1
|
Hirst IJ, Chiang WT, Hu NJ, Scarff CA, Thompson RF, Darrow MC, Muench SP. Untangling the effects of flexibility and the AWI in cryoEM sample preparation: A case study using KtrA. J Struct Biol 2025; 217:108206. [PMID: 40324569 DOI: 10.1016/j.jsb.2025.108206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/10/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Single particle cryo-electron microscopy (cryoEM) is a powerful tool for elucidating the structures of biological macromolecules without requiring crystallisation or fixation. However, certain barriers to obtaining high-resolution structures persist, particularly during grid preparation when samples are in a thin liquid film. At this stage, extensive exposure to the air-water interface (AWI) can lead to subunit dissociation, denaturation, and preferred orientation of particles. Another obstacle to high-resolution cryoEM is molecular flexibility, which introduces heterogeneity in the dataset, weakening the signal during image processing. This study explores the effects of AWI interactions and molecular flexibility on the cryoEM density maps of KtrA, the soluble regulatory subunit of the potassium transporter KtrAB from Bacillus subtilis. From grids prepared using a standard blotting technique, we observed a lack of density in the C-lobe domains and preferred orientation. Modifications such as reducing AWI exposure through faster vitrification times (6 s vs ≤100 ms) notably improved C-lobe density. Moreover, the addition of cyclic di-AMP, which binds to the C-lobes, combined with a 100 ms plunge time, further enhanced C-lobe density and eliminated preferred orientation. These findings demonstrate that both AWI interactions and flexibility had to be addressed to obtain density for the C-lobe domains of KtrA. This study underscores the ongoing complexities in achieving high-resolution cryoEM for many samples.
Collapse
Affiliation(s)
- Isobel Jackson Hirst
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - Wesley Tien Chiang
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung City 402202, Taiwan
| | - Nien-Jen Hu
- Graduate Institute of Biochemistry, National Chung Hsing University, Taichung City 402202, Taiwan
| | - Charlotte A Scarff
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, Faculty of Medicine & Health & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | - Rebecca F Thompson
- Previous address: School of Molecular and Cellular Biology, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK
| | | | - Stephen P Muench
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
2
|
Yancheva Y, Kaya SG, Belyy A, Fraaije MW, Tych KM. Impact of Ligand-Induced Oligomer Dissociation on Enzyme Diffusion, Directly Observed at the Single-Molecule Level. NANO LETTERS 2025; 25:2373-2380. [PMID: 39879145 PMCID: PMC11831976 DOI: 10.1021/acs.nanolett.4c05792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
The existence of the phenomenon of enhanced enzyme diffusion (EED) has been a topic of debate in recent literature. One proposed mechanism to explain the origin of EED is oligomeric enzyme dissociation. We used mass photometry (MP), a label-free single-molecule technique, to investigate the dependence of the oligomeric states of several enzymes on their ligands. The studied enzymes of interest are catalase, aldolase, alkaline phosphatase, and vanillyl-alcohol oxidase (VAO). We compared the ratios of oligomeric states in the presence and absence of the substrate as well as different substrate and inhibitor concentrations. Catalase and aldolase were found to dissociate into smaller oligomers in the presence of their substrates, independently of inhibition, while for alkaline phosphatase and VAO, different behaviors were observed. Thus, we have identified a possible mechanism which explains the previously observed diffusion enhancement in vitro. This enhancement may occur due to the dissociation of oligomers through ligand binding.
Collapse
Affiliation(s)
- Yulia
D. Yancheva
- Chemical
Biology 1, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Saniye G. Kaya
- Molecular
Enzymology, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| | - Alexander Belyy
- Membrane
Enzymology, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| | - Marco W. Fraaije
- Molecular
Enzymology, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| | - Katarzyna M. Tych
- Chemical
Biology 1, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
3
|
Abe KM, Li G, He Q, Grant T, Lim CJ. Small LEA proteins mitigate air-water interface damage to fragile cryo-EM samples during plunge freezing. Nat Commun 2024; 15:7705. [PMID: 39231985 PMCID: PMC11375022 DOI: 10.1038/s41467-024-52091-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024] Open
Abstract
Air-water interface (AWI) interactions during cryo-electron microscopy (cryo-EM) sample preparation cause significant sample loss, hindering structural biology research. Organisms like nematodes and tardigrades produce Late Embryogenesis Abundant (LEA) proteins to withstand desiccation stress. Here we show that these LEA proteins, when used as additives during plunge freezing, effectively mitigate AWI damage to fragile multi-subunit molecular samples. The resulting high-resolution cryo-EM maps are comparable to or better than those obtained using existing AWI damage mitigation methods. Cryogenic electron tomography reveals that particles are localized at specific interfaces, suggesting LEA proteins form a barrier at the AWI. This interaction may explain the observed sample-dependent preferred orientation of particles. LEA proteins offer a simple, cost-effective, and adaptable approach for cryo-EM structural biologists to overcome AWI-related sample damage, potentially revitalizing challenging projects and advancing the field of structural biology.
Collapse
Affiliation(s)
- Kaitlyn M Abe
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Gan Li
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI, 53715, USA
| | - Qixiang He
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Timothy Grant
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- John and Jeanne Rowe Center for Research in Virology, Morgridge Institute for Research, Madison, WI, 53715, USA
| | - Ci Ji Lim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
4
|
Zheng L, Xu J, Wang W, Gao X, Zhao C, Guo W, Sun L, Cheng H, Meng F, Chen B, Sun W, Jia X, Zhou X, Wu K, Liu Z, Ding F, Liu N, Wang HW, Peng H. Self-assembled superstructure alleviates air-water interface effect in cryo-EM. Nat Commun 2024; 15:7300. [PMID: 39181869 PMCID: PMC11344764 DOI: 10.1038/s41467-024-51696-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024] Open
Abstract
Cryo-electron microscopy (cryo-EM) has been widely used to reveal the structures of proteins at atomic resolution. One key challenge is that almost all proteins are predominantly adsorbed to the air-water interface during standard cryo-EM specimen preparation. The interaction of proteins with air-water interface will significantly impede the success of reconstruction and achievable resolution. Here, we highlight the critical role of impenetrable surfactant monolayers in passivating the air-water interface problems, and develop a robust effective method for high-resolution cryo-EM analysis, by using the superstructure GSAMs which comprises surfactant self-assembled monolayers (SAMs) and graphene membrane. The GSAMs works well in enriching the orientations and improving particle utilization ratio of multiple proteins, facilitating the 3.3-Å resolution reconstruction of a 100-kDa protein complex (ACE2-RBD), which shows strong preferential orientation using traditional specimen preparation protocol. Additionally, we demonstrate that GSAMs enables the successful determinations of small proteins (<100 kDa) at near-atomic resolution. This study expands the understanding of SAMs and provides a key to better control the interaction of protein with air-water interface.
Collapse
Affiliation(s)
- Liming Zheng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jie Xu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Weihua Wang
- China Academy of Aerospace Science and Innovation, Beijing, 100088, China
| | - Xiaoyin Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Chao Zhao
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518055, China.
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518103, China.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Weijun Guo
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Luzhao Sun
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| | - Hang Cheng
- Shuimu BioSciences Ltd, Beijing, 100089, China
| | - Fanhao Meng
- Shuimu BioSciences Ltd, Beijing, 100089, China
| | - Buhang Chen
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| | - Weiyu Sun
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xia Jia
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiong Zhou
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Kai Wu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhongfan Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| | - Feng Ding
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518055, China
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518103, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Nan Liu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- School of Biological Sciences, The University of Hong Kong, Hong Kong, 999077, China.
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Hailin Peng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
- Beijing Graphene Institute (BGI), Beijing, 100095, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| |
Collapse
|
5
|
Yadav S, Vinothkumar KR. Factors affecting macromolecule orientations in thin films formed in cryo-EM. Acta Crystallogr D Struct Biol 2024; 80:535-550. [PMID: 38935342 PMCID: PMC11220838 DOI: 10.1107/s2059798324005229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
The formation of a vitrified thin film embedded with randomly oriented macromolecules is an essential prerequisite for cryogenic sample electron microscopy. Most commonly, this is achieved using the plunge-freeze method first described nearly 40 years ago. Although this is a robust method, the behaviour of different macromolecules shows great variation upon freezing and often needs to be optimized to obtain an isotropic, high-resolution reconstruction. For a macromolecule in such a film, the probability of encountering the air-water interface in the time between blotting and freezing and adopting preferred orientations is very high. 3D reconstruction using preferentially oriented particles often leads to anisotropic and uninterpretable maps. Currently, there are no general solutions to this prevalent issue, but several approaches largely focusing on sample preparation with the use of additives and novel grid modifications have been attempted. In this study, the effect of physical and chemical factors on the orientations of macromolecules was investigated through an analysis of selected well studied macromolecules, and important parameters that determine the behaviour of proteins on cryo-EM grids were revealed. These insights highlight the nature of the interactions that cause preferred orientations and can be utilized to systematically address orientation bias for any given macromolecule and to provide a framework to design small-molecule additives to enhance sample stability and behaviour.
Collapse
Affiliation(s)
- Swati Yadav
- National Centre for Biological SciencesTata Institute of Fundamental ResearchGKVK Post, Bellary RoadBengaluru560 065India
| | - Kutti R. Vinothkumar
- National Centre for Biological SciencesTata Institute of Fundamental ResearchGKVK Post, Bellary RoadBengaluru560 065India
| |
Collapse
|
6
|
Hirst IJ, Thomas WJ, Davies RA, Muench SP. CryoEM grid preparation: a closer look at advancements and impact of preparation mode and new approaches. Biochem Soc Trans 2024; 52:1529-1537. [PMID: 38864435 PMCID: PMC11346429 DOI: 10.1042/bst20231553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Sample preparation can present a significant hurdle within single particle cryo-electron microscopy (cryoEM), resulting in issues with reproducibility, data quality or an inability to visualise the sample. There are several factors which can influence this, including sample or buffer composition, grid type, route of sample preparation and interactions with the air-water interface (AWI). Here, we review some of the current routes for sample preparation and the associated challenges. We discuss a range of approaches for overcoming these challenges, such as minimising the grid preparation time, surfactants, grid type and biochemical approaches such as nanomagnetic beads. Finally, we discuss how a set of commercially available protein samples may serve as a benchmark suite for future technologies. This provides a route to compare techniques' abilities not just to generate high-resolution structures but also to overcome the challenges traditionally associated with cryoEM. As the field continues to produce new approaches to sample preparation and we start to better understand the underlying principles behind the behaviour of proteins within a thin film and in response to different environments, especially grid composition, it is hoped that more universal solutions can be provided that make the intractable systems tractable, improve resolution and, importantly, speed up data collection and reduce the currently required dataset sizes.
Collapse
Affiliation(s)
- Isobel J. Hirst
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - William J.R. Thomas
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - Rhiannon A. Davies
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - Stephen P. Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
7
|
Zhao Q, Hong X, Wang Y, Zhang S, Ding Z, Meng X, Song Q, Hong Q, Jiang W, Shi X, Cai T, Cong Y. An immobilized antibody-based affinity grid strategy for on-grid purification of target proteins enables high-resolution cryo-EM. Commun Biol 2024; 7:715. [PMID: 38858498 PMCID: PMC11164986 DOI: 10.1038/s42003-024-06406-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024] Open
Abstract
In cryo-electron microscopy (cryo-EM), sample preparation poses a critical bottleneck, particularly for rare or fragile macromolecular assemblies and those suffering from denaturation and particle orientation distribution issues related to air-water interface. In this study, we develop and characterize an immobilized antibody-based affinity grid (IAAG) strategy based on the high-affinity PA tag/NZ-1 antibody epitope tag system. We employ Pyr-NHS as a linker to immobilize NZ-1 Fab on the graphene oxide or carbon-covered grid surface. Our results demonstrate that the IAAG grid effectively enriches PA-tagged target proteins and overcomes preferred orientation issues. Furthermore, we demonstrate the utility of our IAAG strategy for on-grid purification of low-abundance target complexes from cell lysates, enabling atomic resolution cryo-EM. This approach greatly streamlines the purification process, reduces the need for large quantities of biological samples, and addresses common challenges encountered in cryo-EM sample preparation. Collectively, our IAAG strategy provides an efficient and robust means for combined sample purification and vitrification, feasible for high-resolution cryo-EM. This approach holds potential for broader applicability in both cryo-EM and cryo-electron tomography (cryo-ET).
Collapse
Affiliation(s)
- Qiaoyu Zhao
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Xiaoyu Hong
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yanxing Wang
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Shaoning Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, China
| | - Zhanyu Ding
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Xueming Meng
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Qianqian Song
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Qin Hong
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China
| | - Wanying Jiang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Xiangyi Shi
- Shanghai Nanoport, Thermo Fisher Scientific, Shanghai, China
| | - Tianxun Cai
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, China
| | - Yao Cong
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 200031, Shanghai, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
8
|
Liu N, Wang HW. Graphene in cryo-EM specimen optimization. Curr Opin Struct Biol 2024; 86:102823. [PMID: 38688075 DOI: 10.1016/j.sbi.2024.102823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/16/2024] [Accepted: 04/06/2024] [Indexed: 05/02/2024]
Abstract
Specimen preparation is a critical but challenging step in high-resolution cryogenic electron microscopy (cryo-EM) structural analysis of macromolecules. In the past decade, graphene has gained much recognition as the supporting substrate to optimize cryo-EM specimen preparation. It improves macromolecule embedding in ice, reduces beam-induced motion, while imposing negligible background noise. Various types of graphene-coated cryo-EM grids were implemented to improve the robustness and efficiency of specimen preparation. Graphene functionalization by different means has been proved specifically useful in addressing challenges related to the air-water interface (AWI), such as preferential orientation and sample denaturation. Graphene sandwich specimen preparation sets a new direction to explore in cryo-EM analysis of biological specimens. In this review, we discuss the current challenges and future prospects of graphene application in cryo-EM analysis of macromolecules.
Collapse
Affiliation(s)
- Nan Liu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
9
|
Valli D, Ooi SA, Scattolini G, Chaudhary H, Tietze AA, Maj M. Improving cryo-EM grids for amyloid fibrils using interface-active solutions and spectator proteins. Biophys J 2024; 123:718-729. [PMID: 38368506 PMCID: PMC10995402 DOI: 10.1016/j.bpj.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/28/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024] Open
Abstract
Preparation of cryoelectron microscopy (cryo-EM) grids for imaging of amyloid fibrils is notoriously challenging. The human islet amyloid polypeptide (hIAPP) serves as a notable example, as the majority of reported structures have relied on the use of nonphysiological pH buffers, N-terminal tags, and seeding. This highlights the need for more efficient, reproducible methodologies that can elucidate amyloid fibril structures formed under diverse conditions. In this work, we demonstrate that the distribution of fibrils on cryo-EM grids is predominantly determined by the solution composition, which is critical for the stability of thin vitreous ice films. We discover that, among physiological pH buffers, HEPES uniquely enhances the distribution of fibrils on cryo-EM grids and improves the stability of ice layers. This improvement is attributed to direct interactions between HEPES molecules and hIAPP, effectively minimizing the tendency of hIAPP to form dense clusters in solutions and preventing ice nucleation. Furthermore, we provide additional support for the idea that denatured protein monolayers forming at the interface are also capable of eliciting a surfactant-like effect, leading to improved particle coverage. This phenomenon is illustrated by the addition of nonamyloidogenic rat IAPP (rIAPP) to a solution of preaggregated hIAPP just before the freezing process. The resultant grids, supplemented with this "spectator protein", exhibit notably enhanced coverage and improved ice quality. Unlike conventional surfactants, rIAPP is additionally capable of disentangling the dense clusters formed by hIAPP. By applying the proposed strategies, we have resolved the structure of the dominant hIAPP polymorph, formed in vitro at pH 7.4, to a final resolution of 4 Å. The advances in grid preparation presented in this work hold significant promise for enabling structural determination of amyloid proteins which are particularly resistant to conventional grid preparation techniques.
Collapse
Affiliation(s)
- Dylan Valli
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Saik Ann Ooi
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Giorgio Scattolini
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Himanshu Chaudhary
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Alesia A Tietze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Michał Maj
- Department of Chemistry - Ångström Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
10
|
Cebi E, Lee J, Subramani VK, Bak N, Oh C, Kim KK. Cryo-electron microscopy-based drug design. Front Mol Biosci 2024; 11:1342179. [PMID: 38501110 PMCID: PMC10945328 DOI: 10.3389/fmolb.2024.1342179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/31/2024] [Indexed: 03/20/2024] Open
Abstract
Structure-based drug design (SBDD) has gained popularity owing to its ability to develop more potent drugs compared to conventional drug-discovery methods. The success of SBDD relies heavily on obtaining the three-dimensional structures of drug targets. X-ray crystallography is the primary method used for solving structures and aiding the SBDD workflow; however, it is not suitable for all targets. With the resolution revolution, enabling routine high-resolution reconstruction of structures, cryogenic electron microscopy (cryo-EM) has emerged as a promising alternative and has attracted increasing attention in SBDD. Cryo-EM offers various advantages over X-ray crystallography and can potentially replace X-ray crystallography in SBDD. To fully utilize cryo-EM in drug discovery, understanding the strengths and weaknesses of this technique and noting the key advancements in the field are crucial. This review provides an overview of the general workflow of cryo-EM in SBDD and highlights technical innovations that enable its application in drug design. Furthermore, the most recent achievements in the cryo-EM methodology for drug discovery are discussed, demonstrating the potential of this technique for advancing drug development. By understanding the capabilities and advancements of cryo-EM, researchers can leverage the benefits of designing more effective drugs. This review concludes with a discussion of the future perspectives of cryo-EM-based SBDD, emphasizing the role of this technique in driving innovations in drug discovery and development. The integration of cryo-EM into the drug design process holds great promise for accelerating the discovery of new and improved therapeutic agents to combat various diseases.
Collapse
Affiliation(s)
| | | | | | | | - Changsuk Oh
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
11
|
Abe KM, Lim CJ. Small LEA proteins as an effective air-water interface protectant for fragile samples during cryo-EM grid plunge freezing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579238. [PMID: 38370693 PMCID: PMC10871254 DOI: 10.1101/2024.02.06.579238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Sample loss due to air-water interface (AWI) interactions is a significant challenge during cryo-electron microscopy (cryo-EM) sample grid plunge freezing. We report that small Late Embryogenesis Abundant (LEA) proteins, which naturally bind to AWI, can protect samples from AWI damage during plunge freezing. This protection is demonstrated with two LEA proteins from nematodes and tardigrades, which rescued the cryo-EM structural determination outcome of two fragile multisubunit protein complexes.
Collapse
Affiliation(s)
- Kaitlyn M. Abe
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Ci Ji Lim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
12
|
Xu Y, Qin Y, Wang L, Zhang Y, Wang Y, Dang S. Metallo-supramolecular branched polymer protects particles from air-water interface in single-particle cryo-electron microscopy. Commun Biol 2024; 7:65. [PMID: 38195919 PMCID: PMC10776832 DOI: 10.1038/s42003-023-05752-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024] Open
Abstract
Recent technological breakthroughs in single-particle cryo-electron microscopy (cryo-EM) enable rapid atomic structure determination of biological macromolecules. A major bottleneck in the current single particle cryo-EM pipeline is the preparation of good quality frozen cryo-EM grids, which is mostly a trial-and-error process. Among many issues, preferred particle orientation and sample damage by air-water interface (AWI) are common practical problems. Here we report a method of applying metallo-supramolecular branched polymer (MSBP) in the cryo-sample preparation for high-resolution single-particle cryo-EM. Our data shows that MSBP keeps a majority of particles away from air-water interface and mitigates preferred orientation as verified by the analyses of apoferritin, hemagglutinin) trimer and various sample proteins. The use of MSBP is a simple method to improve particle distribution for high-resolution structure determination in single-particle cryo-EM.
Collapse
Affiliation(s)
- Yixin Xu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Yuqi Qin
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Lang Wang
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Yingyi Zhang
- Biological Cryo-EM Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yufeng Wang
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
| | - Shangyu Dang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
- HKUST-Shenzhen Research Institute, Nanshan, Shenzhen, China.
| |
Collapse
|
13
|
McMullan G, Naydenova K, Mihaylov D, Yamashita K, Peet MJ, Wilson H, Dickerson JL, Chen S, Cannone G, Lee Y, Hutchings KA, Gittins O, Sobhy MA, Wells T, El-Gomati MM, Dalby J, Meffert M, Schulze-Briese C, Henderson R, Russo CJ. Structure determination by cryoEM at 100 keV. Proc Natl Acad Sci U S A 2023; 120:e2312905120. [PMID: 38011573 PMCID: PMC10710074 DOI: 10.1073/pnas.2312905120] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/02/2023] [Indexed: 11/29/2023] Open
Abstract
Electron cryomicroscopy can, in principle, determine the structures of most biological molecules but is currently limited by access, specimen preparation difficulties, and cost. We describe a purpose-built instrument operating at 100 keV-including advances in electron optics, detection, and processing-that makes structure determination fast and simple at a fraction of current costs. The instrument attains its theoretical performance limits, allowing atomic resolution imaging of gold test specimens and biological molecular structure determination in hours. We demonstrate its capabilities by determining the structures of eleven different specimens, ranging in size from 140 kDa to 2 MDa, using a fraction of the data normally required. CryoEM with a microscope designed specifically for high-efficiency, on-the-spot imaging of biological molecules will expand structural biology to a wide range of previously intractable problems.
Collapse
Affiliation(s)
- Greg McMullan
- Medical Research Council (MRC) Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Katerina Naydenova
- Medical Research Council (MRC) Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Daniel Mihaylov
- Medical Research Council (MRC) Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Keitaro Yamashita
- Medical Research Council (MRC) Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Mathew J. Peet
- Medical Research Council (MRC) Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Hugh Wilson
- Medical Research Council (MRC) Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Joshua L. Dickerson
- Medical Research Council (MRC) Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Shaoxia Chen
- Medical Research Council (MRC) Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Giuseppe Cannone
- Medical Research Council (MRC) Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Yang Lee
- Medical Research Council (MRC) Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Katherine A. Hutchings
- Medical Research Council (MRC) Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Olivia Gittins
- Newcastle University, Newcastle upon TyneNE2 4HH, United Kingdom
| | - Mohamed A. Sobhy
- King Abdullah University of Science and Technology, Thuwal23955, Saudi Arabia
| | - Torquil Wells
- York Probe Sources Ltd., YorkYO26 6QU, United Kingdom
| | | | - Jason Dalby
- JEOL U.K. Ltd., Welwyn Garden CityAL7 1LT, United Kingdom
| | | | | | - Richard Henderson
- Medical Research Council (MRC) Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| | - Christopher J. Russo
- Medical Research Council (MRC) Laboratory of Molecular Biology, CambridgeCB2 0QH, United Kingdom
| |
Collapse
|
14
|
Kang JS, Zhou X, Liu YT, Wang K, Zhou ZH. Theoretical framework and experimental solution for the air-water interface adsorption problem in cryoEM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541984. [PMID: 37961330 PMCID: PMC10634880 DOI: 10.1101/2023.05.23.541984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
As cryogenic electron microscopy (cryoEM) gains traction in the structural biology community as a method of choice for determining atomic structures of biological complexes, it has been increasingly recognized that many complexes that behave well under conventional negative-stain electron microscopy tend to have preferential orientation, aggregate or simply mysteriously "disappear" on cryoEM grids, but the reasons for such misbehavior are not well understood, limiting systematic approaches to solving the problem. Here, we have developed a theoretical formulation that explains these observations. Our formulation predicts that all particles migrate to the air-water interface (AWI) to lower the total potential surface energy - rationalizing the use of surfactant, which is a direct solution to reducing the surface tension of the aqueous solution. By conducting cryogenic electron tomography (cryoET) with the widely-tested sample, GroEL, we demonstrate that, in a standard buffer solution, nearly all particles migrate to the AWI. Gradual reduction of the surface tension by introducing surfactants decreased the percentage of particles exposed to the surface. By conducting single-particle cryoEM, we confirm that applicable surfactants do not damage the biological complex, thus suggesting that they might offer a practical, simple, and general solution to the problem for high-resolution cryoEM. Application of this solution to a real-world AWI adsorption problem with a more challenging membrane protein, namely, the ClC-1 channel, has led to its first near-atomic structure using cryoEM.
Collapse
|
15
|
Kang JS, Zhou X, Liu YT, Wang K, Zhou ZH. Theoretical framework and experimental solution for the air-water interface adsorption problem in cryoEM. BIOPHYSICS REPORTS 2023; 9:215-229. [PMID: 38516618 PMCID: PMC10951471 DOI: 10.52601/bpr.2023.230008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 10/31/2023] [Indexed: 03/23/2024] Open
Abstract
As cryogenic electron microscopy (cryoEM) gains traction in the structural biology community as a method of choice for determining atomic structures of biological complexes, it has been increasingly recognized that many complexes that behave well under conventional negative-stain electron microscopy tend to have preferential orientation, aggregate or simply mysteriously "disappear" on cryoEM grids. However, the reasons for such misbehavior are not well understood, which limits systematic approaches to solving the problem. Here, we have developed a theoretical formulation that explains these observations. Our formulation predicts that all particles migrate to the air-water interface (AWI) to lower the total potential surface energy-rationalizing the use of surfactant, which is a direct solution to reduce the surface tension of the aqueous solution. By performing cryogenic electron tomography (cryoET) on the widely-tested sample, GroEL, we demonstrate that, in a standard buffer solution, nearly all particles migrate to the AWI. Gradually reducing the surface tension by introducing surfactants decreased the percentage of particles exposed to the surface. By conducting single-particle cryoEM, we confirm that suitable surfactants do not damage the biological complex, thus suggesting that they might provide a practical, simple, and general solution to the problem for high-resolution cryoEM. Applying this solution to a real-world AWI adsorption problem involving a more challenging membrane protein, namely, the ClC-1 channel, has resulted in its near-atomic structure determination using cryoEM.
Collapse
Affiliation(s)
- Joon S. Kang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
| | - Xueting Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Yun-Tao Liu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Kaituo Wang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Z. Hong Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
16
|
Liu N, Wang HW. Better Cryo-EM Specimen Preparation: How to Deal with the Air-Water Interface? J Mol Biol 2022; 435:167926. [PMID: 36563741 DOI: 10.1016/j.jmb.2022.167926] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Cryogenic electron microscopy (cryo-EM) is now one of the most powerful and widely used methods to determine high-resolution structures of macromolecules. A major bottleneck of cryo-EM is to prepare high-quality vitrified specimen, which still faces many practical challenges. During the conventional vitrification process, macromolecules tend to adsorb at the air-water interface (AWI), which is known unfriendly to biological samples. In this review, we outline the nature of AWI and the problems caused by it, such as unpredictable or uneven particle distribution, protein denaturation, dissociation of complex and preferential orientation. We review and discuss the approaches and underlying mechanisms to deal with AWI: 1) Additives, exemplified by detergents, forming a protective layer at AWI and thus preserving the native folds of target macromolecules. 2) Fast vitrification devices based on the idea to freeze in-solution macromolecules before their touching of AWI. 3) Thin layer of continuous supporting films to adsorb macromolecules, and when functionalized with affinity ligands, to specifically anchor the target particles away from the AWI. Among these supporting films, graphene, together with its derivatives, with negligible background noise and mechanical robustness, has emerged as a new generation of support. These strategies have been proven successful in various cases and enable us a better handling of the problems caused by the AWI in cryo-EM specimen preparation.
Collapse
Affiliation(s)
- Nan Liu
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
17
|
Guyomar C, Bousquet C, Ku S, Heumann JM, Guilloux G, Gaillard N, Heichette C, Duchesne L, Steinmetz MO, Gibeaux R, Chrétien D. Changes in seam number and location induce holes within microtubules assembled from porcine brain tubulin and in Xenopus egg cytoplasmic extracts. eLife 2022; 11:e83021. [PMID: 36503602 PMCID: PMC9788831 DOI: 10.7554/elife.83021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Microtubules are tubes of about 25 nm in diameter that are critically involved in a variety of cellular functions, including motility, compartmentalization, and division. They are considered as pseudo-helical polymers whose constituent αβ-tubulin heterodimers share lateral homotypic interactions, except at one unique region called the seam. Here, we used a segmented sub-tomogram averaging strategy to reassess this paradigm and analyze the organization of the αβ-tubulin heterodimers in microtubules assembled from purified porcine brain tubulin in the presence of GTP and GMPCPP, and in Xenopus egg cytoplasmic extracts. We find that in almost all conditions, microtubules incorporate variable protofilament and/or tubulin subunit helical-start numbers, as well as variable numbers of seams. Strikingly, the seam number and location vary along individual microtubules, generating holes of one to a few subunits in size within their lattices. Together, our results reveal that the formation of mixed and discontinuous microtubule lattices is an intrinsic property of tubulin that requires the formation of unique lateral interactions without longitudinal ones. They further suggest that microtubule assembly is tightly regulated in a cytoplasmic environment.
Collapse
Affiliation(s)
- Charlotte Guyomar
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000RennesFrance
| | - Clément Bousquet
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000RennesFrance
| | - Siou Ku
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000RennesFrance
| | - John M Heumann
- Department of Molecular, Cellular and Developmental Biology, University of Colorado BoulderBoulderUnited States
| | - Gabriel Guilloux
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000RennesFrance
| | - Natacha Gaillard
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer InstituteVilligenSwitzerland
| | - Claire Heichette
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000RennesFrance
| | - Laurence Duchesne
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000RennesFrance
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer InstituteVilligenSwitzerland
- University of Basel, BiozentrumBaselSwitzerland
| | - Romain Gibeaux
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000RennesFrance
| | - Denis Chrétien
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F-35000RennesFrance
| |
Collapse
|
18
|
Klebl DP, Wang Y, Sobott F, Thompson RF, Muench SP. It started with a Cys: Spontaneous cysteine modification during cryo-EM grid preparation. Front Mol Biosci 2022; 9:945772. [PMID: 35992264 PMCID: PMC9389043 DOI: 10.3389/fmolb.2022.945772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/27/2022] [Indexed: 12/31/2022] Open
Abstract
Advances in single particle cryo-EM data collection and processing have seen a significant rise in its use. However, the influences of the environment generated through grid preparation, by for example interactions of proteins with the air-water interface are poorly understood and can be a major hurdle in structure determination by cryo-EM. Initial interactions of proteins with the air-water interface occur quickly and proteins can adopt preferred orientation or partially unfold within hundreds of milliseconds. It has also been shown previously that thin-film layers create hydroxyl radicals. To investigate the potential this might have in cryo-EM sample preparation, we studied two proteins, HSPD1, and beta-galactosidase, and show that cysteine residues are modified in a time-dependent manner. In the case of both HSPD1 and beta-galactosidase, this putative oxidation is linked to partial protein unfolding, as well as more subtle structural changes. We show these modifications can be alleviated through increasing the speed of grid preparation, the addition of DTT, or by sequestering away from the AWI using continuous support films. We speculate that the modification is oxidation by reactive oxygen species which are formed and act at the air-water interface. Finally, we show grid preparation on a millisecond timescale outruns cysteine modification, showing that the reaction timescale is in the range of 100s to 1,000s milliseconds and offering an alternative approach to prevent spontaneous cysteine modification and its consequences during cryo-EM grid preparation.
Collapse
Affiliation(s)
- David P. Klebl
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Yiheng Wang
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Frank Sobott
- School of Molecular and Cellular Biology, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Rebecca F. Thompson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- *Correspondence: Rebecca F. Thompson, ; Stephen P. Muench,
| | - Stephen P. Muench
- School of Biomedical Sciences, Faculty of Biological Sciences & Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- *Correspondence: Rebecca F. Thompson, ; Stephen P. Muench,
| |
Collapse
|