1
|
Gu W, Zhang W, Wu Z, Cai Y. Cabergoline-induced NDFIP1 upregulation in pituitary neuroendocrine tumor cells activates mTOR signaling and contributes to cabergoline resistance. J Neurooncol 2025; 172:587-597. [PMID: 39891847 PMCID: PMC11968467 DOI: 10.1007/s11060-025-04949-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
PURPOSE To investigate the molecular mechanisms underlying resistance to dopamine agonists (DA). METHODS LC-MS/MS analysis was performed on rat pituitary neuroendocrine tumors (PitNET) cell line GH3 to identify differentially expressed proteins induced by cabergoline (CAB) treatment. A total of 180 human PITNET samples were subjected to transcriptome analysis. Immunohistochemistry (IHC) was conducted on 29 tumor samples to validate NDFIP1 alteration. A xenograft mouse model was established by subcutaneously injecting GH3 cells, with or without NDFIP1 overexpression, into nude mice to investigate tumor growth. PitNET cell lines were treated with CAB. Cell proliferation was assessed using the CCK-8, and protein expression levels were examined through Western blot analysis. RESULTS CAB treatment upregulated FDFT1 and NDFIP1 protein expression in GH3 cells, with NDFIP1 showing a significant positive correlation with tumor size, as confirmed by IHC results. MMQ and GH3 cells overexpressing NDFIP1 exhibited enhanced viability and reduced sensitivity to CAB. In vivo experiments demonstrated that subcutaneous injection of NDFIP1-overexpressing GH3 cells led to enhanced tumor growth compared to parental GH3 cells. Although the total levels of PTEN remained unaltered, NDFIP1 overexpression induced PTEN nuclear translocation, potentially activating the mTOR pathway. This was supported by increased phosphorylation of key mTOR pathway components, including p-AKT and p-4EBP1, in cells overexpressing NDFIP1. CONCLUSION CAB treatment induces the upregulation of NDFIP1 in PitNET cells, which correlates with tumor size and contributes to reduced CAB sensitivity, potentially through activation of the mTOR pathway. NDFIP1 as a potential therapeutic target for overcoming DA resistance in PitNET patients.
Collapse
Affiliation(s)
- Weiting Gu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weifeng Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhebao Wu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yu Cai
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
2
|
Ramezani A, Rahnama M, Mahmoudian F, Shirazi F, Ganji M, Bakhshi S, Khalesi B, Hashemi ZS, Khalili S. Current Understanding of the Exosomes and Their Associated Biomolecules in the Glioblastoma Biology, Clinical Treatment, and Diagnosis. J Neuroimmune Pharmacol 2025; 20:48. [PMID: 40299204 DOI: 10.1007/s11481-025-10204-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 04/08/2025] [Indexed: 04/30/2025]
Abstract
Glioblastoma is the most common and aggressive brain tumor with a low survival rate. Due to its heterogeneous composition, high invasiveness, and frequent recurrence after surgery, treatment success has been limited. In addition, due to the brain's unique immune status and the suppressor tumor microenvironment (TME), glioblastoma treatment has faced more challenges. Exosomes play a critical role in cancer metastasis by regulating cell-cell interactions that promote tumor growth, angiogenesis, metastasis, treatment resistance, and immunological regulation in the tumor microenvironment. This review explores the pivotal role of exosomes in the development of glioblastoma, with a focus on their potential as non-invasive biomarkers for prognosis, early detection and real-time monitoring of disease progression. Notably, exosome-based drug delivery methods hold promise for overcoming the blood-brain barrier (BBB) and developing targeted therapies for glioblastoma. Despite challenges in clinical translation, the potential for personalized exosome = -054321`therapies and the capacity to enhance therapeutic responses in glioblastoma, present intriguing opportunities for improving patient outcomes. It seems that getting a good and current grasp of the role of exosomes in the fight against glioblastoma would properly serve the scientific community to further their understanding of the related potentials of these biological moieties.
Collapse
Affiliation(s)
- Aghdas Ramezani
- Department of Molecular Imaging, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Maryam Rahnama
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Mahmoudian
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Shirazi
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Mahmoud Ganji
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shohreh Bakhshi
- Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Education and Extension Organization, Razi Vaccine and Serum Research Institute, Agricultural Research, Karaj, 3197619751, Iran
| | - Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran.
| |
Collapse
|
3
|
Yang X, Liu T, Cheng H. PTEN: a new dawn in Parkinson's disease treatment. Front Cell Neurosci 2025; 19:1497555. [PMID: 40129459 PMCID: PMC11931041 DOI: 10.3389/fncel.2025.1497555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/26/2025] [Indexed: 03/26/2025] Open
Abstract
In recent years, the study of phosphatase and tension homolog (PTEN) has gradually become a research hotspot. As an important oncogene, the role of PTEN in cancer has long been widely recognized and intensively studied, but it has been relatively less studied in other diseases. Parkinson's disease (PD) is a neurodegenerative refractory disease commonly observed in middle-aged and elderly individuals. The etiology and pathogenesis of PD are numerous, complex, and incompletely understood. With the continuous deepening of research, numerous studies have proven that PTEN is related to the occurrence of PD. In this review, we discuss the relationship between PTEN and PD through the phosphorylation and ubiquitination of PTEN and other possible regulatory mechanisms, including the role of RNA molecules, exosomes, transcriptional regulation, chemical modification, and subtype variation, with the aim of clarifying the regulatory role of PTEN in PD and better elucidating its pathogenesis. Finally, we summarize the shortcomings of PTEN in PD research and highlight the great potential of its future application in PD clinical treatment. These findings provide research ideas and new perspectives for the possible use of PTEN as a PD therapeutic target for targeted drug development and clinical application in the future.
Collapse
Affiliation(s)
| | - Tianqi Liu
- Medical College, Yangzhou University, Yangzhou, China
| | - Hong Cheng
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University Medical College, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Jiang X, Tan H. Mechanism of METTL3 in the proliferation, invasion, and migration of intrahepatic cholangiocarcinoma cells via m6A modification. Exp Cell Res 2025; 444:114353. [PMID: 39608479 DOI: 10.1016/j.yexcr.2024.114353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a primary invasive malignant tumor. This study was conducted to explore the role of methyltransferase-like 3 (METTL3)-mediated m6A modification in ICC cells and provide novel targets for ICC treatment. Levels of METTL3/YTH N6-methyladenosine RNA binding protein 2 (YTHDF2)/Nedd4 family interacting protein 1 (NDFIP1) in cells were determined. Cell viability, proliferation, invasion, and migration were evaluated. The enrichments of METTL3, YTHDF2, and m6A on NDFIP1 mRNA were analyzed. The mRNA stability was determined. Inhibition of YTHDF2 or NDFIP1 was combined with si-METTL3 to confirm the mechanism. The role of METTL3 in vivo was verified. METTL3 was overexpressed in ICC cells. METTL3 silencing suppressed ICC cell malignant behaviors, which were reversed by METTL3 overexpression. METTL3 increased m6A modification on NDFIP1 mRNA, facilitated YTHDF2 recognition of m6A, and promoted NDFIP1 mRNA degradation, thereby suppressing NDFIP1 expression. YTHDF2 inhibition increased NDFIP1 mRNA levels. NDFIP1 downregulation partially reversed the inhibitory effects of si-METTL3 on ICC cell behaviors, while NDFIP1 overexpression partially reversed the promotive effects of METTL3 on ICC cell behaviors. METTL3 downregulation suppressed ICC growth by increasing NDFIP1 expression. In conclusion, METTL3 aggravates ICC cell proliferation, invasion, and migration by promoting the degradation of NDFIP1 mRNA in a YTHDF2-dependent manner.
Collapse
Affiliation(s)
- Xinmiao Jiang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of University of South China, Hengyang, 421001, China
| | - Hui Tan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of University of South China, Hengyang, 421001, China; Department of Pathology, The First Affiliated Hospital of University of South China, Hengyang, 421001, China.
| |
Collapse
|
5
|
Chakraborty S, Karmakar S, Basu M, Kal S, Ghosh MK. The E3 ubiquitin ligase CHIP drives monoubiquitylation-mediated nuclear import of the tumor suppressor PTEN. J Cell Sci 2023; 136:jcs260950. [PMID: 37676120 DOI: 10.1242/jcs.260950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023] Open
Abstract
Monoubiquitylation is a principal mechanism driving nuclear translocation of the protein PTEN (phosphatase and tensin homolog deleted on chromosome ten). In this study, we describe a novel mechanism wherein the protein CHIP (C-terminus of Hsc70-interacting protein) mediates PTEN monoubiquitylation, leading to its nuclear import. Western blot analysis revealed a rise in both nuclear and total cellular PTEN levels under monoubiquitylation-promoting conditions, an effect that was abrogated by silencing CHIP expression. We established time-point kinetics of CHIP-mediated nuclear translocation of PTEN using immunocytochemistry and identified a role of karyopherin α1 (KPNA1) in facilitating nuclear transport of monoubiquitylated PTEN. We further established a direct interaction between CHIP and PTEN inside the nucleus, with CHIP participating in either polyubiquitylation or monoubiquitylation of nuclear PTEN. Finally, we showed that oxidative stress enhanced CHIP-mediated nuclear import of PTEN, which resulted in increased apoptosis, and decreased cell viability and proliferation, whereas CHIP knockdown counteracted these effects. To the best of our knowledge, this is the first report elucidating non-canonical roles for CHIP on PTEN, which we establish here as a nuclear interacting partner of CHIP.
Collapse
Affiliation(s)
- Shrabastee Chakraborty
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata 700091 and 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subhajit Karmakar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata 700091 and 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Parganas 743372, India
| | - Satadeepa Kal
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata 700091 and 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata 700091 and 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
He L, Chang Q, Zhang Y, Guan X, Ma Z, Chen X, Liu W, Li Y, Feng H. MiR-155-5p Aggravated Astrocyte Activation and Glial Scarring in a Spinal Cord Injury Model by Inhibiting Ndfip1 Expression and PTEN Nuclear Translocation. Neurochem Res 2023; 48:1912-1924. [PMID: 36750528 PMCID: PMC10119073 DOI: 10.1007/s11064-023-03862-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/28/2022] [Accepted: 01/13/2023] [Indexed: 02/09/2023]
Abstract
Central nervous injury and regeneration repair have always been a hot and difficult scientific questions in neuroscience, such as spinal cord injury (SCI) caused by a traffic accident, fall injury, and war. After SCI, astrocytes further migrate to the injured area and form dense glial scar through proliferation, which not only limits the infiltration of inflammatory cells but also affects axon regeneration. We aim to explore the effect and underlying mechanism of miR-155-5p overexpression promoted astrocyte activation and glial scarring in an SCI model. MiR-155-5p mimic (50 or 100 nm) was used to transfect CTX-TNA2 rat brain primary astrocyte cell line. MiR-155-5p antagonist and miR-155-5p agomir were performed to treat SCI rats. MiR-155-5p mimic dose-dependently promoted astrocyte proliferation, and inhibited cell apoptosis. MiR-155-5p overexpression inhibited nuclear PTEN expression by targeting Nedd4 family interacting protein 1 (Ndfip1). Ndfip1 overexpression reversed astrocyte activation which was induced by miR-155-5p mimic. Meanwhile, Ndfip1 overexpression abolished the inhibition effect of miR-155-5p mimic on PTEN nuclear translocation. In vivo, miR-155-5p silencing improved SCI rat locomotor function and promoted astrocyte activation and glial scar formation. And miR-155-5p overexpression showed the opposite results. MiR-155-5p aggravated astrocyte activation and glial scarring in a SCI model by targeting Ndfip1 expression and inhibiting PTEN nuclear translocation. These findings have ramifications for the development of miRNAs as SCI therapeutics.
Collapse
Affiliation(s)
- Liming He
- Department of Orthopaedic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China
- Department of Orthopaedic Surgery, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Orthopaedic Surgery, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Qiang Chang
- Department of Orthopaedic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China
- Department of Orthopaedic Surgery, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Orthopaedic Surgery, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Yannan Zhang
- Department of Orthopaedic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China
- Department of Orthopaedic Surgery, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Orthopaedic Surgery, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Xiaoming Guan
- Department of Orthopaedic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China
- Department of Orthopaedic Surgery, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Orthopaedic Surgery, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Zhuo Ma
- Department of Orthopaedic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China
- Department of Orthopaedic Surgery, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Orthopaedic Surgery, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Xu Chen
- Department of Orthopaedic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China
- Department of Orthopaedic Surgery, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Orthopaedic Surgery, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Wenbo Liu
- Department of Orthopaedic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China
- Department of Orthopaedic Surgery, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Orthopaedic Surgery, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Yakun Li
- Department of Orthopaedic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China
- Department of Orthopaedic Surgery, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Orthopaedic Surgery, Tongji Shanxi Hospital, Taiyuan, Shanxi, China
| | - Haoyu Feng
- Department of Orthopaedic Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China.
- Department of Orthopaedic Surgery, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
- Department of Orthopaedic Surgery, Tongji Shanxi Hospital, Taiyuan, Shanxi, China.
| |
Collapse
|
7
|
Langdon CG. Nuclear PTEN's Functions in Suppressing Tumorigenesis: Implications for Rare Cancers. Biomolecules 2023; 13:biom13020259. [PMID: 36830628 PMCID: PMC9953540 DOI: 10.3390/biom13020259] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 01/31/2023] Open
Abstract
Phosphatase and tensin homolog (PTEN) encodes a tumor-suppressive phosphatase with both lipid and protein phosphatase activity. The tumor-suppressive functions of PTEN are lost through a variety of mechanisms across a wide spectrum of human malignancies, including several rare cancers that affect pediatric and adult populations. Originally discovered and characterized as a negative regulator of the cytoplasmic, pro-oncogenic phosphoinositide-3-kinase (PI3K) pathway, PTEN is also localized to the nucleus where it can exert tumor-suppressive functions in a PI3K pathway-independent manner. Cancers can usurp the tumor-suppressive functions of PTEN to promote oncogenesis by disrupting homeostatic subcellular PTEN localization. The objective of this review is to describe the changes seen in PTEN subcellular localization during tumorigenesis, how PTEN enters the nucleus, and the spectrum of impacts and consequences arising from disrupted PTEN nuclear localization on tumor promotion. This review will highlight the immediate need in understanding not only the cytoplasmic but also the nuclear functions of PTEN to gain more complete insights into how important PTEN is in preventing human cancers.
Collapse
Affiliation(s)
- Casey G. Langdon
- Department of Pediatrics, Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA; ; Tel.: +1-(843)-792-9289
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
8
|
The equilibrium of tumor suppression: DUBs as active regulators of PTEN. Exp Mol Med 2022; 54:1814-1821. [PMID: 36385557 PMCID: PMC9723170 DOI: 10.1038/s12276-022-00887-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
PTEN is among the most commonly lost or mutated tumor suppressor genes in human cancer. PTEN, a bona fide lipid phosphatase that antagonizes the highly oncogenic PI3K-AKT-mTOR pathway, is considered a major dose-dependent tumor suppressor. Although PTEN function can be compromised by genetic mutations in inherited syndromes and cancers, posttranslational modifications of PTEN may also play key roles in the dynamic regulation of its function. Notably, deregulated ubiquitination and deubiquitination lead to detrimental impacts on PTEN levels and subcellular partitioning, promoting tumorigenesis. While PTEN can be targeted by HECT-type E3 ubiquitin ligases for nuclear import and proteasomal degradation, studies have shown that several deubiquitinating enzymes, including HAUSP/USP7, USP10, USP11, USP13, OTUD3 and Ataxin-3, can remove ubiquitin from ubiquitinated PTEN in cancer-specific contexts and thus reverse ubiquitination-mediated PTEN regulation. Researchers continue to reveal the precise molecular mechanisms by which cancer-specific deubiquitinases of PTEN regulate its roles in the pathobiology of cancer, and new methods of pharmacologically for modulating PTEN deubiquitinases are critical areas of investigation for cancer treatment and prevention. Here, we assess the mechanisms and functions of deubiquitination as a recently appreciated mode of PTEN regulation and review the link between deubiquitinases and PTEN reactivation and its implications for therapeutic strategies.
Collapse
|
9
|
Song MS, Pandolfi PP. The HECT family of E3 ubiquitin ligases and PTEN. Semin Cancer Biol 2022; 85:43-51. [PMID: 34129913 PMCID: PMC8665946 DOI: 10.1016/j.semcancer.2021.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/22/2022]
Abstract
Members of the HECT family of E3 ubiquitin ligases have emerged as prominent regulators of PTEN function, subcellular localization and levels. In turn this unfolding regulatory network is allowing for the identification of genes directly involved in both tumorigenesis at large and cancer susceptibility syndromes. While the complexity of this regulatory network is still being unraveled, these new findings are paving the way for novel therapeutic modalities for cancer prevention and therapy as well as for other diseases. Here we will review the signal transduction and therapeutic implications of the cross-talk between HECT family members and PTEN.
Collapse
Affiliation(s)
- Min Sup Song
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030, USA.
| | - Pier Paolo Pandolfi
- Renown Institute for Cancer, Nevada System of Higher Education, Reno, NV89502, USA.
| |
Collapse
|
10
|
de Bruyn DP, Beasley AB, Verdijk RM, van Poppelen NM, Paridaens D, de Keizer ROB, Naus NC, Gray ES, de Klein A, Brosens E, Kiliç E. Is Tissue Still the Issue? The Promise of Liquid Biopsy in Uveal Melanoma. Biomedicines 2022; 10:biomedicines10020506. [PMID: 35203714 PMCID: PMC8962331 DOI: 10.3390/biomedicines10020506] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/18/2022] Open
Abstract
Uveal melanoma (UM) is the second most frequent type of melanoma. Therapeutic options for UM favor minimally invasive techniques such as irradiation for vision preservation. As a consequence, no tumor material is obtained. Without available tissue, molecular analyses for gene expression, mutation or copy number analysis cannot be performed. Thus, proper patient stratification is impossible and patients’ uncertainty about their prognosis rises. Minimally invasive techniques have been studied for prognostication in UM. Blood-based biomarker analysis has become more common in recent years; however, no clinically standardized protocol exists. This review summarizes insights in biomarker analysis, addressing new insights in circulating tumor cells, circulating tumor DNA, extracellular vesicles, proteomics, and metabolomics. Additionally, medical imaging can play a significant role in staging, surveillance, and prognostication of UM and is addressed in this review. We propose that combining multiple minimally invasive modalities using tumor biomarkers should be the way forward and warrant more attention in the coming years.
Collapse
Affiliation(s)
- Daniël P. de Bruyn
- Department of Ophthalmology, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands; (D.P.d.B.); (N.M.v.P.); (D.P.); (N.C.N.)
- Department of Clinical Genetics, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands; (A.d.K.); (E.B.)
- Erasmus MC Cancer Institute, 3000 CA Rotterdam, The Netherlands
| | - Aaron B. Beasley
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (A.B.B.); (E.S.G.)
| | - Robert M. Verdijk
- The Rotterdam Eye Hospital, 3011 BH Rotterdam, The Netherlands; (R.M.V.); (R.O.B.d.K.)
- Department of Pathology, Section Ophthalmic Pathology, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Natasha M. van Poppelen
- Department of Ophthalmology, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands; (D.P.d.B.); (N.M.v.P.); (D.P.); (N.C.N.)
- Department of Clinical Genetics, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands; (A.d.K.); (E.B.)
- Erasmus MC Cancer Institute, 3000 CA Rotterdam, The Netherlands
| | - Dion Paridaens
- Department of Ophthalmology, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands; (D.P.d.B.); (N.M.v.P.); (D.P.); (N.C.N.)
- The Rotterdam Eye Hospital, 3011 BH Rotterdam, The Netherlands; (R.M.V.); (R.O.B.d.K.)
| | | | - Nicole C. Naus
- Department of Ophthalmology, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands; (D.P.d.B.); (N.M.v.P.); (D.P.); (N.C.N.)
- Erasmus MC Cancer Institute, 3000 CA Rotterdam, The Netherlands
| | - Elin S. Gray
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia; (A.B.B.); (E.S.G.)
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands; (A.d.K.); (E.B.)
- Erasmus MC Cancer Institute, 3000 CA Rotterdam, The Netherlands
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands; (A.d.K.); (E.B.)
- Erasmus MC Cancer Institute, 3000 CA Rotterdam, The Netherlands
| | - Emine Kiliç
- Department of Ophthalmology, Erasmus MC Rotterdam, 3000 CA Rotterdam, The Netherlands; (D.P.d.B.); (N.M.v.P.); (D.P.); (N.C.N.)
- Erasmus MC Cancer Institute, 3000 CA Rotterdam, The Netherlands
- Correspondence: ; Tel.: +31-107030683
| |
Collapse
|
11
|
Yang C, Wang Y, Hardy P. Emerging roles of microRNAs and their implications in uveal melanoma. Cell Mol Life Sci 2021; 78:545-559. [PMID: 32783068 PMCID: PMC11072399 DOI: 10.1007/s00018-020-03612-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/14/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022]
Abstract
Uveal melanoma (UM) is the most common intraocular malignant tumor in adults with an extremely high mortality rate. Genetic and epigenetic dysregulation contribute to the development of UM. Recent discoveries have revealed dysregulation of the expression levels of microRNAs (miRNAs) as one of the epigenetic mechanisms underlying UM tumorigenesis. Based on their roles, miRNAs are characterized as either oncogenic or tumor suppressive. This review focuses on the roles of miRNAs in UM tumorigenesis, diagnosis, and prognosis, as well as their therapeutic potentials. Particularly, the actions of collective miRNAs are summarized with respect to their involvement in major, aberrant signaling pathways that are implicated in the development and progression of UM. Elucidation of the underlying functional mechanisms and biological aspects of miRNA dysregulation in UM is invaluable in the development of miRNA-based therapeutics, which may be used in combination with conventional treatments to improve therapeutic outcomes. In addition, the expression levels of some miRNAs are correlated with UM initiation and progression and, therefore, may be used as biomarkers for diagnosis and prognosis.
Collapse
Affiliation(s)
- Chun Yang
- Departments of Pediatrics, Pharmacology, and Physiology, University of Montréal, Montréal, Québec, H3T 1C5, Canada
| | - Yuejiao Wang
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Pierre Hardy
- Departments of Pediatrics, Pharmacology, and Physiology, University of Montréal, Montréal, Québec, H3T 1C5, Canada.
- Research Center of CHU Sainte-Justine, 3175 Côte-Sainte-Catherine, Room 2.17.004, Montréal, Québec, H3T 1C5, Canada.
| |
Collapse
|
12
|
Shi J, Zhang Y, Yao B, Sun P, Hao Y, Piao H, Zhao X. Role of Exosomes in the Progression, Diagnosis, and Treatment of Gliomas. Med Sci Monit 2020; 26:e924023. [PMID: 33245712 PMCID: PMC7706139 DOI: 10.12659/msm.924023] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gliomas are the most common primary malignant brain tumors associated with a low survival rate. Even after surgery, radiotherapy, and chemotherapy, gliomas still have a poor prognosis. Extracellular vesicles are a heterogeneous group of cell-derived membranous structures. Exosomes are a type of extracellular vesicles, their size ranges from 30 nm to 100 nm. Recent studies have proved that glioma cells could release numerous exosomes; therefore, exosomes have gained increasing attention in glioma-related research. Recent studies have confirmed the importance of extracellular vesicles, particularly exosomes, in the development of brain tumors, including gliomas. Exosomes mediate intercellular communication in the tumor microenvironment by transporting biomolecules (proteins, lipids, deoxyribonucleic acid, and ribonucleic acid); thereby playing a prominent role in tumor proliferation, differentiation, metastasis, and resistance to chemotherapy or radiation. Given their nanoscale size, exosomes can traverse the blood-brain barrier and promote tumor progression by modifying the tumor microenvironment. Based on their structural and functional characteristics, exosomes are demonstrating their value not only as diagnostic and prognostic markers, but also as tools in therapies specifically targeting glioma cells. Therefore, exosomes are a promising therapeutic target for the diagnosis, prognosis, and treatment of malignant gliomas. More research will be needed before exosomes can be used in clinical applications. Here, we describe the exosomes, their morphology, and their roles in the diagnosis and progression of gliomas. In addition, we discuss the potential of exosomes as a therapeutic target/drug delivery system for patients with gliomas.
Collapse
Affiliation(s)
- Ji Shi
- Department of Neurosurgery, Cancer Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Ye Zhang
- Department of Neurosurgery, Cancer Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Bing Yao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Peixin Sun
- Department of Neurosurgery, Cancer Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Yuanyuan Hao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Xi Zhao
- Department of Anesthesia, Cancer Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
13
|
Tian Z, He W, Tang J, Liao X, Yang Q, Wu Y, Wu G. Identification of Important Modules and Biomarkers in Breast Cancer Based on WGCNA. Onco Targets Ther 2020; 13:6805-6817. [PMID: 32764968 PMCID: PMC7367932 DOI: 10.2147/ott.s258439] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction Breast cancer (BRCA) has the highest incidence among female malignancies, and the prognosis for these patients remains poor. Materials and Methods In this study, core modules and central genes related to BRCA were identified through a weighted gene co-expression network analysis (WGCNA). Gene expression profiles and clinical data of GSE25066 were obtained from the Gene Expression Omnibus (GEO) database. The result was validated with RNA-seq data from The Cancer Genome Atlas (TCGA) and Oncomine database. The top 30 key module genes with the highest intramodule connectivity were selected as the core genes (R2 = 0.40). Results According to TCGA and Oncomine datasets, seven genes were selected as candidate hub genes. Following further experimental verification, four hub genes (FAM171A1, NDFIP1, SKP1, and REEP5) were retained. Conclusion We identified four hub genes as candidate biomarkers for BRCA. These hub genes may provide a theoretical basis for targeted therapy against BRCA.
Collapse
Affiliation(s)
- Zelin Tian
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Weixiang He
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Jianing Tang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Xing Liao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Qian Yang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yumin Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Gaosong Wu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
14
|
Posttranslational Regulation and Conformational Plasticity of PTEN. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036095. [PMID: 31932468 DOI: 10.1101/cshperspect.a036095] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor that is frequently down-modulated in human cancer. PTEN inhibits the phosphatidylinositol 3-phosphate kinase (PI3K)/AKT pathway through its lipid phosphatase activity. Multiple PI3K/AKT-independent actions of PTEN, protein-phosphatase activities and functions within the nucleus have also been described. PTEN, therefore, regulates many cellular processes including cell proliferation, survival, genomic integrity, polarity, migration, and invasion. Even a modest decrease in the functional dose of PTEN may promote cancer development. Understanding the molecular and cellular mechanisms that regulate PTEN protein levels and function, and how these may go awry in cancer contexts, is, therefore, key to fully understanding the role of PTEN in tumorigenesis. Here, we discuss current knowledge on posttranslational control and conformational plasticity of PTEN, as well as therapeutic possibilities toward reestablishment of PTEN tumor-suppressor activity in cancer.
Collapse
|
15
|
MicroRNA-26b/PTEN Signaling Pathway Mediates Glycine-Induced Neuroprotection in SAH Injury. Neurochem Res 2019; 44:2658-2669. [DOI: 10.1007/s11064-019-02886-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 12/31/2022]
|
16
|
Yang S, Zhao Y, Wang L, Liu C, Lu Y, Fang Z, Shi H, Zhang W, Wu X. MicroRNA‑4712‑5p promotes proliferation of the vulvar squamous cell carcinoma cell line A431 by targeting PTEN through the AKT/cyclin D1 signaling pathways. Oncol Rep 2019; 42:1689-1698. [PMID: 31545465 PMCID: PMC6787978 DOI: 10.3892/or.2019.7320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 06/19/2019] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to screen differentially expressed miRNAs in vulvar squamous cell carcinoma (VSCC), observe the role of microRNA-4712-5p in VSCC and investigate its targets and regulatory mechanism. Differentially expressed miRNAs in human VSCC tissues were screened. microRNA-4712-5p was selected and its expression level was verified in clinical tissue samples and the VSCC cell line A431 by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. The overexpression vector of microRNA-4712-5p was prepared and transfected into A431 cells; subsequently, cell invasion and metastasis were examined by Cell Counting Kit-8 and Transwell migration assays. Furthermore, the target gene of miRNA-4712-5p was predicted by bioinformatics and verified by The Dual-Luciferase® Reporter (DLR™) Assay System. The expression of phosphatase and tensin homologue (PTEN) and its downstream proteins, such as protein kinase B (PKB; AKT), glycogen synthase kinase (GSK)3β and cyclin D1, were detected by western blot assays. The expression level of microRNA-4712-5p in VSCC tissues and the A431 cell line was found to be significantly increased, promoting proliferation and invasion of VSCC. The DLR™ assay indicated that PTEN was a target of miR-4712-5p. RT-qPCR revealed that PTEN expression was markedly lower in VSCC tissues compared with that in adjacent tissues. After A431 cells were transfected with the miRNA-4712-5p overexpression vector, phospho-AKT (p-AKT) and cyclin D1 expression were notably increased, but miRNA-4712-5p-targeted PTEN and phospho-GSK3β (p-GSK3β) protein markedly decreased. Therefore, microRNA-4712-5p can reduce the expression of PTEN, further affecting its downstream p-AKT, p-GSK3β and cyclin D1 signaling pathways, promoting the proliferation and invasion of VSCC.
Collapse
Affiliation(s)
- Shaojie Yang
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yanyan Zhao
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lufang Wang
- Department of Gynecology and Obstetrics, Union Hospital Affiliated to Tongji Medical College Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Chang Liu
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ye Lu
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zhidong Fang
- China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Hongshuang Shi
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Wenyi Zhang
- Rehabilitation Center, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110134, P.R. China
| | - Xin Wu
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
17
|
Malaney P, Palumbo E, Semidey-Hurtado J, Hardee J, Stanford K, Kathiriya JJ, Patel D, Tian Z, Allen-Gipson D, Davé V. PTEN Physically Interacts with and Regulates E2F1-mediated Transcription in Lung Cancer. Cell Cycle 2018; 17:947-962. [PMID: 29108454 PMCID: PMC6103743 DOI: 10.1080/15384101.2017.1388970] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 09/28/2017] [Accepted: 10/02/2017] [Indexed: 12/13/2022] Open
Abstract
PTEN phosphorylation at its C-terminal (C-tail) serine/threonine cluster negatively regulates its tumor suppressor function. However, the consequence of such inhibition and its downstream effects in driving lung cancer remain unexplored. Herein, we ascertain the molecular mechanisms by which phosphorylation compromises PTEN function, contributing to lung cancer. Replacement of the serine/threonine residues with alanine generated PTEN-4A, a phosphorylation-deficient PTEN mutant, which suppressed lung cancer cell proliferation and migration. PTEN-4A preferentially localized to the nucleus where it suppressed E2F1-mediated transcription of cell cycle genes. PTEN-4A physically interacted with the transcription factor E2F1 and associated with chromatin at gene promoters with E2F1 DNA-binding sites, a likely mechanism for its transcriptional suppression function. Deletion analysis revealed that the C2 domain of PTEN was indispensable for suppression of E2F1-mediated transcription. Further, we uncovered cancer-associated C2 domain mutant proteins that had lost their ability to suppress E2F1-mediated transcription, supporting the concept that these mutations are oncogenic in patients. Consistent with these findings, we observed increased PTEN phosphorylation and reduced nuclear PTEN levels in lung cancer patient samples establishing phosphorylation as a bona fide inactivation mechanism for PTEN in lung cancer. Thus, use of small molecule inhibitors that hinder PTEN phosphorylation is a plausible approach to activate PTEN function in the treatment of lung cancer. Abbreviations AKT V-Akt Murine Thymoma Viral Oncogene CA Cancer adjacent CDK1 Cyclin dependent kinase 1 CENPC-C Centromere Protein C ChIP Chromatin Immunoprecipitation co-IP Co-immunoprecipitation COSMIC Catalog of Somatic Mutations In Cancer CREB cAMP Responsive Element Binding Protein C-tail Carboxy terminal tail E2F1 E2F Transcription Factor 1 ECIS Electric Cell-substrate Impedance Sensing EGFR Epidermal Growth Factor Receptor GSI Gamma Secretase Inhibitor HDAC1 Histone Deacetylase 1 HP1 Heterochromatin protein 1 KAP1/TRIM28 KRAB-Associated Protein 1/Tripartite Motif Containing 28 MAF1 Repressor of RNA polymerase III transcription MAF1 homolog MCM2 Minichromosome Maintenance Complex Component 2 miRNA micro RNA MTF1 Metal-Regulatory Transcription Factor 1 PARP Poly(ADP-Ribose) Polymerase PD-1 Programmed Cell Death 1 PD-L1 Programmed Cell Death 1 Ligand 1 PI3K Phosphatidylinositol-4,5-Bisphosphate 3-Kinase PLK Polo-like Kinase pPTEN Phosphorylated PTEN PTEN Phosphatase and Tensin Homolog deleted on chromosome ten PTM Post Translational Modification Rad51 RAD51 Recombinase Rad52 RAD52 Recombinase RPA1 Replication protein A SILAC Stable Isotope Labeling with Amino Acids in Cell Culture SRF Serum Response Factor TKI Tyrosine Kinase inhbitors TMA Tissue Microarray TOP2A DNA Topoisomerase 2A.
Collapse
Affiliation(s)
- Prerna Malaney
- Department of Pathology and Cell Biology, Morsani College of Medicine
| | - Emily Palumbo
- Department of Pathology and Cell Biology, Morsani College of Medicine
| | | | - Jamaal Hardee
- Department of Pathology and Cell Biology, Morsani College of Medicine
| | | | | | - Deepal Patel
- Department of Pathology and Cell Biology, Morsani College of Medicine
| | - Zhi Tian
- College of Pharmacy, University of South Florida, Tampa, FL 33612, United States
| | - Diane Allen-Gipson
- College of Pharmacy, University of South Florida, Tampa, FL 33612, United States
| | - Vrushank Davé
- Department of Pathology and Cell Biology, Morsani College of Medicine
- Lung Cancer Center of Excellence, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, United States
| |
Collapse
|
18
|
Frik J, Merl-Pham J, Plesnila N, Mattugini N, Kjell J, Kraska J, Gómez RM, Hauck SM, Sirko S, Götz M. Cross-talk between monocyte invasion and astrocyte proliferation regulates scarring in brain injury. EMBO Rep 2018; 19:embr.201745294. [PMID: 29632244 PMCID: PMC5934774 DOI: 10.15252/embr.201745294] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/02/2018] [Accepted: 03/09/2018] [Indexed: 01/02/2023] Open
Abstract
Scar formation after brain injury is still poorly understood. To further elucidate such processes, here, we examine the interplay between astrocyte proliferation taking place predominantly at the vascular interface and monocyte invasion. Using genetic mouse models that decrease or increase reactive astrocyte proliferation, we demonstrate inverse effects on monocyte numbers in the injury site. Conversely, reducing monocyte invasion using CCR2-/- mice causes a strong increase in astrocyte proliferation, demonstrating an intriguing negative cross-regulation between these cell types at the vascular interface. CCR2-/- mice show reduced scar formation with less extracellular matrix deposition, smaller lesion site and increased neuronal coverage. Surprisingly, the GFAP+ scar area in these mice is also significantly decreased despite increased astrocyte proliferation. Proteomic analysis at the peak of increased astrocyte proliferation reveals a decrease in extracellular matrix synthesizing enzymes in the injury sites of CCR2-/- mice, highlighting how early key aspects of scar formation are initiated. Taken together, we provide novel insights into the cross-regulation of juxtavascular proliferating astrocytes and invading monocytes as a crucial mechanism of scar formation upon brain injury.
Collapse
Affiliation(s)
- Jesica Frik
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany.,Institute for Stem Cell Research, Helmholtz Center Munich, Munich, Germany.,Instituto de Biotecnología y Biología Molecular, UNLP-CONICET, La Plata, Argentina
| | - Juliane Merl-Pham
- Research Unit for Protein Science, Helmholtz Center Munich, Munich, Germany
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research, Experimental Stroke Research, University of Munich Medical School, Munich, Germany.,SYNERGY, Excellence Cluster Systems Neurology, University of Munich, Munich, Germany
| | - Nicola Mattugini
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany.,Institute for Stem Cell Research, Helmholtz Center Munich, Munich, Germany.,Graduate School of Systemic Neurosciences, Biocenter, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Jacob Kjell
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany.,Institute for Stem Cell Research, Helmholtz Center Munich, Munich, Germany
| | - Jonas Kraska
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Ricardo M Gómez
- Instituto de Biotecnología y Biología Molecular, UNLP-CONICET, La Plata, Argentina
| | - Stefanie M Hauck
- Research Unit for Protein Science, Helmholtz Center Munich, Munich, Germany
| | - Swetlana Sirko
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany .,Institute for Stem Cell Research, Helmholtz Center Munich, Munich, Germany
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Munich, Germany .,Institute for Stem Cell Research, Helmholtz Center Munich, Munich, Germany.,SYNERGY, Excellence Cluster Systems Neurology, University of Munich, Munich, Germany
| |
Collapse
|
19
|
Peng J, Liu H, Liu C. MiR-155 Promotes Uveal Melanoma Cell Proliferation and Invasion by Regulating NDFIP1 Expression. Technol Cancer Res Treat 2017; 16:1160-1167. [PMID: 29333944 PMCID: PMC5762084 DOI: 10.1177/1533034617737923] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs refer to small RNA molecules that destroy the messenger RNA by binding on them inhibiting the production of protein. However, the role of miR-155 in uveal melanoma metastasis remains largely unknown. In this study, we found that miR-155 was upregulated in both uveal melanoma cells and tissues. Transfection of miR-155 mimic into uveal melanoma cells led to an increase in cell growth and invasion; in contrast, inhibition of miR-155 resulted in opposite effects. Also, we identified Nedd4-family interacting protein 1 as a direct target of miR-155, and the expression of Nedd4-family interacting protein 1 was inhibited by miR-155. Furthermore, ectopic expression of Nedd4-family interacting protein 1 restored the effects of miR-155 on cell proliferation and invasion of uveal melanoma cells. In conclusion, miR-155 acts as a tumor promotor in uveal melanoma through increasing cell proliferation and invasion. Thus, miR-155 might serve as a potential therapeutic target in patients with uveal melanoma.
Collapse
Affiliation(s)
- Jing Peng
- 1 Department of Ophthalmology, Xi'an No. 4 Hospital, Shanxi Ophthalmology Medical Center, Xi'an, China
| | - Honglei Liu
- 1 Department of Ophthalmology, Xi'an No. 4 Hospital, Shanxi Ophthalmology Medical Center, Xi'an, China
| | - Cuihong Liu
- 1 Department of Ophthalmology, Xi'an No. 4 Hospital, Shanxi Ophthalmology Medical Center, Xi'an, China
| |
Collapse
|
20
|
Estrogen receptor β, a regulator of androgen receptor signaling in the mouse ventral prostate. Proc Natl Acad Sci U S A 2017; 114:E3816-E3822. [PMID: 28439009 DOI: 10.1073/pnas.1702211114] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
As estrogen receptor β-/- (ERβ-/-) mice age, the ventral prostate (VP) develops increased numbers of hyperplastic, fibroplastic lesions and inflammatory cells. To identify genes involved in these changes, we used RNA sequencing and immunohistochemistry to compare gene expression profiles in the VP of young (2-mo-old) and aging (18-mo-old) ERβ-/- mice and their WT littermates. We also treated young and old WT mice with an ERβ-selective agonist and evaluated protein expression. The most significant findings were that ERβ down-regulates androgen receptor (AR) signaling and up-regulates the tumor suppressor phosphatase and tensin homolog (PTEN). ERβ agonist increased expression of the AR corepressor dachshund family (DACH1/2), T-cadherin, stromal caveolin-1, and nuclear PTEN and decreased expression of RAR-related orphan receptor c, Bcl2, inducible nitric oxide synthase, and IL-6. In the ERβ-/- mouse VP, RNA sequencing revealed that the following genes were up-regulated more than fivefold: Bcl2, clusterin, the cytokines CXCL16 and -17, and a marker of basal/intermediate cells (prostate stem cell antigen) and cytokeratins 4, 5, and 17. The most down-regulated genes were the following: the antioxidant gene glutathione peroxidase 3; protease inhibitors WAP four-disulfide core domain 3 (WFDC3); the tumor-suppressive genes T-cadherin and caveolin-1; the regulator of transforming growth factor β signaling SMAD7; and the PTEN ubiquitin ligase NEDD4. The role of ERβ in opposing AR signaling, proliferation, and inflammation suggests that ERβ-selective agonists may be used to prevent progression of prostate cancer, prevent fibrosis and development of benign prostatic hyperplasia, and treat prostatitis.
Collapse
|
21
|
Warner M, Huang B, Gustafsson JA. Estrogen Receptor β as a Pharmaceutical Target. Trends Pharmacol Sci 2016; 38:92-99. [PMID: 27979317 DOI: 10.1016/j.tips.2016.10.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/12/2016] [Accepted: 10/12/2016] [Indexed: 01/11/2023]
Abstract
A major issue in clinical endocrinology today is how to use hormones to achieve the health benefits that they clearly can provide but avoid the negative side effects, that is, how to develop more precise medicines. This problem of how to use hormones is pervasive in clinical endocrinology. It is true for estrogen, progesterone, androgen, vitamin D, and thyroid hormone, and the problem is amplified in the case of new ligands for the more recently discovered nuclear receptors. Selective targeting of hormone receptor subtypes is one attractive way to harness the beneficial effects of hormones while reducing unwanted side effects. Here, we focus on estrogen receptor (ER)β, which has promise as a selective target in hormone replacement therapy, and in breast and prostate cancers.
Collapse
Affiliation(s)
- Margaret Warner
- Center for Nuclear Receptors and Cell Signaling, Department of Cell Biology and Biochemistry, University of Houston, Texas, USA
| | - Bo Huang
- Center for Nuclear Receptors and Cell Signaling, Department of Cell Biology and Biochemistry, University of Houston, Texas, USA
| | - Jan-Ake Gustafsson
- Center for Nuclear Receptors and Cell Signaling, Department of Cell Biology and Biochemistry, University of Houston, Texas, USA; Center for Innovative Medicine, Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge, Sweden.
| |
Collapse
|
22
|
Yang YY, He HQ, Cui JH, Nie YJ, Wu YX, Wang R, Wang G, Zheng JN, Ye RD, Wu Q, Li SS, Qian F. Shikonin Derivative DMAKO-05 Inhibits Akt Signal Activation and Melanoma Proliferation. Chem Biol Drug Des 2016; 87:895-904. [DOI: 10.1111/cbdd.12722] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/20/2015] [Accepted: 01/07/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Yao-yao Yang
- School of Pharmacy; Engineering Research Center of Cell & Therapeutic Antibody; Ministry of Education; Shanghai Jiao Tong University; Shanghai 200 240 China
| | - Hui-qiong He
- School of Pharmacy; Engineering Research Center of Cell & Therapeutic Antibody; Ministry of Education; Shanghai Jiao Tong University; Shanghai 200 240 China
| | - Jia-hua Cui
- School of Pharmacy; Engineering Research Center of Cell & Therapeutic Antibody; Ministry of Education; Shanghai Jiao Tong University; Shanghai 200 240 China
| | - Yun-juan Nie
- School of Pharmacy; Engineering Research Center of Cell & Therapeutic Antibody; Ministry of Education; Shanghai Jiao Tong University; Shanghai 200 240 China
| | - Ya-xian Wu
- School of Pharmacy; Engineering Research Center of Cell & Therapeutic Antibody; Ministry of Education; Shanghai Jiao Tong University; Shanghai 200 240 China
| | - Rui Wang
- Department of Medical Oncology; First Affiliated Hospital of Bengbu Medical College; 287 Changhuai Rd. Bengbu Anhui 233 000 China
| | - Gang Wang
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy; Cancer Institute; Xuzhou Medical College; 209 Tongshan Rd. Xuzhou Jiangsu Province 221 004 China
| | - Jun-Nian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy; Cancer Institute; Xuzhou Medical College; 209 Tongshan Rd. Xuzhou Jiangsu Province 221 004 China
| | - Richard D. Ye
- School of Pharmacy; Engineering Research Center of Cell & Therapeutic Antibody; Ministry of Education; Shanghai Jiao Tong University; Shanghai 200 240 China
| | - Qiong Wu
- Department of Medical Oncology; First Affiliated Hospital of Bengbu Medical College; 287 Changhuai Rd. Bengbu Anhui 233 000 China
| | - Shao-shun Li
- School of Pharmacy; Engineering Research Center of Cell & Therapeutic Antibody; Ministry of Education; Shanghai Jiao Tong University; Shanghai 200 240 China
| | - Feng Qian
- School of Pharmacy; Engineering Research Center of Cell & Therapeutic Antibody; Ministry of Education; Shanghai Jiao Tong University; Shanghai 200 240 China
| |
Collapse
|