1
|
Force E, Debernard S. [microRNAs: regulators of metamorphosis in insects]. Biol Aujourdhui 2025; 218:165-175. [PMID: 39868715 DOI: 10.1051/jbio/2024015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Indexed: 01/28/2025]
Abstract
In the animal kingdom, metamorphosis is a well-known developmental transition within various taxa (Cnidarians, Echinoderms, Molluscs, Arthropods, Vertebrates, etc.), which is characterized by the switching from a larval stage to an adult form through the induction of morpho-anatomical, physiological, behavioral, and/or ecological changes. Over the last decades, numerous studies have focused on the hormonal control of cellular processes underlying metamorphosis. Recently, another regulatory network has emerged trough the discovery of microRNAs, non-coding RNAs of 19 to 25 nucleotides that are highly conserved among taxa and act by modulating gene expression at the post-transcriptional level. Experiments carried out on model insects highlighted the relevance of microRNAs in several developmental processes during metamorphosis. This review aims to give an overview of the regulatory actions of microRNAs in the programming of cellular and molecular events associated with the metamorphosis of insects and also to provide new insights into the evolutionary history of this taxon.
Collapse
Affiliation(s)
- Evan Force
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institut d'écologie et des sciences de l'environnement de Paris (iEES Paris), 4 place Jussieu, F-75005 Paris, France
| | - Stéphane Debernard
- Sorbonne Université, Université Paris-Est Créteil, INRAE, CNRS, IRD, Institut d'écologie et des sciences de l'environnement de Paris (iEES Paris), 4 place Jussieu, F-75005 Paris, France
| |
Collapse
|
2
|
Chen D, Du Y, Chen H, Fan Y, Fan X, Zhu Z, Wang J, Xiong C, Zheng Y, Hou C, Diao Q, Guo R. Comparative Identification of MicroRNAs in Apis cerana cerana Workers' Midguts in Responseto Nosema ceranae Invasion. INSECTS 2019; 10:E258. [PMID: 31438582 PMCID: PMC6780218 DOI: 10.3390/insects10090258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023]
Abstract
Here, the expression profiles and differentially expressed miRNAs (DEmiRNAs) in the midguts of Apis cerana cerana workers at 7 d and 10 d post-inoculation (dpi) with N. ceranae were investigated via small RNA sequencing and bioinformatics. Five hundred and twenty nine (529) known miRNAs and 25 novel miRNAs were identified in this study, and the expression of 16 predicted miRNAs was confirmed by Stem-loop RT-PCR. A total of 14 DEmiRNAs were detected in the midgut at 7 dpi, including eight up-regulated and six down-regulated miRNAs, while 12 DEmiRNAs were observed in the midgut at 10 dpi, including nine up-regulated and three down-regulated ones. Additionally, five DEmiRNAs were shared, while nine and seven DEmiRNAs were specifically expressed in midguts at 7 dpi and 10 dpi. Gene ontology analysis suggested some DEmiRNAs and corresponding target mRNAs were involved in various functions including immune system processes and response to stimulus. KEGG pathway analysis shed light on the potential functions of some DEmiRNAs in regulating target mRNAs engaged in material and energy metabolisms, cellular immunity and the humoral immune system. Further investigation demonstrated a complex regulation network between DEmiRNAs and their target mRNAs, with miR-598-y, miR-252-y, miR-92-x and miR-3654-y at the center. Our results can facilitate future exploration of the regulatory roles of miRNAs in host responses to N. ceranae, and provide potential candidates for further investigation of the molecular mechanisms underlying eastern honeybee-microsporidian interactions.
Collapse
Affiliation(s)
- Dafu Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu Du
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huazhi Chen
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanchan Fan
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoxue Fan
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhiwei Zhu
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Wang
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cuiling Xiong
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yanzhen Zheng
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chunsheng Hou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Qingyun Diao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Rui Guo
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
3
|
Gypsy moth genome provides insights into flight capability and virus-host interactions. Proc Natl Acad Sci U S A 2019; 116:1669-1678. [PMID: 30642971 DOI: 10.1073/pnas.1818283116] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Since its accidental introduction to Massachusetts in the late 1800s, the European gypsy moth (EGM; Lymantria dispar dispar) has become a major defoliator in North American forests. However, in part because females are flightless, the spread of the EGM across the United States and Canada has been relatively slow over the past 150 years. In contrast, females of the Asian gypsy moth (AGM; Lymantria dispar asiatica) subspecies have fully developed wings and can fly, thereby posing a serious economic threat if populations are established in North America. To explore the genetic determinants of these phenotypic differences, we sequenced and annotated a draft genome of L. dispar and used it to identify genetic variation between EGM and AGM populations. The 865-Mb gypsy moth genome is the largest Lepidoptera genome sequenced to date and encodes ∼13,300 proteins. Gene ontology analyses of EGM and AGM samples revealed divergence between these populations in genes enriched for several gene ontology categories related to muscle adaptation, chemosensory communication, detoxification of food plant foliage, and immunity. These genetic differences likely contribute to variations in flight ability, chemical sensing, and pathogen interactions among EGM and AGM populations. Finally, we use our new genomic and transcriptomic tools to provide insights into genome-wide gene-expression changes of the gypsy moth after viral infection. Characterizing the immunological response of gypsy moths to virus infection may aid in the improvement of virus-based bioinsecticides currently used to control larval populations.
Collapse
|
4
|
The special stemness functions of Tbx3 in stem cells and cancer development. Semin Cancer Biol 2018; 57:105-110. [PMID: 30268432 DOI: 10.1016/j.semcancer.2018.09.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/13/2018] [Accepted: 09/26/2018] [Indexed: 12/15/2022]
Abstract
The T-box factors belong to an ancient protein family, which comprises a cluster of evolutionarily-conserved transcription factors that regulate gene expression and that are crucial to embryonic development. T-box transcription factor 3 (Tbx3) is a member of this family, is expressed in some tissues, and is a key regulator in many critical organs, including the heart, mammary gland, and limbs. Overexpression of Tbx3 is associated with a number of cancers, including head and neck squamous cell carcinoma, gastric, breast, ovary, cervical, pancreatic, bladder and liver cancers, as well as melanoma. Tbx3 promotes tumor development by modulating cell proliferation, tumor formation, metastasis, cell survival and drug resistance. Moreover, there is strong evidence that Tbx3 regulates stem cell maintenance by controlling stem cell self-renewal and differentiation. Verification of the upstream regulatory factors and potential molecular mechanism of Tbx3, being able to explain the function of Tbx3 in carcinogenic effects and stem cell maintenance, will make a valuable contribution to stem cell and cancer research. This review provides an insight into the current research on Tbx3 and explores the significance of Tbx3 in stem cells and tumorigenesis.
Collapse
|
5
|
Dong L, Dong Q, Chen Y, Li Y, Zhang B, Zhou F, Lyu X, Chen GG, Lai P, Kung HF, He ML. Novel HDAC5-interacting motifs of Tbx3 are essential for the suppression of E-cadherin expression and for the promotion of metastasis in hepatocellular carcinoma. Signal Transduct Target Ther 2018; 3:22. [PMID: 30151243 PMCID: PMC6107554 DOI: 10.1038/s41392-018-0025-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/22/2018] [Accepted: 07/17/2018] [Indexed: 12/15/2022] Open
Abstract
Tbx3, a transcriptional repressor, is essential in the organogenesis of vertebrates, stem cell self-renewal and differentiation, and the carcinogenesis of multiple tumor types. However, the mechanism by which Tbx3 participates in the metastasis of hepatocellular carcinoma (HCC) remains largely unknown. In this study, we show that Tbx3 was dramatically upregulated in clinical HCC samples and that elevated expression of Tbx3 promoted cancer progression. To determine the underlying mechanism, systematic glycine scan mutagenesis and deletion assays were performed. We identified two critical motifs, 585LFSYPYT591 and 604HRH606, that contribute to the repression of transcriptional activity. These motifs are also essential for Tbx3 to promote cell migration and metastasis both in vitro and in vivo via the suppression of E-cadherin expression. More importantly, Tbx3 directly interacts with HDAC5 via these motifs, and an HDAC inhibitor blocks Tbx3-mediated cell migration and the downregulation of E-cadherin in HCC. As Tbx3 is involved in the carcinogenesis of multiple types of human cancers, our findings suggest an important target for anti-cancer drug development. A regulatory protein that represses gene activity interacts with an enzyme involved in chromosome remodeling to promote the migration and metastasis of liver cancer cells. Ming-Liang He from the City University of Hong Kong and colleagues found that levels of the T-box transcription factor Tbx3 were dramatically increased in tissue biopsies of liver tumors. They injected Tbx3-expressing human liver cancer cells into mice and saw a positive correlation between Tbx3 activity and cancer progression. By mutating and deleting parts of Tbx3, the researchers identified two particular stretches of the protein that bind histone deacetylase 5, an enzyme involved in ensuring DNA coils, are wound tight to suppress gene activity. This interaction is needed for Tbx3’s tumor-promoting function and may be targetable with drugs in order to prevent metastasis in patients with aggressive liver cancer.
Collapse
Affiliation(s)
- Liang Dong
- 1Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Qi Dong
- 1Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Ying Chen
- 1Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yichen Li
- 1Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Bao Zhang
- 2School of Public Health and Tropical Medicine, Southern Medical University, 1023 Shatai Road, 510515 Guangzhou, China
| | - Fanghang Zhou
- 1Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Xiaoming Lyu
- 1Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - George G Chen
- 3Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Paul Lai
- 3Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hsiang-Fu Kung
- 4Key Laboratory of Tumor Immunopathology, Ministry of Education of China, and Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, 400038 Chongqing, China
| | - Ming-Liang He
- 1Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China.,Biotechnology and Health Center, CityU Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
6
|
Dong L, Lin F, Wu W, Liu Y, Huang W. Verteporfin inhibits YAP-induced bladder cancer cell growth and invasion via Hippo signaling pathway. Int J Med Sci 2018; 15:645-652. [PMID: 29725256 PMCID: PMC5930467 DOI: 10.7150/ijms.23460] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/02/2018] [Indexed: 12/17/2022] Open
Abstract
The highly conserved Hippo signaling pathway is one of the most important pathways involved in tumorigenesis and progress. Previous studies show that YAP, the transcriptional coactivator of Hippo pathway, is expressed highly in many clinical bladder cancer tissues and plays crucial role on bladder cancer progress. To find the YAP-specific target drug and its molecular mechanism in bladder cancer, we apply Verteporfin (VP), a YAP specific inhibitor to function as anti-bladder cancer drug and discover that VP is able to inhibit bladder cancer cell growth and invasion in a dosage dependent manner. Moreover, we demonstrate that VP may inhibit bladder cancer cell growth and invasion via repressing target genes' expression of the Hippo signaling pathway. In further study, we provide evidence that VP is able to inhibit excessive YAP induced bladder cancer cell growth and invasion. To address the repressive function of VP against YAP in bladder cancer, we check the target genes' expression and find VP can dramatically repress YAP overexpression induced Hippo pathway target genes' expression. Taken together, we discover that VP inhibits YAP-induced bladder cancer cell growth and invasion via repressing the target genes' expression of Hippo signaling pathway.
Collapse
Affiliation(s)
- Liang Dong
- State Engineering Laboratory of Medical Key Technologies Application of Synthetic Biology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen 518039, PR China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong
| | - Fan Lin
- State Engineering Laboratory of Medical Key Technologies Application of Synthetic Biology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen 518039, PR China
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, PR China
| | - Wanjun Wu
- State Engineering Laboratory of Medical Key Technologies Application of Synthetic Biology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen 518039, PR China
| | - Yuchen Liu
- State Engineering Laboratory of Medical Key Technologies Application of Synthetic Biology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen 518039, PR China
| | - Weiren Huang
- State Engineering Laboratory of Medical Key Technologies Application of Synthetic Biology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen 518039, PR China
| |
Collapse
|
7
|
Wu P, Jie W, Shang Q, Annan E, Jiang X, Hou C, Chen T, Guo X. DNA methylation in silkworm genome may provide insights into epigenetic regulation of response to Bombyx mori cypovirus infection. Sci Rep 2017; 7:16013. [PMID: 29167521 PMCID: PMC5700172 DOI: 10.1038/s41598-017-16357-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/10/2017] [Indexed: 12/27/2022] Open
Abstract
DNA methylation is an important epigenetic modification that regulates a wide range of biological processes including immune response. However, information on the epigenetics-mediated immune mechanisms in insects is limited. Therefore, in this study, we examined transcriptomes and DNA methylomes in the fat body and midgut tissues of silkworm, Bombyx mori with or without B. mori cytoplasmic polyhedrosis virus (BmCPV) infection. The transcriptional profile and the genomic DNA methylation patterns in the midgut and fat body were tissue-specific and dynamically altered after BmCPV challenge. KEGG pathway analysis revealed that differentially methylated genes (DMGs) could be involved in pathways of RNA transport, RNA degradation, nucleotide excision repair, DNA replication, etc. 27 genes were shown to have both differential expression and differential methylation in the midgut and fat body of infected larvae, respectively, indicating that the BmCPV infection-induced expression changes of these genes could be mediated by variations in DNA methylation. BS-PCR validated the hypomethylation of G2/M phase-specific E3 ubiquitin-protein ligase-like gene in the BmCPV infected midgut. These results demonstrated that epigenetic regulation may play roles in host-virus interaction in silkworm and would be potential value for further studies on mechanism of BmCPV epithelial-specific infection and epigenetic regulation in the silkworm.
Collapse
Affiliation(s)
- Ping Wu
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Wencai Jie
- Beijing Genomics Institute (BGI), Shenzhen, Guangdong, China
| | - Qi Shang
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Enoch Annan
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Xiaoxu Jiang
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Chenxiang Hou
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Tao Chen
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Xijie Guo
- Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China.
| |
Collapse
|
8
|
Abstract
MicroRNAs (miRNAs) are involved in the regulation of a number of processes associated with metamorphosis, either in the less modified hemimetabolan mode or in the more modified holometabolan mode. The miR-100/let-7/miR-125 cluster has been studied extensively, especially in relation to wing morphogenesis in both hemimetabolan and holometabolan species. Other miRNAs also participate in wing morphogenesis, as well as in programmed cell and tissue death, neuromaturation, neuromuscular junction formation, and neuron cell fate determination, typically during the pupal stage of holometabolan species. A special case is the control of miR-2 over Kr-h1 transcripts, which determines adult morphogenesis in the hemimetabolan metamorphosis. This is an elegant example of how a single miRNA can control an entire process by acting on a crucial mediator; however, this is a quite exceptional mechanism that was apparently lost during the transition from hemimetaboly to holometaboly.
Collapse
Affiliation(s)
- Xavier Belles
- Institute of Evolutionary Biology, Spanish National Research Council (CSIC)-Pompeu Fabra University (UPF), 08002 Barcelona, Spain;
| |
Collapse
|
9
|
Dong L, Lin F, Wu W, Huang W, Cai Z. Transcriptional cofactor Mask2 is required for YAP-induced cell growth and migration in bladder cancer cell. J Cancer 2016; 7:2132-2138. [PMID: 27877230 PMCID: PMC5118678 DOI: 10.7150/jca.16438] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/03/2016] [Indexed: 12/31/2022] Open
Abstract
The highly conserved Hippo signaling pathway is an important pathway involved in tumorigenesis and development. In previous studies, YAP, the transcription coactivator of Hippo pathway, is found to be highly expressed in many clinical bladder cancer samples. To investigate the function of YAP and its cofactor Mask2 in bladder cancer, we overexpress YAP in bladder cancer cells and discover that YAP is able to promote bladder cancer cell growth and migration. In addition, we provide evidence that knockdown of Mask2 is able to repress bladder cancer cell growth and migration. Furthermore, we demonstrate knockdown of Mask2 is able to inhibit bladder cancer cell growth and migration induced by the excessive YAP. To explain the function of YAP/Mask2 complex in bladder cancer, we check the target genes' expression of Hippo signaling pathway involved in cell growth and migration and find overexpressed YAP is able to upregulate the target genes' expression while depletion of Mask2 downregulates them. Taken together, we demonstrate that Mask2 is required for the function of bladder cancer cell growth and migration induced by YAP via the target genes of Hippo pathway.
Collapse
Affiliation(s)
| | | | | | - Weiren Huang
- State Engineering Laboratory of Medical Key Technologies Application of Synthetic Biology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518039, PR China
| | - Zhiming Cai
- State Engineering Laboratory of Medical Key Technologies Application of Synthetic Biology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen 518039, PR China
| |
Collapse
|
10
|
Huang D, Li X, Sun L, Huang P, Ying H, Wang H, Wu J, Song H. Regulation of Hippo signalling by p38 signalling. J Mol Cell Biol 2016; 8:328-37. [PMID: 27402810 PMCID: PMC4991669 DOI: 10.1093/jmcb/mjw036] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/05/2016] [Indexed: 11/17/2022] Open
Abstract
The Hippo signalling pathway has a crucial role in growth control during development, and its dysregulation contributes to tumorigenesis. Recent studies uncover multiple upstream regulatory inputs into Hippo signalling, which affects phosphorylation of the transcriptional coactivator Yki/YAP/TAZ by Wts/Lats. Here we identify the p38 mitogen-activated protein kinase (MAPK) pathway as a new upstream branch of the Hippo pathway. In Drosophila, overexpression of MAPKK gene licorne (lic), or MAPKKK gene Mekk1, promotes Yki activity and induces Hippo target gene expression. Loss-of-function studies show that lic regulates Hippo signalling in ovary follicle cells and in the wing disc. Epistasis analysis indicates that Mekk1 and lic affect Hippo signalling via p38b and wts. We further demonstrate that the Mekk1-Lic-p38b cascade inhibits Hippo signalling by promoting F-actin accumulation and Jub phosphorylation. In addition, p38 signalling modulates actin filaments and Hippo signalling in parallel to small GTPases Ras, Rac1, and Rho1. Lastly, we show that p38 signalling regulates Hippo signalling in mammalian cell lines. The Lic homologue MKK3 promotes nuclear localization of YAP via the actin cytoskeleton. Upregulation or downregulation of the p38 pathway regulates YAP-mediated transcription. Our work thus reveals a conserved crosstalk between the p38 MAPK pathway and the Hippo pathway in growth regulation.
Collapse
Affiliation(s)
- Dashun Huang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science & Technology of China, 96 Jin Zhai Road, Hefei 230031, China Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China Key Laboratory of Food Safety Risk Assessment, Ministry of Health, 37 Guang Qu Road, Beijing 100021, China
| | - Xiaojiao Li
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China Key Laboratory of Food Safety Risk Assessment, Ministry of Health, 37 Guang Qu Road, Beijing 100021, China
| | - Li Sun
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China Key Laboratory of Food Safety Risk Assessment, Ministry of Health, 37 Guang Qu Road, Beijing 100021, China
| | - Ping Huang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China Key Laboratory of Food Safety Risk Assessment, Ministry of Health, 37 Guang Qu Road, Beijing 100021, China
| | - Hao Ying
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China Key Laboratory of Food Safety Risk Assessment, Ministry of Health, 37 Guang Qu Road, Beijing 100021, China
| | - Hui Wang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China Key Laboratory of Food Safety Risk Assessment, Ministry of Health, 37 Guang Qu Road, Beijing 100021, China
| | - Jiarui Wu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science & Technology of China, 96 Jin Zhai Road, Hefei 230031, China
| | - Haiyun Song
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China Key Laboratory of Food Safety Risk Assessment, Ministry of Health, 37 Guang Qu Road, Beijing 100021, China
| |
Collapse
|
11
|
The Effect of MicroRNA bantam on Baculovirus AcMNPV Infection in Vitro and in Vivo. Viruses 2016; 8:v8050136. [PMID: 27196923 PMCID: PMC4885091 DOI: 10.3390/v8050136] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/24/2016] [Accepted: 05/10/2016] [Indexed: 12/18/2022] Open
Abstract
The role of microRNA bantam, one of the most abundant microRNAs in Sf9 cells, was studied for its role in baculovirus infection in vitro and in vivo. The expression level of bantam was increased after AcMNPV infection in Sf9 cells and in Spodoptera litura larvae. In Sf9 cells, application of bantam inhibitor or mimic altered the expression of many virus genes, the most affected gene being lef8, gp41 and p10, the expression level of which was increased by 8, 10 and 40 times, respectively, in the presence of bantam inhibitor. Virus DNA replication was decreased in the presence of bantam mimic and increased in the presence of bantam inhibitor in a dose dependent manner. However, the production of budded virus did not change significantly. Feeding the larvae of S. litura and Spodoptera exigua with bantam antagomiR, a more stable form of the inhibitor, resulted in an abnormal larval growth and a decreased pupation rate. In S. litura, larvae died 3.5 days sooner than the control when bantam antagomiR was applied, together with AcMNPV. In infected S. exigua, larval mortality increased from 47% without antagomiR to 80% with it. The results suggest that microRNA bantam plays an important role in insect growth, as well as in baculovirus-insect interaction.
Collapse
|