental contact zone. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Christian Tritsch
- Senckenberg Natural History Collections, Königsbrücker Landstraße, Dresden, Germany
- Institute of Biology, Molecular Evolution & Animal Systematics, University of Leipzig, Leipzig, Germany
| | - Heiko Stuckas
- Senckenberg Natural History Collections, Königsbrücker Landstraße, Dresden, Germany
| | - Jochen Martens
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Stefan Pentzold
- Institute of Biology, Molecular Evolution & Animal Systematics, University of Leipzig, Leipzig, Germany
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Laura Kvist
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Mario Lo Valvo
- Dipartimento di Scienze e Tecnologie biologiche, chimiche e farmaceutiche, Via Archirafi, Palermo, Italy
| | | | | | - Alexander A Nazarenko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Martin PÄckert
- Senckenberg Natural History Collections, Königsbrücker Landstraße, Dresden, Germany
| |
Collapse
|
14
|
Chiatante G, Giannuzzi G, Calabrese FM, Eichler EE, Ventura M. Centromere Destiny in Dicentric Chromosomes: New Insights from the Evolution of Human Chromosome 2 Ancestral Centromeric Region. Mol Biol Evol 2017; 34:1669-1681. [PMID: 28333343 DOI: 10.1093/molbev/msx108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Dicentric chromosomes are products of genomic rearrangements that place two centromeres on the same chromosome. Due to the presence of two primary constrictions, they are inherently unstable and overcome their instability by epigenetically inactivating and/or deleting one of the two centromeres, thus resulting in functionally monocentric chromosomes that segregate normally during cell division. Our understanding to date of dicentric chromosome formation, behavior and fate has been largely inferred from observational studies in plants and humans as well as artificially produced de novo dicentrics in yeast and in human cells. We investigate the most recent product of a chromosome fusion event fixed in the human lineage, human chromosome 2, whose stability was acquired by the suppression of one centromere, resulting in a unique difference in chromosome number between humans (46 chromosomes) and our most closely related ape relatives (48 chromosomes). Using molecular cytogenetics, sequencing, and comparative sequence data, we deeply characterize the relicts of the chromosome 2q ancestral centromere and its flanking regions, gaining insight into the ancestral organization that can be easily broadened to all acrocentric chromosome centromeres. Moreover, our analyses offered the opportunity to trace the evolutionary history of rDNA and satellite III sequences among great apes, thus suggesting a new hypothesis for the preferential inactivation of some human centromeres, including IIq. Our results suggest two possible centromere inactivation models to explain the evolutionarily stabilization of human chromosome 2 over the last 5-6 million years. Our results strongly favor centromere excision through a one-step process.
Collapse
Affiliation(s)
- Giorgia Chiatante
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy.,Department of Biology, Anthropology Laboratories University of Florence, Florence, Italy
| | - Giuliana Giannuzzi
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA.,Howard Hughes Medical Institute, University of Washington, Seattle, WA
| | - Mario Ventura
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|