1
|
Schwarz M, Lossow K, Schirl K, Hackler J, Renko K, Kopp JF, Schwerdtle T, Schomburg L, Kipp AP. Copper interferes with selenoprotein synthesis and activity. Redox Biol 2020; 37:101746. [PMID: 33059313 PMCID: PMC7567034 DOI: 10.1016/j.redox.2020.101746] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 12/19/2022] Open
Abstract
Selenium and copper are essential trace elements for humans, needed for the biosynthesis of enzymes contributing to redox homeostasis and redox-dependent signaling pathways. Selenium is incorporated as selenocysteine into the active site of redox-relevant selenoproteins including glutathione peroxidases (GPX) and thioredoxin reductases (TXNRD). Copper-dependent enzymes mediate electron transfer and other redox reactions. As selenoprotein expression can be modulated e.g. by H2O2, we tested the hypothesis that copper status affects selenoprotein expression. To this end, hepatocarcinoma HepG2 cells and mice were exposed to a variable copper and selenium supply in a physiologically relevant concentration range, and transcript and protein expression as well as GPX and TXNRD activities were compared. Copper suppressed selenoprotein mRNA levels of GPX1 and SELENOW, downregulated GPX and TXNRD activities and decreased UGA recoding efficiency in reporter cells. The interfering effects were successfully suppressed by applying the copper chelators bathocuproinedisulfonic acid or tetrathiomolybdate. In mice, a decreased copper supply moderately decreased the copper status and negatively affected hepatic TXNRD activity. We conclude that there is a hitherto unknown interrelationship between copper and selenium status, and that copper negatively affects selenoprotein expression and activity most probably via limiting UGA recoding. This interference may be of physiological relevance during aging, where a particular shift in the selenium to copper ratio has been reported. An increased concentration of copper in face of a downregulated selenoprotein expression may synergize and negatively affect the cellular redox homeostasis contributing to disease processes.
Collapse
Affiliation(s)
- Maria Schwarz
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, 07743, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany
| | - Kristina Lossow
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, 07743, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany; German Institute of Human Nutrition, Nuthetal, 14558, Germany
| | - Katja Schirl
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Julian Hackler
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany; Institute for Experimental Endocrinology, Charité - University Medical School Berlin, Berlin, 13353, Germany
| | - Kostja Renko
- Institute for Experimental Endocrinology, Charité - University Medical School Berlin, Berlin, 13353, Germany; German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Johannes Florian Kopp
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany; Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, 14558, Germany
| | - Tanja Schwerdtle
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany; German Federal Institute for Risk Assessment (BfR), Berlin, Germany; Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, 14558, Germany
| | - Lutz Schomburg
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany; Institute for Experimental Endocrinology, Charité - University Medical School Berlin, Berlin, 13353, Germany
| | - Anna Patricia Kipp
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, 07743, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany.
| |
Collapse
|
2
|
Finke H, Winkelbeiner N, Lossow K, Hertel B, Wandt VK, Schwarz M, Pohl G, Kopp JF, Ebert F, Kipp AP, Schwerdtle T. Effects of a Cumulative, Suboptimal Supply of Multiple Trace Elements in Mice: Trace Element Status, Genomic Stability, Inflammation, and Epigenetics. Mol Nutr Food Res 2020; 64:e2000325. [PMID: 32609929 DOI: 10.1002/mnfr.202000325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/05/2020] [Indexed: 12/15/2022]
Abstract
SCOPE Trace element (TE) deficiencies often occur accumulated, as nutritional intake is inadequate for several TEs, concurrently. Therefore, the impact of a suboptimal supply of iron, zinc, copper, iodine, and selenium on the TE status, health parameters, epigenetics, and genomic stability in mice are studied. METHODS AND RESULTS Male mice receive reduced or adequate amounts of TEs for 9 weeks. The TE status is analyzed mass-spectrometrically in serum and different tissues. Furthermore, gene and protein expression of TE biomarkers are assessed with focus on liver. Iron concentrations are most sensitive toward a reduced supply indicated by increased serum transferrin levels and altered hepatic expression of iron-related genes. Reduced TE supply results in smaller weight gain but higher spleen and heart weights. Additionally, inflammatory mediators in serum and liver are increased together with hepatic genomic instability. However, global DNA (hydroxy)methylation is unaffected by the TE modulation. CONCLUSION Despite homeostatic regulation of most TEs in response to a low intake, this condition still has substantial effects on health parameters. It appears that the liver and immune system react particularly sensitive toward changes in TE intake. The reduced Fe status might be the primary driver for the observed effects.
Collapse
Affiliation(s)
- Hannah Finke
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany
| | - Nicola Winkelbeiner
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany.,TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena, Germany
| | - Kristina Lossow
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich-Schiller University Jena, Dornburger Straße 24, Jena, 07743, Germany.,German Institute of Human Nutrition, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany.,TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena, Germany
| | - Barbara Hertel
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany
| | - Viktoria K Wandt
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany.,TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena, Germany
| | - Maria Schwarz
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich-Schiller University Jena, Dornburger Straße 24, Jena, 07743, Germany.,TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena, Germany
| | - Gabriele Pohl
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany
| | - Johannes F Kopp
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany.,TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena, Germany
| | - Franziska Ebert
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany.,TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena, Germany
| | - Anna P Kipp
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich-Schiller University Jena, Dornburger Straße 24, Jena, 07743, Germany.,TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena, Germany
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany.,TraceAge - DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena, Germany.,German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, Berlin, 10589, Germany
| |
Collapse
|
3
|
A Modern View on the Diagnostic and Therapy Anemia Chronic Diseases Problems. Fam Med 2019. [DOI: 10.30841/2307-5112.3.2019.178588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Doguer C, Ha JH, Collins JF. Intersection of Iron and Copper Metabolism in the Mammalian Intestine and Liver. Compr Physiol 2018; 8:1433-1461. [PMID: 30215866 DOI: 10.1002/cphy.c170045] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Iron and copper have similar physiochemical properties; thus, physiologically relevant interactions seem likely. Indeed, points of intersection between these two essential trace minerals have been recognized for many decades, but mechanistic details have been lacking. Investigations in recent years have revealed that copper may positively influence iron homeostasis, and also that iron may antagonize copper metabolism. For example, when body iron stores are low, copper is apparently redistributed to tissues important for regulating iron balance, including enterocytes of upper small bowel, the liver, and blood. Copper in enterocytes may positively influence iron transport, and hepatic copper may enhance biosynthesis of a circulating ferroxidase, ceruloplasmin, which potentiates iron release from stores. Moreover, many intestinal genes related to iron absorption are transactivated by a hypoxia-inducible transcription factor, hypoxia-inducible factor-2α (HIF2α), during iron deficiency. Interestingly, copper influences the DNA-binding activity of the HIF factors, thus further exemplifying how copper may modulate intestinal iron homeostasis. Copper may also alter the activity of the iron-regulatory hormone hepcidin. Furthermore, copper depletion has been noted in iron-loading disorders, such as hereditary hemochromatosis. Copper depletion may also be caused by high-dose iron supplementation, raising concerns particularly in pregnancy when iron supplementation is widely recommended. This review will cover the basic physiology of intestinal iron and copper absorption as well as the metabolism of these minerals in the liver. Also considered in detail will be current experimental work in this field, with a focus on molecular aspects of intestinal and hepatic iron-copper interplay and how this relates to various disease states. © 2018 American Physiological Society. Compr Physiol 8:1433-1461, 2018.
Collapse
Affiliation(s)
- Caglar Doguer
- Food Science and Human Nutrition Department, University of Florida, Florida, Gainesville, USA.,Nutrition and Dietetics Department, Namık Kemal University, Tekirdag, Turkey
| | - Jung-Heun Ha
- Food Science and Human Nutrition Department, University of Florida, Florida, Gainesville, USA.,Department of Food and Nutrition, Chosun University Note: Caglar Doguer and Jung-Heun Ha have contributed equally to this work., Gwangju, Korea
| | - James F Collins
- Food Science and Human Nutrition Department, University of Florida, Florida, Gainesville, USA
| |
Collapse
|
5
|
Copper therapy reduces intravascular hemolysis and derepresses ferroportin in mice with mosaic mutation (Atp7a mo-ms): An implication for copper-mediated regulation of the Slc40a1 gene expression. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1410-1421. [PMID: 28219768 DOI: 10.1016/j.bbadis.2017.02.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 02/09/2017] [Accepted: 02/15/2017] [Indexed: 02/06/2023]
Abstract
Mosaic mutant mice displaying functional dysfunction of Atp7a copper transporter (the Menkes ATPase) are an established animal model of Menkes disease and constitute a convenient tool for investigating connections between copper and iron metabolisms. This model allows to explore changes in iron metabolism in suckling mutant mice suffering from systemic copper deficiency as well as in young and adult ones undergone copper therapy, which reduces lethal effect of the Atp7a gene mutation. Our recent study demonstrated that 14-day-old mosaic mutant males display blood cell abnormalities associated with intravascular hemolysis, and show disturbances in the functioning of the hepcidin-ferroportin regulatory axis, which controls systemic iron homeostasis. We thus aimed to check whether copper supplementation recovers mutants from hemolytic insult and rebalance systemic iron regulation. Copper supplementation of 14-day-old mosaic mutants resulted in the reestablishment of hematological status, attenuation of hepicidin and concomitant induction of the iron exporter ferroportin/Slc40a1 expression in the liver, down-regulated in untreated mutants. Interestingly, treatment of wild-type males with copper, induced hepcidin-independent up-regulation of ferroportin protein level in hepatic macrophages in both young and adult (6-month-old) animals. Stimulatory effect of copper on ferroportin mRNA and protein levels was confirmed in bone marrow-derived macrophages isolated from both wild-type and mosaic mutant males. Our study indicates that copper is an important player in the regulation of the Slc40a1 gene expression.
Collapse
|
6
|
Di Bella LM, Alampi R, Biundo F, Toscano G, Felice MR. Copper chelation and interleukin-6 proinflammatory cytokine effects on expression of different proteins involved in iron metabolism in HepG2 cell line. BMC BIOCHEMISTRY 2017; 18:1. [PMID: 28118841 PMCID: PMC5259844 DOI: 10.1186/s12858-017-0076-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/09/2017] [Indexed: 12/21/2022]
Abstract
Background In vertebrates, there is an intimate relationship between copper and iron homeostasis. Copper deficiency, which leads to a defect in ceruloplasmin enzymatic activity, has a strong effect on iron homeostasis resulting in cellular iron retention. Much is known about the mechanisms underlying cellular iron retention under “normal” conditions, however, less is known about the effect of copper deficiency during inflammation. Results We show that copper deficiency and the inflammatory cytokine interleukin-6 have different effects on the expression of proteins involved in iron and copper metabolism such as the soluble and glycosylphosphtidylinositol anchored forms of ceruloplasmin, hepcidin, ferroportin1, transferrin receptor1, divalent metal transporter1 and H-ferritin subunit. We demonstrate, using the human HepG2 cell line, that in addition to ceruloplasmin isoforms, copper deficiency affects other proteins, some posttranslationally and some at the transcriptional level. The addition of interleukin-6, moreover, has different effects on expression of ferroportin1 and ceruloplasmin, in which ferroportin1 is decreased while ceruloplasmin is increased. These effects are stronger when a copper chelating agent and IL-6 are used simultaneously. Conclusions These results suggest that copper chelation has effects not only on ceruloplasmin but also on other proteins involved in iron metabolism, sometimes at the mRNA level and, in inflammatory conditions, the functions of ferroportin and ceruloplasmin may be independent.
Collapse
Affiliation(s)
- Luca Marco Di Bella
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres, 31, 98166, Messina, Italy.,Inter University National Group of Marine Sciences (CoNISMa), Piazzale Flaminio, 9, 00196, Rome, Italy
| | - Roberto Alampi
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres, 31, 98166, Messina, Italy
| | - Flavia Biundo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres, 31, 98166, Messina, Italy
| | - Giovanni Toscano
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres, 31, 98166, Messina, Italy
| | - Maria Rosa Felice
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres, 31, 98166, Messina, Italy.
| |
Collapse
|
7
|
Reeves PG, Demars LCS. Repletion of Copper-Deficient Rats with Dietary Copper Restores Duodenal Hephaestin Protein and Iron Absorption. Exp Biol Med (Maywood) 2016; 230:320-5. [PMID: 15855298 DOI: 10.1177/153537020523000505] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Copper (Cu) deficiency in rats reduces the relative concentration of duodenal hephaestin (Hp), reduces Iron (Fe) absorption, and causes anemia. An experiment was conducted to determine whether these effects could be reversed by dietary Cu repletion. Five groups of eight weanling male rats each were used. Group 1 was fed a Cu-adequate diet (5.0 mg Cu/kg; CuA) and Group 2 was fed a Cu-deflcient diet (0.25 mg Cu/kg; CuD) for 28 days. The rats were fed 1.0 g each of their respective diets labeled with 59Fe (37 kBq/g), and the amount of label retained was measured one week later by whole-body-counting (WBC). Group 3 was fed a CuA diet and Groups 4 and 5 were fed a CuD diet for 28 days. Group 5 was then fed the CuA dlet for another week while Groups 3 and 4 continued on their previous regimens. Rats In Groups 3, 4, and 5 were fed 1.0 g of diet labeled with 59Fe, and the amount of label retained was measured by WBC one week later. Rats were killed and duodenal enterocytes Isolated for Hp protein analysis, whole blood was analyzed for hematological parameters, and various organs for 59Fe content. CuD rats absorbed less (P <0.05) Fe than CuA rats, the relative amount of duodenal Hp was less (P <0.05) In CuD rate, and the CuD rats developed anemia. After the CuD rats had been repleted with Cu for one week, Fe retention rose to values even higher (P <0.05) than those in CuA rats. After two weeks, the relative amount of duodenal Hp was higher (P <0.05) than normal, and most signs of anemia were reversed. Liver 59Fe was elevated In CuD rats, but was restored to normal upon Cu repletion. These findings suggest a strong association between duodenal Hp abundance and Fe absorption In the CuD rat, and that reduced Fe absorption Is an important factor in the cause of anemia.
Collapse
Affiliation(s)
- Philip G Reeves
- USDA, ARS, Grand Forks Human Nutrition Research Center, 2420 Second Avenue North, Grand Forks, ND 58203, USA.
| | | |
Collapse
|
8
|
Lenartowicz M, Starzyński RR, Krzeptowski W, Grzmil P, Bednarz A, Ogórek M, Pierzchała O, Staroń R, Gajowiak A, Lipiński P. Haemolysis and perturbations in the systemic iron metabolism of suckling, copper-deficient mosaic mutant mice - an animal model of Menkes disease. PLoS One 2014; 9:e107641. [PMID: 25247420 PMCID: PMC4172471 DOI: 10.1371/journal.pone.0107641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/13/2014] [Indexed: 01/25/2023] Open
Abstract
The biological interaction between copper and iron is best exemplified by the decreased activity of multicopper ferroxidases under conditions of copper deficiency that limits the availability of iron for erythropoiesis. However, little is known about how copper deficiency affects iron homeostasis through alteration of the activity of other copper-containing proteins, not directly connected with iron metabolism, such as superoxide dismutase 1 (SOD1). This antioxidant enzyme scavenges the superoxide anion, a reactive oxygen species contributing to the toxicity of iron via the Fenton reaction. Here, we analyzed changes in the systemic iron metabolism using an animal model of Menkes disease: copper-deficient mosaic mutant mice with dysfunction of the ATP7A copper transporter. We found that the erythrocytes of these mutants are copper-deficient, display decreased SOD1 activity/expression and have cell membrane abnormalities. In consequence, the mosaic mice show evidence of haemolysis accompanied by haptoglobin-dependent elimination of haemoglobin (Hb) from the circulation, as well as the induction of haem oxygenase 1 (HO1) in the liver and kidney. Moreover, the hepcidin-ferroportin regulatory axis is strongly affected in mosaic mice. These findings indicate that haemolysis is an additional pathogenic factor in a mouse model of Menkes diseases and provides evidence of a new indirect connection between copper deficiency and iron metabolism.
Collapse
Affiliation(s)
- Małgorzata Lenartowicz
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, Kraków, Poland
| | - Rafał R. Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Magdalenka, Poland
| | - Wojciech Krzeptowski
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University, Kraków, Poland
| | - Paweł Grzmil
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, Kraków, Poland
| | - Aleksandra Bednarz
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, Kraków, Poland
| | - Mateusz Ogórek
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, Kraków, Poland
| | - Olga Pierzchała
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, Kraków, Poland
| | - Robert Staroń
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Magdalenka, Poland
| | - Anna Gajowiak
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Magdalenka, Poland
| | - Paweł Lipiński
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Magdalenka, Poland
| |
Collapse
|
9
|
Abstract
Given their similar physiochemical properties, it is a logical postulate that iron and copper metabolism are intertwined. Indeed, iron-copper interactions were first documented over a century ago, but the homeostatic effects of one on the other has not been elucidated at a molecular level to date. Recent experimental work has, however, begun to provide mechanistic insight into how copper influences iron metabolism. During iron deficiency, elevated copper levels are observed in the intestinal mucosa, liver, and blood. Copper accumulation and/or redistribution within enterocytes may influence iron transport, and high hepatic copper may enhance biosynthesis of a circulating ferroxidase, which potentiates iron release from stores. Moreover, emerging evidence has documented direct effects of copper on the expression and activity of the iron-regulatory hormone hepcidin. This review summarizes current experimental work in this field, with a focus on molecular aspects of iron-copper interplay and how these interactions relate to various disease states.
Collapse
Affiliation(s)
- Sukru Gulec
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida 32611;
| | | |
Collapse
|
10
|
Copper deficiency has minimal impact on ferroportin expression or function. Biometals 2012; 25:633-42. [PMID: 22294464 DOI: 10.1007/s10534-012-9521-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/07/2012] [Indexed: 02/08/2023]
Abstract
Interactions between copper and iron homeostasis have been known since the nineteenth century when anemia in humans was first described due to copper limitation. However, the mechanism remains unknown. Intestinal and liver iron concentrations are usually higher following copper deficiency (CuD). This may be due to impaired function of the multicopper oxidases hephaestin or ceruloplasmin (Cp), respectively. However, iron retention could be due to altered ferroportin (Fpn), the essential iron efflux transporter in enterocytes and macrophages. Fpn mRNA is controlled partially by intracellular iron and IRE dependence. CuD should augment Fpn based on iron level. Some argue that Fpn stability is controlled partially by membrane ferroxidase (GPI-Cp). CuD should result in lower Fpn since GPI-Cp expression and function is reduced. Fpn turnover is controlled by hepcidin. CuD results in variable Hamp (hepcidin) expression. Fpn mRNA and protein level were evaluated following dietary CuD in rats and mice. To correlate with Fpn expression, measurements of tissue iron were conducted in several rodent models. Following CuD there was little change in Fpn mRNA. Previous work indicated that under certain circumstances Fpn protein was augmented in liver and spleen following CuD. Fpn levels in CuD did not correlate with either total iron or non-heme iron (NHI), as iron levels in CuD liver were higher and in spleen lower than copper adequate controls. Fpn steady state levels appear to be regulated by a complex set of factors. Changes in Fpn do not explain the anemia of CuD.
Collapse
|
11
|
Broderius M, Mostad E, Prohaska JR. Suppressed hepcidin expression correlates with hypotransferrinemia in copper-deficient rat pups but not dams. GENES & NUTRITION 2012; 7:405-14. [PMID: 22457245 PMCID: PMC3380187 DOI: 10.1007/s12263-012-0293-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 03/10/2012] [Indexed: 12/21/2022]
Abstract
Copper deficiency leads to anemia but the mechanism is unknown. Copper deficiency also leads to hypoferremia, which may limit erythropoiesis. The hypoferremia may be due to limited function of multicopper oxidases (MCO) hephaestin in enterocytes or GPI-ceruloplasmin in macrophages of liver and spleen whose function as a ferroxidase is thought essential for iron transfer out of cells. Iron release may also be limited by ferroportin (Fpn), the iron efflux transporter. Fpn may be lower following copper deficiency because of impaired ferroxidase activity of MCO. Fpn is also dependent on the liver hormone hepcidin as Fpn is degraded when hepcidin binds to Fpn. Anemia and hypoferremia both down regulate hepcidin by separate mechanisms. Current studies confirmed and extended earlier studies with copper-deficient (CuD) rats that suggested low hepicidin resulted in augmented Fpn. However, current studies in CuD dams failed to confirm a correlation that hepcidin expression was associated with low transferrin receptor 2 (TfR2) levels and also challenged the dogma that holotransferrin can explain the correlation with hepcidin. CuD dams exhibited hypoferremia, low liver TfR2, anemia in some rats, yet no depression in Hamp expression, the hepcidin gene. Normal levels of GDF-15, the putative erythroid cytokine that suppresses hepcidin, were detected in plasma of CuD and iron-deficient (FeD) dams. Importantly, FeD dams did display greatly lower Hamp expression. Normal hepcidin in these CuD dams is puzzling since these rats may need extra iron to meet needs of lactation and the impaired iron transfer noted previously.
Collapse
Affiliation(s)
- Margaret Broderius
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, 1035 University Drive, Duluth, MN 55812 USA
| | - Elise Mostad
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, 1035 University Drive, Duluth, MN 55812 USA
| | - Joseph R. Prohaska
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, 1035 University Drive, Duluth, MN 55812 USA
| |
Collapse
|
12
|
Jenkitkasemwong S, Broderius M, Nam H, Prohaska JR, Knutson MD. Anemic copper-deficient rats, but not mice, display low hepcidin expression and high ferroportin levels. J Nutr 2010; 140:723-30. [PMID: 20164366 PMCID: PMC2838621 DOI: 10.3945/jn.109.117077] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The transmembrane protein ferroportin (Fpn) is essential for iron efflux from the liver, spleen, and duodenum. Fpn is regulated predominantly by the circulating iron regulatory hormone hepcidin, which binds to cell surface Fpn, initiating its degradation. Accordingly, when hepcidin concentrations decrease, Fpn levels increase. A previous study found that Fpn levels were not elevated in copper-deficient (CuD) mice that had anemia, a condition normally associated with dramatic reductions in hepcidin. Lack of change in Fpn levels may be because CuD mice do not display reduced concentrations of plasma iron (holotransferrin), a modulator of hepcidin expression. Here, we examined Fpn protein levels and hepcidin expression in CuD rats, which exhibit reduced plasma iron concentrations along with anemia. We also examined hepcidin expression in anemic CuD mice with normal plasma iron levels. We found that CuD rats had higher liver and spleen Fpn levels and markedly lower hepatic hepcidin mRNA expression than did copper-adequate (CuA) rats. In contrast, hepcidin levels did not differ between CuD and CuA mice. To examine potential mediators of the reduced hepcidin expression in CuD rats, we measured levels of hepatic transferrin receptor 2 (TfR2), a putative iron sensor that links holotransferrin to hepcidin production, and transcript abundance of bone morphogenic protein 6 (BMP6), a key endogenous positive regulator of hepcidin production. Diminished hepcidin expression in CuD rats was associated with lower levels of TfR2, but not BMP6. Our data suggest that holotransferrin and TfR2, rather than anemia or BMP6, are signals for hepcidin synthesis during copper deficiency.
Collapse
Affiliation(s)
- Supak Jenkitkasemwong
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611; Department of Biochemistry and Molecular Biology, University of Minnesota Medical School, Duluth, MN 55812
| | - Margaret Broderius
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611; Department of Biochemistry and Molecular Biology, University of Minnesota Medical School, Duluth, MN 55812
| | - Hyeyoung Nam
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611; Department of Biochemistry and Molecular Biology, University of Minnesota Medical School, Duluth, MN 55812
| | - Joseph R. Prohaska
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611; Department of Biochemistry and Molecular Biology, University of Minnesota Medical School, Duluth, MN 55812
| | - Mitchell D. Knutson
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611; Department of Biochemistry and Molecular Biology, University of Minnesota Medical School, Duluth, MN 55812,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
13
|
Transport of iron chelators and chelates across MDCK cell monolayers: implications for iron excretion during chelation therapy. Int J Hematol 2010; 91:401-12. [PMID: 20213118 DOI: 10.1007/s12185-010-0510-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 09/29/2009] [Accepted: 01/25/2010] [Indexed: 12/17/2022]
Abstract
Iron chelators are effective at removing iron from the body in iron overload, but little is known about the handling of iron chelates by the kidney. We studied the transport of deferoxamine, deferasirox, and three hydroxypyridones, and their iron chelates, in polarized renal epithelial MDCK cells growing on Transwell inserts. Directional iron efflux was also studied in (59)Fe-loaded cells. The chelators were transported at comparable rates in the apical and basolateral directions and moved faster than their corresponding chelates, except for deferoxamine, which did not move from the basolateral to the apical side. In contrast, the chelates were transported faster in the apical-to-basolateral direction. More permeable chelators were more efficient at removing iron from iron-loaded cells compared with deferoxamine. Iron is preferentially removed from the basolateral side, and kinetic modeling suggests facilitated diffusion of chelates in some cases. Basolateral iron efflux is temperature-dependent and partially sensitive to ATP depletion. Polarized transport of chelates suggests the kidney may be involved in reabsorption of iron bound to chelators, with a temperature-sensitive facilitated removal of some iron complexes from the basolateral side. Further studies are warranted to determine if these processes may contribute to the observed nephrotoxicity of some iron chelators.
Collapse
|
14
|
Banci L, Bertini I, McGreevy KS, Rosato A. Molecular recognition in copper trafficking. Nat Prod Rep 2010; 27:695-710. [DOI: 10.1039/b906678k] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Smith A, Rish KR, Lovelace R, Hackney JF, Helston RM. Role for copper in the cellular and regulatory effects of heme-hemopexin. Biometals 2008; 22:421-37. [DOI: 10.1007/s10534-008-9178-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 11/04/2008] [Indexed: 10/21/2022]
|
16
|
Youn P, Kim S, Ahn JH, Kim Y, Park JD, Ryu DY. Regulation of iron metabolism-related genes in diethylnitrosamine-induced mouse liver tumors. Toxicol Lett 2008; 184:151-8. [PMID: 19061943 DOI: 10.1016/j.toxlet.2008.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 11/05/2008] [Accepted: 11/07/2008] [Indexed: 01/12/2023]
Abstract
BACKGROUND It has been suggested that the altered iron metabolism in liver tumors, characterized by the iron-deficient phenotype, is of importance for tumor growth. AIM This study was performed to elucidate the mechanisms underlying iron deficiency in liver tumors by examining how the liver tumor development affects the expression of iron metabolism-related genes. METHODS Iron metabolism reference values were analyzed in the sera of diethylnitrosamine-induced hepatocellular adenoma-bearing mice. Expression of iron metabolism-related genes was analyzed in adenomas and surrounding non-tumor tissues, and a subgroup of adenoma-bearing mice loaded with iron 72h before sacrifice. RESULTS Iron content of the adenoma tissues was 2.0-2.5-fold lower compared to surrounding and age-matched control tissues. There was no significant difference in serum iron levels between the adenoma-bearing and control mice, while the adenoma-bearing mice exhibited a 2.4-fold lower level of serum transferrin saturation. Expression of iron metabolism-related genes was dysregulated in the adenomas. Iron loading affected protein expression similarly in the adenomas and surrounding tissues suggesting that iron-responsive regulation of the proteins was not impaired. However, the mRNA expression for ceruloplasmin and divalent metal transporter 1 (DMT1) IRE(+) in the adenomas was altered independently of iron status, and the dysregulation may contribute to diminished iron content. CONCLUSION These findings suggest that diethylnitrosamine-induced liver adenoma-bearing mice have abnormal iron metabolism and that dysregulation of iron metabolism-related genes contributes to iron deficiency in the adenomas.
Collapse
Affiliation(s)
- Pilju Youn
- College of Veterinary Medicine, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
| | | | | | | | | | | |
Collapse
|
17
|
Muckenthaler MU, Galy B, Hentze MW. Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network. Annu Rev Nutr 2008; 28:197-213. [PMID: 18489257 DOI: 10.1146/annurev.nutr.28.061807.155521] [Citation(s) in RCA: 521] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The regulation and maintenance of systemic iron homeostasis is critical to human health. Iron overload and deficiency diseases belong to the most common nutrition-related pathologies across the globe. It is now well appreciated that the hormonal hepcidin/ferroportin system plays an important regulatory role for systemic iron metabolism. We review recent data that uncover the importance of the cellular iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network in systemic iron homeostasis. We also discuss how the IRE/IRP regulatory system communicates with the hepcidin/ferroportin system to connect the control networks for systemic and cellular iron balance.
Collapse
Affiliation(s)
- Martina U Muckenthaler
- Molecular Medicine Partnership Unit, Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
18
|
Pyatskowit JW, Prohaska JR. Multiple mechanisms account for lower plasma iron in young copper deficient rats. Biometals 2008; 21:343-52. [PMID: 18038202 PMCID: PMC2701467 DOI: 10.1007/s10534-007-9123-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Accepted: 10/10/2007] [Indexed: 10/22/2022]
Abstract
Copper deficiency lowers brain copper and iron during development. The reduced iron content could be due to hypoferremia. Experiments were conducted to evaluate plasma iron and "ferroxidase" hypotheses by determining copper and iron status of Holtzman albino rats following gestational/lactational copper deficiency. Copper deficient (Cu-) dams on treatment for 5 weeks, two of gestation and three of lactation, had markedly lower copper content of milk and mammary tissue, and lower milk iron. Newborn pups from Cu- dams had lower copper and iron concentrations. Compared to Cu+ pups, Cu- pups, analyzed between postnatal age (P) 0 and P26, were smaller, anemic, had lower plasma iron, cardiac hypertrophy, and near zero ceruloplasmin activity. Liver copper in Cu+ pups increased then decreased during development and major reductions were evident in Cu- pups. Liver iron in Cu+ pups decreased with age while nursing but increased after eating solid food. Liver iron was lower in Cu- pups at P0 and P13 and normal at P20 and P26. Small intestinal copper decreased with age in Cu+ pups and was lower in Cu- pups. Intestinal iron levels in Cu- pups were higher than Cu+ pups postweaning in some experiments. Reduction in plasma iron in Cu- pups is likely due to a decreased "ferroxidase" function leading to lower placental iron transport, a lower milk iron diet, and partial block in iron uptake from intestine but is not due to failure to mobilize hepatic iron, in contrast to older rats eating diet with adequate iron.
Collapse
Affiliation(s)
- Joshua W. Pyatskowit
- Department of Biochemistry and Molecular Biology, University of Minnesota Medical School, 1035 University Drive, Duluth, MN 55812, USA
| | - Joseph R. Prohaska
- Department of Biochemistry and Molecular Biology, University of Minnesota Medical School, 1035 University Drive, Duluth, MN 55812, USA
| |
Collapse
|
19
|
Ishizaka N, Saito K, Furuta K, Matsuzaki G, Koike K, Noiri E, Nagai R. Angiotensin II-induced regulation of the expression and localization of iron metabolism-related genes in the rat kidney. Hypertens Res 2007; 30:195-202. [PMID: 17460390 DOI: 10.1291/hypres.30.195] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Due to recent discoveries of novel genes involved in iron metabolism, our understanding of the molecular mechanisms underlying iron metabolism has dramatically increased. We have previously shown that the administration of angiotensin II alters iron homeostasis in the rat kidney, which may in turn aggravate angiotensin II-induced renal damage. Here we have investigated the effect of angiotensin II administration on the localization and expression of transferrin receptor (TfR), divalent metal transporter 1 (DMT1), ferroportin 1 (FPN), and hepcidin mRNA in the rat kidney. Weak expression of TfR, DMT1, FPN, and hepcidin mRNA was observed in the kidneys of control rats. In contrast, after 7 days of angiotensin II infusion by osmotic minipump, the expression of these mRNAs was more widely distributed. Staining of serial sections revealed that some, but not all, of the renal tubular cells positive for these genes contained iron deposits in the kidney of angiotensin II-infused animals. Real-time polymerase chain reaction (PCR) showed that the mRNA expression of TfR, iron-responsive element-negative DMT1, FPN, and hepcidin mRNA increased ~1.9-fold, ~1.7-fold, ~2.3-fold, and ~4.7-fold, respectively, after angiotensin II infusion as compared with that of untreated controls, and that these increases could be suppressed by the concomitant administration of losartan. Our data demonstrate that these genes were unequivocally expressed in the kidney and could be regulated by angiotensin II infusion. The relative contribution, if any, of these genes to renal and/or whole-body iron homeostasis in various disorders in which the renin angiotensin system is activated should be investigated in future studies.
Collapse
Affiliation(s)
- Nobukazu Ishizaka
- Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, Japan.
| | | | | | | | | | | | | |
Collapse
|
20
|
Auclair S, Feillet-Coudray C, Coudray C, Schneider S, Muckenthaler MU, Mazur A. Mild copper deficiency alters gene expression of proteins involved in iron metabolism. Blood Cells Mol Dis 2006; 36:15-20. [PMID: 16406711 DOI: 10.1016/j.bcmd.2005.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 11/10/2005] [Accepted: 11/10/2005] [Indexed: 11/21/2022]
Abstract
Iron and copper homeostasis share common proteins and are therefore closely linked to each other. For example, copper-containing proteins like ceruloplasmin and hephaestin oxidize Fe(2+) during cellular export processes for transport in the circulation bound to transferrin. Indeed, copper deficiency provokes iron metabolism disorders leading to anemia and liver iron accumulation. The aim of the present work was to understand the cross-talk between copper status and iron metabolism. For this purpose we have established dietary copper deficiency in C57BL6 male mice during twelve weeks. Hematological parameters, copper and iron status were evaluated. cDNA microarray studies were performed to investigate gene expression profiles of proteins involved in iron metabolism in the liver, duodenum and spleen. Our results showed that copper deficiency induces microcytic and hypochromic anemia as well as liver iron overload. Gene expression profiles, however, indicate that hepatic and intestinal mRNA expression neither compensates for hepatic iron overload nor the anemia observed in this mouse model. Instead, major modifications of gene expression occurred in the spleen. We observed increased mRNA levels of the transferrin receptors 1 and 2 and of several proteins involved in the heme biosynthesis pathway (ferrochelatase, UroD, UroS,...). These results suggest that copper-deficient mice respond to the deficiency induced anemia by an adaptation leading to an increase in erythrocyte synthesis.
Collapse
Affiliation(s)
- Sylvain Auclair
- Centre de Recherche en Nutrition Humaine d'Auvergne, Unité des Maladies Métaboliques et Micronutriments, INRA, Theix, 63122 St Genès Champanelle, France
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Transfer of iron from the mucosa is a critical step in dietary iron assimilation that is tightly regulated to ensure the appropriate amount of iron is absorbed to meet the body's demands. Too much iron is highly toxic, and failure to properly control intestinal iron export causes iron overload associated with hereditary forms of hemochromatosis. One form of genetic iron overload, ferroportin disease, originates due to defects in ferroportin, the membrane iron exporter. Ferroportin acts in conjunction with the intestinal ferroxidase hephaestin to mediate release of iron from the enterocyte. How iron is then acquired by transferrin and released into circulation remains an unknown step in this process.
Collapse
Affiliation(s)
- Marianne Wessling-Resnick
- Dept. of Genetics and Complex Diseases, Harvard School of Public Health, 665 Huntington Ave., Boston, MA 02115, USA.
| |
Collapse
|
22
|
Fagoonee S, Gburek J, Hirsch E, Marro S, Moestrup SK, Laurberg JM, Christensen EI, Silengo L, Altruda F, Tolosano E. Plasma protein haptoglobin modulates renal iron loading. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:973-983. [PMID: 15793279 PMCID: PMC1602399 DOI: 10.1016/s0002-9440(10)62319-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/06/2005] [Indexed: 10/18/2022]
Abstract
Haptoglobin is the plasma protein with the highest binding affinity for hemoglobin. The strength of hemoglobin binding and the existence of a specific receptor for the haptoglobin-hemoglobin complex in the monocyte/macrophage system clearly suggest that haptoglobin may have a crucial role in heme-iron recovery. We used haptoglobin-null mice to evaluate the impact of haptoglobin gene inactivation on iron metabolism. Haptoglobin deficiency led to increased deposition of hemoglobin in proximal tubules of the kidney instead of the liver and the spleen as occurred in wild-type mice. This difference in organ distribution of hemoglobin in haptoglobin-deficient mice resulted in abnormal iron deposits in proximal tubules during aging. Moreover, iron also accumulated in proximal tubules after renal ischemia-reperfusion injury or after an acute plasma heme-protein overload caused by muscle injury, without affecting morphological and functional parameters of renal damage. These data demonstrate that haptoglobin crucially prevents glomerular filtration of hemoglobin and, consequently, renal iron loading during aging and following acute plasma heme-protein overload.
Collapse
Affiliation(s)
- Sharmila Fagoonee
- Department of Genetics, Biology and Biochemistry, University of Turin, Via Santena 5bis, 10126 Turin, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|