1
|
Scroggs SLP, Swanson DA, Steele TD, Hudson AR, Reister-Hendricks LM, Gutierrez J, Shults P, McGregor BL, Taylor CE, Davis TM, Lamberski N, Phair KA, Howard LL, McConnell NE, Gurfield N, Drolet BS, Pelzel-McCluskey AM, Cohnstaedt LW. Vesicular Stomatitis Virus Detected in Biting Midges and Black Flies during the 2023 Outbreak in Southern California. Viruses 2024; 16:1428. [PMID: 39339904 PMCID: PMC11437509 DOI: 10.3390/v16091428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Vesicular stomatitis (VS) is a viral disease that affects horses, cattle, and swine that is transmitted by direct contact and hematophagous insects. In 2023, a multi-state outbreak of vesicular stomatitis New Jersey virus (VSNJV) occurred in California, Nevada, and Texas, infecting horses, cattle, and rhinoceros. To identify possible insect vectors, we conducted insect surveillance at various locations in San Diego County, CA, including at a wildlife park. CO2 baited traps set from mid-May to mid-August 2023 collected 2357 Culicoides biting midges and 1215 Simulium black flies, which are insect genera implicated in VSNJV transmission. Insects were pooled by species, location, and date, then tested for viral RNA. Nine RNA-positive pools of Culicoides spp. and sixteen RNA-positive pools of Simulium spp were detected. Infectious virus was detected by cytopathic effect in 96% of the RNA-positive pools. This is the first report of VSNJV in wild-caught C. bergi, C. freeborni, C. occidentalis, S. argus, S. hippovorum, and S. tescorum. The vector competency of these species for VSNJV has yet to be determined but warrants examination. Active vector surveillance and testing during disease outbreaks increases our understanding of the ecology and epidemiology of VS and informs vector control efforts.
Collapse
Affiliation(s)
- Stacey L. P. Scroggs
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (T.D.S.); (A.R.H.); (L.M.R.-H.); (J.G.); (P.S.); (B.L.M.); (C.E.T.); (T.M.D.); (B.S.D.)
| | - Dustin A. Swanson
- Center for Grain and Animal Health Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA;
| | - Taylor D. Steele
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (T.D.S.); (A.R.H.); (L.M.R.-H.); (J.G.); (P.S.); (B.L.M.); (C.E.T.); (T.M.D.); (B.S.D.)
| | - Amy R. Hudson
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (T.D.S.); (A.R.H.); (L.M.R.-H.); (J.G.); (P.S.); (B.L.M.); (C.E.T.); (T.M.D.); (B.S.D.)
| | - Lindsey M. Reister-Hendricks
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (T.D.S.); (A.R.H.); (L.M.R.-H.); (J.G.); (P.S.); (B.L.M.); (C.E.T.); (T.M.D.); (B.S.D.)
| | - Jessica Gutierrez
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (T.D.S.); (A.R.H.); (L.M.R.-H.); (J.G.); (P.S.); (B.L.M.); (C.E.T.); (T.M.D.); (B.S.D.)
| | - Phillip Shults
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (T.D.S.); (A.R.H.); (L.M.R.-H.); (J.G.); (P.S.); (B.L.M.); (C.E.T.); (T.M.D.); (B.S.D.)
| | - Bethany L. McGregor
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (T.D.S.); (A.R.H.); (L.M.R.-H.); (J.G.); (P.S.); (B.L.M.); (C.E.T.); (T.M.D.); (B.S.D.)
| | - Caitlin E. Taylor
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (T.D.S.); (A.R.H.); (L.M.R.-H.); (J.G.); (P.S.); (B.L.M.); (C.E.T.); (T.M.D.); (B.S.D.)
| | - Travis M. Davis
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (T.D.S.); (A.R.H.); (L.M.R.-H.); (J.G.); (P.S.); (B.L.M.); (C.E.T.); (T.M.D.); (B.S.D.)
| | - Nadine Lamberski
- San Diego Zoo Wildlife Alliance, Safari Park, Escondido, CA 92027, USA; (N.L.); (K.A.P.); (L.L.H.)
| | - Kristen A. Phair
- San Diego Zoo Wildlife Alliance, Safari Park, Escondido, CA 92027, USA; (N.L.); (K.A.P.); (L.L.H.)
| | - Lauren L. Howard
- San Diego Zoo Wildlife Alliance, Safari Park, Escondido, CA 92027, USA; (N.L.); (K.A.P.); (L.L.H.)
- Peel Therapeutics, Salt Lake City, UT 84101, USA
| | | | - Nikos Gurfield
- San Diego County Vector Control, San Diego, CA 92123, USA; (N.E.M.); (N.G.)
| | - Barbara S. Drolet
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (T.D.S.); (A.R.H.); (L.M.R.-H.); (J.G.); (P.S.); (B.L.M.); (C.E.T.); (T.M.D.); (B.S.D.)
| | - Angela M. Pelzel-McCluskey
- Animal and Plant Health Inspection Service, Veterinary Services, United States Department of Agriculture, Fort Collins, CO 80526, USA;
| | - Lee W. Cohnstaedt
- Foreign Arthropod-Borne Animal Diseases Research Unit, National Bio- and Agro-Defense Facility, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA;
| |
Collapse
|
2
|
González MA, Magallanes S, Bravo-Barriga D, Monteys VSI, Martínez-de la Puente J, Figuerola J. Sampling of Culicoides with nontraditional methods provides unusual species composition and new records for southern Spain. Parasit Vectors 2024; 17:338. [PMID: 39135087 PMCID: PMC11318182 DOI: 10.1186/s13071-024-06414-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Culicoides midges have been well-studied in Spain, particularly over the last 20 years, mainly because of their role as vectors of arboviral diseases that affect livestock. Most studies on Culicoides are conducted using suction light traps in farmed environments, but studies employing alternative trapping techniques or focusing on natural habitats are scarce. METHODS In the present study, we analyze Culicoides captured in 2023 at 476 sites in western Andalusia (southern Spain) using carbon dioxide-baited Biogents (BG)-sentinel traps across different ecosystems. RESULTS We collected 3,084 Culicoides midges (3060 females and 24 males) belonging to 23 species, including the new species Culicoides grandifovea sp. nov. and the first record of Culicoides pseudolangeroni for Europe. Both species were described with morphological and molecular methods and detailed data on spatial distribution was also recorded. The new species showed close phylogenetic relations with sequences from an unidentified Culicoides from Morocco (92.6% similarity) and with Culicoides kurensis. Culicoides imicola was the most abundant species (17.4%), followed by Culicoides grandifovea sp. nov. (14.6%) and Culicoides kurensis (11.9%). Interestingly, Culicoides montanus was the only species of the obsoletus and pulicaris species complexes captured, representing the first record of this species in southern Spain. A total of 53 valid Culicoides species have been reported in the area, with 48 already reported in literature records and 5 more added in the present study. Information on the flight period for the most common Culicoides species is also provided. CONCLUSIONS To the best of our knowledge, our study represents the most comprehensive effort ever done on nonfarmland habitats using carbon-dioxide baited suction traps for collecting Culicoides. Our data suggests that using carbon dioxide traps offers a completely different perspective on Culicoides communities compared with routinely used light traps, including the discovery of previously unrecorded species.
Collapse
Affiliation(s)
- Mikel Alexander González
- Estación Biológica de Doñana (EBD, CSIC), Seville, Spain.
- Ciber de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.
| | - Sergio Magallanes
- Estación Biológica de Doñana (EBD, CSIC), Seville, Spain
- Ciber de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Daniel Bravo-Barriga
- Departamento de Salud Animal, Grupo de Investigación en Salud Animal y Zoonosis (GISAZ), Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Victor Sarto I Monteys
- Institut de Ciència i Tecnologia Ambientals (ICTA), Entomology, Plants and Health, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Josué Martínez-de la Puente
- Estación Biológica de Doñana (EBD, CSIC), Seville, Spain
- Ciber de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jordi Figuerola
- Estación Biológica de Doñana (EBD, CSIC), Seville, Spain
- Ciber de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
3
|
McVey DS, Hanzlicek G, Ruder MG, Loy D, Drolet BS. Evidence of Active Orbivirus Transmission in 2016 in Kansas and Nebraska. Vector Borne Zoonotic Dis 2024; 24:390-395. [PMID: 38386998 DOI: 10.1089/vbz.2022.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Retrospective serological and case diagnostic data of endemic bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) provide evidence of viral transmission among livestock and wildlife from 2016 in Kansas and Nebraska. Serological testing of mature cattle in nine distinct regional zones of Kansas revealed 76% to 100% had detectable antibodies to BTV and/or EHDV. Specimens tested in the Kansas Veterinary Diagnostic Laboratory (55 submissions) were 51% test positive for antibodies to BTV and/or EHDV. Specimens tested in the Nebraska Veterinary Diagnostic Center (283 submissions) were 25% test positive for antibodies to BTV and/or EHDV. Low disease incidence in white-tailed deer and other susceptible wild ungulates was observed during 2016. However, there were no confirmed reports of disease in livestock in either state. The reasons for emergence of significant clinical disease in livestock and wildlife populations remain undefined.
Collapse
Affiliation(s)
- David Scott McVey
- School of Veterinary Medicine and Biomedical Sciences, Nebraska Veterinary Diagnostic Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Greg Hanzlicek
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Mark G Ruder
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, University of Georgia, College of Veterinary Medicine, Athens, Georgia, USA
| | - Dustin Loy
- School of Veterinary Medicine and Biomedical Sciences, Nebraska Veterinary Diagnostic Center, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Barbara S Drolet
- Arthropod-Borne Animal Diseases Research Unit, USDA ARS CGAHR, Manhattan, Kansas, USA
| |
Collapse
|
4
|
Osborne CJ, Cohnstaedt LW, Silver KS. Outlook on RNAi-Based Strategies for Controlling Culicoides Biting Midges. Pathogens 2023; 12:1251. [PMID: 37887767 PMCID: PMC10610143 DOI: 10.3390/pathogens12101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Culicoides are small biting midges with the capacity to transmit important livestock pathogens around much of the world, and their impacts on animal welfare are likely to expand. Hemorrhagic diseases resulting from Culicoides-vectored viruses, for example, can lead to millions of dollars in economic damages for producers. Chemical insecticides can reduce Culicoides abundance but may not suppress population numbers enough to prevent pathogen transmission. These insecticides can also cause negative effects on non-target organisms and ecosystems. RNA interference (RNAi) is a cellular regulatory mechanism that degrades mRNA and suppresses gene expression. Studies have examined the utility of this mechanism for insect pest control, and with it, have described the hurdles towards producing, optimizing, and applying these RNAi-based products. These methods hold promise for being highly specific and environmentally benign when compared to chemical insecticides and are more transient than engineering transgenic insects. Given the lack of available control options for Culicoides, RNAi-based products could be an option to treat large areas with minimal environmental impact. In this study, we describe the state of current Culicoides control methods, successes and hurdles towards using RNAi for pest control, and the necessary research required to bring an RNAi-based control method to fruition for Culicoides midges.
Collapse
Affiliation(s)
- Cameron J. Osborne
- Department of Entomology, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA;
| | - Lee W. Cohnstaedt
- Foreign Arthropod-Borne Animal Diseases Research Unit, National Bio- and Agro-Defense Facility, Agricultural Research Service, United Stated Department of Agriculture, Manhattan, KS 66502, USA
| | - Kristopher S. Silver
- Department of Entomology, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
5
|
Allen SE, Vigil SL, Furukawa-Stoffer T, Colucci N, Ambagala A, Pearl DL, Ruder MG, Jardine CM, Nemeth NM. Abundance and diversity of Culicoides Latreille (Diptera: Ceratopogonidae) in southern Ontario, Canada. Parasit Vectors 2023; 16:201. [PMID: 37316934 DOI: 10.1186/s13071-023-05799-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Culicoides Latreille (Diptera: Ceratopogonidae) is a genus of hematophagous midges feeding on various vertebrate hosts and serving as a vector for numerous pathogens important to livestock and wildlife health. North American pathogens include bluetongue (BT) and epizootic hemorrhagic disease (EHD) viruses. Little is known about Culicoides spp. distribution and abundance and species composition in Ontario, Canada, despite bordering numerous U.S. states with documented Culicoides spp. and BT and EHD virus activity. We sought to characterize Culicoides spp. distribution and abundance and to investigate whether select meteorological and ecological risk factors influenced the abundance of Culicoides biguttatus, C. stellifer, and the subgenus Avaritia trapped throughout southern Ontario. METHODS From June to October of 2017 to 2018, CDC-type LED light suction traps were placed on twelve livestock-associated sites across southern Ontario. Culicoides spp. collected were morphologically identified to the species level when possible. Associations were examined using negative binomial regression among C. biguttatus, C. stellifer, and subgenus Avaritia abundance, and select factors: ambient temperature, rainfall, primary livestock species, latitude, and habitat type. RESULTS In total, 33,905 Culicoides spp. midges were collected, encompassing 14 species from seven subgenera and one species group. Culicoides sonorensis was collected from three sites during both years. Within Ontario, the northern trapping locations had a pattern of seasonal peak abundance in August (2017) and July (2018), and the southern locations had abundance peaks in June for both years. Culicoides biguttatus, C. stellifer, and subgenus Avaritia were significantly more abundant if ovine was the primary livestock species at trapping sites (compared to bovine). Culicoides stellifer and subgenus Avaritia were significantly more abundant at mid- to high-temperature ranges on trap days (i.e., 17.3-20.2 and 20.3-31.0 °C compared to 9.5-17.2 °C). Additionally, subgenus Avaritia were significantly more abundant if rainfall 4 weeks prior was between 2.7 and 20.1 mm compared to 0.0 mm and if rainfall 8 weeks prior was between 0.1 and 2.1 mm compared to 0.0 mm. CONCLUSIONS Results from our study describe Culicoides spp. distribution in southern Ontario, the potential for spread and maintenance of EHD and BT viruses, and concurrent health risks to livestock and wildlife in southern Ontario in reference to certain meteorological and ecological risk factors. We identified that Culicoides spp. are diverse in this province, and appear to be distinctly distributed spatially and temporally. The livestock species present, temperature, and rainfall appear to have an impact on the abundance of C. biguttatus, C. stellifer, and subgenus Avaritia trapped. These findings could help inform targeted surveillance, control measures, and the development of management guides for Culicoides spp. and EHD and BT viruses in southern Ontario, Canada.
Collapse
Affiliation(s)
- Samantha E Allen
- Wyoming Game and Fish Department, Veterinary Services, Laramie, USA.
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada.
- Canadian Wildlife Health Cooperative, Ontario Veterinary College, University of Guelph, Guelph, Canada.
| | - Stacey L Vigil
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, USA
| | - Tara Furukawa-Stoffer
- Canadian Food Inspection Agency, National Centre for Animal Diseases, Lethbridge, Canada
| | - Nicole Colucci
- Canadian Food Inspection Agency, National Centre for Animal Diseases, Lethbridge, Canada
| | - Aruna Ambagala
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, Canada
| | - David L Pearl
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Mark G Ruder
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, USA
| | - Claire M Jardine
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
- Canadian Wildlife Health Cooperative, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Nicole M Nemeth
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, USA
- Department of Pathology, University of Georgia, Athens, USA
| |
Collapse
|
6
|
Zhang X, Li J, Gerry AC. Comparison of Trap Efficiency Using Suction Traps Baited With Either UV or CO2 for the Capture of Culicoides (Diptera: Ceratopogonidae) Species in the Southern California Desert, United States. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:193-201. [PMID: 36351779 DOI: 10.1093/jme/tjac169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 06/16/2023]
Abstract
Culicoides Latreille (Diptera: Ceratopogonidae) biting midges are hematophagous flies that can transmit several disease-causing pathogens to animals. Surveillance of Culicoides is important for understanding pathogen transmission risk. The most commonly used traps for midge surveillance are suction traps baited with UV light or CO2. Culicoides species are understudied in the southern California desert region and trapping methods for these desert midges remain largely unexplored. In this study, capture rates of different Culicoides species were compared using suction traps baited with either UV or CO2 placed at two locations at a southern California desert site where a narrow canyon (Deep Canyon) drains the adjacent peninsular mountain range and leads to an expansive floodplain. Over all trap nights and locations, UV-baited traps outperformed CO2-baited traps for most Culicoides species captured at the study site, except for Culicoides sonorensis Wirth and Jones and C. mohave Wirth. Capture rates varied for each species by trap location, with desert Culicoides species captured in greater numbers at the canyon mouth while C. sonorensis and C. mohave were captured in greater numbers on the floodplain nearer to urban development including a golf course and small zoo. An interaction of trap type with trapping location on the capture rate was noted for some Culicoides species, especially for C. mohave which was captured in greater numbers using UV traps at the canyon mouth but captured in greater numbers using CO2 traps in the floodplain. This trap efficiency study will facilitate future research targeting Culicoides species in the southern California desert.
Collapse
Affiliation(s)
- Xinmi Zhang
- Department of Entomology, University of California, Riverside, Citrus Drive, Riverside, CA 91521, USA
- Keck Science Center, 925 North Mills Avenue, Claremont, CA 91711, USA
| | - Jun Li
- Department of Statistics, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Alec C Gerry
- Department of Entomology, University of California, Riverside, Citrus Drive, Riverside, CA 91521, USA
| |
Collapse
|
7
|
Lysyk TJ, Couloigner I, Massolo A, Cork SC. Relationship Between Weather and Changes in Annual and Seasonal Abundance of Culicoides sonorensis (Diptera: Ceratopogonidae) in Alberta. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:90-101. [PMID: 36260077 DOI: 10.1093/jme/tjac157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 06/16/2023]
Abstract
Factors influencing annual and seasonal abundance of Culicoides sonorensis (Wirth and Jones) (Diptera; Ceratopogonidae) were examined at 10 sites in southern Alberta using negative binomial regression. Annual abundance varied among locations with greatest abundance in a narrow geographic band between -112.17 and -112.64°W longitude and 49.32 and 50.17°N latitude. Sites were grouped depending on whether abundance was continuous and high; discontinuous and low; or sporadic and low without much loss of information. Maximum annual abundance declined with spring precipitation, increased with spring temperature, and was unrelated to spring relative humidity, suggesting that abundance is highest during years with early drought conditions. Seasonal abundance was associated with the same factors but was further influenced by temperature and relative humidity during the sample intervals. Lagged effects were apparent, suggesting abundance increased with warmer temperatures over a six-week period, and increased when relative humidity declined closer to the sampling period. Predicted values were slightly biased and tended to overestimate observed data, but this could be adjusted using calibration curves. The model can also be used to predict presence/absence of C. sonorensis and will be useful for developing risk assessments.
Collapse
Affiliation(s)
- T J Lysyk
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada (Retired)
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - I Couloigner
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Department of Geography, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - A Massolo
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
- Ethology Unit, Department of Biology, University of Pisa, Pisa, Italy
- UMR CNRS 6249 Chrono-environnement, Université Bourgogne Franche-Comté, Besançon, France
| | - S C Cork
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| |
Collapse
|
8
|
Brown‐Joseph T, Oura CAL, Carrington CVF, Harrup LE. Comparison of surveillance trapping methods to monitor Culicoides biting midge activity in Trinidad, West Indies. MEDICAL AND VETERINARY ENTOMOLOGY 2022; 36:456-468. [PMID: 35703533 PMCID: PMC9796062 DOI: 10.1111/mve.12590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Culicoides biting midges (Diptera: Ceratopogonidae) are biting nuisances and arbovirus vectors of both public health and veterinary significance in Trinidad. We compared sampling methods to define the behaviour and bionomics of adult Culicoides populations at a commercial dairy goat farm. Three static trap designs were compared: (a) Centre for Disease Control (CDC) downdraft UV trap; (b) CDC trap with an incandescent bulb and (c) CDC trap with semiochemical lure consisting of R-(-)-1-octen-3-ol and CO2 (no bulb). Sweep netting was used to define diel periodicity. A total of 30,701 biting midges were collected using static traps, dominated by female Culicoides furens (>70% of trap collections across all three designs). There was no significant difference in the Margalef's index between the three traps; however, trap designs A and C collected a significantly greater number of individuals than trap B, and trap C gained highest species richness. The greatest species richness and abundance of Culicoides collected by sweep net was observed between 6:00 and 6:15 pm and notable differences in the crepuscular activity pattern of several species were identified. Comparative data on Culicoides species richness, abundance, sex and reproductive status is discussed and can be used to improve surveillance strategies, research designs and risk management.
Collapse
Affiliation(s)
- Tamiko Brown‐Joseph
- Department of Pre‐Clinical Sciences, Faculty of Medical SciencesThe University of the West IndiesSt. AugustineTrinidad and Tobago
| | - Christopher A. L. Oura
- Faculty of Medical Sciences, School of Veterinary MedicineThe University of the West IndiesSt. AugustineTrinidad and Tobago
| | - Christine V. F. Carrington
- Department of Pre‐Clinical Sciences, Faculty of Medical SciencesThe University of the West IndiesSt. AugustineTrinidad and Tobago
| | | |
Collapse
|
9
|
Choocherd S, Pattanatanang K, Chimnoi W, Kamyingkird K, Tongyoo P, Phasuk J. Preliminary Study on Comparative Efficacy of Four Light Sources for Trapping Culicoides spp. (Diptera: Ceratopogonidae) in Prachuap Khiri Khan Province, Thailand. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1719-1723. [PMID: 35899797 DOI: 10.1093/jee/toac117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The light trap is an important tool to determine the presence and abundance of vectors in the field. However, no one has studied the efficiency of light traps for collecting Culicoides in Thailand. In the present study, the efficacy of four light sources was evaluated in Prachuap Khiri Khan province, Thailand. Incandescent (INCND) light, white fluorescent (WHT-FLR) light, ultraviolet fluorescent (UV-FLR) light, and UV light-emitting diode (UV-LED) light were tested using commercial traps. In total, 30,866 individuals of Culicoides species were collected from November 2020 to June 2021, of which 21,016 were trapped on site 1 and 6,731 were trapped on site 2. The two most abundant Culicoides species were C. imicola (54%) and C. oxystoma (31.2%). UV-FLR was highly effective, followed by UV-LED light, WHT-FLR light, and INCND light, respectively, for Culicoides collection. Significantly, more Culicoides species were collected in those traps baited with UV-FLR light, UV-LED light, or WHT-FLR light than for INCND light traps. Traps equipped with UV-FLR lights can be recommended to trap Culcoides biting midges for monitoring purposes.
Collapse
Affiliation(s)
- Suchada Choocherd
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Center for Advanced Studies for Agriculture and Food, KU Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| | - Khampee Pattanatanang
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Wissanuwat Chimnoi
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Ketsarin Kamyingkird
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Pumipat Tongyoo
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
- Center of Excellence on Agricultural Biotechnology: (AG-BIO/MHESI), Bangkok, Thailand
| | - Jumnongjit Phasuk
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Center for Advanced Studies for Agriculture and Food, KU Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
10
|
Jin T, Husseneder C, Foil L. Assigning Culicoides larvae to species using DNA barcoding of adult females and phylogenetic associations. Parasit Vectors 2022; 15:349. [PMID: 36180921 PMCID: PMC9526334 DOI: 10.1186/s13071-022-05479-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
Background Orbivirus-induced hemorrhagic diseases cause high mortality in wild and captive white-tailed deer in North America. The role of different Culicoides species in Orbivirus transmission outside of areas of intensive animal production has not been established. At our study location, bluetongue virus (BTV) RNA-positive female Culicoides debilipalpis pools have been detected annually since 2012 when BTV transmission was noted in a captive deer herd. Identifying specific larval habitats of suspected vectors at active transmission sites is crucial both for identifying the source of the vectors and for subsequently planning intervention actions. Since C. debilipalpis larvae are known to develop in tree holes, this study was designed to use DNA barcoding to identify larvae collected from tree holes. Methods Adult female Culicoides were collected using light or emergence traps and morphologically identified to 11 species. Culicoides sonorensis were also obtained from a laboratory colony. Substrate was collected from tree holes and flooded with water to harvest floating larvae. Total DNA from three to seven adult females per species and 19 larvae was extracted. Two loci of the nuclear 18S ribosomal RNA (rRNA) gene, one locus each of the mitochondrial cytochrome oxidase subunit I (COI) gene and the nuclear 28S rRNA gene were amplified using loci-specific primers. Results All 61 adults were sequenced at each of the four loci under study. Since no single locus delineated all putative species and the COI locus yielded unreliable pseudogenes for two individuals of C. arboricola, sequences of all four loci were concatenated to maximize species separation and allow for larval association with identified adults. Sixteen larvae were clearly assigned to species based on DNA barcoding and phylogenetic results. Multiple larvae were assigned to each of the C. debilipalpis clade, the C. villosipennis clade, the C. arboricola clade and the C. nanus clade. Conclusions Of the approximately 62 species described in the southeast USA, 21 have now been barcoded and sequences are publicly available. In this study, we constructed a database composed of species-specific sequences of adult Culicoides and then identified larvae to species by matching their corresponding sequences with adults. Since Culicoides larvae are difficult to identify, using DNA barcoding to facilitate larval habitat surveys can be a valuable tool. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05479-1.
Collapse
Affiliation(s)
- Tao Jin
- Department of Entomology, Agricultural Experiment Station, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | - Claudia Husseneder
- Department of Entomology, Agricultural Experiment Station, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | - Lane Foil
- Department of Entomology, Agricultural Experiment Station, Louisiana State University Agricultural Center, Baton Rouge, LA, USA. .,Agricultural Experiment Station, Louisiana State University Agricultural Center-Bob R. Jones-Idlewild Research Station, Clinton, LA, USA.
| |
Collapse
|
11
|
Black TV, Quaglia AI, Wisely S, Burkett-Cadena N. Field Comparison of Removed Substrate Sampling and Emergence Traps for Estimating Culicoides Orbivirus Vectors in Northern Florida. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1660-1668. [PMID: 35802003 DOI: 10.1093/jme/tjac089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 06/15/2023]
Abstract
The larval ecology of Culicoides (Diptera: Ceratopogonidae) influences their spatial distributions and the pathogens they transmit. These features are of special concern for deer farmers in Florida where epizootic hemorrhagic disease virus (EHDV) is a major source of mortality in captive herds. Rarity of larval morphological expertise leads many researchers to study larval ecology by quantifying emergence, either with field emergence traps or removing substrate from the field for observation under laboratory conditions. We investigated the comparability of these methods in Florida seepages where two recently implicated EHDV vectors, Culicoides stellifer Coquillett and Culicoides venustus Hoffman, are common. We compared the abundance and composition of emerging Culicoides collected from emergence traps with removed substrate samples (soil plugs) at three seepages. Soil plugs were sampled adjacent to the emergence trap and from underneath the trap footprint, and then monitored under laboratory conditions for 11-13 wk to compare the methods and to assess the role of incubation period for removed substrate samples. Emergence traps and removed substrate sampling largely agreed on community compositions and trends within different seepages. However, comparatively large numbers of C. stellifer emerged later than expected and well into the incubation period with emergence still occurring after 13 wk (90 d). Removed substrate samples were more similar to emergence traps at shorter incubation times. The importance of time for the capture of Culicoides in removed substrate sampling was more pronounced than we anticipated and is important from both a methodological and biological perspective.
Collapse
Affiliation(s)
- Theodore Vincent Black
- University of Florida IFAS, Florida Medical Entomology Laboratory, 200 9th Street SE, Vero Beach, FL 32962, USA
| | - Agustin Ignacio Quaglia
- University of Florida IFAS, Florida Medical Entomology Laboratory, 200 9th Street SE, Vero Beach, FL 32962, USA
| | - Samantha Wisely
- Wildlife and Conservation Department, University of Florida IFAS, 110 Newins-Ziegler Hall, Gainesville, FL 32611, USA
| | - Nathan Burkett-Cadena
- University of Florida IFAS, Florida Medical Entomology Laboratory, 200 9th Street SE, Vero Beach, FL 32962, USA
| |
Collapse
|
12
|
Kadjoudj N, Bounamous A, Kouba Y, Dik B, Zeroual S, Amira A, Chenchouni H. Composition and diversity of Culicoides biting midges (Diptera: Ceratopogonidae) in rural and suburban environments of Algeria. Acta Trop 2022; 234:106588. [PMID: 35803337 DOI: 10.1016/j.actatropica.2022.106588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/01/2022]
Abstract
Culicoides biting midges are well known biological vectors of several arboviruses causing more than 100 veterinary and medical diseases worldwide. In Algeria, bluetongue virus, which is transmitted by Culicoides midges, is responsible for one of the most critical insect-borne diseases of sheep. For example, this disease caused clinically severe morbidity of about 2,661 confirmed cases out of 21,175 susceptible sheep in Algeria. This study compared the abundance, richness, and diversity of Culicoides species in rural and suburban environments of semi-arid regions in North Africa. It examined the potential influence of the bio-climatic factors on the variation of population sizes and the elevation distribution of biting midges. Specimen collection was carried out from June to September during two successive years (2018 and 2019) using CDC light traps installed at 15 sites in different environments. Culicoides specimens were dissected, slide-mounted, and morphologically identified using the interactive identification key IIKC and various standard morphological criteria. A total of 1,046 Culicoides specimens (1,024 females and 22 males) were trapped and classified into 22 species, belonged to nine distinct subgenera. Two new species records for Algeria and even North Africa are reported: Culicoides albicans (Winnertz, 1852) and Culicoides nubeculosus (Meigen, 1830). Culicoides newsteadi Austen, 1921 (51.6%) was the dominant species, and it was followed by Culicoides punctatus (Meigen, 1804) (16.3%) and Culicoides odiatus Austen, 1921 (11.5%). These three species, comprising 80% of the collected Culicoides, were the most abundant both outside and inside livestock stables in rural and suburban environments. Species diversity was similar in the two settings, with a slight increase in suburban environments. None of the Culicoides species encountered correlated significantly with the climatic factors (mean temperature, precipitation, and relative humidity). Elevation was the most determinant environmental parameter that affected the abundance and distribution of Culicoides midges in the semi-arid and sub-humid areas studied. The maximum distribution of Culicoides species was detected at mid elevations (400‒800 m). Using a modeling approach, we explored for the first time the variation of composition and diversity in Culicoides communities within different climatic regions, environments and livestock settings in Algeria. This survey deepens our understanding of the relationships among environmental factors, abundance, diversity, and geographic distribution of Culicoides. This is a crucial step to assess the epidemiological situation of the diseases transmitted by these biting midges and to allow mitigation of the associated risks.
Collapse
Affiliation(s)
- Nadia Kadjoudj
- Laboratory of Natural Sciences and Materials, Institute of Science and Technology, University Center A. Boussouf of Mila, Mila 43000, Algeria
| | - Azzedine Bounamous
- Laboratory of Natural Sciences and Materials, Institute of Science and Technology, University Center A. Boussouf of Mila, Mila 43000, Algeria
| | - Yacine Kouba
- Department of Geography and Spatial Planning, Larbi Ben Mhidi University, 04000, Algeria
| | - Bilal Dik
- Department of Parasitology, Faculty of Veterinary Medicine, Selçuk University, Konya 42250, Turkey
| | - Samir Zeroual
- Laboratory of Genetics, biotechnology and valorization of bio-resources, University Mohamed Khider, Biskra, Algeria
| | - Aicha Amira
- Laboratory of Natural Sciences and Materials, Institute of Science and Technology, University Center A. Boussouf of Mila, Mila 43000, Algeria
| | - Haroun Chenchouni
- Department of Forest Management, Higher National School of Forests, Khenchela 40000, Algeria; Laboratory of Natural Resources and Management of Sensitive Environments 'RNAMS', Larbi Ben Mhidi University, Oum-El-Bouaghi 04000, Algeria.
| |
Collapse
|
13
|
González MA, Goiri F, Prosser SWJ, Cevidanes A, Hernández-Triana LM, Barandika JF, Hebert PDN, García-Pérez AL. Culicoides species community composition and feeding preferences in two aquatic ecosystems in northern Spain. Parasit Vectors 2022; 15:199. [PMID: 35690834 PMCID: PMC9188056 DOI: 10.1186/s13071-022-05297-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/21/2022] [Indexed: 11/15/2022] Open
Abstract
Background Aquatic ecosystems provide breeding sites for blood-sucking insects such as Culicoides biting midges (Diptera: Ceratopogonidae), but factors affecting their distribution and host choice are poorly understood. A study was undertaken at two nature reserves in northern Spain to examine the abundance, species composition, population dynamics and feeding patterns of biting midges between 2018 and 2019. Methods Culicoides were captured by light suction traps baited with CO2 and by sweep netting vegetation. Blood meals and species identification of blood-fed specimens were determined using cytochrome c oxidase I subunit (COI) DNA barcoding. Multivariate generalized linear models were used to evaluate the associations between the abundance of Culicoides, the species richness and other parameters. Results The 4973 identified specimens comprised 28 species of Culicoides. These included two species reported for the first time in northern Spain, thus raising to 54 the number of Culicoides species described in the region. Specimens of all 28 species and 99.6% of the total specimens collected were caught in suction traps, while sweep netting vegetation revealed just 11 species and 0.4% of the total specimens. Midge abundance peaked in June/early July, with five species comprising > 80% of the captures: Culicoides alazanicus (24.9%), Culicoides griseidorsum (20.3%), Culicoides poperinghensis (16.2%), Culicoides kibunensis (10.7%) and Culicoides clastrieri (9.6%). DNA barcode analysis of blood meals from eight Culicoides species revealed that they fed on 17 vertebrate species (3 mammals and 14 birds). Species in the subgenus Avaritia were primarily ornithophilic, except for C. griseidorsum and C. poperinghensis. Host DNA from blood meals was successfully amplified from 75% of blood-fed females. A pictorial blood meal digestion scale is provided to accurately assess the blood-fed status of female Culicoides. Conclusions The large number of different blood meal sources identified in the midges captured in this study signals the likely importance of wild birds and mammals (e.g. red deer and wild boar) as reservoir/amplifying hosts for pathogens. Available hosts are more exposed to being bitten by biting midge populations in aquatic ecosystems in late spring and early summer. Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05297-5.
Collapse
Affiliation(s)
- Mikel A González
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain.,Applied Zoology and Animal Conservation Research Group, Department of Biology, University of the Balearic Islands (UIB), Palma de Mallorca, Spain
| | - Fátima Goiri
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Sean W J Prosser
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | - Aitor Cevidanes
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Luis M Hernández-Triana
- Vector-Borne Diseases Research Group, Virology Department-Animal and Plant Health Agency, Addlestone, UK
| | - Jesús F Barandika
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Paul D N Hebert
- Centre for Biodiversity Genomics, University of Guelph, Guelph, ON, Canada
| | - Ana L García-Pérez
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain.
| |
Collapse
|
14
|
Venter GJ, Sebitsang SS, Swart VR, Boikanyo SNB, de Beer CJ. Comparison of the efficiency of the Onderstepoort- and Centres for Disease Control ultraviolet light traps for the collection of livestock associated Culicoides species in South Africa. MEDICAL AND VETERINARY ENTOMOLOGY 2022; 36:113-126. [PMID: 34811772 DOI: 10.1111/mve.12558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/11/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Comparative monitoring of the abundance and distribution of Culicoides biting midges (Diptera: Ceratopogonidae), the biological vectors of the causative agents of several diseases of global veterinary importance, will be crucial in determining the risk of disease outbreak and spread. Ultraviolet (UV) suction traps have become the most frequent method used for the monitoring of Culicoides diversity and abundance. The current study compared the trapping efficiency of the two most used UV suction light traps, i.e., the Onderstepoort (OP)- and the Centres for Disease Control trap, for the collection of livestock associated Culicoides species in South Africa. The study confirmed the superiority of the OP trap and indicated a correlation in species composition and age grading results as determine with the two trap types. Substantial variations in the comparative trap efficiency, as found between areas and sites within an area, suggest that a universal conversion factor between the two trap types may not be advisable as it is unclear to what extent species composition and environmental factors may influence the conversion factor. Light traps, independent of trap model, can be considered acceptable for determining the serial comparison of population numbers for seasonal fluctuation and species abundance in distribution surveys.
Collapse
Affiliation(s)
- G J Venter
- Epidemiology, Vectors and Parasites, Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria, South Africa
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| | - S S Sebitsang
- Department of Zoology and Entomology, University of the Free State, Bloemfontein, South Africa
- Department of Research Operations, Clinvet International (Pty) Ltd., Bloemfontein, South Africa
| | - V R Swart
- Department of Zoology and Entomology, University of the Free State, Bloemfontein, South Africa
| | - S N B Boikanyo
- Epidemiology, Vectors and Parasites, Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria, South Africa
| | - C J de Beer
- Epidemiology, Vectors and Parasites, Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria, South Africa
- Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Insect Pest Control Laboratory, Vienna, Austria
| |
Collapse
|
15
|
Yeo H, Yeoh TX, Ding H, Lee TTM, Puniamoorthy N. Morphology and mini‐barcodes: The inclusion of larval sampling and NGS‐based barcoding improves robustness of ecological analyses of mosquito communities. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Huiqing Yeo
- Department of Biological Sciences National University of Singapore Singapore Singapore
| | - Tze Xuan Yeoh
- Department of Biological Sciences National University of Singapore Singapore Singapore
| | - Huicong Ding
- Department of Biological Sciences National University of Singapore Singapore Singapore
| | | | - Nalini Puniamoorthy
- Department of Biological Sciences National University of Singapore Singapore Singapore
| |
Collapse
|
16
|
Machtinger ET, Poh KC. Special Collection: Protocols in Medical and Veterinary Entomology. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:1. [PMID: 33135744 PMCID: PMC7604813 DOI: 10.1093/jisesa/ieaa122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Erika T Machtinger
- Department of Entomology, Pennsylvania State University, University Park, PA
| | - Karen C Poh
- Department of Entomology, Pennsylvania State University, University Park, PA
| |
Collapse
|