1
|
Cong R, Lu C, Li X, Xu Z, Wang Y, Sun S. Tumor organoids in cancer medicine: from model systems to natural compound screening. PHARMACEUTICAL BIOLOGY 2025; 63:89-109. [PMID: 39893515 PMCID: PMC11789228 DOI: 10.1080/13880209.2025.2458149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/04/2024] [Accepted: 01/17/2025] [Indexed: 02/04/2025]
Abstract
CONTEXT The advent of tissue engineering and biomedical techniques has significantly advanced the development of three-dimensional (3D) cell culture systems, particularly tumor organoids. These self-assembled 3D cell clusters closely replicate the histopathological, genetic, and phenotypic characteristics of primary tissues, making them invaluable tools in cancer research and drug screening. OBJECTIVE This review addresses the challenges in developing in vitro models that accurately reflect tumor heterogeneity and explores the application of tumor organoids in cancer research, with a specific focus on the screening of natural products for antitumor therapies. METHODS This review synthesizes information from major databases, including Chemical Abstracts, Medicinal and Aromatic Plants Abstracts, ScienceDirect, Google Scholar, Scopus, PubMed and Springer Link. Publications were selected without date restrictions, using terms such as 'organoid', 'natural product', 'pharmacological', 'extract', 'nanomaterial' and 'traditional uses'. Articles related to agriculture, ecology, synthetic work or published in languages other than English were excluded. RESULTS AND CONCLUSIONS The review identifies key challenges related to the efficiency and variability of organoid generation and discusses ongoing efforts to enhance their predictive capabilities in drug screening and personalized medicine. Recent studies utilizing patient-derived organoid models for natural compound screening are highlighted, demonstrating the potential of these models in developing new classes of anticancer agents. The integration of natural products with patient-derived organoid models presents a promising approach for discovering novel anticancer compounds and elucidating their mechanisms of action.
Collapse
Affiliation(s)
- Rong Cong
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Can Lu
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xinying Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yaqin Wang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Shusen Sun
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, USA
| |
Collapse
|
2
|
Kumar D, Gupta S, Gupta V, Tanwar R, Chandel A. Engineering the Future of Regenerative Medicines in Gut Health with Stem Cell-Derived Intestinal Organoids. Stem Cell Rev Rep 2025:10.1007/s12015-025-10893-w. [PMID: 40380985 DOI: 10.1007/s12015-025-10893-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2025] [Indexed: 05/19/2025]
Abstract
The advent of intestinal organoids, three-dimensional structures derived from stem cells, has significantly advanced the field of biology by providing robust in vitro models that closely mimic the architecture and functionality of the human intestine. These organoids, generated from induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), or adult stem cells, possess remarkable capabilities for self-renewal, differentiation into diverse intestinal cell types, and functional recapitulation of physiological processes, including nutrient absorption, epithelial barrier integrity, and host-microbe interactions. The utility of intestinal organoids has been extensively demonstrated in disease modeling, drug screening, and personalized medicine. Notable examples include iPSC-derived organoids, which have been effectively employed to model enteric infections, and ESC-derived organoids, which have provided critical insights into fetal intestinal development. Patient-derived organoids have emerged as powerful tools for investigating personalized therapeutics and regenerative interventions for conditions such as inflammatory bowel disease (IBD), cystic fibrosis, and colorectal cancer. Preclinical studies involving transplantation of human intestinal organoids into murine models have shown promising outcomes, including functional integration, epithelial restoration, and immune system interactions. Despite these advancements, several challenges persist, particularly in achieving reproducibility, scalability, and maturation of organoids, which hinder their widespread clinical translation. Addressing these limitations requires the establishment of standardized protocols for organoid generation, culture, storage, and analysis to ensure reproducibility and comparability of findings across studies. Nevertheless, intestinal organoids hold immense promise for transforming our understanding of gastrointestinal pathophysiology, enhancing drug development pipelines, and advancing personalized medicine. By bridging the gap between preclinical research and clinical applications, these organoids represent a paradigm shift in the exploration of novel therapeutic strategies and the investigation of gut-associated diseases.
Collapse
Affiliation(s)
- Dinesh Kumar
- School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab, India.
| | - Sonia Gupta
- Swami Devi Dyal Group of Professional Institute, Panchkula, India
| | - Vrinda Gupta
- School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab, India
| | - Rajni Tanwar
- School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab, India
| | - Anchal Chandel
- School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab, India
| |
Collapse
|
3
|
Llorente C. The Imperative for Innovative Enteric Nervous System-Intestinal Organoid Co-Culture Models: Transforming GI Disease Modeling and Treatment. Cells 2024; 13:820. [PMID: 38786042 PMCID: PMC11119846 DOI: 10.3390/cells13100820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
This review addresses the need for innovative co-culture systems integrating the enteric nervous system (ENS) with intestinal organoids. The breakthroughs achieved through these techniques will pave the way for a transformative era in gastrointestinal (GI) disease modeling and treatment strategies. This review serves as an introduction to the companion protocol paper featured in this journal. The protocol outlines the isolation and co-culture of myenteric and submucosal neurons with small intestinal organoids. This review provides an overview of the intestinal organoid culture field to establish a solid foundation for effective protocol application. Remarkably, the ENS surpasses the number of neurons in the spinal cord. Referred to as the "second brain", the ENS orchestrates pivotal roles in GI functions, including motility, blood flow, and secretion. The ENS is organized into myenteric and submucosal plexuses. These plexuses house diverse subtypes of neurons. Due to its proximity to the gut musculature and its cell type complexity, there are methodological intricacies in studying the ENS. Diverse approaches such as primary cell cultures, three-dimensional (3D) neurospheres, and induced ENS cells offer diverse insights into the multifaceted functionality of the ENS. The ENS exhibits dynamic interactions with the intestinal epithelium, the muscle layer, and the immune system, influencing epithelial physiology, motility, immune responses, and the microbiome. Neurotransmitters, including acetylcholine (ACh), serotonin (5-HT), and vasoactive intestinal peptide (VIP), play pivotal roles in these intricate interactions. Understanding these dynamics is imperative, as the ENS is implicated in various diseases, ranging from neuropathies to GI disorders and neurodegenerative diseases. The emergence of organoid technology presents an unprecedented opportunity to study ENS interactions within the complex milieu of the small and large intestines. This manuscript underscores the urgent need for standardized protocols and advanced techniques to unravel the complexities of the ENS and its dynamic relationship with the gut ecosystem. The insights gleaned from such endeavors hold the potential to revolutionize GI disease modeling and treatment paradigms.
Collapse
Affiliation(s)
- Cristina Llorente
- Department of Medicine, University of California San Diego, MC0063, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
4
|
Asano Y, Shimoda H, Okano D, Matsusaki M, Akashi M. Lymphatic Drainage-Promoting Effects by Engraftment of Artificial Lymphatic Vascular Tissue Based on Human Adipose Tissue-Derived Mesenchymal Stromal Cells in Mice. J Tissue Eng Regen Med 2023; 2023:7626767. [PMID: 40226423 PMCID: PMC11919049 DOI: 10.1155/2023/7626767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/09/2023] [Accepted: 09/28/2023] [Indexed: 04/15/2025]
Abstract
Regenerative medicine using lymphatic vascular engineering is a promising approach for treating lymphedema. However, its development lags behind that of artificial blood vascular tissue for ischemic diseases. In this study, we constructed artificial 3D lymphatic vascular tissue, termed ASCLT, by co-cultivation of ECM-nanofilm-coated human adipose tissue-derived mesenchymal stromal cells (hASCs) and human dermal lymphatic endothelial cells (HDLECs). The effect of hASCs in lymphatic vessel network formation was evaluated by comparison with the tissue based on fibroblasts, termed FbLT. Our results showed that the density of lymphatic vascular network in ASCLT was higher than that in FbLT, demonstrating a promoting effect of hASCs on lymphatic vascular formation. This result was also supported by higher levels of lymphangiogenesis-promoting factors, such as bFGF, HGF, and VEGF-A in ASCLT than in FbLT. To evaluate the therapeutic effects, FbLTs and ASCLTs were subcutaneously transplanted to mouse hindlimb lymphatic drainage interruption models by removal of popliteal and subiliac lymph nodes. Despite the restricted engraftment of lymphatic vessels, ASCLT promoted regeneration of irregular and diverse lymphatic drainage in the skin, as visualized by indocyanine green imaging. Moreover, transplantation of ASCLT to the popliteal lymph node resection area also resulted in lymphatic drainage regeneration. Histological analysis of the generated drainage visualized by FITC-dextran injection revealed that the drainage was localized in the subcutaneous area shallower than the dermal muscle. These findings demonstrate that ASCLT promotes lymphatic drainage in vivo and that hASCs can serve as an autologous source for treatment of secondary lymphedema by tissue engineering.
Collapse
Affiliation(s)
- Yoshiya Asano
- Department of Neuroanatomy, Cell Biology and Histology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Hiroshi Shimoda
- Department of Neuroanatomy, Cell Biology and Histology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
- Department of Anatomical Science, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Daisuke Okano
- Department of Neuroanatomy, Cell Biology and Histology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Mitsuru Akashi
- Building Block Science, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Tian CM, Yang MF, Xu HM, Zhu MZ, Yue NN, Zhang Y, Shi RY, Yao J, Wang LS, Liang YJ, Li DF. Stem cell-derived intestinal organoids: a novel modality for IBD. Cell Death Discov 2023; 9:255. [PMID: 37479716 PMCID: PMC10362068 DOI: 10.1038/s41420-023-01556-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023] Open
Abstract
The organoids represent one of the greatest revolutions in the biomedical field in the past decade. This three-dimensional (3D) micro-organ cultured in vitro has a structure highly similar to that of the tissue and organ. Using the regeneration ability of stem cells, a 3D organ-like structure called intestinal organoids is established, which can mimic the characteristics of real intestinal organs, including morphology, function, and personalized response to specific stimuli. Here, we discuss current stem cell-based organ-like 3D intestinal models, including understanding the molecular pathophysiology, high-throughput screening drugs, drug efficacy testing, toxicological evaluation, and organ-based regeneration of inflammatory bowel disease (IBD). We summarize the advances and limitations of the state-of-the-art reconstruction platforms for intestinal organoids. The challenges, advantages, and prospects of intestinal organs as an in vitro model system for precision medicine are also discussed. Key applications of stem cell-derived intestinal organoids. Intestinal organoids can be used to model infectious diseases, develop new treatments, drug screens, precision medicine, and regenerative medicine.
Collapse
Affiliation(s)
- Cheng-Mei Tian
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
- Department of Emergency, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
| | - Mei-Feng Yang
- Department of Hematology, Yantian District People's Hospital, Shenzhen, 518020, Guangdong, China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 51000, China
| | - Min-Zheng Zhu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 51000, China
| | - Ning-Ning Yue
- Department of Gastroenterology, Shenzhen People's Hospital The Second Clinical Medical College, Jinan University, Shenzhen, 518020, Guangdong, China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, 516000, Guangdong, China
| | - Rui-Yue Shi
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| | - Yu-Jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen, 518020, Guangdong, China.
| | - De-Feng Li
- Department of Gastroenterology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
6
|
Hajiabbas M, D'Agostino C, Simińska-Stanny J, Tran SD, Shavandi A, Delporte C. Bioengineering in salivary gland regeneration. J Biomed Sci 2022; 29:35. [PMID: 35668440 PMCID: PMC9172163 DOI: 10.1186/s12929-022-00819-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Salivary gland (SG) dysfunction impairs the life quality of many patients, such as patients with radiation therapy for head and neck cancer and patients with Sjögren’s syndrome. Multiple SG engineering strategies have been considered for SG regeneration, repair, or whole organ replacement. An in-depth understanding of the development and differentiation of epithelial stem and progenitor cells niche during SG branching morphogenesis and signaling pathways involved in cell–cell communication constitute a prerequisite to the development of suitable bioengineering solutions. This review summarizes the essential bioengineering features to be considered to fabricate an engineered functional SG model using various cell types, biomaterials, active agents, and matrix fabrication methods. Furthermore, recent innovative and promising approaches to engineering SG models are described. Finally, this review discusses the different challenges and future perspectives in SG bioengineering.
Collapse
Affiliation(s)
- Maryam Hajiabbas
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070, Brussels, Belgium
| | - Claudia D'Agostino
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070, Brussels, Belgium
| | - Julia Simińska-Stanny
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373, Wroclaw, Poland.,3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, H3A 0C7, Canada
| | - Amin Shavandi
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070, Brussels, Belgium.
| |
Collapse
|
7
|
Monteiro MV, Zhang YS, Gaspar VM, Mano JF. 3D-bioprinted cancer-on-a-chip: level-up organotypic in vitro models. Trends Biotechnol 2022; 40:432-447. [PMID: 34556340 PMCID: PMC8916962 DOI: 10.1016/j.tibtech.2021.08.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022]
Abstract
Combinatorial conjugation of organ-on-a-chip platforms with additive manufacturing technologies is rapidly emerging as a disruptive approach for upgrading cancer-on-a-chip systems towards anatomic-sized dynamic in vitro models. This valuable technological synergy has potential for giving rise to truly physiomimetic 3D models that better emulate tumor microenvironment elements, bioarchitecture, and response to multidimensional flow dynamics. Herein, we showcase the most recent advances in bioengineering 3D-bioprinted cancer-on-a-chip platforms and provide a comprehensive discussion on design guidelines and possibilities for high-throughput analysis. Such hybrid platforms represent a new generation of highly sophisticated 3D tumor models with improved biomimicry and predictability of therapeutics performance.
Collapse
Affiliation(s)
- Maria V Monteiro
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Vítor M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
8
|
Herbert SL, Fick A, Heydarian M, Metzger M, Wöckel A, Rudel T, Kozjak-Pavlovic V, Wulff C. Establishment of the SIS scaffold-based 3D model of human peritoneum for studying the dissemination of ovarian cancer. J Tissue Eng 2022; 13:20417314221088514. [PMID: 35340423 PMCID: PMC8949747 DOI: 10.1177/20417314221088514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/03/2022] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is the second most common gynecological malignancy in women. More than 70% of the cases are diagnosed at the advanced stage, presenting as primary peritoneal metastasis, which results in a poor 5-year survival rate of around 40%. Mechanisms of peritoneal metastasis, including adhesion, migration, and invasion, are still not completely understood and therapeutic options are extremely limited. Therefore, there is a strong requirement for a 3D model mimicking the in vivo situation. In this study, we describe the establishment of a 3D tissue model of the human peritoneum based on decellularized porcine small intestinal submucosa (SIS) scaffold. The SIS scaffold was populated with human dermal fibroblasts, with LP-9 cells on the apical side representing the peritoneal mesothelium, while HUVEC cells on the basal side of the scaffold served to mimic the endothelial cell layer. Functional analyses of the transepithelial electrical resistance (TEER) and the FITC-dextran assay indicated the high barrier integrity of our model. The histological, immunohistochemical, and ultrastructural analyses showed the main characteristics of the site of adhesion. Initial experiments using the SKOV-3 cell line as representative for ovarian carcinoma demonstrated the usefulness of our models for studying tumor cell adhesion, as well as the effect of tumor cells on endothelial cell-to-cell contacts. Taken together, our data show that the novel peritoneal 3D tissue model is a promising tool for studying the peritoneal dissemination of ovarian cancer.
Collapse
Affiliation(s)
- Saskia-Laureen Herbert
- Department of Obstetrics and Gynaecology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Andrea Fick
- Department of Obstetrics and Gynaecology, University Hospital Wuerzburg, Wuerzburg, Germany
| | | | - Marco Metzger
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Wuerzburg, Germany.,Fraunhofer ISC, Translational Centre Regenerative Medicine TLC-RT, Wuerzburg, Germany
| | - Achim Wöckel
- Department of Obstetrics and Gynaecology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Thomas Rudel
- Department of Microbiology, Biocentre, University of Wuerzburg, Wuerzburg, Germany
| | - Vera Kozjak-Pavlovic
- Department of Microbiology, Biocentre, University of Wuerzburg, Wuerzburg, Germany
| | - Christine Wulff
- Department of Obstetrics and Gynaecology, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
9
|
Construction of transplantable artificial vascular tissue based on adipose tissue-derived mesenchymal stromal cells by a cell coating and cryopreservation technique. Sci Rep 2021; 11:17989. [PMID: 34504254 PMCID: PMC8429436 DOI: 10.1038/s41598-021-97547-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 08/26/2021] [Indexed: 02/07/2023] Open
Abstract
Prevascularized artificial three-dimensional (3D) tissues are effective biomaterials for regenerative medicine. We have previously established a scaffold-free 3D artificial vascular tissue from normal human dermal fibroblasts (NHDFs) and umbilical vein-derived endothelial cells (HUVECs) by layer-by-layer cell coating technique. In this study, we constructed an artificial vascular tissue constructed by human adipose tissue-derived stromal cells (hASCs) and HUVECs (ASCVT) by a modified technique with cryopreservation. ASCVT showed a higher thickness with more dense vascular networks than the 3D tissue based on NHDFs. Correspondingly, 3D-cultured ASCs showed higher expression of several angiogenesis-related factors, including vascular endothelial growth factor-A and hepatic growth factor, compared to that of NHDFs. Moreover, perivascular cells in ASCVT were detected by pericyte markers, suggesting the differentiation of hASCs into pericyte-like cells. Subcutaneous transplantation of ASCVTs to nude mice resulted in an engraftment with anastomosis of host's vascular structures at 2 weeks after operation. In the engrafted tissue, the vascular network was surrounded by mural-like structure-forming hASCs, in which some parts developed to form vein-like structures at 4 weeks, suggesting the generation of functional vessel networks. These results demonstrated that cryopreserved human cells, including hASCs, could be used directly to construct the artificial transplantable tissue for regenerative medicine.
Collapse
|
10
|
Akashi M, Akagi T. Composite Materials by Building Block Chemistry Using Weak Interaction. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210089] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mitsuru Akashi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takami Akagi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
11
|
Kuno H, Akagi T, Fukui E, Yamato H, Akashi M, Shintani Y. Three-Dimensional Idiopathic Pulmonary Fibrosis Model Using a Layer-by-Layer Cell Coating Technique. Tissue Eng Part C Methods 2021; 27:378-390. [PMID: 34074128 DOI: 10.1089/ten.tec.2020.0365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe health problem characterized by progressive fibroblast proliferation and aberrant vascular remodeling. However, the lack of a suitable in vitro model that replicates cell-specific changes in IPF tissue is a crucial issue. Three-dimensional (3D) cell cultures allow the mimicking of cell-specific functions, facilitating development of novel antifibrosis drugs. We have established a layer-by-layer (LbL) cell coating technique that enables the construction of 3D tissue and also vascularized 3D tissue. This study evaluated whether this technique is beneficial for constructing an in vitro IPF-3D model using human lung fibroblasts and microvascular endothelial cells. We fabricated an in vitro IPF-3D model to provide IPF-derived fibroblasts-specific function and aberrant microvascular structure using the LbL cell coating technique. We also found that this in vitro IPF-3D model showed drug responsiveness to two antifibrosis drugs that have recently been approved worldwide. This in vitro IPF-3D model constructed by a LbL cell coating technique would help in the understanding of fibroblast function and the microvascular environment in IPF and could also be used to predict the efficacy of novel antifibrosis drugs. Impact statement We established a novel in vitro model mimicking idiopathic pulmonary fibrosis. Three-dimensional culture was constructed by layer-by-layer cell coating technique. This novel model provides a visualization of fibroblast-specific function. This assay allows for the assessment of pulmonary microvascular environment. Our model may be useful for predicting the efficacy of novel antifibrosis drugs.
Collapse
Affiliation(s)
- Hidenori Kuno
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Takami Akagi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Eriko Fukui
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hiroyuki Yamato
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Mitsuru Akashi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
12
|
Barrows CM, Wu D, Farach-Carson MC, Young S. Building a Functional Salivary Gland for Cell-Based Therapy: More than Secretory Epithelial Acini. Tissue Eng Part A 2020; 26:1332-1348. [PMID: 32829674 PMCID: PMC7759264 DOI: 10.1089/ten.tea.2020.0184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/20/2020] [Indexed: 11/13/2022] Open
Abstract
A few treatment options exist for patients experiencing xerostomia due to hyposalivation that occurs as a result of disease or injury to the gland. An opportunity for a permanent solution lies in the field of salivary gland replacement through tissue engineering. Recent success emboldens in the vision of producing a tissue-engineered salivary gland composed of differentiated salivary epithelial cells that are able to differentiate to form functional units that produce and deliver saliva to the oral cavity. This vision is augmented by advances in understanding cellular mechanisms that guide branching morphogenesis and salivary epithelial cell polarization in both acinar and ductal structures. Growth factors and other guidance cues introduced into engineered constructs help to develop a more complex glandular structure that seeks to mimic native salivary gland tissue. This review describes the separate epithelial phenotypes that make up the gland, and it describes their relationship with the other cell types such as nerve and vasculature that surround them. The review is organized around the links between the native components that form and contribute to various aspects of salivary gland development, structure, and function and how this information can drive the design of functional tissue-engineered constructs. In addition, we discuss the attributes of various biomaterials commonly used to drive function and form in engineered constructs. The review also contains a current description of the state-of-the-art of the field, including successes and challenges in creating materials for preclinical testing in animal models. The ability to integrate biomolecular cues in combination with a range of materials opens the door to the design of increasingly complex salivary gland structures that, once accomplished, can lead to breakthroughs in other fields of tissue engineering of epithelial-based exocrine glands or oral tissues.
Collapse
Affiliation(s)
- Caitlynn M.L. Barrows
- Department of Diagnostic and Biomedical Sciences and The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, USA
- Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, USA
| | - Danielle Wu
- Department of Diagnostic and Biomedical Sciences and The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, USA
| | - Mary C. Farach-Carson
- Department of Diagnostic and Biomedical Sciences and The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, USA
- Department of Biosciences and Rice University, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Simon Young
- Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, Texas, USA
| |
Collapse
|
13
|
Nishiyama K, Akagi T, Iwai S, Akashi M. Construction of Vascularized Oral Mucosa Equivalents Using a Layer-by-Layer Cell Coating Technology. Tissue Eng Part C Methods 2020; 25:262-275. [PMID: 30838934 DOI: 10.1089/ten.tec.2018.0337] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
There have been many advances in tissue engineering with respect to in vitro and in vivo models of oral mucosa equivalents (OMEs). To apply in vitro reconstructed oral mucosa models to regenerative medicine and alternatives to animal testing, it is necessary to develop the technology of reconstructing different types of oral tissues, such as control of epithelial differentiation and introduction of appendages. We previously reported that functional three-dimensional (3D) tissue models could be quickly constructed by using a layer-by-layer (LbL) cell coating technique that assembles extracellular matrix (ECM) nanofilms to a cell surface. In this study, 3D human OMEs composed of lamina-propria, keratinized or non-keratinized epithelium, and blood capillaries were constructed by using the LbL cell coating technology. Human oral mucosal fibroblasts (HOMFs) were coated with ECM nanofilms and accumulated for the construction of oral mucosal lamina-propria. To construct OMEs with keratinized or non-keratinized epithelium, human oral keratinocytes isolated from gingiva (human oral gingival keratinocytes: HOGKs) or human oral keratinocytes isolated from oral mucosa (human oral mucosal keratinocytes: HOMKs) were used in this study. We further studied the construction of epithelialized OMEs with density- and size-controlled blood capillary networks by using human umbilical vein endothelial cells (HUVECs). It was revealed that these constructions had barrier functions in accordance with their histological characterization. The OMEs with keratinization (K-OMEs) showed higher transepithelial electrical resistance (TEER) values compared with OMEs with non-keratinization (N-OMEs). The constructed epithelialized OMEs with blood capillaries are useful for in vitro/ex vivo research models and regenerative medicine as in oral tissue regeneration. The results suggest that OMEs with oral tissue appendages are more promising alternatives to animal testing and can be applied to the design of in vitro oral models that mimic human tissue organs.
Collapse
Affiliation(s)
- Kyoko Nishiyama
- 1 Department of Oral and Maxillofacial Surgery II, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Takami Akagi
- 2 Building Block Science Joint Research Chair, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Soichi Iwai
- 1 Department of Oral and Maxillofacial Surgery II, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Mitsuru Akashi
- 2 Building Block Science Joint Research Chair, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
14
|
Nishiguchi A, Matsusaki M, Kano MR, Nishihara H, Okano D, Asano Y, Shimoda H, Kishimoto S, Iwai S, Akashi M. In vitro 3D blood/lymph-vascularized human stromal tissues for preclinical assays of cancer metastasis. Biomaterials 2018; 179:144-155. [PMID: 29986232 DOI: 10.1016/j.biomaterials.2018.06.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/09/2018] [Accepted: 06/14/2018] [Indexed: 11/16/2022]
Abstract
Tumour models mimicking in vivo three-dimensional (3D) microenvironments are of increasing interest in drug discovery because of the limitations inherent to current models. For example, preclinical assays that rely on monolayer or spheroid cell cultures cannot easily predict 3D cancer behaviours because they have no vasculature. Furthermore, there are major differences in cancer behaviour between human and animal experiments. Here, we show the construction of 3D blood/lymph-vascularized human stromal tissues that can be combined with cancer cells to mimic dynamic metastasis for real-time throughput screening of secreted proteinases. We validated this tool using three human carcinoma cell types that are known to invade blood/lymph vessels and promote angiogenesis. These cell types exhibited characteristic haematogenous/lymphogenous metastasis and tumour angiogenesis properties. Importantly, these carcinoma cells selectively secreted different matrix metalloproteinases depending on their metastasis stage and target vasculature, suggesting the possibility of developing drugs that can target each secreted proteinase. We conclude that the 3D tissue tool will be a powerful throughput system for predicting cancer cell responses and time-dependent secretion of molecules in preclinical assays.
Collapse
Affiliation(s)
- Akihiro Nishiguchi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama, Japan
| | - Mitsunobu R Kano
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo Bunkyoku, Tokyo 113-0033, Japan; Department of Pharmaceutical Biomedicine, Okayama University, 1-1-1 Tsushima-Naka Kita-ku, Okayama 700-8530, Japan
| | - Hiroshi Nishihara
- Department of Translational Pathology, Hokkaido University, Graduate School of Medicine, North 15, West 7, Kita-ku, Sapporo 060-8638, Japan
| | - Daisuke Okano
- Department of Anatomical Science, and Cell Biology and Histology, Hirosaki University, Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Yoshiya Asano
- Department of Anatomical Science, and Cell Biology and Histology, Hirosaki University, Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Hiroshi Shimoda
- Department of Anatomical Science, and Cell Biology and Histology, Hirosaki University, Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Japan
| | - Satoko Kishimoto
- Department of Oral and Maxillofacial Surgery II, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Soichi Iwai
- Department of Oral and Maxillofacial Surgery II, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mitsuru Akashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
15
|
Asano Y, Shimoda H, Matsusaki M, Akashi M. Transplantation of artificial human lymphatic vascular tissues fabricated using a cell‐accumulation technique and their engraftment in mouse tissue with vascular remodelling. J Tissue Eng Regen Med 2017; 12:e1501-e1510. [DOI: 10.1002/term.2570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 07/31/2017] [Accepted: 08/31/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Yoshiya Asano
- Department of Neuroanatomy, Cell Biology and HistologyHirosaki University Graduate School of Medicine Hirosaki Aomori Japan
| | - Hiroshi Shimoda
- Department of Neuroanatomy, Cell Biology and HistologyHirosaki University Graduate School of Medicine Hirosaki Aomori Japan
- Department of Anatomical ScienceHirosaki University Graduate School of Medicine Hirosaki Aomori Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of EngineeringOsaka University Osaka Japan
| | - Mitsuru Akashi
- Building Block Science, Graduate School of Frontier BiosciencesOsaka University Osaka Japan
| |
Collapse
|
16
|
Asano Y, Odagiri T, Oikiri H, Matsusaki M, Akashi M, Shimoda H. Construction of artificial human peritoneal tissue by cell-accumulation technique and its application for visualizing morphological dynamics of cancer peritoneal metastasis. Biochem Biophys Res Commun 2017; 494:213-219. [DOI: 10.1016/j.bbrc.2017.10.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023]
|
17
|
Engraftment and morphological development of vascularized human iPS cell-derived 3D-cardiomyocyte tissue after xenotransplantation. Sci Rep 2017; 7:13708. [PMID: 29057926 PMCID: PMC5651879 DOI: 10.1038/s41598-017-14053-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 10/06/2017] [Indexed: 02/06/2023] Open
Abstract
One of the major challenges in cell-based cardiac regenerative medicine is the in vitro construction of three-dimensional (3D) tissues consisting of induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM) and a blood vascular network supplying nutrients and oxygen throughout the tissue after implantation. We have successfully built a vascularized iPSC-CM 3D-tissue using our validated cell manipulation technique. In order to evaluate an availability of the 3D-tissue as a biomaterial, functional morphology of the tissues was examined by light and transmission electron microscopy through their implantation into the rat infarcted heart. Before implantation, the tissues showed distinctive myofibrils within iPSC-CMs and capillary-like endothelial tubes, but their profiles were still like immature. In contrast, engraftment of the tissues to the rat heart led the iPSC-CMs and endothelial tubes into organization of cell organelles and junctional apparatuses and prompt development of capillary network harboring host blood supply, respectively. A number of capillaries in the implanted tissues were derived from host vascular bed, whereas the others were likely to be composed by fusion of host and implanted endothelial cells. Thus, our vascularized iPSC-CM 3D-tissues may be a useful regenerative paradigm which will require additional expanded and long-term studies.
Collapse
|
18
|
Akagi T, Nagura M, Hiura A, Kojima H, Akashi M. Construction of Three-Dimensional Dermo–Epidermal Skin Equivalents Using Cell Coating Technology and Their Utilization as Alternative Skin for Permeation Studies and Skin Irritation Tests. Tissue Eng Part A 2017; 23:481-490. [DOI: 10.1089/ten.tea.2016.0529] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Takami Akagi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Mayuka Nagura
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- BioMedical Technology HYBRID Co., Ltd., Kagoshima, Japan
| | - Ayami Hiura
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Hajime Kojima
- Biological Safety Research Center, National Institute of Health Sciences, Tokyo, Japan
| | - Mitsuru Akashi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
19
|
Sasaki K, Akagi T, Asaoka T, Eguchi H, Fukuda Y, Iwagami Y, Yamada D, Noda T, Wada H, Gotoh K, Kawamoto K, Doki Y, Mori M, Akashi M. Construction of three-dimensional vascularized functional human liver tissue using a layer-by-layer cell coating technique. Biomaterials 2017; 133:263-274. [PMID: 28448819 DOI: 10.1016/j.biomaterials.2017.02.034] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/19/2017] [Accepted: 02/26/2017] [Indexed: 12/14/2022]
Abstract
The creation of artificial liver tissue is an active area of research due to the shortage of donors for liver transplantation. Here we investigated whether a simple and efficient cell coating technique developed in our laboratory could be used to generate functional vascularized liver tissue. This technique creates three-dimensional tissue by loading cells sterically onto other cells that have been coated with layer-by-layer (LbL) nanofilms of fibronectin and gelatin, two extracellular matrix proteins. We used this technique to construct homogenous, dense, well-vascularized liver tissue from cryopreserved human primary hepatocytes, human umbilical vein endothelial cells, and normal human dermal fibroblasts. Using LbL cell coating technique resulted in higher cellular function in terms of human albumin production (P < 0.01) and cytochrome P450 activity (P < 0.01) in vitro. Furthermore, after being transplanted subcutaneously into NOD/SCID mice, the vascularized liver tissue showed greater albumin production in the early stage than non-vascularized tissue or a hepatocyte suspension (P < 0.01). Histological examination demonstrated that compare to non-vascularized tissue, there were many less-morphologically changed and intact hepatocytes in the vascularized tissue. This cell coating technique would be applicable to the generation of vascularized functional liver tissue for regenerative medicine in the future.
Collapse
Affiliation(s)
- Kazuki Sasaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Japan
| | - Takami Akagi
- Building Block Science Joint Research Chair, Graduate School of Frontier Biosciences, Osaka University, Japan
| | - Tadafumi Asaoka
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Japan
| | - Yasunari Fukuda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Japan
| | - Hiroshi Wada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Japan
| | - Kunihito Gotoh
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Japan
| | - Koichi Kawamoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Japan
| | - Mitsuru Akashi
- Building Block Science Joint Research Chair, Graduate School of Frontier Biosciences, Osaka University, Japan.
| |
Collapse
|
20
|
Tsunenaga M. Heparanase Inhibitors Facilitate the Assembly of the Basement Membrane in Artificial Skin. ACTA ACUST UNITED AC 2016; 5:113-122. [PMID: 27853671 PMCID: PMC5070419 DOI: 10.2174/2211542005666160725154356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent research suggests that the basement membrane at the dermal-epidermal junction of the skin plays an important role in maintaining a healthy epidermis and dermis, and repeated damage to the skin can destabilize the skin and accelerate the aging process. Skin-equivalent models are suitable for studying the reconstruction of the basement membrane and its contribution to epidermal homeostasis because they lack the basement membrane and show abnormal expression of epidermal differentiation markers. By using these models, it has been shown that reconstruction of the basement membrane is enhanced not only by supplying basement membrane components, but also by inhibiting proteinases such as urokinase and matrix metalloproteinase. Although matrix metalloproteinase inhibitors assist in the reconstruction of the basement membrane structure, their action is not sufficient to promote its functional recovery. However, heparanase inhibitors stabilize the heparan sulfate chains of perlecan (a heparan sulfate proteoglycan) and promote the regulation of heparan sulfate binding growth factors in the basement membrane. Heparan sulfate promotes effective protein-protein interactions, thereby facilitating the assembly of type VII collagen anchoring fibrils and elastin-associated microfibrils. Using both matrix metalloproteinase inhibitors and heparanase inhibitors, the basement membrane in a skin-equivalent model comes close to recapitulating the structure and function of an in vivo basement membrane. Therefore, by using an appropriate dermis model and suitable protease inhibitors, it may be possible to produce skin-equivalent models that are more similar to natural skin
Collapse
Affiliation(s)
- Makoto Tsunenaga
- Shiseido Research Center, 2-2-1 Hayabuchi, Tsuzuki-ku, Yokohama 224-8558, Japan
| |
Collapse
|
21
|
Hikimoto D, Nishiguchi A, Matsusaki M, Akashi M. High-Throughput Blood- and Lymph-Capillaries with Open-Ended Pores Which Allow the Transport of Drugs and Cells. Adv Healthc Mater 2016; 5:1969-78. [PMID: 27116104 DOI: 10.1002/adhm.201600180] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/04/2016] [Indexed: 12/30/2022]
Abstract
High-throughput screening of drug diffusion and cell transports from the blood-/lymph-capillary (BC/LC) networks to the peripheral cells in 3D engineered tissues using a microplate would make a powerful tool for in vitro pharmacokinetic assessments. Here, perfusable BC/LC networks embedded in 3D-tissues inside a 24-microplate using a cell-coating technology are reported which allows location control of cell layers. Arrangement of an endothelial cell layer at the top, middle, and bottom of dermal fibroblast tissues provides an interconnected BC/LC networks possessing open pores on both surfaces. When fluorescently labeled dextran, microparticles, and red blood cells are applied to the top surfaces, diffusion and penetration through the networks are observed depending on the size of the substances. Moreover, BC networks mimick a series of in vivo processes of cancer metastasis, extravasation, growth, and growth suppression with drug treatment. The perfusable networks existing in 3D-tissues show great potential for in vitro pharmacokinetic studies.
Collapse
Affiliation(s)
- Daichi Hikimoto
- Department of Applied Chemistry; Graduate School of Engineering; Osaka University; 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Akihiro Nishiguchi
- Department of Applied Chemistry; Graduate School of Engineering; Osaka University; 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry; Graduate School of Engineering; Osaka University; 2-1 Yamadaoka Suita Osaka 565-0871 Japan
- JST, PRESTO; 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| | - Mitsuru Akashi
- Department of Applied Chemistry; Graduate School of Engineering; Osaka University; 2-1 Yamadaoka Suita Osaka 565-0871 Japan
| |
Collapse
|
22
|
Engineering tissues with a perfusable vessel-like network using endothelialized alginate hydrogel fiber and spheroid-enclosing microcapsules. Heliyon 2016; 2:e00067. [PMID: 27441246 PMCID: PMC4946008 DOI: 10.1016/j.heliyon.2016.e00067] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/04/2016] [Accepted: 01/20/2016] [Indexed: 12/18/2022] Open
Abstract
Development of the technique for constructing an internal perfusable vascular network is a challenging issue in fabrication of dense three-dimensional tissues in vitro. Here, we report a method for realizing it. We assembled small tissue (about 200 μm in diameter)-enclosing hydrogel microcapsules and a single hydrogel fiber, both covered with human vascular endothelial cells in a collagen gel. The microcapsules and fiber were made from alginate and gelatin derivatives, and had cell adhesive surfaces. The endothelial cells on the hydrogel constructs sprouted and spontaneously formed a network connecting the hydrogel constructs with each other in the collagen gel. Perfusable vascular network-like structure formation after degrading the alginate-based hydrogel constructs by alginate lyase was confirmed by introducing solution containing tracer particles of about 3 μm in diameter into the lumen templated by the alginate hydrogel fiber. The introduced solution flowed into the spontaneously formed capillary branches and passed around the individual spherical tissues.
Collapse
|
23
|
Lee JW, Choi YJ, Yong WJ, Pati F, Shim JH, Kang KS, Kang IH, Park J, Cho DW. Development of a 3D cell printed construct considering angiogenesis for liver tissue engineering. Biofabrication 2016; 8:015007. [DOI: 10.1088/1758-5090/8/1/015007] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Asano Y, Shimoda H, Okano D, Matsusaki M, Akashi M. Transplantation of three-dimensional artificial human vascular tissues fabricated using an extracellular matrix nanofilm-based cell-accumulation technique. J Tissue Eng Regen Med 2015; 11:1303-1307. [DOI: 10.1002/term.2108] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 09/30/2015] [Accepted: 10/15/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Yoshiya Asano
- Department of Neuroanatomy, Cell Biology and Histology; Hirosaki University Graduate School of Medicine; Japan
| | - Hiroshi Shimoda
- Department of Neuroanatomy, Cell Biology and Histology; Hirosaki University Graduate School of Medicine; Japan
- Department of Anatomical Science; Hirosaki University Graduate School of Medicine; Japan
| | - Daisuke Okano
- Department of Neuroanatomy, Cell Biology and Histology; Hirosaki University Graduate School of Medicine; Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering; Osaka University; Japan
| | - Mitsuru Akashi
- Department of Applied Chemistry, Graduate School of Engineering; Osaka University; Japan
| |
Collapse
|
25
|
Development of full-thickness human skin equivalents with blood and lymph-like capillary networks by cell coating technology. J Biomed Mater Res A 2015; 103:3386-96. [DOI: 10.1002/jbm.a.35473] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/11/2015] [Accepted: 04/02/2015] [Indexed: 12/23/2022]
|
26
|
Nishiguchi A, Matsusaki M, Miyagawa S, Sawa Y, Akashi M. Dynamic nano-interfaces enable harvesting of functional 3D-engineered tissues. Adv Healthc Mater 2015; 4:1164-8. [PMID: 25728509 DOI: 10.1002/adhm.201500065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Indexed: 12/11/2022]
Abstract
Functional 3D-engineered tissues are successfully harvested from a substrate using stimuli-responsive hydrogel films with dynamic nano-interface. The dynamic wettability control at the interfaces allows cellular detachment, leading to tissue harvesting without serious damage and remaining polymers. This method can be applied to various types of organs and used for tissue transplantation in regenerative medicine.
Collapse
Affiliation(s)
- Akihiro Nishiguchi
- Department of Applied Chemistry; Graduate School of Engineering; Osaka University; 2-1 Yamada-oka Suita Osaka 565-0871 Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry; Graduate School of Engineering; Osaka University; 2-1 Yamada-oka Suita Osaka 565-0871 Japan
| | - Shigeru Miyagawa
- Department of Surgery; Division of Cardiovascular Surgery; Graduate School of Medicine; Osaka University; 2-2 Yamada-oka Suita Osaka 565-0087 Japan
| | - Yoshiki Sawa
- Department of Surgery; Division of Cardiovascular Surgery; Graduate School of Medicine; Osaka University; 2-2 Yamada-oka Suita Osaka 565-0087 Japan
| | - Mitsuru Akashi
- Department of Applied Chemistry; Graduate School of Engineering; Osaka University; 2-1 Yamada-oka Suita Osaka 565-0871 Japan
| |
Collapse
|
27
|
Sakai S, Liu Y, Sengoku M, Taya M. Cell-selective encapsulation in hydrogel sheaths via biospecific identification and biochemical cross-linking. Biomaterials 2015; 53:494-501. [PMID: 25890746 DOI: 10.1016/j.biomaterials.2015.02.119] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 02/21/2015] [Accepted: 02/27/2015] [Indexed: 01/16/2023]
Abstract
Selective encapsulation of a particular cell population from heterogeneous cell populations has potential applications such as studies in cell-to-cell communication, regenerative medicine, and cell therapies. However, there are no versatile methods for realizing this. Here we report a method based on biospecific identification of the target cells through antigen-antibody reaction and subsequent enzymatic hydrogel sheath formation on the cell surfaces by horseradish peroxidase (HRP). Human hepatoma cell line HepG2 cells were selectively encapsulated in alginate-based hydrogel sheath from the mixture with mouse embryo fibroblast-like cell line 10T1/2 fibroblasts using anti-human CD326 antibody conjugated with HRP. The viability of the encapsulated cells was 93%. The cells released at 6 days of the encapsulation by degrading the sheath using alginate lyase grew almost the same as those free from encapsulation. The versatility of the method was confirmed using another antibody, cells, and hydrogel sheath material: Only human vein endothelial cells were encapsulated in gelatin-based hydrogel sheath from the mixture with 10T1/2 fibroblasts using anti-human CD31 antibody conjugated with HRP. The cell-selective encapsulation was also achieved by a system using a primary antibody with a secondary antibody conjugated with HRP.
Collapse
Affiliation(s)
- Shinji Sakai
- Department of Materials Science and Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.
| | - Yang Liu
- Department of Materials Science and Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Mikako Sengoku
- Department of Materials Science and Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | - Masahito Taya
- Department of Materials Science and Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
28
|
3D-fibroblast tissues constructed by a cell-coat technology enhance tight-junction formation of human colon epithelial cells. Biochem Biophys Res Commun 2015; 457:363-9. [DOI: 10.1016/j.bbrc.2014.12.118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 12/30/2014] [Indexed: 11/18/2022]
|