1
|
Zhang Q, He S, Ji Z, Zhang X, Yuan B, Liu R, Yang Y, Ding Y. Integrated bioinformatic analysis identifies GADD45B as an immune-related prognostic biomarker in skin cutaneous melanoma. Hereditas 2025; 162:74. [PMID: 40350499 PMCID: PMC12067689 DOI: 10.1186/s41065-025-00437-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 04/21/2025] [Indexed: 05/14/2025] Open
Abstract
Skin cutaneous melanoma (SKCM) arises from melanocytes and is an aggressive form of skin cancer. If left untreated, most melanomas will metastasize, posing a major health risk. GADD45B, a member of the GADD45 family, is known to be involved in DNA damage repair; however, its specific role in SKCM remains largely unclear. In this study, we comprehensively investigated the function of GADD45B in SKCM. By integrating 26 SKCM-related datasets from The Cancer Genome Atlas (TCGA), Cancer Cell Line Encyclopedia (CCLE), cBioPortal for Cancer Genomics (cBioPortal), Gene Expression Omnibus (GEO), and other databases, we conducted functional enrichment, immune infiltration, and single-cell analyses using R. Additionally, transcriptome sequencing of 30 human SKCM cell lines, phenotype characterization of 29 SKCM lines in vitro, and macrophage polarization analysis were performed. We found that GADD45B expression was significantly downregulated in SKCM patients compared to normal controls (p < 0.001), and higher GADD45B levels correlated with better prognosis (p < 0.05). GADD45B also showed high diagnostic accuracy, with an area under the curve (AUC) of 0.986. GO and KEGG analyses revealed a strong association between GADD45B and immune-related pathways. Gene Set Variation Analysis (GSVA) and single-cell sequencing suggested that GADD45B may serve as a novel immune checkpoint, predominantly expressed in macrophages and promoting M1 polarization. In vitro, overexpression of GADD45B significantly inhibited SKCM cell proliferation, potentially via suppression of the PI3K/Akt signaling pathway, and also reduced chemotherapy resistance. Furthermore, in vivo experiments using a xenograft mouse model demonstrated that GADD45B overexpression significantly suppressed tumor growth. Mice injected with GADD45B-overexpressing tumor cells exhibited smaller tumor volumes from day 15 onwards compared to controls, with markedly reduced tumor volume and weight at the endpoint. These results underscore the potential of GADD45B as an effective tumor suppressor in SKCM. In conclusion, our findings highlight GADD45B as a key regulator in SKCM progression, capable of restraining tumor cell proliferation and enhancing apoptosis. GADD45B holds promise as a novel diagnostic and prognostic biomarker and a potential target for SKCM immunotherapy.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Song He
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
- Department of Thoracic Surgery, Institute of Thoracic Oncology, Frontiers Science Center for Disease-Molecular Network, West China Hospital of Sichuan University, Chengdu, 610097, P.R. China
| | - Zhonghao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
- Department of Basic Medicine, Changzhi Medical College, Changzhi, Shanxi, 046000, P.R. China
| | - Xiwen Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Ruirui Liu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Yimin Yang
- Department of Intensive Care Unit, First Hospital of Jilin University, Changchun, Jilin, 130021, P.R. China.
| | - Yu Ding
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China.
| |
Collapse
|
2
|
Spirito F, Nocini R, Mori G, Albanese M, Georgakopoulou EA, Sivaramakrishnan G, Khalil B, Špiljak B, Surya V, Mishra D, Chaurasia A. The Potential of Oncolytic Virotherapy in the Treatment of Head and Neck Cancer: A Comprehensive Review. Int J Mol Sci 2024; 25:12990. [PMID: 39684701 DOI: 10.3390/ijms252312990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Head and neck cancer (HNC) represents a challenging oncological entity with significant morbidity and mortality rates. Despite advances in conventional therapies, including surgery, chemotherapy, and radiation therapy, the overall survival rates for advanced HNC remain suboptimal. In recent years, the emerging field of oncolytic virotherapy has gained attention as a promising therapeutic approach for various malignancies, including HNC. This review provides a comprehensive overview of the current understanding of oncolytic viruses (Ovs) in the context of HNC treatment, including their mechanisms of action, preclinical and clinical studies, challenges, and future directions. Future oncolytic virotherapy focuses on improving delivery and specificity through nanoparticle carriers and genetic modifications to enhance tumor targeting and immune response. Combining different OVs and integrating them with immunotherapies, such as checkpoint inhibitors, could overcome tumor resistance and improve outcomes. Personalized approaches and rigorous clinical trials are key to ensuring the safety and effectiveness of virotherapy in treating HNC.
Collapse
Affiliation(s)
- Francesca Spirito
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Riccardo Nocini
- Department of Surgical Sciences, Dentistry, Gynaecology and Paediatrics, University of Verona, 37134 Verona, Italy
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Massimo Albanese
- Department of Surgical Sciences, Dentistry, Gynaecology and Paediatrics, University of Verona, 37134 Verona, Italy
| | - Eleni A Georgakopoulou
- Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Basel Khalil
- Department of Basic Sciences, Faculty of Dentistry, University of Damascus, Damascus 30621, Syria
| | - Bruno Špiljak
- Department of Oral Medicine, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Varun Surya
- Department of Oral Pathology and Microbiology, Centre for Dental Educationand Research, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Deepika Mishra
- Department of Oral Pathology and Microbiology, Centre for Dental Educationand Research, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Akhilanand Chaurasia
- Department of Oral Medicine and Radiology, King George's Medical University, Lucknow 226003, India
| |
Collapse
|
3
|
Nie G, Liu C, Tian Z. Comprehensive analysis of prognostic and immunological role of basement membrane-related genes in soft tissue sarcoma. Immun Inflamm Dis 2024; 12:e70037. [PMID: 39392257 PMCID: PMC11467964 DOI: 10.1002/iid3.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Soft tissue sarcoma (STS) represents highly multifarious malignant tumors that often occur in adolescents and have a poor prognosis. The basement membrane, as an ancient cellular matrix, was recently proven to play a vital role in developing abundant tumors. The relationship between basement membrane-related genes and STS remains unknown. METHODS Consensus clustering was employed to identify subgroups related to differentially expressed basement membrane-related genes. Cox and least absolute shrinkage and selection operator regression analyses were utilized to construct this novel signature. Then, we established a nomogram and calibration curve, including the risk score and available clinical characteristics. Finally, we carried out functional enrichment analysis and immune microenvironment analysis to investigate enriched pathways and the tumor immune microenvironment related to the novel signature. RESULTS A prognostic predictive signature consisting of eight basement membrane-related genes was established. Kaplan-Meier survival curves demonstrated that the patients in the high-risk group had a poor prognosis. Independent analysis illustrated that this risk model could be an independent prognostic predictor. We validated the accuracy of our signature in the validation data set. In addition, gene set enrichment analysis and immune microenvironment analysis showed that patients with low-risk scores were enriched in some pathways associated with immunity. Finally, in vitro experiments showed significantly differential expression levels of these signature genes in STS cells and PSAT1 could promote the malignant behavior of STS. CONCLUSIONS The novel signature is a promising prognostic predictor for STS. The present study may improve the prognosis and enhance individualized treatment for STS in the future.
Collapse
Affiliation(s)
- Guang‐hua Nie
- Department of Foot and Ankle Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anChina
| | - Cheng‐yi Liu
- Department of Foot and Ankle Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anChina
| | - Zhao Tian
- Department of Hand Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
4
|
Deng K, Yuan L, Xu Z, Qin F, Zheng Z, Huang L, Jiang W, Qin J, Sun Y, Zheng T, Ou X, Zheng L, Li S. Study of LY9 as a potential biomarker for prognosis and prediction of immunotherapy efficacy in lung adenocarcinoma. PeerJ 2024; 12:e17816. [PMID: 39193519 PMCID: PMC11348898 DOI: 10.7717/peerj.17816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/04/2024] [Indexed: 08/29/2024] Open
Abstract
Background Lymphocyte antigen 9 (LY9) participates in the development of several tumors and diseases but has not been reported yet in lung adenocarcinoma (LUAD). Methods First, we analyzed the expression and prognostic value of LY9 in pan-cancer, including LUAD. Additionally, we conducted a correlation analysis of LY9 expression in LUAD with immune cell infiltration using the TIMER database and the CIBERSORT algorithm, and with immune checkpoints using the GEPIA database. Also, we constructed a potential ceRNA network for LY9. Furthermore, we explored LY9-related pathways by Gene Set Enrichment Analysis (GSEA). Finally, validation of differential expression at the mRNA level was obtained from the GEO database. We collected LUAD tissues for Quantitative Real-time PCR (qRT-PCR) to verify the expression of LY9, CD8, and CD4 and calculated the correlation between them. We also conducted immunohistochemistry (IHC) to verify the protein expression of LY9. Results Results showed that LY9 was highly expressed in various tumors, including LUAD. Besides, patients with high LY9 expression presented longer overall survival (OS) and more multiple lymphocyte infiltrations. The expression of LY9 in LUAD strongly and positively correlates with multiple immune cell infiltration and immune checkpoints. The functional enrichment analysis indicated that LY9 was involved in multiple immune-related pathways and non-small cell lung cancer. Moreover, a ceRNA regulatory network of LINC00943-hsa-miR-141-3p-LY9 might be involved. Finally, GSE68465 dataset confirmed differential expression of LY9 mRNA levels in LUAD and the qRT-PCR results verified LY9 had a strong and positive correlation with CD4 and CD8 T cells. Unfortunately, IHC did not detect the expression of LY9 protein level in tumor tissues and WB experiments validated the protein expression of LY9 in the OCI-AML-2 cell line. Conclusions Therefore, we hypothesized that LY9 could serve as a potential, novel prognostic biomarker for LUAD and could predict immunotherapy efficacy at the mRNA level.
Collapse
Affiliation(s)
- Kun Deng
- Department of Thoracic and Cardiovascular Surgery, The Second People’s Hospital of Neijiang, Neijiang, Sichuan, China
| | - Liqiang Yuan
- Department of Thoracic and Cardiovascular Surgery, People’s Hospital of Deyang, Deyang, Sichuan, China
| | - Zhanyu Xu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fanglu Qin
- Department of Scientific Research, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhiwen Zheng
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liuliu Huang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wei Jiang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Junqi Qin
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yu Sun
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tiaozhan Zheng
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xinhuai Ou
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liping Zheng
- Catheterization Laboratory of Cardiovascular Institute, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Shikang Li
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
5
|
Suzuki S, Tsuzuki T, Saito M, Ishii T, Takahara T, Satou A, Inukai D, Yamanaka S, Yoshikawa K, Ueda R, Ogawa T. Regulatory T-cells activated in metastatic draining lymph nodes possibly suppress cancer immunity in cancer tissues of head and neck squamous cell cancer. Pathol Int 2024; 74:327-336. [PMID: 38712798 DOI: 10.1111/pin.13430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/11/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024]
Abstract
Regulatory T cells (Tregs) play an important role in creating an immunosuppressive microenvironment in cancer tissues. However, the mechanisms by which Tregs are activated and suppress cancer immunity remain unclear. To elucidate these mechanisms, we performed a T cell receptor (TCR) repertoire analysis of Tregs and conventional T cells in peripheral blood, draining lymph nodes (DLNs), and cancer tissues of patients with head and neck squamous cell cancer (HNSCC). We found that the TCR repertoire was skewed in cancer tissue and metastatic DLNs (M-DLNs) compared with non-metastatic DLNs, and TCR repertoire similarities in Tregs and CD8+ T cells between M-DLNs and cancer tissue were high compared with those at other sites. These results suggest that Tregs and CD8+ T cells are activated in M-DLNs and cancer tissues by cancer antigens, such as neoantigens, and shared antigens and Tregs suppress CD8+ T cell function in a cancer antigen-specific manner in M-DLNs and cancer tissue. Moreover, M-DLNs might be a source of Tregs and CD8+ T cells recruited into the cancer tissue. Therefore, targeting Tregs in M-DLNs in an antigen-specific manner is expected to be a novel immunotherapeutic strategy for HNSCCs.
Collapse
Affiliation(s)
- Susumu Suzuki
- Research Creation Support Center, Aichi Medical University, Nagakute, Japan
- Department of Tumor Immunology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Masato Saito
- Translational Research Unit, R&D Division, Kyowa Kirin, Tokyo, Japan
| | | | - Taishi Takahara
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Akira Satou
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Daisuke Inukai
- Department of Otorhinolaryngology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Shunpei Yamanaka
- Department of Otorhinolaryngology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Kazuhiro Yoshikawa
- Research Creation Support Center, Aichi Medical University, Nagakute, Japan
| | - Ryuzo Ueda
- Department of Tumor Immunology, Aichi Medical University School of Medicine, Nagakute, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Ogawa
- Department of Otorhinolaryngology, Aichi Medical University School of Medicine, Nagakute, Japan
| |
Collapse
|
6
|
Gong X, Du J, Peng RW, Chen C, Yang Z. CRISPRing KRAS: A Winding Road with a Bright Future in Basic and Translational Cancer Research. Cancers (Basel) 2024; 16:460. [PMID: 38275900 PMCID: PMC10814442 DOI: 10.3390/cancers16020460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Once considered "undruggable" due to the strong affinity of RAS proteins for GTP and the structural lack of a hydrophobic "pocket" for drug binding, the development of proprietary therapies for KRAS-mutant tumors has long been a challenging area of research. CRISPR technology, the most successful gene-editing tool to date, is increasingly being utilized in cancer research. Here, we provide a comprehensive review of the application of the CRISPR system in basic and translational research in KRAS-mutant cancer, summarizing recent advances in the mechanistic understanding of KRAS biology and the underlying principles of drug resistance, anti-tumor immunity, epigenetic regulatory networks, and synthetic lethality co-opted by mutant KRAS.
Collapse
Affiliation(s)
- Xian Gong
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; (X.G.); (J.D.)
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou 350001, China
| | - Jianting Du
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; (X.G.); (J.D.)
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou 350001, China
| | - Ren-Wang Peng
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Murtenstrasse 28, 3008 Bern, Switzerland;
| | - Chun Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; (X.G.); (J.D.)
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou 350001, China
| | - Zhang Yang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; (X.G.); (J.D.)
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou 350001, China
| |
Collapse
|
7
|
Nguyen PT, Hori M, Matsuda T, Katanoda K. Cancer Prevalence Projections in Japan and Decomposition Analysis of Changes in Cancer Burden, 2020-2050: A Statistical Modeling Study. Cancer Epidemiol Biomarkers Prev 2023; 32:1756-1770. [PMID: 37756571 PMCID: PMC10690142 DOI: 10.1158/1055-9965.epi-23-0754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/02/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND We provide comprehensive sex-stratified projections of cancer prevalence for 22 cancer sites in Japan from 2020 to 2050. METHODS Using a scenario-based approach, we projected cancer prevalence by combining projected incidence cases and survival probabilities. Age-specific incidences were forecasted using age-period-cohort models, while survival rates were estimated using a period-analysis approach and multiple parametric survival models. To understand changes in cancer prevalence, decomposition analysis was conducted, assessing the contributions of incidence, survival, and population demographics. RESULTS By 2050, cancer prevalence in Japan is projected to reach 3,665,900 (3,210,200 to 4,201,400) thousand cases, representing a 13.1% increase from 2020. This rise is primarily due to a significant increase in female survivors (+27.6%) compared with a modest increase in males (+0.8%), resulting in females overtaking males in prevalence counts from 2040 onward. In 2050, the projected most prevalent cancer sites in Japan include colorectal, female breast, prostate, lung, and stomach cancers, accounting for 66.4% of all survivors. Among males, the highest absolute increases in prevalence are projected for prostate, lung, and malignant lymphoma cancers, while among females, the highest absolute increases are expected for female breast, colorectal, and corpus uteri cancers. CONCLUSIONS These findings emphasize the evolving cancer prevalence, influenced by aging populations, changes in cancer incidence rates, and improved survival. Effective prevention, detection, and treatment strategies are crucial to address the growing cancer burden. IMPACT This study contributes to comprehensive cancer control strategies and ensures sufficient support for cancer survivors in Japan.
Collapse
Affiliation(s)
- Phuong The Nguyen
- National Cancer Center Institute for Cancer Control, Tokyo, Japan
- Graduate School of Public Health, St. Luke's International University, Tokyo, Japan
| | - Megumi Hori
- School of Nursing, University of Shizuoka, Shizuoka, Japan
| | - Tomohiro Matsuda
- National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Kota Katanoda
- National Cancer Center Institute for Cancer Control, Tokyo, Japan
| |
Collapse
|
8
|
Cai L, Mao J, Wang H, Chen G, Xu X, Yuan Q, Chen W. Application of DNA-based hydrogels as drug delivery system for immunomodulatory therapy. J Drug Deliv Sci Technol 2023; 86:104677. [DOI: 10.1016/j.jddst.2023.104677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
|
9
|
Qin S, Cao J, Ma X. Function and clinical application of exosome-how to improve tumor immunotherapy? Front Cell Dev Biol 2023; 11:1228624. [PMID: 37670933 PMCID: PMC10476872 DOI: 10.3389/fcell.2023.1228624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/09/2023] [Indexed: 09/07/2023] Open
Abstract
In recent years, immunotherapy has been increasingly used in clinical practice to treat tumors. However, immunotherapy's efficacy varies between tumor types and patient populations, and long-term drug resistance often occurs during treatment. Therefore, it is essential to explore the molecular mechanisms of immunotherapy to improve its efficacy. In this review, we focus on the significance of tumor-derived exosomes in the clinical treatment of tumors and how modifying these exosomes may enhance immune effectiveness. Specifically, we discuss exosome components, such as RNA, lipids, and proteins, and the role of membrane molecules on exosome surfaces. Additionally, we highlight the importance of engineered exosomes for tumor immunotherapy. Our goal is to propose new strategies to improve the efficacy of tumor immunotherapy.
Collapse
Affiliation(s)
- Siwen Qin
- Department of Pediatrics, The Fourth Hospital of China Medical University, Shenyang, China
| | - Jilong Cao
- Party Affairs and Administration Office, The Fourth Hospital of China Medical University, Shenyang, China
| | - Xiaoxue Ma
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
He S, Ding Y, Ji Z, Yuan B, Chen J, Ren W. HOPX is a tumor-suppressive biomarker that corresponds to T cell infiltration in skin cutaneous melanoma. Cancer Cell Int 2023; 23:122. [PMID: 37344870 DOI: 10.1186/s12935-023-02962-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Skin cutaneous melanoma (SKCM) is the most threatening type of skin cancer. Approximately 55,000 people lose their lives every year due to SKCM, illustrating that it seriously threatens human life and health. Homeodomain-only protein homeobox (HOPX) is the smallest member of the homeodomain family and is widely expressed in a variety of tissues. HOPX is involved in regulating the homeostasis of hematopoietic stem cells and is closely related to the development of tumors such as breast cancer, nasopharyngeal carcinoma, and head and neck squamous cell carcinoma. However, its function in SKCM is unclear, and further studies are needed. METHODS We used the R language to construct ROC (Receiver-Operating Characteristic) curves, KM (Kaplan‒Meier) curves and nomograms based on databases such as the TCGA and GEO to analyze the diagnostic and prognostic value of HOPX in SKCM patients. Enrichment analysis, immune scoring, GSVA (Gene Set Variation Analysis), and single-cell sequencing were used to verify the association between HOPX expression and immune infiltration. In vitro experiments were performed using A375 cells for phenotypic validation. Transcriptome sequencing was performed to further analyze HOPX gene-related genes and their signaling pathways. RESULTS Compared to normal cells, SKCM cells had low HOPX expression (p < 0.001). Patients with high HOPX expression had a better prognosis (p < 0.01), and the marker had good diagnostic efficacy (AUC = 0.744). GO/KEGG (Gene Ontology/ Kyoto Encyclopedia of Genes and Genomes) analysis, GSVA and single-cell sequencing analysis showed that HOPX expression is associated with immune processes and high enrichment of T cells and could serve as an immune checkpoint in SKCM. Furthermore, cellular assays verified that HOPX inhibits the proliferation, migration and invasion of A375 cells and promotes apoptosis and S-phase arrest. Interestingly, tumor drug sensitivity analysis revealed that HOPX also plays an important role in reducing clinical drug resistance. CONCLUSION These findings suggest that HOPX is a blocker of SKCM progression that inhibits the proliferation of SKCM cells and promotes apoptosis. Furthermore, it may be a new diagnostic and prognostic indicator and a novel target for immunotherapy in SKCM patients.
Collapse
Affiliation(s)
- Song He
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, P.R. China
| | - Yu Ding
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, P.R. China
| | - Zhonghao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, P.R. China
- Department of Basic Medicine, Changzhi Medical College, Changzhi, 046000, Shanxi, P.R. China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, P.R. China
| | - Jian Chen
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, P.R. China.
| | - Wenzhi Ren
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, 130062, Jilin, P.R. China.
| |
Collapse
|
11
|
Niu Y, Wang W, Jiang X, Huang Y, Yan S, Jiang Y. High expression of HHLA2 predicts poor prognosis in medullary thyroid carcinoma. Jpn J Clin Oncol 2022; 52:759-765. [PMID: 35348687 DOI: 10.1093/jjco/hyac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
Human endogenous retrovirus-H long terminal repeat-associating protein 2 is a newly identified immune checkpoint molecule that was aberrantly expressed in many malignant tumors. However, its expression in medullary thyroid carcinoma is still unclear. This study aimed to investigate the human endogenous retrovirus-H long terminal repeat-associating protein 2 expression in medullary thyroid carcinoma tissues and to evaluate the relationships between its expression and clinicopathologic together with prognostic relevance.
Methods
Using 51 surgical specimens obtained from medullary thyroid carcinoma patients, the expression levels of the human endogenous retrovirus-H long terminal repeat-associating protein 2 protein in medullary thyroid carcinoma tumor tissues and adjacent noncancerous tissues were measured by immunohistochemistry, and its correlations with clinicopathologic and prognostic features were analyzed. Status of CD8+ tumor infiltrating lymphocytes was also investigated.
Results
The results showed that human endogenous retrovirus-H long terminal repeat-associating protein 2 was only detected in tumor tissues, and 31.4% of the medullary thyroid carcinoma patients had high expression of human endogenous retrovirus-H long terminal repeat-associating protein 2. High human endogenous retrovirus-H long terminal repeat-associating protein 2 expression was significantly associated with lymph node metastasis and advanced American Joint Committee on Cancer stages (P = 0.005). There existed an inverse trend between human endogenous retrovirus-H long terminal repeat-associating protein 2 expression and CD8+ tumor infiltrating lymphocytes infiltration in medullary thyroid carcinoma tumor samples (P = 0.042). The log-rank test showed a shorter disease-free survival in patients with high human endogenous retrovirus-H long terminal repeat-associating protein 2 expression (P = 0.002). The disease-free survival rates were also significantly low in cases of medullary thyroid carcinoma with lymph node metastasis, American Joint Committee on Cancer stages III–IV and multifocality. Multivariate Cox analysis confirmed that human endogenous retrovirus-H long terminal repeat-associating protein 2 acted as an independent predictive factor in the disease-free survival of medullary thyroid carcinoma patients (hazard ratio = 4.138, 95% confidence interval: 1.027–16.667, P = 0.046).
Conclusions
Taken together, human endogenous retrovirus-H long terminal repeat-associating protein 2 is highly expressed in medullary thyroid carcinoma patients and is a poor prognostic biomarker of disease-free survival of medullary thyroid carcinoma patients.
Collapse
Affiliation(s)
- Yongzhi Niu
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Wei Wang
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaodan Jiang
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Yichuan Huang
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Shu Yan
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Yan Jiang
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| |
Collapse
|
12
|
Nosaka K, Kusumoto S, Nakano N, Choi I, Yoshimitsu M, Imaizumi Y, Hidaka M, Sasaki H, Makiyama J, Ohtsuka E, Jo T, Ogata M, Ito A, Yonekura K, Tatetsu H, Kato T, Kawakita T, Suehiro Y, Ishitsuka K, Iida S, Matsutani T, Utsunomiya A, Ueda R, Ishida T. Clinical significance of the immunoglobulin G heavy-chain repertoire in peripheral blood mononuclear cells of adult T-cell leukaemia-lymphoma patients receiving mogamulizumab. Br J Haematol 2021; 196:629-638. [PMID: 34632569 PMCID: PMC9292985 DOI: 10.1111/bjh.17895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/12/2021] [Accepted: 09/29/2021] [Indexed: 12/28/2022]
Abstract
‘Monitoring of immune responses following mogamulizumab‐containing treatment in patients with adult T‐cell leukaemia–lymphoma (ATL)’ (MIMOGA) is a multicentre prospective clinical study (UMIN000008696). In the MIMOGA study, we found that a lower percentage of CD2−CD19+ B cells in peripheral blood mononuclear cells (PBMC) was a significant unfavourable prognostic factor for overall survival (OS). Accordingly, we then analysed the immunoglobulin G (IgG) heavy‐chain repertoire in PBMC by high‐throughput sequencing. Of the 101 patients enrolled in the MIMOGA study, for 81 a sufficient amount of PBMC RNA was available for repertoire sequencing analysis. Peripheral IgG B cells in patients with ATL had a restricted repertoire relative to those in healthy individuals. There was a significant positive correlation between the Shannon–Weaver diversity index (SWDI) for the IgG repertoire and proportions of B cells in the PBMC of the patients. Multivariate analysis identified two variables significantly affecting OS: a higher serum soluble interleukin‐2 receptor level, and a lower SWDI for the IgG repertoire [hazard ratio, 2·124; 95% confidence interval, 1·114–4·049; n = 44]. The present study documents the importance of humoral immune responses in patients receiving mogamulizumab‐containing treatment. Further investigation of strategies to enhance humoral immune responses in patients with ATL is warranted.
Collapse
Affiliation(s)
- Kisato Nosaka
- Cancer Center, Kumamoto University Hospital, Kumamoto, Japan
| | - Shigeru Kusumoto
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Nobuaki Nakano
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| | - Ilseung Choi
- Department of Hematology, National Hospital Organization Kyushu Cancer Centre Hospital, Fukuoka, Japan
| | - Makoto Yoshimitsu
- Department of Hematology and Rheumatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshiam, Japan
| | | | - Michihiro Hidaka
- Department of Hematology, National Hospital Organization Kumamoto Medical Center, Kumamoto, Japan
| | - Hidenori Sasaki
- Division of Medical Oncology, Department of Medicine, Hematology, and Infectious Diseases, Fukuoka University Hospital, Fukuoka, Japan
| | - Junya Makiyama
- Department of Hematology, Sasebo City General Hospital, Sasebo, Japan
| | - Eiichi Ohtsuka
- Department of Hematology, Oita Prefectural Hospital, Oita, Japan
| | - Tatsuro Jo
- Department of Hematology, Japanese Red Cross Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Masao Ogata
- Department of Hematology, Oita University Hospital, Oita, Japan
| | - Asahi Ito
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kentaro Yonekura
- Department of Dermatology, Imamura General Hospital, Kagoshima, Japan
| | - Hiro Tatetsu
- Department of Hematology, Kumamoto University Hospital, Kumamoto, Japan
| | - Takeharu Kato
- Department of Hematology, Nagasaki University Hospital, Nagasaki, Japan
| | - Toshiro Kawakita
- Department of Hematology, National Hospital Organization Kumamoto Medical Center, Kumamoto, Japan
| | - Youko Suehiro
- Department of Hematology, National Hospital Organization Kyushu Cancer Centre Hospital, Fukuoka, Japan.,Department of Cell, Therapy National Hospital Organization Kyushu Cancer Centre Hospital, Fukuoka, Japan
| | - Kenji Ishitsuka
- Department of Hematology and Rheumatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshiam, Japan
| | - Shinsuke Iida
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takaji Matsutani
- Osaka laboratory, Repertoire Genesis Incorporation, Ibaraki, Osaka, Japan
| | - Atae Utsunomiya
- Department of Hematology, Imamura General Hospital, Kagoshima, Japan
| | - Ryuzo Ueda
- Department of Tumor Immunology, Aichi Medical University School of Medicine, Nagakute, Japan.,Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Ishida
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
13
|
Mogamulizumab for adult T-cell leukemia-lymphoma: a multicenter prospective observational study. Blood Adv 2021; 4:5133-5145. [PMID: 33091125 DOI: 10.1182/bloodadvances.2020003053] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/16/2020] [Indexed: 11/20/2022] Open
Abstract
Monitoring of Immune Responses Following Mogamulizumab-Containing Treatment in Patients with Adult T-Cell Leukemia-Lymphoma (ATL) (MIMOGA) is a multicenter prospective observational study to establish the most effective and safe treatment strategy using mogamulizumab for ATL patients (UMIN000008696). Mogamulizumab-naive patients were enrolled (n = 102), of whom 101 received mogamulizumab-containing treatment (68 acute, 18 lymphoma, 12 chronic, and 3 smoldering subtypes). At enrollment, there was a significant inverse correlation between serum soluble interleukin-2 receptor (sIL-2R) levels and percentages of Tax-specific cytotoxic T lymphocytes (Tax-CTLs) in the entire lymphocyte population or in the CD8+ T cell subset, but there was not a correlation with cytomegalovirus pp65-specific cytotoxic T lymphocytes (CMV-CTLs). The overall response rate was 65%, and median progression-free survival and overall survival (OS) were 7.4 and 16.0 months, respectively. A higher percentage of Tax-CTLs, but not CMV-CTLs, within the entire lymphocyte population or in the CD8+ T cell subset was significantly associated with longer survival. Multivariate analysis identified the clinical subtype (acute or lymphoma type), a higher sIL-2R level, and a lower percentage of CD2-CD19+ B cells in peripheral blood mononuclear cells as significant independent unfavorable prognostic factors for OS. This indicates that a higher percentage of B cells might reflect some aspect of a favorable immune status leading to a good outcome with mogamulizumab treatment. In conclusion, the MIMOGA study has demonstrated that mogamulizumab exerts clinically meaningful antitumor activity in ATL. The patient's immunological status before mogamulizumab was significantly associated with treatment outcome. Further time series immunological analyses, in addition to comprehensive genomic analyses, are warranted.
Collapse
|
14
|
Robust CD8+ T-cell proliferation and diversification after mogamulizumab in patients with adult T-cell leukemia-lymphoma. Blood Adv 2021; 4:2180-2191. [PMID: 32433748 DOI: 10.1182/bloodadvances.2020001641] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/13/2020] [Indexed: 01/28/2023] Open
Abstract
Skin-related adverse events (AEs) occur frequently in adult T-cell leukemia-lymphoma (ATL) patients treated with mogamulizumab, a humanized anti-CCR4 monoclonal antibody. This study was undertaken to elucidate the mechanisms of mogamulizumab-induced skin-related AEs. We analyzed the T-cell receptor β chain repertoire in ATL patients' peripheral blood mononuclear cells (PBMCs) before and after mogamulizumab. Skin-related AEs were present in 16 patients and were absent in 8 patients. Additionally, we included 11 patients before and after chemotherapy without mogamulizumab. Immune-related gene expression in PBMCs before and after mogamulizumab was also assessed (n = 24). Mogamulizumab treatment resulted in CCR4+ T-cell depletion, and the consequent lymphopenia provoked homeostatic CD8+ T-cell proliferation, as evidenced by increased expressions of CD8B and CD8A, which were significantly greater in patients with skin-related AEs than in those without them. We hypothesize that proliferation is driven by the engagement of self-antigens, including skin-related antigens, in the face of regulatory T-cell depletion. Together with the observed activated antigen presentation function, this resulted in T-cell diversification that was significantly greater in patients with skin-related AEs than in those without. We found that the CD8+ T cells that proliferated and diversified after mogamulizumab treatment were almost entirely newly emerged clones. There was an inverse relationship between the degree of CCR4+ T-cell depletion and increased CD8+ T-cell proliferation and diversification. Thus, lymphocyte-depleting mogamulizumab treatment provokes homeostatic CD8+ T-cell proliferation predominantly of newly emerging clones, some of which could have important roles in the pathogenesis of mogamulizumab-induced skin-related AEs.
Collapse
|
15
|
Wang Y, Xue Q, Zheng Q, Jin Y, Shen X, Yang M, Zhou X, Li Y. SMAD4 mutation correlates with poor prognosis in non-small cell lung cancer. J Transl Med 2021; 101:463-476. [PMID: 33303972 DOI: 10.1038/s41374-020-00517-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/07/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
SMAD4 is an intracellular signaling mediator of the TGF-β pathway. Its mutation was commonly observed in gastrointestinal cancers, such as pancreatic cancer. The loss of SMAD4 on immunohistochemical staining is often used to suggest a pancreaticobiliary differentiation in evaluating a metastatic adenocarcinoma with unknown origin. However, the function and molecular mechanism of SMAD4 in non-small cell lung cancer (NSCLC) development are largely unknown. Thus, we studied the correlation between SMAD4 mutations and clinico-molecular features in the patients with NSCLC. We reported the frequencies and prognostic values of SMAD4 mutations in a Chinese NSCLC cohort using next-generation sequencing. The NSCLC cases from several public databases, including The Cancer Genome Atlas and others, were also used in this study to elucidate SMAD4-related molecular partners and mechanisms. Integrated bioinformatics analyses were conducted, such as analysis of Gene Ontology enrichment analysis, gene set enrichment analysis (GSEA), and survival analysis. Immunohistochemistry showed that the tissues harboring SMAD4 mutations tended to show SMAD4 deficiency or loss, while SMAD4 expression was significantly reduced at all stages of NSCLC cases. We found that reduced SMAD4 expression was more frequent in the patients with poor disease-free survival and resistance to platinum-based chemotherapy. SMAD4 mutation was an independent risk factor for the survival of NSCLC patients. The expression of SMAD4 was associated with that of SMAD2. The GSEA showed that SMAD4 might promote NSCLC progression by regulating proliferation, adhesion, and immune response. In conclusion, these data suggest that SMAD4 mutation or loss as well as reduced expression can be used to identify the NSCLC patients with poor survival and resistance to platinum-based chemotherapy. SMAD4 may be a predictive marker or therapeutic target in NSCLC. The source code and user's guide are freely available at Github: https://github.com/wangyue77-ab/smad4 .
Collapse
Affiliation(s)
- Yue Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qianqian Xue
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiang Zheng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Jin
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xuxia Shen
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Mu Yang
- Department of Pathology, Shanghai First People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China.
| | - Xiaoyan Zhou
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuan Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Preparation of Biphenyl-Conjugated Bromotyrosine for Inhibition of PD-1/PD-L1 Immune Checkpoint Interactions. Int J Mol Sci 2020; 21:ijms21103639. [PMID: 32455628 PMCID: PMC7279355 DOI: 10.3390/ijms21103639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/14/2020] [Accepted: 05/17/2020] [Indexed: 12/31/2022] Open
Abstract
Cancer immunotherapy has been revolutionized by the development of monoclonal antibodies (mAbs) that inhibit interactions between immune checkpoint molecules, such as programmed cell-death 1 (PD-1), and its ligand PD-L1. However, mAb-based drugs have some drawbacks, including poor tumor penetration and high production costs, which could potentially be overcome by small molecule drugs. BMS-8, one of the potent small molecule drugs, induces homodimerization of PD-L1, thereby inhibiting its binding to PD-1. Our assay system revealed that BMS-8 inhibited the PD-1/PD-L1 interaction with IC50 of 7.2 μM. To improve the IC50 value, we designed and synthesized a small molecule based on the molecular structure of BMS-8 by in silico simulation. As a result, we successfully prepared a biphenyl-conjugated bromotyrosine (X) with IC50 of 1.5 μM, which was about five times improved from BMS-8. We further prepared amino acid conjugates of X (amino-X), to elucidate a correlation between the docking modes of the amino-Xs and IC50 values. The results suggested that the displacement of amino-Xs from the BMS-8 in the pocket of PD-L1 homodimer correlated with IC50 values. This observation provides us a further insight how to derivatize X for better inhibitory effect.
Collapse
|
17
|
Wan R, Xu X, Ma L, Chen Y, Tang L, Feng J. Novel Alternatively Spliced Variants of Smad4 Expressed in TGF-β-Induced EMT Regulating Proliferation and Migration of A549 Cells. Onco Targets Ther 2020; 13:2203-2213. [PMID: 32210586 PMCID: PMC7073448 DOI: 10.2147/ott.s247015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/02/2020] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Non-small cell lung cancer (NSCLC) is a worldwide malignance threatening human life. TGF-β/Smad signaling is known to regulate cell proliferation, differentiation, migration and growth. As the only co-Smad playing crucial roles in TGF-β signaling, Smad4 is reported to be frequently mutated or to occur as alternatively spliced in tumor cells. Smad4 was reported to be involved in the TGF-β-induced EMT process. However, whether the alternative splicing occurs in the TGF-β-induced EMT process in NSCLC was not clear. METHODS In our current study, we explored the alternative splicing of Smad4 during the process of TGF-β-induced EMT in A549 cells. 10 ng/mL TGF-β was used to induce EMT. Then, nest-PCR and agarose electrophoresis were performed to detect the expression of Smad4 variants and sequencing to get the variant DNA sequences. For recombinant expression of variants of Smad4 in A549 cells, we used lentiviral variants to infect cells. In order to explore the effects of variants on the proliferation and migration of A549 cells, the MTT assay, colony formation assay and wound-healing assay were done. The effects of variants on E-cad and VIM protein expression were explored through Western blot. RESULTS There were several novel gene fragments expressed in TGF-β-induced A549 cells, and the sequencing results showed that they were indeed the Smad4 variants that were not reported. For recombinant expression of Smad4 variants in A549 cells, we found that they have significant effects on the proliferation and migration of cells, and also regulated the E-cad and VIM protein expression. CONCLUSION Our results indicated that novel Smad4 variants were expressed in TGF-β-induced EMT process. The functional study showed that these novel variants regulate cell proliferation and migration and affect E-cad and VIM protein expression, showing the potential as targets for cancer therapy.
Collapse
Affiliation(s)
- Rongxue Wan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing400044, People’s Republic of China
- National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
- Department of Human Anatomy, School of Basic Medical Sciences, Guangdong Medical University, Zhanjiang, Guangdong Province, People’s Republic of China
| | - Xichao Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing400044, People’s Republic of China
| | - Lunkun Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing400044, People’s Republic of China
| | - Ying Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing400044, People’s Republic of China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing400044, People’s Republic of China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People’s Republic of China
| |
Collapse
|
18
|
Soliman C, Chua JX, Vankemmelbeke M, McIntosh RS, Guy AJ, Spendlove I, Durrant LG, Ramsland PA. The terminal sialic acid of stage-specific embryonic antigen-4 has a crucial role in binding to a cancer-targeting antibody. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49911-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
19
|
Soliman C, Chua JX, Vankemmelbeke M, McIntosh RS, Guy AJ, Spendlove I, Durrant LG, Ramsland PA. The terminal sialic acid of stage-specific embryonic antigen-4 has a crucial role in binding to a cancer-targeting antibody. J Biol Chem 2019; 295:1009-1020. [PMID: 31831622 DOI: 10.1074/jbc.ra119.011518] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/05/2019] [Indexed: 01/06/2023] Open
Abstract
Cancer remains a leading cause of morbidity and mortality worldwide, requiring ongoing development of targeted therapeutics such as monoclonal antibodies. Carbohydrates on embryonic cells are often highly expressed in cancer and are therefore attractive targets for antibodies. Stage-specific embryonic antigen-4 (SSEA-4) is one such glycolipid target expressed in many cancers, including breast and ovarian carcinomas. Here, we defined the structural basis for recognition of SSEA-4 by a novel monospecific chimeric antibody (ch28/11). Five X-ray structures of ch28/11 Fab complexes with the SSEA-4 glycan headgroup, determined at 1.5-2.7 Å resolutions, displayed highly similar three-dimensional structures indicating a stable binding mode. The structures also revealed that by adopting a horseshoe-shaped conformation in a deep groove, the glycan headgroup likely sits flat against the membrane to allow the antibody to interact with SSEA-4 on cancer cells. Moreover, we found that the terminal sialic acid of SSEA-4 plays a dominant role in dictating the exquisite specificity of the ch28/11 antibody. This observation was further supported by molecular dynamics simulations of the ch28/11-glycan complex, which show that SSEA-4 is stabilized by its terminal sialic acid, unlike SSEA-3, which lacks this sialic acid modification. These high-resolution views of how a glycolipid interacts with an antibody may help to advance a new class of cancer-targeting immunotherapy.
Collapse
Affiliation(s)
- Caroline Soliman
- School of Science, RMIT University, Melbourne, Victoria 3083, Australia
| | - Jia Xin Chua
- Academic Department of Clinical Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, City Hospital Campus, Nottingham NG7 2RD, United Kingdom.,Scancell Ltd., Academic Department of Clinical Oncology, University of Nottingham, City Hospital Campus, Nottingham NG7 2RD, United Kingdom
| | - Mireille Vankemmelbeke
- Academic Department of Clinical Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, City Hospital Campus, Nottingham NG7 2RD, United Kingdom.,Scancell Ltd., Academic Department of Clinical Oncology, University of Nottingham, City Hospital Campus, Nottingham NG7 2RD, United Kingdom
| | - Richard S McIntosh
- Academic Department of Clinical Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, City Hospital Campus, Nottingham NG7 2RD, United Kingdom
| | - Andrew J Guy
- School of Science, RMIT University, Melbourne, Victoria 3083, Australia
| | - Ian Spendlove
- Academic Department of Clinical Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, City Hospital Campus, Nottingham NG7 2RD, United Kingdom
| | - Lindy G Durrant
- Academic Department of Clinical Oncology, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, City Hospital Campus, Nottingham NG7 2RD, United Kingdom.,Scancell Ltd., Academic Department of Clinical Oncology, University of Nottingham, City Hospital Campus, Nottingham NG7 2RD, United Kingdom
| | - Paul A Ramsland
- School of Science, RMIT University, Melbourne, Victoria 3083, Australia .,Department of Immunology, Central Clinical School, Monash University, Melbourne, Victoria 3800, Australia.,Department of Surgery Austin Health, University of Melbourne, Heidelberg, Victoria 3084, Australia
| |
Collapse
|
20
|
Watanabe M, Kanao K, Suzuki S, Muramatsu H, Morinaga S, Kajikawa K, Kobayashi I, Nishikawa G, Kato Y, Zennami K, Nakamura K, Tsuzuki T, Yoshikawa K, Ueda R, Sumitomo M. Increased infiltration of CCR4-positive regulatory T cells in prostate cancer tissue is associated with a poor prognosis. Prostate 2019; 79:1658-1665. [PMID: 31390096 DOI: 10.1002/pros.23890] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/22/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Regulatory T cells (Tregs) play important roles in the suppression of immune responses, including antitumor immune responses. C-C chemokine receptor 4 (CCR4) is highly expressed on effector Tregs, and anti-CCR4 antibody is attracting attention as a novel immunotherapeutic agent for solid tumors. This study aimed to evaluate the expression of CCR4-positive Tregs (CCR4+Tregs) in prostate cancer and estimate the clinical potential of CCR4-targeting therapy for prostate cancer. METHODS A total of 15 radical prostatectomy (RP) specimens and 60 biopsy specimens from individuals diagnosed with prostate cancer were analyzed to evaluate the infiltration of CCR4+Tregs in prostate cancer. The relationships between the number of CCR4+Tregs and clinical parameters were investigated in RP and biopsy specimens. Moreover, the total number of Tregs, CCR4+Tregs, and T cells and the ratio of CCR4+Tregs to Tregs and T cells in biopsy specimens were compared between patients with poor prognosis who progressed to castration-resistant prostate cancer (CRPC) within 12 months (n = 13) and those with good prognosis who were stable with hormone-sensitive prostate cancer over 12 months (n = 47). Furthermore, biopsy specimens were divided into two groups: low and high CCR4+Treg expression groups and the prognosis was compared between them. RESULTS There was a higher expression of CCR4+Tregs in RP specimens with a higher (≥8) Gleason score than in those with a lower (<8) Gleason score (P = .041). In biopsy specimens, 65.9% Tregs were positive for CCR4. The number of CCR4+Tregs positively correlated with clinical stage (P < .001) and Gleason score (P = .006). The total number of Tregs and CCR4+Tregs significantly increased in the poor prognosis group compared with that in the good prognosis group (P = .024 and .01, respectively). Furthermore, patients with lower CCR4+Treg expression levels showed a significantly longer time to progression to CRPC (not reached vs 27.3 months; P < .001) and median survival time (not reached vs 69.0 months; P = .014) than those with higher expression levels. CONCLUSIONS CCR4+Tregs are highly infiltrated in the prostate tissue of patients with poor prognosis with potential to progress to CRPC. Furthermore, the degree of infiltration of CCR4+Tregs is related to the prognosis of prostate cancer.
Collapse
Affiliation(s)
- Masahito Watanabe
- Department of Urology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Kent Kanao
- Department of Urology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Susumu Suzuki
- Department of Tumor Immunology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Hiroyuki Muramatsu
- Department of Urology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Singo Morinaga
- Department of Urology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Keishi Kajikawa
- Department of Urology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Ikuo Kobayashi
- Department of Urology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Genya Nishikawa
- Department of Urology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Yoshiharu Kato
- Department of Urology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Kenji Zennami
- Department of Urology, Aichi Medical University School of Medicine, Nagakute, Japan
- Department of Urology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kogenta Nakamura
- Department of Urology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Kazuhiro Yoshikawa
- Division of Advanced Research Promotion, Institute of Comprehensive Medical Research, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Ryuzo Ueda
- Department of Tumor Immunology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Makoto Sumitomo
- Department of Urology, Aichi Medical University School of Medicine, Nagakute, Japan
- Department of Urology, Fujita Health University School of Medicine, Toyoake, Japan
| |
Collapse
|
21
|
Akano Y, Kuribayashi K, Funaguchi N, Koda Y, Fujimoto E, Mikami K, Minami T, Takahashi R, Yokoi T, Kijima T. Analysis of Pleiotropic Effects of Nivolumab in Pretreated Advanced or Recurrent Non-small Cell Lung Cancer Cases. In Vivo 2019; 33:507-514. [PMID: 30804134 DOI: 10.21873/invivo.11503] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/25/2018] [Accepted: 01/07/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND/AIM Nivolumab is an immune checkpoint inhibitor for advanced non-small cell lung cancer (NSCLC). We investigated the safety and efficacy of nivolumab by analyzing the response factor, adverse effects (AE), and the post-treatment condition of pretreated advanced or recurrent NSCLC patients. PATIENTS AND METHODS Nivolumab (3 mg/kg) was administered to 79 pre-treated NSCLC patients from December 2015 to January 2018. Nivolumab efficacy and AE were assessed using the Response Evaluation Criteria in Solid Tumors and the Common Terminology Criteria, respectively. RESULTS Progression-free survival (PFS) was significantly prolonged in cases where the therapeutic effect of the pretreatment was a partial response (p=0.0004). Five cases (6.3%) experienced grade 3-4 AEs. PFS was significantly prolonged in the skin rash group versus the non-skin rash group, and in patients where nivolumab treatment was discontinued. CONCLUSIONS Long-term survival was observed in patients with skin rash. Therapeutic effect of nivolumab immediately following its administration appears to be favorable for survival.
Collapse
Affiliation(s)
- Yumiko Akano
- Department of Internal Medicine, Division of Respiratory Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - Kozo Kuribayashi
- Department of Internal Medicine, Division of Respiratory Medicine, Hyogo College of Medicine, Hyogo, Japan .,Department of Thoracic Oncology, Hyogo College of Medicine, Hyogo, Japan
| | - Norihiko Funaguchi
- Department of Respiratory Medicine, Asahi University Hospital, Gifu, Japan
| | - Yuichi Koda
- Department of Internal Medicine, Division of Respiratory Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - Eriko Fujimoto
- Department of Internal Medicine, Division of Respiratory Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - Koji Mikami
- Department of Internal Medicine, Division of Respiratory Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - Toshiyuki Minami
- Department of Internal Medicine, Division of Respiratory Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - Ryo Takahashi
- Department of Internal Medicine, Division of Respiratory Medicine, Hyogo College of Medicine, Hyogo, Japan
| | - Takashi Yokoi
- Department of Internal Medicine, Division of Respiratory Medicine, Hyogo College of Medicine, Hyogo, Japan.,Department of Thoracic Oncology, Hyogo College of Medicine, Hyogo, Japan
| | - Takashi Kijima
- Department of Internal Medicine, Division of Respiratory Medicine, Hyogo College of Medicine, Hyogo, Japan.,Department of Thoracic Oncology, Hyogo College of Medicine, Hyogo, Japan
| |
Collapse
|
22
|
Liu T, Li X, Wu M, Qin L, Chen H, Qian P. Seneca Valley Virus 2C and 3C pro Induce Apoptosis via Mitochondrion-Mediated Intrinsic Pathway. Front Microbiol 2019; 10:1202. [PMID: 31191506 PMCID: PMC6549803 DOI: 10.3389/fmicb.2019.01202] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/13/2019] [Indexed: 12/26/2022] Open
Abstract
Seneca Valley virus (SVV) is the only member of the genus Senecavirus of the Picornaviridae family. SVV can selectively infect and lyse tumor cells with neuroendocrine features and is used as an oncolytic virus for treating small-cell lung cancers. However, the detailed mechanism underlying SVV-mediated destruction of tumor cells remains unclear. In this study, we found that SVV can increase the proportion of apoptotic 293T cells in a dose- and time-dependent manner. SVV-induced apoptosis was initiated via extrinsic and intrinsic pathways through activation of caspase-3, the activity of which could be attenuated by a pan-caspase inhibitor (Z-VAD-FMK). We confirmed that SVV 2C and 3Cpro play critical roles in SVV-induced apoptosis. The SVV 2C protein was located solely in the mitochondria and activated caspase-3 to induce apoptosis. SVV 3Cpro induced apoptosis through its protease activity, which was accompanied by release of cytochrome C into the cytoplasm, but did not directly cleave PARP1.
Collapse
Affiliation(s)
- Tingting Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Mengge Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liuxing Qin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
23
|
Asai N, Kubo A, Suzuki S, Murotani K, Numanami H, Yoshikawa K, Ueda R, Yamaguchi E. CCR4 Expression in Tumor-Infiltrating Regulatory T Cells in Patients with Squamous Cell Carcinoma of the Lung: A Prognostic Factor for Relapse and Survival. Cancer Invest 2019; 37:163-173. [PMID: 30907146 DOI: 10.1080/07357907.2019.1582848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To clarify the prognostic impact of tumor-infiltrating effector regulatory T cells (eTregs) in non-small cell lung cancer (NSCLC), eTregs were evaluated by immunohistochemical detection of CCR4 and Foxp3 in 108 consecutive surgical NSCLC tumors. Multivariate analysis showed that a high ratio of CCR4+ eTregs to total Tregs (≥40%) was the only independent risk factor for relapse-free survival (odds ratio [OR]: 6.54, 95% confidence interval: 1.67-25.7, p = .007) and overall survival (OR: 3.76, p = .037) in lung squamous cell carcinoma (SqCC). These results highlight the prognostic importance of the balance of tumor-infiltrating Tregs in resected lung SqCC.
Collapse
Affiliation(s)
- Nobuhiro Asai
- a Division of Respiratory Medicine and Allergology, Department of Internal Medicine , Aichi Medical University School of Medicine , Nagakute , Japan
| | - Akihito Kubo
- a Division of Respiratory Medicine and Allergology, Department of Internal Medicine , Aichi Medical University School of Medicine , Nagakute , Japan
| | - Susumu Suzuki
- b Department of Tumor Immunology , Aichi Medical University School of Medicine , Nagakute , Japan
| | - Kenta Murotani
- c Division of Biostatistics, Clinical Research Center , Aichi Medical University School of Medicine , Nagakute , Japan
| | - Hiroki Numanami
- d Division of Chest Surgery, Department of Surgery , Aichi Medical University School of Medicine , Nagakute , Japan
| | - Kazuhiro Yoshikawa
- e Promoting Center for Clinical Research , Aichi Medical University School of Medicine , Nagakute , Japan
| | - Ryuzo Ueda
- b Department of Tumor Immunology , Aichi Medical University School of Medicine , Nagakute , Japan
| | - Etsuro Yamaguchi
- a Division of Respiratory Medicine and Allergology, Department of Internal Medicine , Aichi Medical University School of Medicine , Nagakute , Japan
| |
Collapse
|
24
|
The challenges of solid tumor for designer CAR-T therapies: a 25-year perspective. Cancer Gene Ther 2019; 24:89-99. [PMID: 28392558 DOI: 10.1038/cgt.2016.82] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Raja J, Ludwig JM, Gettinger SN, Schalper KA, Kim HS. Oncolytic virus immunotherapy: future prospects for oncology. J Immunother Cancer 2018; 6:140. [PMID: 30514385 PMCID: PMC6280382 DOI: 10.1186/s40425-018-0458-z] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Immunotherapy is at the forefront of modern oncologic care. Various novel therapies have targeted all three layers of tumor biology: tumor, niche, and immune system with a range of promising results. One emerging class in both primary and salvage therapy is oncolytic viruses. This therapy offers a multimodal approach to specifically and effectively target and destroy malignant cells, though a barrier oncoviral therapies have faced is a limited therapeutic response to currently delivery techniques. MAIN BODY The ability to deliver therapy tailored to specific cellular targets at the precise locus in which it would have its greatest impact is a profound development in anti-cancer treatment. Although immune checkpoint inhibitors have an improved tolerability profile relative to cytotoxic chemotherapy and whole beam radiation, severe immune-related adverse events have emerged as a potential limitation. These include pneumonitis, pancreatitis, and colitis, which are relatively infrequent but can limit therapeutic options for some patients. Intratumor injection of oncolytic viruses, in contrast, has a markedly lower rate of serious adverse effects and perhaps greater specificity to target tumor cells. Early stage clinical trials using oncolytic viruses show induction of effector anti-tumor immune responses and suggest that such therapies could also morph and redefine both the local target cells' niche as well as impart distant effects on remote cells with a similar molecular profile. CONCLUSION It is imperative for the modern immuno-oncologist to understand the biological processes underlying the immune dysregulation in cancer as well as the effects, uses, and limitations of oncolytic viruses. It will be with this foundational understanding that the future of oncolytic viral therapies and their delivery can be refined to forge future horizons in the direct modulation of the tumor bed.
Collapse
Affiliation(s)
- Junaid Raja
- Division of Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, 330 Cedar Street, New Haven, CT 06510, USA
| | - Johannes M Ludwig
- Division of Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, 330 Cedar Street, New Haven, CT 06510, USA
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Scott N Gettinger
- Division of Medical Oncology, Department of Medicine, Yale School of Medicine, 330 Cedar Street, New Haven, CT 06510, USA
- Yale Cancer Center, Yale University School of Medicine, 330 Cedar Street, New Haven, CT 06510, USA
| | - Kurt A Schalper
- Department of Pathology, Yale School of Medicine, 330 Cedar Street, New Haven, CT 06510, USA
| | - Hyun S Kim
- Division of Interventional Radiology, Department of Radiology and Biomedical Imaging, Yale School of Medicine, 330 Cedar Street, New Haven, CT 06510, USA.
- Division of Medical Oncology, Department of Medicine, Yale School of Medicine, 330 Cedar Street, New Haven, CT 06510, USA.
- Yale Cancer Center, Yale University School of Medicine, 330 Cedar Street, New Haven, CT 06510, USA.
| |
Collapse
|
26
|
Young S, Griego-Fullbright C, Wagner A, Chargin A, Patterson BK, Chabot-Richards D. Concordance of PD-L1 Expression Detection in Non-Small Cell Lung Cancer (NSCLC) Tissue Biopsy Specimens Between OncoTect iO Lung Assay and Immunohistochemistry (IHC). Am J Clin Pathol 2018; 150:346-352. [PMID: 30052717 DOI: 10.1093/ajcp/aqy063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES We report on the validity of a fully quantitative technology to determine tumor cells' PD-L1 expression compared with a standard immunohistochemical (IHC) assay in non-small cell lung cancer. METHODS Nineteen fresh tissue specimens were processed into single-cell suspensions using the IncellPREP Kit. Cells were treated with the OncoTect iO Lung Assay, which quantitatively assessed tumor-infiltrating lymphocytes (TILs), DNA content, and PD-L1 expression on diploid and aneuploid tumor populations. RESULTS Comparison of the OncoTect iO Lung Assay with IHC revealed a concordance of 95% overall (negative percent agreement, 97%; positive percent agreement, 89%). PD-L1 expression varied depending on the DNA content. The number of TILs and antigen-presenting cells (APCs) was significantly decreased in tumor compared with normal lung tissue. CONCLUSIONS The nonsubjective OncoTect iO Lung Assay has been shown to be at least as accurate and sensitive as IHC for the detection of PD-L1 expression while providing additional information to guide treatment.
Collapse
|
27
|
Jian J, Wei W, Yin G, Hettinghouse A, Liu C, Shi Y. RNA-Seq analysis of interferon inducible p204-mediated network in anti-tumor immunity. Sci Rep 2018; 8:6495. [PMID: 29691417 PMCID: PMC5915582 DOI: 10.1038/s41598-018-24561-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/05/2018] [Indexed: 12/19/2022] Open
Abstract
p204, a murine member of the interferon-inducible p200 protein family, and its human analogue, IFI16, have been shown to function as tumor suppressors in vitro, but the molecular events involved, in particular in vivo, remain unclear. Herein we induced the Lewis Lung carcinoma (LLC) murine model of human lung cancer in p204 null mice (KO) and their control littermates (WT). We compared the transcriptome in spleen from WT and p204 KO mice using a high-throughput RNA-sequencing array. A total 30.02 Gb of clean data were obtained, and overall Q30% was greater than 90.54%. More than 75% of clean data from 12 transcriptome samples were mapped to exons. The results showed that only 11 genes exhibited altered expression in untreated p204 KO mice relative to untreated WT mice, while 393 altered genes were identified in tumor-bearing p204 KO mice when compared with tumor-bearing WT mice. Further differentially expressed gene cluster and gene ontology consortium classification revealed that numerous cytokines and their receptors, chemoattractant molecules, and adhesion molecules were significantly induced in p204 KO mice. This study provides novel insights to the p204 network in anti-tumor immune response and also presents a foundation for future work concerning p204-mediated gene expressions and pathways.
Collapse
Affiliation(s)
- Jinlong Jian
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, China.,Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, USA
| | - Wei Wei
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, China
| | - Guowei Yin
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, China
| | - Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, USA
| | - Chuanju Liu
- Department of Orthopaedic Surgery, New York University School of Medicine, New York, NY 10003, USA.,Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Yongxiang Shi
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, 250100, China.
| |
Collapse
|
28
|
Zhang M, Kim JA, Huang AYC. Optimizing Tumor Microenvironment for Cancer Immunotherapy: β-Glucan-Based Nanoparticles. Front Immunol 2018; 9:341. [PMID: 29535722 PMCID: PMC5834761 DOI: 10.3389/fimmu.2018.00341] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 02/06/2018] [Indexed: 12/22/2022] Open
Abstract
Immunotherapy is revolutionizing cancer treatment. Recent clinical success with immune checkpoint inhibitors, chimeric antigen receptor T-cell therapy, and adoptive immune cellular therapies has generated excitement and new hopes for patients and investigators. However, clinically efficacious responses to cancer immunotherapy occur only in a minority of patients. One reason is the tumor microenvironment (TME), which potently inhibits the generation and delivery of optimal antitumor immune responses. As our understanding of TME continues to grow, strategies are being developed to change the TME toward one that augments the emergence of strong antitumor immunity. These strategies include eliminating tumor bulk to provoke the release of tumor antigens, using adjuvants to enhance antigen-presenting cell function, and employ agents that enhance immune cell effector activity. This article reviews the development of β-glucan and β-glucan-based nanoparticles as immune modulators of TME, as well as their potential benefit and future therapeutic applications. Cell-wall β-glucans from natural sources including plant, fungi, and bacteria are molecules that adopt pathogen-associated molecular pattern (PAMP) known to target specific receptors on immune cell subsets. Emerging data suggest that the TME can be actively manipulated by β-glucans and their related nanoparticles. In this review, we discuss the mechanisms of conditioning TME using β-glucan and β-glucan-based nanoparticles, and how this strategy enables future design of optimal combination cancer immunotherapies.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Cleveland, OH, United States
- Seidman Cancer Center, University Hospitals, Cleveland, OH, United States
| | - Julian A. Kim
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Cleveland, OH, United States
- Seidman Cancer Center, University Hospitals, Cleveland, OH, United States
- Division of Surgical Oncology, Department of Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Alex Yee-Chen Huang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Cleveland, OH, United States
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
29
|
Kunitoh H. Promises and challenges of immuno-oncology from a clinical perspective. Jpn J Clin Oncol 2018; 48:101-102. [DOI: 10.1093/jjco/hyy018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 01/05/2023] Open
|
30
|
Suzuki Y, Togano T, Ohto H, Kume H. Visceral Mycoses in Autopsied Cases in Japan from 1989 to 2013. Med Mycol J 2018; 59:E53-E62. [DOI: 10.3314/mmj.18-00003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yuhko Suzuki
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University
| | - Tomiteru Togano
- Department of Hematology, National Center for Global Health and Medicine
| | - Hitoshi Ohto
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University
| | - Hikaru Kume
- Department of Pathology, Kitasato University School of Medicine
| |
Collapse
|
31
|
Kunitoh H. Message from the New Editor-in-Chief. Jpn J Clin Oncol 2018; 48:1-2. [DOI: 10.1093/jjco/hyx173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Indexed: 11/14/2022] Open
|
32
|
Nishio-Nagai M, Suzuki S, Yoshikawa K, Ueda R, Kazaoka Y. Adoptive immunotherapy combined with FP treatment for head and neck cancer: An in vitro study. Int J Oncol 2017; 51:1471-1481. [PMID: 29048671 PMCID: PMC5643067 DOI: 10.3892/ijo.2017.4142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/06/2017] [Indexed: 12/23/2022] Open
Abstract
FP treatment, which combines 5-fluorouracil (5-FU) and cisplatin (CDDP) chemotherapy, is widely used for treatment of advanced head and neck cancer (HNC). It has been suggested that these drugs cause immunomodulation in the cancer microenvironment, for example, downregulation of immunosuppressive cells such as regulatory T-cells (Tregs) and myeloid-derived suppressive cells (MDSCs), activating dendritic cells (DCs), and upregulation of tumor antigens and major histocompatibility complex (MHC) molecules in cancer cells leads to enhancement of cancer immunity, which is important in cancer treatment, as well as providing a direct killing effect. Therefore, development of chemoimmunotherapy by combining FP treatment with immunotherapy for HNC has become a recent challenging issue. However, the direct effects of these drugs on immune effector cells, especially cytotoxic T-lymphocytes (CTLs), are not well known. We have investigated the direct actions of these drugs on CTL functions in in vitro experiments using cytomegalovirus (CMV) pp65 antigen-specific CTLs (CMVpp65-CTLs) and oral squamous cell cancer (OSCC) cell lines overexpressing CMVpp65 antigen as target cells. Although CDDP partially inhibited proliferation of memory CMVpp65-CTL in peripheral blood, the proliferation was not inhibited by 5-FU. Cytotoxicity and the IFN-γ release response of the CMVpp65-CTLs were not inhibited by these drugs, and it is important to note that these drugs, especially 5-FU, sensitized OSCC cell lines to CMVpp65-CTL. Furthermore, CMVpp65-CTL cytotoxicity to CDDP-resistant OSCC cells, HSC-3/CDDP-R1, was the same as the cytotoxicity to the parental cells. Thus, we suggest that combined immunotherapy with FP treatment is an effective novel HNC treatment.
Collapse
Affiliation(s)
- Mayako Nishio-Nagai
- Department of Oral and Maxillofacial Surgery, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | - Susumu Suzuki
- Department of Tumor Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Kazuhiro Yoshikawa
- Division of Advanced Research Promotion, Institute of Comprehensive Medical Research, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Ryuzo Ueda
- Department of Tumor Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Yoshiaki Kazaoka
- Department of Oral and Maxillofacial Surgery, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| |
Collapse
|
33
|
Ishida T, Utsunomiya A, Jo T, Yamamoto K, Kato K, Yoshida S, Takemoto S, Suzushima H, Kobayashi Y, Imaizumi Y, Yoshimura K, Kawamura K, Takahashi T, Tobinai K, Ueda R. Mogamulizumab for relapsed adult T-cell leukemia-lymphoma: Updated follow-up analysis of phase I and II studies. Cancer Sci 2017; 108:2022-2029. [PMID: 28776876 PMCID: PMC5623751 DOI: 10.1111/cas.13343] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 12/17/2022] Open
Abstract
The present study sought to elucidate the prognosis of adult T-cell leukemia-lymphoma (ATL) patients receiving mogamulizumab, a defucosylated anti-CCR4 monoclonal antibody. Progression-free survival (PFS) and overall survival (OS) of ATL patients enrolled in two studies are herein updated, namely NCT00355472 (phase I study of mogamulizumab in relapsed patients with ATL and peripheral T-cell lymphoma) and NCT00920790 (phase II study for relapsed ATL). Of 13 patients with relapsed aggressive ATL in the phase I study, four (31%) survived >3 years. For 26 relapsed patients with aggressive ATL in the phase II study, median PFS was 5.2 months and 1-year PFS was 26%, whereas median OS was 14.4 months, and 3-year OS was 23%. For patients without a rash or who developed a grade 1 rash only, median PFS was 0.8 months, and 1-year PFS was zero, with a median OS of 6.0 months, and 3-year OS of 8%. In contrast, for patients who developed a rash ≥grade 2, median PFS was 11.7 months, and 1-year PFS was 50%, with a median OS of 25.6 months, and 3-year OS of 36%. Thus, we conclude that mogamulizumab monotherapy may improve PFS and OS in some patients with relapsed aggressive ATL, especially those who develop a skin rash as a moderate immune-related adverse event. Therefore, further investigation is warranted to validate the present observations and to clarify the mechanisms involved in the activity of mogamulizumab.
Collapse
Affiliation(s)
- Takashi Ishida
- Department of Hematology and OncologyNagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Atae Utsunomiya
- Department of HematologyImamura Bun‐in HospitalKagoshimaJapan
| | - Tatsuro Jo
- Department of HematologyJapanese Red Cross Nagasaki Genbaku HospitalNagasakiJapan
| | - Kazuhito Yamamoto
- Department of Hematology and Cell TherapyAichi Cancer Center HospitalNagoyaJapan
| | - Koji Kato
- Department of Medicine and Biosystemic ScienceKyushu University Graduate School of Medical SciencesFukuokaJapan
| | - Shinichiro Yoshida
- Department of HematologyNational Hospital Organization Nagasaki Medical CenterNagasakiJapan
| | - Shigeki Takemoto
- Department of Hematology and Institute for Clinical ResearchNational Hospital Organization Kumamoto Medical CenterKumamotoJapan
| | - Hitoshi Suzushima
- Department of HematologyKumamoto Shinto General HospitalKumamotoJapan
| | - Yukio Kobayashi
- Department of HematologyNational Cancer Center HospitalTokyoJapan
| | - Yoshitaka Imaizumi
- Department of HematologyAtomic Bomb Disease and Hibakusha Medicine UnitAtomic Bomb Disease InstituteNagasakiJapan
| | | | - Kouichi Kawamura
- Department of Medical AffairsKyowa Hakko Kirin Co., LtdOtemachi Financial City Grand CubeTokyoJapan
| | - Takeshi Takahashi
- Department of Medical AffairsKyowa Hakko Kirin Co., LtdOtemachi Financial City Grand CubeTokyoJapan
| | - Kensei Tobinai
- Department of HematologyNational Cancer Center HospitalTokyoJapan
| | - Ryuzo Ueda
- Department of Tumor ImmunologyAichi Medical University School of MedicineNagoyaJapan
| |
Collapse
|
34
|
Cavalcanti E, Armentano R, Valentini AM, Chieppa M, Caruso ML. Role of PD-L1 expression as a biomarker for GEP neuroendocrine neoplasm grading. Cell Death Dis 2017; 8:e3004. [PMID: 28837143 PMCID: PMC5596583 DOI: 10.1038/cddis.2017.401] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/19/2017] [Accepted: 07/06/2017] [Indexed: 02/06/2023]
Abstract
Neuroendocrine neoplasms (NENs) are rare, heterogeneous and ubiquitous tumors commonly localized in the gastrointestinal tract, lung, and pancreas. The clinical behavior of NEN is highly unpredictable; in fact, low-grade cases can unexpectedly be associated with metastases. Currently, the 2010 WHO NEN classification employs histological differentiation and the proliferation index for grading tumors but fails to provide reliable prognostic and therapeutic indications. Therefore, there is an urgent need for a better characterization of G2/G3 NENs. Similar to several other tumors, NENs possess immune-escape mechanisms, but very little has yet been done to characterize this crucial aspect. There are no available data describing PD-L1 expression in these tumors. Here we provide, for the first time, evidence of PD-L1 tissue expression in gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs). PD-L1 expression was significantly associated with a high-grade WHO classification (G3) (P<0.001) but not with gender, primary site, or lymph node status. The PD-L1 positivity rate and signal intensity are directly correlated (P<0.001) with a grade increase from G1 to G3. In particular in G3 cases, we observed a dichotomy between the morphology (WD- and PD-NENs) and Ki67. Moreover, our study demonstrated a significant association with the grade and PD-L1 expression levels in immune-infiltrating cells (P<0.001). In particular, G3 tumors are characterized by strong PD-L1 expression in both the tumor and infiltrating immune cells (P<0.001), reflecting an unfavorable environment for T-cell-mediated tumor aggression. These findings suggest that NENs might acquire resistance to immune surveillance by upregulating PD-L1 and inhibiting peritumoral and intratumoral infiltrating lymphocytes. Here we demonstrate that PD-L1 is currently the best-known biomarker for G3 NENs, becoming the new gold standard for G3 NEN discrimination. Furthermore, pharmacological approaches using anti-PD-1 antibodies may become the logical choice for the treatment of G3 cases with a poor prognosis.
Collapse
Affiliation(s)
- Elisabetta Cavalcanti
- Department of Pathology, National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - Raffaele Armentano
- Department of Pathology, National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - Anna Maria Valentini
- Department of Pathology, National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - Marcello Chieppa
- Department of Pathology, National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Bari 70013, Italy
| | - Maria Lucia Caruso
- Department of Pathology, National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Bari 70013, Italy
| |
Collapse
|
35
|
Ma H, Mao G, Zhang G, Huang H. The Expression and Clinical Signification of PD-1 in Lymph Nodes of Patients with Non-small Cell Lung Cancer. Immunol Invest 2017; 46:639-646. [PMID: 28799818 DOI: 10.1080/08820139.2017.1341521] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
To screen anti-programmed cell death protein 1 (PD-1) antibody treatment of the dominant population, it is necessary to understand the expression of PD-1 in tumor metastasis microenvironment. The aim of the present study was to detect the expression of PD-1 in lymph nodes of 51 patients with non-small cell lung cancer (NSCLC) by using flow cytometry (FCM). The results showed that the PD-1 expression on CD3+ T cells was significantly increased in NSCLC metastatic lymph nodes (50.08 ± 8.03%) compared with nonmetastatic lymph nodes (36.25 ± 11.27%) (t = 5.208, p < 0.001).We also found that PD-1 expression was not associated with age, sex, and smoking, and it is associated with pathological type and staging of lung cancer. This study demonstrated that PD-1 may involve in lymph nodes metastasis and promote the understanding of the mechanism of immunotherapies in the NSCLC.
Collapse
Affiliation(s)
- Haitao Ma
- a Department of Thoracic Surgery , The First Affiliated Hospital of Soochow University , Suzhou , P.R. China
| | - GuoCai Mao
- a Department of Thoracic Surgery , The First Affiliated Hospital of Soochow University , Suzhou , P.R. China
| | - GuangBo Zhang
- b Clinic Immunology of Jiangsu Province , The First Affiliated Hospital of Soochow University , Suzhou , P.R. China
| | - HaiTao Huang
- a Department of Thoracic Surgery , The First Affiliated Hospital of Soochow University , Suzhou , P.R. China
| |
Collapse
|
36
|
Tavakolpour S, Mirsafaei HS, Elkaei Behjati S, Ghasemiadl M, Akhlaghdoust M, Sali S. Toward cure chronic hepatitis B infection and hepatocellular carcinoma prevention: Lessons learned from nucleos(t)ide analogues therapy. Immunol Lett 2017; 190:206-212. [PMID: 28827021 DOI: 10.1016/j.imlet.2017.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/03/2017] [Indexed: 12/16/2022]
Abstract
Nucleos(t)ide analogues (NAs) could successfully suppress hepatitis B virus (HBV) replication in patients with chronic hepatitis B (CHB). However, due to probable development of drug resistance or low/delayed response, these treatments may not be satisfactory. In addition to the HBV DNA polymerase inhibiting activity, these drugs could lead to changes in cytokines profiles. It is important to monitor these changes so that they could be used as target of treatment. Evaluating the previously reported immune responses due to NAs treatments, it was concluded that interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), interleukin-4 (IL-4), and IL-12 increase after the treatment. This will be followed by the improved capacity of immune cells for eliminating HBV. In contrast, regulatory responses including IL-10 and transforming growth factor-beta (TGF-β) significantly decreased as the result of NAs therapy. Unexpectedly, T helper (Th) 17-associated cytokines also decreased significantly. These results could be used to employ the new strategies to suppress viral replication, minimize HBV DNA levels, inducing hepatitis B e antigen (HBeAg) seroconversion or even hepatitis B surface antigen (HBsAg) seroclearance. In order to accomplish these goals, extended treatment with high dose of both IL-12 and IFN in combination with high barrier to resistance NA might significantly improve the HBsAg seroclearance rate. Considering the danger of emerging aberrant immune responses, determining the optimum dosage as well as close monitoring of patients during the treatment is strongly advised. In order to make HBV immunotherapy practical, further studies are needed to confirm these results.
Collapse
Affiliation(s)
- Soheil Tavakolpour
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Immunology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | | | - Somayeh Elkaei Behjati
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Ghasemiadl
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meisam Akhlaghdoust
- Pars Advanced and Minimally Invasive Manners Research Center, Pars Hospital, Tehran, Iran
| | - Shahnaz Sali
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Franzese O, Torino F, Fuggetta MP, Aquino A, Roselli M, Bonmassar E, Giuliani A, D’Atri S. Tumor immunotherapy: drug-induced neoantigens (xenogenization) and immune checkpoint inhibitors. Oncotarget 2017; 8:41641-41669. [PMID: 28404974 PMCID: PMC5522228 DOI: 10.18632/oncotarget.16335] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/24/2017] [Indexed: 12/11/2022] Open
Abstract
More than 40 years ago, we discovered that novel transplantation antigens can be induced in vivo or in vitro by treating murine leukemia with dacarbazine. Years later, this phenomenon that we called "Chemical Xenogenization" (CX) and more recently, "Drug-Induced Xenogenization" (DIX), was reproduced by Thierry Boon with a mutagenic/carcinogenic compound (i.e. N-methyl-N'-nitro-N-nitrosoguanidine). In both cases, the molecular bases of DIX rely on mutagenesis induced by methyl adducts to oxygen-6 of DNA guanine. In the present review we illustrate the main DIX-related immune-pharmacodynamic properties of triazene compounds of clinical use (i.e. dacarbazine and temozolomide).In recent years, tumor immunotherapy has come back to the stage with the discovery of immune checkpoint inhibitors (ICpI) that show an extraordinary immune-enhancing activity. Here we illustrate the salient biochemical features of some of the most interesting ICpI and the up-to-day status of their clinical use. Moreover, we illustrate the literature showing the direct relationship between somatic mutation burden and susceptibility of cancer cells to host's immune responses.When DIX was discovered, we were not able to satisfactorily exploit the possible presence of triazene-induced neoantigens in malignant cells since no device was available to adequately enhance host's immune responses in clinical settings. Today, ICpI show unprecedented efficacy in terms of survival times, especially when elevated mutation load is associated with cancer cells. Therefore, in the future, mutation-dependent neoantigens obtained by appropriate pharmacological intervention appear to disclose a novel approach for enhancing the therapeutic efficacy of ICpI in cancer patients.
Collapse
Affiliation(s)
- Ornella Franzese
- Department of Systems Medicine, School of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesco Torino
- Department of Systems Medicine, Medical Oncology, University of Rome Tor Vergata, Rome, Italy
| | - Maria Pia Fuggetta
- Institute of Translational Pharmacology, National Council of Research, Rome, Italy
| | - Angelo Aquino
- Department of Systems Medicine, School of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Mario Roselli
- Department of Systems Medicine, Medical Oncology, University of Rome Tor Vergata, Rome, Italy
| | - Enzo Bonmassar
- Department of Systems Medicine, School of Medicine, University of Rome Tor Vergata, Rome, Italy
- Institute of Translational Pharmacology, National Council of Research, Rome, Italy
| | - Anna Giuliani
- Department of Systems Medicine, School of Medicine, University of Rome Tor Vergata, Rome, Italy
- Institute of Translational Pharmacology, National Council of Research, Rome, Italy
| | - Stefania D’Atri
- Laboratory of Molecular Oncology, Istituto Dermopatico dell’Immacolata-IRCCS, Rome, Italy
| |
Collapse
|
38
|
Mazzone R, Zwergel C, Mai A, Valente S. Epi-drugs in combination with immunotherapy: a new avenue to improve anticancer efficacy. Clin Epigenetics 2017; 9:59. [PMID: 28572863 PMCID: PMC5450222 DOI: 10.1186/s13148-017-0358-y] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 05/19/2017] [Indexed: 12/13/2022] Open
Abstract
Immune checkpoint factors, such as programmed cell death protein-1/2 (PD-1, PD-2) or cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) receptors, are targets for monoclonal antibodies (MAbs) developed for cancer immunotherapy. Indeed, modulating immune inhibitory pathways has been considered an important breakthrough in cancer treatment. Although immune checkpoint blockade therapy used to treat malignant diseases has provided promising results, both solid and haematological malignancies develop mechanisms that enable themselves to evade the host immune system. To overcome some major limitations and ensure safety in patients, recent strategies have shown that combining epigenetic modulators, such as inhibitors of histone deacetylases (HDACi) or DNA methyltransferases (DNMTi), with immunotherapeutics can be useful. Preclinical data generated using mouse models strongly support the feasibility and effectiveness of the proposed approaches. Indeed, co-treatment with pan- or class I-selective HDACi or DNMTi improved beneficial outcomes in both in vitro and in vivo studies. Based on the evidence of a pivotal role for HDACi and DNMTi in modulating various components belonging to the immune system, recent clinical trials have shown that both HDACi and DNMTi strongly augmented response to anti-PD-1 immunotherapy in different tumour types. This review describes the current strategies to increase immunotherapy responses, the effects of HDACi and DNMTi on immune modulation, and the advantages of combinatorial therapy over single-drug treatment.
Collapse
Affiliation(s)
- Roberta Mazzone
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy.,Center for Life Nano Science@Sapienza, Italian Institute of Technology, Viale Regina Elena 291, 00161 Rome, Italy
| | - Clemens Zwergel
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Antonello Mai
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy.,Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Sergio Valente
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
39
|
Saito S, Espinoza-Mercado F, Liu H, Sata N, Cui X, Soukiasian HJ. Current status of research and treatment for non-small cell lung cancer in never-smoking females. Cancer Biol Ther 2017; 18:359-368. [PMID: 28494184 DOI: 10.1080/15384047.2017.1323580] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide with over 1 million deaths each year. The overall prognosis of lung cancer patients remains unsatisfactory, with a 5-year overall survival rate of less than 15%. Although most lung cancers are a result of smoking, approximately 25% of lung cancer cases worldwide are not attributable to tobacco use. Notably, more than half of the lung cancer cases in women occur in non-smokers. Among non-small-cell lung cancer (NSCLC) cases, cigarette-smokers have a greater association with squamous cell carcinoma than adenocarcinoma, which is more common in non-smokers. These findings imply that specific molecular and pathological features may associate with lung adenocarcinoma arising in non-smoker female patients. Over the past decade, whole genome sequencing and other '-omics' technologies led to the discovery of pathogenic mutations that drive tumor cell formation. These technological developments may enable tailored patient treatments throughout the course of their disease, potentially leading to improved patient outcomes. Some clinical and laboratory studies have shown success outcomes using epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitors (TKI) in patients with EGFR mutations and ALK rearrangements, respectively. In fact, these 2 mutations are predominantly present in female non-smokers with adenocarcinoma. Immunotherapy has also recently emerged as a major therapeutic modality in NSCLC. In this review, we summarize the current understanding of NSCLC biology and new therapeutic molecular targets, focusing on the pathogenesis of non-smoker female NSCLC patients.
Collapse
Affiliation(s)
- Shin Saito
- a Department of Surgery , Jichi Medical University , Yakushiji, Shimotsuke-City , Tochigi , Japan
| | - Fernando Espinoza-Mercado
- b Department of Surgery, Division of Thoracic Surgery , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| | - Hui Liu
- c College of Medical Laboratory Techniques, Tianjin Medical University , Tianjin , China
| | - Naohiro Sata
- a Department of Surgery , Jichi Medical University , Yakushiji, Shimotsuke-City , Tochigi , Japan
| | - Xiaojiang Cui
- d Department of Surgery , Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center , Los Angeles , CA , USA
| | - Harmik J Soukiasian
- b Department of Surgery, Division of Thoracic Surgery , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| |
Collapse
|
40
|
Horlad H, Ma C, Yano H, Pan C, Ohnishi K, Fujiwara Y, Endo S, Kikukawa Y, Okuno Y, Matsuoka M, Takeya M, Komohara Y. An IL-27/Stat3 axis induces expression of programmed cell death 1 ligands (PD-L1/2) on infiltrating macrophages in lymphoma. Cancer Sci 2017; 107:1696-1704. [PMID: 27564404 PMCID: PMC5132271 DOI: 10.1111/cas.13065] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/17/2016] [Accepted: 08/24/2016] [Indexed: 12/29/2022] Open
Abstract
Immune escape and tolerance in the tumor microenvironment are closely involved in tumor progression, and are caused by T‐cell exhaustion and mediated by the inhibitory signaling of immune checkpoint molecules including programmed death‐1 (PD‐1), cytotoxic T‐lymphocyte associated protein 4, and T‐cell immunoglobulin and mucin domaincontaining molecule‐3. In the present study, we investigated the expression of the PD‐1 ligand 1 (PD‐L1) in a lymphoma microenvironment using paraffin‐embedded tissue samples, and subsequently studied the detailed mechanism of upregulation of PD‐L1 on macrophages using cultured human macrophages and lymphoma cell lines. We found that macrophages in lymphoma tissues of almost all cases of adult T‐cell leukemia/lymphoma (ATLL), follicular lymphoma and diffuse large B‐cell lymphoma expressed PD‐L1. Cell culture studies showed that the conditioned medium of ATL‐T and SLVL cell lines induced increased expression of PD‐L1/2 on macrophages, and that this PD‐L1/2 overexpression was dependent on activation of signal transducer and activator of transcription 3 (Stat3). In vitro studies including cytokine array analysis showed that IL‐27 (heterodimer of p28 and EBI3) induced overexpression of PD‐L1/2 on macrophages via Stat3 activation. Because lymphoma cell lines produced IL‐27B (EBI3) but not IL‐27p28, it was proposed that the IL‐27p28 derived from macrophages and the IL‐27B (EBI3) derived from lymphoma cells formed an IL‐27 (heterodimer) that induced PD‐L1/2 overexpression. Although the significance of PD‐L1/2 expressions on macrophages in lymphoma progression has never been clarified, an IL‐27‐Stat3 axis might be a target for immunotherapy for lymphoma patients.
Collapse
Affiliation(s)
- Hasita Horlad
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Chaoya Ma
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiromu Yano
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Cheng Pan
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Koji Ohnishi
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shinya Endo
- Department of Hematology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshitaka Kikukawa
- Department of Hematology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yutaka Okuno
- Department of Hematology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masao Matsuoka
- Department of Hematology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.,Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Motohiro Takeya
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
41
|
Ruan J, Duan Y, Li F, Wang Z. Enhanced synergistic anti-Lewis lung carcinoma effect of a DNA vaccine harboring a MUC1-VEGFR2 fusion gene used with GM-CSF as an adjuvant. Clin Exp Pharmacol Physiol 2016; 44:71-78. [PMID: 27562635 DOI: 10.1111/1440-1681.12654] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/05/2016] [Accepted: 08/18/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Junzhong Ruan
- Department of Thoracic Surgery; Beijing Chest Hospital; Capital Medical University; Beijing Tuberculosis and Thoracic Tumour Research Institute; Beijing China
| | - Yong Duan
- Department of Thoracic Surgery; Beijing Chest Hospital; Capital Medical University; Beijing Tuberculosis and Thoracic Tumour Research Institute; Beijing China
| | - Fugen Li
- Department of Thoracic Surgery; Beijing Chest Hospital; Capital Medical University; Beijing Tuberculosis and Thoracic Tumour Research Institute; Beijing China
| | - Zitong Wang
- Department of Thoracic Surgery; Beijing Chest Hospital; Capital Medical University; Beijing Tuberculosis and Thoracic Tumour Research Institute; Beijing China
| |
Collapse
|
42
|
The Pathophysiological Impact of HLA Class Ia and HLA-G Expression and Regulatory T Cells in Malignant Melanoma: A Review. J Immunol Res 2016; 2016:6829283. [PMID: 27999823 PMCID: PMC5141560 DOI: 10.1155/2016/6829283] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/16/2016] [Accepted: 10/12/2016] [Indexed: 12/21/2022] Open
Abstract
Malignant melanoma, a very common type of cancer, is a rapidly growing cancer of the skin with an increase in incidence among the Caucasian population. The disease is seen through all age groups and is very common in the younger age groups. Several studies have examined the risk factors and pathophysiological mechanisms of malignant melanoma, which have enlightened our understanding of the development of the disease, but we have still to fully understand the complex immunological interactions. The examination of the interaction between the human leucocyte antigen (HLA) system and prognostic outcome has shown interesting results, and a correlation between the down- or upregulation of these antigens and prognosis has been seen through many different types of cancer. In malignant melanoma, HLA class Ia has been seen to influence the effects of pharmaceutical drug treatment as well as the overall prognosis, and the HLA class Ib and regulatory T cells have been correlated with tumor progression. Although there is still no standardized immunological treatment worldwide, the interaction between the human leucocyte antigen (HLA) system and tumor progression seems to be a promising focus in the way of optimizing the treatment of malignant melanoma.
Collapse
|
43
|
Glypican-3 Targeting Immunotoxins for the Treatment of Liver Cancer. Toxins (Basel) 2016; 8:toxins8100274. [PMID: 27669301 PMCID: PMC5086635 DOI: 10.3390/toxins8100274] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 12/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer, yet no effective therapeutics exist. This review provides an overview of the recent development of recombinant immunotoxins for the treatment of glypican-3 (GPC3) expressing HCC. GPC3 is a cell surface heparan sulfate proteoglycan that is overexpressed in HCC, but is absent from normal adult human tissues. Treatment of HCC with anti-GPC3 immunotoxins represents a new therapeutic option. Using phage display and hybridoma technologies, three high affinity antibodies (HN3, HS20 and YP7) have been generated against GPC3. Two of these antibodies (HN3 and HS20) have demonstrated the ability to inhibit Wnt/Yap signaling, leading to a reduction in liver cancer cell proliferation. By combining the HN3 antibody capable of inhibiting Wnt/Yap signaling with the protein synthesis inhibitory domain of the Pseudomonas exotoxin, a recombinant immunotoxin that exhibits a dual inhibitory mechanism was generated. This immunotoxin was found to be highly effective in the treatment of human HCCs in mouse xenograft models. Engineering of the toxin fragment to reduce the level of immunogenicity is currently being explored. The development of immunotoxins provides opportunities for novel liver cancer therapies.
Collapse
|
44
|
Xia Y, Liu L, Bai Q, Wang J, Xi W, Qu Y, Xiong Y, Long Q, Xu J, Guo J. Dectin-1 predicts adverse postoperative prognosis of patients with clear cell renal cell carcinoma. Sci Rep 2016; 6:32657. [PMID: 27600310 PMCID: PMC5013447 DOI: 10.1038/srep32657] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/10/2016] [Indexed: 01/16/2023] Open
Abstract
Dectin-1, a classical pattern-recognition receptor, was now identified as an important regulator in immune homeostasis and cancer immunity through its extensive ligands binding functions and subsequent cytokines production. The aim of this study was to assess the clinical significance of dectin-1 expression in 290 patients with clear cell renal cell carcinoma (ccRCC) through immunohistochemistry on tissue microarrays. We found that dectin-1 was predominantly expressed on ccRCC cells, in accordance with several other online databases. Moreover, Kaplan-Meier method was conducted and high expression of tumoral dectin-1 was associated with shorter patient recurrence free survival (RFS) and overall survival (OS) (P < 0.001 for both). In multivariate analyses, tumoral dectin-1 expression was also confirmed as an independent prognostic factor for patients’ survival together with other clinical parameters (P < 0.001 for RFS and OS). After incorporating these characteristics including tumoral dectin-1 expression, two nomograms were constructed to predict ccRCC patients’ RFS and OS (c-index 0.796 and 0.812, respectively) and performed better than existed integrated models (P < 0.001 for all models comparisons). In conclusion, high tumoral dectin-1 expression was an independent predictor of adverse clinical outcome in ccRCC patients. This molecule and established nomograms might help clinicians in future decision making and therapeutic developments.
Collapse
Affiliation(s)
- Yu Xia
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Li Liu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qi Bai
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiajun Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wei Xi
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yang Qu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ying Xiong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qilai Long
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|