1
|
Zhong C, Deng K, Lang X, Shan D, Xie Y, Pan W, Yu J. Therapeutic potential of natural flavonoids in atherosclerosis through endothelium-protective mechanisms: An update. Pharmacol Ther 2025; 271:108864. [PMID: 40274196 DOI: 10.1016/j.pharmthera.2025.108864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/27/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
Atherosclerosis and its associated cardiovascular complications remain significant global public health challenges, underscoring the urgent need for effective therapeutic strategies. Endothelial cells are critical for maintaining vascular health and homeostasis, and their dysfunction is a key contributor to the initiation and progression of atherosclerosis. Targeting endothelial dysfunction has, therefore, emerged as a promising approach for the prevention and management of atherosclerosis. Among natural products, flavonoids, a diverse class of plant-derived phenolic compounds, have garnered significant attention for their anti-atherosclerotic properties. A growing body of evidence demonstrates that flavonoids can mitigate endothelial dysfunction, highlighting their potential as endothelial dysfunction-targeted therapeutics for atherosclerosis. In this review, we summarize current knowledge on the roles of natural flavonoids in modulating various aspects of endothelial dysfunction and their therapeutic effects on atherosclerosis, focusing on the underlying molecular mechanisms. We also discuss the challenges and future prospects of translating natural flavonoids into clinical applications for cardiovascular medicine. This review aims to provide critical insights to advance the development of novel endothelium-protective pharmacotherapies for atherosclerosis.
Collapse
Affiliation(s)
- Chao Zhong
- Center for Translational Medicine, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Keke Deng
- Center for Translational Medicine, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiaoya Lang
- Center for Translational Medicine, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Dan Shan
- Department of Cardiovascular Sciences and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Yanfei Xie
- Center for Translational Medicine, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Wen Pan
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi University of Chinese Medicine, Nanchang 330006, China.
| | - Jun Yu
- Department of Cardiovascular Sciences and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
2
|
Hu J, Teng B, Xu Z, Wan Y, Jin G. A porous form Coomassie brilliant blue G250-isorhamnetin fluorescent composite coated with acrylic resin for tumor cell imaging. Front Chem 2023; 11:1260533. [PMID: 37789965 PMCID: PMC10544906 DOI: 10.3389/fchem.2023.1260533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/01/2023] [Indexed: 10/05/2023] Open
Abstract
Four distinct fluorescence complexes, the fluorescent complex-1 (FC-1), fluorescent complex-2 (FC-2), fluorescent complex third (FC-3) and fluorescent complex fourth (FC-4), were created using isorhamnetin and Coomassie brilliant blue G250 as raw materials. The issue of isorhamnetin's low solubility has been resolved, and isorhamnetin-coomassie brilliant blue G250 now has better biocompatibility. Four different forms of fluorescence compounds' ultraviolet absorption spectra were identified. It was discovered that FC-2, FC-3, and FC-4, respectively, had double peaks at 483-620 nm. FC-4 had the highest ultraviolet absorption intensity, whereas FC-1 exhibited the most consistent and longest wavelength of ultraviolet absorption. Transmission electron microscopy revealed that the acrylic resin evenly disseminated the Coomassie brilliant blue G250-isorhamnetin complex in an amorphous flocculent form. Human prostate cancer cells (PC3) and human cervical cancer cells (HeLa) were investigated in the (Cell Counting Kit-8) CCK8 experiment under 10 different concentration circumstances, and the proliferation impact was 64.30% and 68.06%, respectively. Shown the complex's strong anti-tumor properties and minimal cytotoxicity. Through in vitro imaging of tumor cells, it was found that FC-1's fluorescent complex has high selectivity and can accurately infiltrate tumor cells, proving that it is biocompatible. The design not only addresses the issue of isorhamnein-Coomassie Bright Blue G250's bioavailability, but it also has an effective visual fluorescence targeting effect.
Collapse
Affiliation(s)
- Jiangpeng Hu
- Affiliated Peoples Hospital, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bo Teng
- Affiliated Peoples Hospital, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhipeng Xu
- Affiliated Peoples Hospital, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuanye Wan
- Affiliated Peoples Hospital, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guofan Jin
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| |
Collapse
|
3
|
Novel preventive effect of isorhamnetin on electrical and structural remodeling in atrial fibrillation. Clin Sci (Lond) 2022; 136:1831-1849. [DOI: 10.1042/cs20220319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
Abstract
Isorhamnetin, a natural flavonoid, has strong antioxidant and antifibrotic effects, and a regulatory effect against Ca2+-handling. Atrial remodeling due to fibrosis and abnormal intracellular Ca2+ activities contributes to initiation and persistence of atrial fibrillation (AF). The present study investigated the effect of isorhamnetin on angiotensin II (AngII)-induced AF in mice. Wild-type male mice (C57BL/6J, 8 weeks old) were assigned to three groups: (1) control group, (2) AngII-treated group, and (3) AngII- and isorhamnetin-treated group. AngII (1000 ng/kg/min) and isorhamnetin (5 mg/kg) were administered continuously via an implantable osmotic pump for two weeks and intraperitoneally one week before initiating AngII administration, respectively. AF induction and electrophysiological studies, Ca2+ imaging with isolated atrial myocytes and HL-1 cells, and action potential duration (APD) measurements using atrial tissue and HL-1 cells were performed. AF-related molecule expression was assessed and histopathological examination was performed. Isorhamnetin decreased AF inducibility compared with the AngII group and restored AngII-induced atrial effective refractory period prolongation. Isorhamnetin eliminated abnormal diastolic intracellular Ca2+ activities induced by AngII. Isorhamnetin also abrogated AngII-induced APD prolongation and abnormal Ca2+ loading in HL-1 cells. Furthermore, isorhamnetin strongly attenuated AngII-induced left atrial enlargement and atrial fibrosis. AngII-induced elevated expression of AF-associated molecules, such as ox-CaMKII, p-RyR2, p-JNK, p-ERK, and TRPC3/6, was improved by isorhamnetin treatment. The findings of the present study suggest that isorhamnetin prevents AngII-induced AF vulnerability and arrhythmogenic atrial remodeling, highlighting its therapeutic potential as an anti-arrhythmogenic pharmaceutical or dietary supplement.
Collapse
|
4
|
Zhang L, Ma J, Yang F, Li S, Ma W, Chang X, Yang L. Neuroprotective Effects of Quercetin on Ischemic Stroke: A Literature Review. Front Pharmacol 2022; 13:854249. [PMID: 35662707 PMCID: PMC9158527 DOI: 10.3389/fphar.2022.854249] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/28/2022] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke (IS) is characterized by high recurrence and disability; however, its therapies are very limited. As one of the effective methods of treating acute attacks of IS, intravenous thrombolysis has a clear time window. Quercetin, a flavonoid widely found in vegetables and fruits, inhibits immune cells from secreting inflammatory cytokines, thereby reducing platelet aggregation and limiting inflammatory thrombosis. In pre-clinical studies, it has been shown to exhibit neuroprotective effects in patients with ischemic brain injury. However, its specific mechanism of action remains unknown. Therefore, this review aims to use published data to elucidate the potential value of quercetin in patients with ischemic brain injury. This article also reviews the plant sources, pharmacological effects, and metabolic processes of quercetin in vivo, thus focusing on its mechanism in inhibiting immune cell activation and inflammatory thrombosis as well as promoting neuroprotection against ischemic brain injury.
Collapse
Affiliation(s)
- Leilei Zhang
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Jingying Ma
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Fan Yang
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Sishi Li
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Wangran Ma
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiang Chang
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Lin Yang
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an, China
| |
Collapse
|
5
|
Visible light-mediated, high-efficiency oxidation of benzyl to acetophenone catalyzed by fluorescein. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2021.153570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Ageing, Age-Related Cardiovascular Risk and the Beneficial Role of Natural Components Intake. Int J Mol Sci 2021; 23:ijms23010183. [PMID: 35008609 PMCID: PMC8745076 DOI: 10.3390/ijms23010183] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022] Open
Abstract
Ageing, in a natural way, leads to the gradual worsening of the functional capacity of all systems and, eventually, to death. This process is strongly associated with higher metabolic and oxidative stress, low-grade inflammation, accumulation of DNA mutations and increased levels of related damage. Detrimental changes that accumulate in body cells and tissues with time raise the vulnerability to environmental challenges and enhance the risk of major chronic diseases and mortality. There are several theses concerning the mechanisms of ageing: genetic, free radical telomerase, mitochondrial decline, metabolic damage, cellular senescence, neuroendocrine theory, Hay-flick limit and membrane theories, cellular death as well as the accumulation of toxic and non-toxic garbage. Moreover, ageing is associated with structural changes within the myocardium, cardiac conduction system, the endocardium as well as the vasculature. With time, the cardiac structures lose elasticity, and fibrotic changes occur in the heart valves. Ageing is also associated with a higher risk of atherosclerosis. The results of studies suggest that some natural compounds may slow down this process and protect against age-related diseases. Animal studies imply that some of them may prolong the lifespan; however, this trend is not so obvious in humans.
Collapse
|
7
|
Tasinov O, Dincheva I, Badjakov I, Kiselova-Kaneva Y, Galunska B, Nogueiras R, Ivanova D. Phytochemical Composition, Anti-Inflammatory and ER Stress-Reducing Potential of Sambucus ebulus L. Fruit Extract. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112446. [PMID: 34834808 PMCID: PMC8623228 DOI: 10.3390/plants10112446] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 05/09/2023]
Abstract
Sambucus ebulus L. (SE) fruits are used for their immunostimulation, hematopoietic and antiviral potential. Recently, we focused on analyzing the mechanism underlying SE fruit aqueous extract's (FAE) immunomodulation and anti-inflammatory activities, with attention to its endoplasmic reticulum (ER) stress-reducing potential. J774A.1 macrophages were treated with SE FAE alone or in conditions of lipopolysaccharides (LPS) stimulation. Using GC-MS and LC-MS/MS, its phytochemical composition was analyzed. To measure transcription and protein levels, we used qPCR and Western blot, respectively. The prevailing phytochemicals in SE FAE were hydroxycinnamic acids, proanthocyanidins and anthocyanins. The content of some amino acids, organic acids, alcohols, fatty acids and esters were newly reported. Extracts exerted an immunostimulation potential by stimulating IL-6, TNFα, Ccl2, COX2 and iNOS transcription, without inducing ER stress. SE FAE suppressed the LPS-induced transcription of inflammation related genes (IL-1β, IL-6, TNFα, Ccl2, Icam-1, Fabp4, COX2, iNOS, Noxo1, IL-1ra, Sirt-1) and reduced the protein levels of iNOS, peIF2α, ATF6α and CHOP. The effects were comparable to that of salicylic acid. SE suppresses LPS-stimulated inflammatory markers on the transcription and translation levels. Targeting ER stress is possibly another mechanism underlying its anti-inflammatory potential. These findings reveal the potential of SE fruits as a beneficial therapeutic of inflammation and ER stress-related pathological conditions.
Collapse
Affiliation(s)
- Oskan Tasinov
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 84B Tzar Osvoboditel Blvd., 9002 Varna, Bulgaria; (Y.K.-K.); (B.G.); (D.I.)
- Correspondence: ; Tel.: +359-896-036961
| | - Ivayla Dincheva
- AgroBioInstitute, Agricultural Academy, 8 Dr. Tsankov Blvd., 1164 Sofia, Bulgaria; (I.D.); (I.B.)
| | - Ilian Badjakov
- AgroBioInstitute, Agricultural Academy, 8 Dr. Tsankov Blvd., 1164 Sofia, Bulgaria; (I.D.); (I.B.)
| | - Yoana Kiselova-Kaneva
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 84B Tzar Osvoboditel Blvd., 9002 Varna, Bulgaria; (Y.K.-K.); (B.G.); (D.I.)
| | - Bistra Galunska
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 84B Tzar Osvoboditel Blvd., 9002 Varna, Bulgaria; (Y.K.-K.); (B.G.); (D.I.)
| | - Ruben Nogueiras
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Department of Physiology, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain;
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Diana Ivanova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 84B Tzar Osvoboditel Blvd., 9002 Varna, Bulgaria; (Y.K.-K.); (B.G.); (D.I.)
| |
Collapse
|
8
|
Das M, Devi KP, Belwal T, Devkota HP, Tewari D, Sahebnasagh A, Nabavi SF, Khayat Kashani HR, Rasekhian M, Xu S, Amirizadeh M, Amini K, Banach M, Xiao J, Aghaabdollahian S, Nabavi SM. Harnessing polyphenol power by targeting eNOS for vascular diseases. Crit Rev Food Sci Nutr 2021; 63:2093-2118. [PMID: 34553653 DOI: 10.1080/10408398.2021.1971153] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vascular diseases arise due to vascular endothelium dysfunction in response to several pro-inflammatory stimuli and invading pathogens. Thickening of the vessel wall, formation of atherosclerotic plaques consisting of proliferating smooth muscle cells, macrophages and lymphocytes are the major consequences of impaired endothelium resulting in atherosclerosis, hypercholesterolemia, hypertension, type 2 diabetes mellitus, chronic renal failure and many others. Decreased nitric oxide (NO) bioavailability was found to be associated with anomalous endothelial function because of either its reduced production level by endothelial NO synthase (eNOS) which synthesize this potent endogenous vasodilator from L-arginine or its enhanced breakdown due to severe oxidative stress and eNOS uncoupling. Polyphenols are a group of bioactive compounds having more than 7000 chemical entities present in different cereals, fruits and vegetables. These natural compounds possess many OH groups which are largely responsible for their strong antioxidative, anti-inflammatory antithrombotic and anti-hypersensitive properties. Several flavonoid-derived polyphenols like flavones, isoflavones, flavanones, flavonols and anthocyanidins and non-flavonoid polyphenols like tannins, curcumins and resveratrol have attracted scientific interest for their beneficial effects in preventing endothelial dysfunction. This article will focus on in vitro as well as in vivo and clinical studies evidences of the polyphenols with eNOS modulating activity against vascular disease condition while their molecular mechanism will also be discussed.
Collapse
Affiliation(s)
- Mamali Das
- Department of Biotechnology, Alagappa University [Science Campus], Karaikudi, Tamil Nadu, India
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University [Science Campus], Karaikudi, Tamil Nadu, India
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Zhejiang University, China
| | | | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Rasekhian
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Suowen Xu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mehran Amirizadeh
- Department of Pharmacotherapy, Faculty of pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Kiumarth Amini
- Student Research Committee, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz, Poland
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Safieh Aghaabdollahian
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Ferreira LLDM, Leão VDF, de Melo CM, Machado TDB, Amaral ACF, da Silva LL, Simas NK, Muzitano MF, Leal ICR, Raimundo JM. Ethyl Acetate Fraction and Isolated Phenolics Derivatives from Mandevilla moricandiana Identified by UHPLC-DAD-ESI-MS n with Pharmacological Potential for the Improvement of Obesity-Induced Endothelial Dysfunction. Pharmaceutics 2021; 13:pharmaceutics13081173. [PMID: 34452134 PMCID: PMC8401510 DOI: 10.3390/pharmaceutics13081173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 01/11/2023] Open
Abstract
Endothelial dysfunction in obesity plays a key role in the development of cardiovascular diseases, and it is characterized by increased vascular tonus and oxidative stress. Thus, this study aimed to investigate the vasodilatory and antioxidant activities of Mandevilla moricandiana ethyl acetate fraction and subfractions. Vascular effects were investigated on aorta isolated from control and monosodium glutamate (MSG) induced-obese Wistar rats, and antioxidant activity was assessed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and oxygen radical absorbance capacity (ORAC) methods. The ethyl acetate fraction (MMEAF) induced a concentration-dependent vasodilation on aortic rings through the NO pathway, with the involvement of histamine H1 and estrogen ERα receptors and showed potent antioxidant activity. In aorta of MSG obese rats, maximal relaxation to acetylcholine was increased in the presence of MMEAF (3 µg/mL), indicating that MMEAF ameliorated obesity-induced endothelial dysfunction. Quercetin and kaempferol aglycones and their correspondent glycosides, as well as caffeoylquinic acid derivatives, A-type procyanidin trimer, ursolic and oleanolic triterpenoid acids were identified in subfractions from MMEAF and seem to be the metabolites responsible for the vascular and antioxidant activities of this fraction.
Collapse
Affiliation(s)
- Leticia L. D. M. Ferreira
- Pharmacology of Bioactive Products Research Group, Federal University of Rio de Janeiro—Macaé Campus, Macaé 27930-560, RJ, Brazil; (L.L.D.M.F.); (V.d.F.L.); (C.M.d.M.); (L.L.d.S.)
- Laboratory of Natural Products and Biological Assays, Pharmacy Faculty, Health Sciences Center, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Valéria de F. Leão
- Pharmacology of Bioactive Products Research Group, Federal University of Rio de Janeiro—Macaé Campus, Macaé 27930-560, RJ, Brazil; (L.L.D.M.F.); (V.d.F.L.); (C.M.d.M.); (L.L.d.S.)
| | - Cinthya M. de Melo
- Pharmacology of Bioactive Products Research Group, Federal University of Rio de Janeiro—Macaé Campus, Macaé 27930-560, RJ, Brazil; (L.L.D.M.F.); (V.d.F.L.); (C.M.d.M.); (L.L.d.S.)
| | - Thelma de B. Machado
- LAQV-REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Faculty of Pharmacy, Federal Fluminense University, Niterói 24241-000, RJ, Brazil
| | - Ana Claudia F. Amaral
- Laboratory of Medicinal Plants and Derivatives, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil;
| | - Leandro L. da Silva
- Pharmacology of Bioactive Products Research Group, Federal University of Rio de Janeiro—Macaé Campus, Macaé 27930-560, RJ, Brazil; (L.L.D.M.F.); (V.d.F.L.); (C.M.d.M.); (L.L.d.S.)
| | - Naomi K. Simas
- Laboratory of Natural Products and Biological Assays, Pharmacy Faculty, Health Sciences Center, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Michelle F. Muzitano
- Laboratory of Bioactive Products, Federal University of Rio de Janeiro—Macaé Campus, Macaé 27933-378, RJ, Brazil;
| | - Ivana C. R. Leal
- Laboratory of Natural Products and Biological Assays, Pharmacy Faculty, Health Sciences Center, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
- Correspondence: (I.C.R.L.); (J.M.R.); Tel.: +55-21965620428 (I.C.R.L.); +55-2221414019 (J.M.R.)
| | - Juliana M. Raimundo
- Pharmacology of Bioactive Products Research Group, Federal University of Rio de Janeiro—Macaé Campus, Macaé 27930-560, RJ, Brazil; (L.L.D.M.F.); (V.d.F.L.); (C.M.d.M.); (L.L.d.S.)
- Correspondence: (I.C.R.L.); (J.M.R.); Tel.: +55-21965620428 (I.C.R.L.); +55-2221414019 (J.M.R.)
| |
Collapse
|
10
|
Abiri R, Abdul-Hamid H, Sytar O, Abiri R, Bezerra de Almeida E, Sharma SK, Bulgakov VP, Arroo RRJ, Malik S. A Brief Overview of Potential Treatments for Viral Diseases Using Natural Plant Compounds: The Case of SARS-Cov. Molecules 2021; 26:molecules26133868. [PMID: 34202844 PMCID: PMC8270261 DOI: 10.3390/molecules26133868] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic, as well as the more general global increase in viral diseases, has led researchers to look to the plant kingdom as a potential source for antiviral compounds. Since ancient times, herbal medicines have been extensively applied in the treatment and prevention of various infectious diseases in different traditional systems. The purpose of this review is to highlight the potential antiviral activity of plant compounds as effective and reliable agents against viral infections, especially by viruses from the coronavirus group. Various antiviral mechanisms shown by crude plant extracts and plant-derived bioactive compounds are discussed. The understanding of the action mechanisms of complex plant extract and isolated plant-derived compounds will help pave the way towards the combat of this life-threatening disease. Further, molecular docking studies, in silico analyses of extracted compounds, and future prospects are included. The in vitro production of antiviral chemical compounds from plants using molecular pharming is also considered. Notably, hairy root cultures represent a promising and sustainable way to obtain a range of biologically active compounds that may be applied in the development of novel antiviral agents.
Collapse
Affiliation(s)
- Rambod Abiri
- Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang 43400, Malaysia; or
| | - Hazandy Abdul-Hamid
- Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang 43400, Malaysia; or
- Laboratory of Bioresource Management, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: (H.A.-H.); (V.P.B.); or (S.M.)
| | - Oksana Sytar
- Educational and Scientific Center “Institute of Biology and Medicine”, Department of Plant Biology, Taras Shevchenko National University of Kyiv, Volodymyrska 60, 01033 Kyiv, Ukraine;
- Department of Plant Physiology, Slovak University of Agriculture Nitra, A. Hlinku 2, 94976 Nitra, Slovakia
| | - Ramin Abiri
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6718773654, Iran;
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6718773654, Iran
| | - Eduardo Bezerra de Almeida
- Biological and Health Sciences Centre, Laboratory of Botanical Studies, Department of Biology, Federal University of Maranhão, São Luís 65080-805, MA, Brazil;
| | - Surender K. Sharma
- Department of Physics, Central University of Punjab, Bathinda 151401, India;
| | - Victor P. Bulgakov
- Department of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity (Institute of Biology and Soil Science), Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., 690022 Vladivostok, Russia
- Correspondence: (H.A.-H.); (V.P.B.); or (S.M.)
| | - Randolph R. J. Arroo
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK;
| | - Sonia Malik
- Health Sciences Graduate Program, Biological & Health Sciences Centre, Federal University of Maranhão, São Luís 65080-805, MA, Brazil
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), University of Orléans, 1 Rue de Chartres-BP 6759, 45067 Orleans, France
- Correspondence: (H.A.-H.); (V.P.B.); or (S.M.)
| |
Collapse
|
11
|
Bioactive Compounds, Antioxidants, and Health Benefits of Sweet Potato Leaves. Molecules 2021; 26:molecules26071820. [PMID: 33804903 PMCID: PMC8038024 DOI: 10.3390/molecules26071820] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Sweet potato (Ipomoea batatas) is one of the most important food crops worldwide and its leaves provide a dietary source of nutrients and various bioactive compounds. These constituents of sweet potato leaves (SPL) vary among varieties and play important roles in treating and preventing various diseases. Recently, more attentions in health-promoting benefits have led to several in vitro and in vivo investigations, as well as the identification and quantification of bioactive compounds in SPL. Among them, many new compounds have been reported as the first identified compounds from SPL with their dominant bioactivities. This review summarizes the current knowledge of the bioactive compositions of SPL and their health benefits. Since SPL serve as a potential source of micronutrients and functional compounds, they can be further developed as a sustainable crop for food and medicinal industries.
Collapse
|
12
|
Papan P, Kantapan J, Sangthong P, Meepowpan P, Dechsupa N. Iron (III)-Quercetin Complex: Synthesis, Physicochemical Characterization, and MRI Cell Tracking toward Potential Applications in Regenerative Medicine. CONTRAST MEDIA & MOLECULAR IMAGING 2020; 2020:8877862. [PMID: 33456403 PMCID: PMC7785384 DOI: 10.1155/2020/8877862] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022]
Abstract
In cell therapy, contrast agents T1 and T2 are both needed for the labeling and tracking of transplanted stem cells over extended periods of time through magnetic resonance imaging (MRI). Importantly, the metal-quercetin complex via coordination chemistry has been studied extensively for biomedical applications, such as anticancer therapies and imaging probes. Herein, we report on the synthesis, characterization, and labeling of the iron (III)-quercetin complex, "IronQ," in circulating proangiogenic cells (CACs) and also explore tracking via the use of a clinical 1.5 Tesla (T) MRI scanner. Moreover, IronQ had a paramagnetic T1 positive contrast agent property with a saturation magnetization of 0.155 emu/g at 1.0 T and longitudinal relaxivity (r1) values of 2.29 and 3.70 mM-1s-1 at 1.5 T for water and human plasma, respectively. Surprisingly, IronQ was able to promote CAC growth in conventional cell culture systems without the addition of specific growth factors. Increasing dosages of IronQ from 0 to 200 μg/mL led to higher CAC uptake, and maximum labeling time was achieved in 10 days. The accumulated IronQ in CACs was measured by two methodologies, an inductively coupled plasma optical emission spectrometry (ICP-EOS) and T1-weighted MRI. In our research, we confirmed that IronQ has excellent dual functions with the use of an imaging probe for MRI. IronQ can also act as a stimulating agent by favoring circulating proangiogenic cell differentiation. Optimistically, IronQ is considered beneficial for alternative labeling and in the tracking of circulation proangiogenic cells and/or other stem cells in applications of cell therapy through noninvasive magnetic resonance imaging in both preclinical and clinical settings.
Collapse
Affiliation(s)
- Phakorn Papan
- Research Unit of Molecular Imaging Probes and Radiobiology, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jiraporn Kantapan
- Research Unit of Molecular Imaging Probes and Radiobiology, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Padchanee Sangthong
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Puttinan Meepowpan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nathupakorn Dechsupa
- Research Unit of Molecular Imaging Probes and Radiobiology, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
13
|
Robles-Vera I, Toral M, de la Visitación N, Aguilera-Sánchez N, Redondo JM, Duarte J. Protective Effects of Short-Chain Fatty Acids on Endothelial Dysfunction Induced by Angiotensin II. Front Physiol 2020; 11:277. [PMID: 32372967 PMCID: PMC7176911 DOI: 10.3389/fphys.2020.00277] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/12/2020] [Indexed: 02/03/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are among the main classes of bacterial metabolic products and are mainly synthesized in the colon through bacterial fermentation. Short-chain fatty acids, such as acetate, butyrate, and propionate, reduce endothelial activation induced by proinflammatory mediators, at least in part, by activation of G protein–coupled receptors (GPRs): GPR41 and GPR43. The objective of the study was to analyze the possible protective effects of SCFAs on endothelial dysfunction induced by angiotensin II (AngII). Rat aortic endothelial cells (RAECs) and rat aortas were incubated with AngII (1 μM) for 6 h in the presence or absence of SCFAs (5–10 mM). In RAECs, we found that AngII reduces the production of nitric oxide (NO) stimulated by calcium ionophore A23187; increases the production of reactive oxygen species (ROS), both from the nicotinamide adenine dinucleotide phosphate oxidase system and the mitochondria; diminishes vasodilator-stimulated phosphoprotein (VASP) phosphorylation at Ser239; reduces GPR41 and GPR43 mRNA level; and reduces the endothelium-dependent relaxant response to acetylcholine in aorta. Coincubation with butyrate and acetate, but not with propionate, increases both NO production and pSer239-VASP, reduces the concentration of intracellular ROS, and improves relaxation to acetylcholine. The beneficial effects of butyrate were inhibited by the GPR41 receptor antagonist, β-hydroxybutyrate, and by the GPR43 receptor antagonist, GLPG0794. Butyrate inhibited the down-regulation of GPR41 and GPR43 induced by AngII, being without effect acetate and propionate. Neither β-hydroxybutyrate nor GLPG0794 affects the protective effect of acetate in endothelial dysfunction. In conclusion, acetate and butyrate improve endothelial dysfunction induced by AngII by increasing the bioavailability of NO. The effect of butyrate seems to be related to GPR41/43 activation, whereas acetate effects were independent of GPR41/43.
Collapse
Affiliation(s)
- Iñaki Robles-Vera
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Marta Toral
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,CIBERCV, Madrid, Spain
| | - Néstor de la Visitación
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Nazaret Aguilera-Sánchez
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Juan Miguel Redondo
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,CIBERCV, Madrid, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy and Center for Biomedical Research (CIBM), University of Granada, Granada, Spain.,CIBERCV, Madrid, Spain.,Instituto de Investigación Biosanitaria de Granada, Granada, Spain
| |
Collapse
|
14
|
Arauna D, Furrianca M, Espinosa-Parrilla Y, Fuentes E, Alarcón M, Palomo I. Natural Bioactive Compounds As Protectors Of Mitochondrial Dysfunction In Cardiovascular Diseases And Aging. Molecules 2019; 24:molecules24234259. [PMID: 31766727 PMCID: PMC6930637 DOI: 10.3390/molecules24234259] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/05/2019] [Accepted: 09/08/2019] [Indexed: 01/04/2023] Open
Abstract
Diet, particularly the Mediterranean diet, has been considered as a protective factor against the development of cardiovascular diseases, the main cause of death in the world. Aging is one of the major risk factors for cardiovascular diseases, which have an oxidative pathophysiological component, being the mitochondria one of the key organelles in the regulation of oxidative stress. Certain natural bioactive compounds have the ability to regulate oxidative phosphorylation, the production of reactive oxygen species and the expression of mitochondrial proteins; but their efficacy within the mitochondrial physiopathology of cardiovascular diseases has not been clarified yet. The following review has the purpose of evaluating several natural compounds with evidence of mitochondrial effect in cardiovascular disease models, ascertaining the main cellular mechanisms and their potential use as functional foods for prevention of cardiovascular disease and healthy aging.
Collapse
Affiliation(s)
- Diego Arauna
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging, Universidad de Talca, Talca 3460000, Chile; (D.A.); (M.A.)
| | - María Furrianca
- Thematic Task Force on Aging, CUECH Research Network, Santiago 8320000, Chile; (M.F.); (Y.E.-P.)
- Departamento de enfermería, Universidad de Magallanes, Punta Arenas 6200000, Chile
| | - Yolanda Espinosa-Parrilla
- Thematic Task Force on Aging, CUECH Research Network, Santiago 8320000, Chile; (M.F.); (Y.E.-P.)
- Laboratory of Molecular Medicine —LMM, Center for Education, Healthcare and Investigation—CADI, Universidad de Magallanes, Punta Arenas 6200000, Chile
- School of Medicine, Universidad de Magallanes, Punta Arenas 6200000, Chile
| | - Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging, Universidad de Talca, Talca 3460000, Chile; (D.A.); (M.A.)
- Thematic Task Force on Aging, CUECH Research Network, Santiago 8320000, Chile; (M.F.); (Y.E.-P.)
- Correspondence: (E.F.); (I.P.)
| | - Marcelo Alarcón
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging, Universidad de Talca, Talca 3460000, Chile; (D.A.); (M.A.)
- Thematic Task Force on Aging, CUECH Research Network, Santiago 8320000, Chile; (M.F.); (Y.E.-P.)
| | - Iván Palomo
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging, Universidad de Talca, Talca 3460000, Chile; (D.A.); (M.A.)
- Thematic Task Force on Aging, CUECH Research Network, Santiago 8320000, Chile; (M.F.); (Y.E.-P.)
- Correspondence: (E.F.); (I.P.)
| |
Collapse
|
15
|
Yousefian M, Shakour N, Hosseinzadeh H, Hayes AW, Hadizadeh F, Karimi G. The natural phenolic compounds as modulators of NADPH oxidases in hypertension. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 55:200-213. [PMID: 30668430 DOI: 10.1016/j.phymed.2018.08.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/04/2018] [Accepted: 08/05/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Hypertension is a major public health problem worldwide. It is an important risk factor for other cardiovascular diseases such as coronary artery disease, stroke, heart failure, atrial fibrillation, peripheral vascular disease, chronic kidney disease, and atherosclerosis. PURPOSE There is strong evidence that excess ROS-derived NADPH oxidase (NOX) is an important agent in hypertension. It augments blood pressure in the presence of other pro-hypertensive factors such as angiotensin II (Ang II), an important and potent regulator of cardiovascular NADPH oxidase, activates NOX via AT1 receptors. NADPH oxidase, a multi-subunit complex enzyme, is considered as a key source of ROS production in the vasculature. The activation of this enzyme is needed for assembling Rac-1, p40phox, p47phox and p67phox subunits. Since, hypertensive patients need to control blood pressure for their entire life and because drugs and other chemicals often induce adverse effects, the use of natural phenolic compounds which are less toxic and potentially beneficial may be good avenues of addition research in our understand of the underlying mechanism involved in hypertension. This review focused on several natural phenolic compounds as berberine, thymoquinone, catechin, celastrol, apocynin, resveratrol, curcumin, hesperidine and G-hesperidine, and quercetin which are NOX inhibitors. In addition, structure activity relationship of these compounds eventually as the most inhibitors was discussed. METHODS This comprehensive review is based on pertinent papers by a selective search using relevant keywords that was collected using online search engines and databases such as ScienceDirect, Scopus and PubMed. The literature mainly focusing on natural products with therapeutic efficacies against hypertension via experimental models both in vitro and in vivo was identified. RESULTS It has been observed that these natural compounds prevent NADPH oxidase expression and ROS production while increasing NO bioavailability. It have been reported that they improve hypertension due to formation of a stable radical with ROS-derived NADPH oxidase and preventing the assembly of NOX subunites. CONCLUSION It is clear that natural phenolic compounds have some potential inhibitory effect on NADPH oxidase activity. In comparison to other phenolic plant compounds, the structural variability of the flavonoids should off different impacts on oxidative stress in hypertension including inhibition of nadph oxidase and direct scavenging of free radicals.
Collapse
Affiliation(s)
- Mozhdeh Yousefian
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Shakour
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, USA; Michigan State University, East Lansing, MI, USA
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Skalski B, Lis B, Pecio Ł, Kontek B, Olas B, Żuchowski J, Stochmal A. Isorhamnetin and its new derivatives isolated from sea buckthorn berries prevent H 2O 2/Fe - Induced oxidative stress and changes in hemostasis. Food Chem Toxicol 2019; 125:614-620. [PMID: 30738133 DOI: 10.1016/j.fct.2019.02.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/18/2019] [Accepted: 02/05/2019] [Indexed: 01/24/2023]
Abstract
The objective of this study is to investigate the biological effects of phenolic compounds extracted from the sea buckthorn berries on oxidative stress and hemostasis. The sea buckthorn (Elaeagnus rhamnoides (L.) A. Nelson) berries are rich in flavonoids and non-polar compounds. In this study, the activity of the phenolic fraction from the sea buckthorn berries was evaluated in vitro in comparison with three phenolic compounds: isorhamnetin (compound 1) and its two new derivatives: compound 2 (isorhamnetin 3-O-beta-glucoside-7-O-alfa-rhamnoside) and compound 3 (isorhamnetin 3-O-beta-glucoside-7-O-alfa-(3"'-isovaleryl)-rhamnoside). The impact of these phenolic compounds and the phenolic fraction against the effect of the donor of hydroxyl radicals - H2O2/Fe on proteins and lipids in human plasma was measured. Additionally, the aim of the study was to determine the effect of these phenolic compounds and the phenolic fraction on various typical hemostasis parameters. Our results show that the used derivatives of isorhamnetin possess different biological properties (e.g. antioxidant, anti-platelet and anticoagulant). The tested compounds can be seen as new natural beneficial compounds to be used in prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Bartosz Skalski
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, 90-236, Łódź, Poland
| | - Bernadetta Lis
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, 90-236, Łódź, Poland
| | - Łukasz Pecio
- Department of Biochemistry, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100, Puławy, Poland
| | - Bogdan Kontek
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, 90-236, Łódź, Poland
| | - Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, 90-236, Łódź, Poland.
| | - Jerzy Żuchowski
- Department of Biochemistry, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100, Puławy, Poland
| | - Anna Stochmal
- Department of Biochemistry, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100, Puławy, Poland
| |
Collapse
|
17
|
Sánchez M, Romero M, Gómez-Guzmán M, Tamargo J, Pérez-Vizcaino F, Duarte J. Cardiovascular Effects of Flavonoids. Curr Med Chem 2019; 26:6991-7034. [DOI: 10.2174/0929867326666181220094721] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023]
Abstract
:
Cardiovascular Disease (CVD) is the major cause of death worldwide, especially in Western
society. Flavonoids are a large group of polyphenolic compounds widely distributed in plants, present
in a considerable amount in fruit and vegetable. Several epidemiological studies found an inverse association
between flavonoids intake and mortality by CVD. The antioxidant effect of flavonoids was
considered the main mechanism of action of flavonoids and other polyphenols. In recent years, the role
of modulation of signaling pathways by direct interaction of flavonoids with multiple protein targets,
namely kinases, has been increasingly recognized and involved in their cardiovascular protective effect.
There are strong evidence, in in vitro and animal experimental models, that some flavonoids induce
vasodilator effects, improve endothelial dysfunction and insulin resistance, exert platelet antiaggregant
and atheroprotective effects, and reduce blood pressure. Despite interacting with multiple targets, flavonoids
are surprisingly safe. This article reviews the recent evidence about cardiovascular effects that
support a beneficial role of flavonoids on CVD and the potential molecular targets involved.
Collapse
Affiliation(s)
- Manuel Sánchez
- Department of Pharmacology, School of Pharmacy, University of Granada, and Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy, University of Granada, and Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Manuel Gómez-Guzmán
- Department of Pharmacology, School of Pharmacy, University of Granada, and Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Juan Tamargo
- Department of Pharmacology, School of Medicine, Complutense University of Madrid and Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Francisco Pérez-Vizcaino
- Department of Pharmacology, School of Medicine, Complutense University of Madrid and Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy, University of Granada, and Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| |
Collapse
|
18
|
Pharmacological Effect of Quercetin in Hypertension and Its Potential Application in Pregnancy-Induced Hypertension: Review of In Vitro, In Vivo, and Clinical Studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7421489. [PMID: 30622610 PMCID: PMC6304490 DOI: 10.1155/2018/7421489] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/25/2018] [Accepted: 11/08/2018] [Indexed: 01/27/2023]
Abstract
Since improving maternal and child health is a public health priority worldwide, the main aim of treatment of hypertension in pregnant women is to prevent complications during pregnancy, labor, and postpartum. In consequence, much attention is paid to the use of antihypertensive drugs that can be used safely during pregnancy. Several side effects of methyldopa, which is currently the most commonly used antihypertensive drug in pregnant women, mean that the search for an effective and safe alternative still continues. Flavonoid compounds present in medicinal plants, vegetables, and fruits may be a promising source of new drugs. In this aspect, quercetin, a well-known flavonoid due to its antihypertensive action, may be considered a prototype for safe antihypertensive drugs. This review focuses on the selective activity of quercetin. Based on recent studies, a few problems were discussed, including (1) pathology of pregnancy-induced hypertension; (2) search for new pharmacological treatments of pregnancy-induced hypertension; (3) issues with the use of herbal extracts during pregnancy; (4) flavonoids as natural active chemical compounds; (5) quercetin: its action during pregnancy, in vitro and in vivo pharmacological activities, clinical trials, and meta-analysis; (6) quercetin intake during pregnancy; (7) other natural compounds tested during pregnancy; (8) potential problems with the use of quercetin; (9) safety profile of quercetin. Various studies have shown a beneficial effect of quercetin on vascular endothelial function and its antioxidative and anti-inflammatory activity on cellular and tissue level. It is known that in animal models quercetin affects positively the development of embryo, fetus, and placenta. Because this flavonoid did not have teratogenic and abortive effect, it is generally recognized as safe. For this reason it should be appreciated and studied in the aspect of its potential use in the prevention and treatment of pregnancy-induced hypertension among women in this risk group.
Collapse
|
19
|
Gómez-Guzmán M, Rodríguez-Nogales A, Algieri F, Gálvez J. Potential Role of Seaweed Polyphenols in Cardiovascular-Associated Disorders. Mar Drugs 2018; 16:E250. [PMID: 30060542 PMCID: PMC6117645 DOI: 10.3390/md16080250] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/22/2018] [Accepted: 07/26/2018] [Indexed: 01/09/2023] Open
Abstract
The beneficial effects of various polyphenols with plant origins on different cardiovascular-associated disorders, such as hypertension, diabetes mellitus type 2 and metabolic syndrome are well known. Recently, marine crude-drugs are emerging as potential treatments in many noncommunicable conditions, including those involving the cardiovascular system. Among the active compounds responsible for these activities, seaweed polyphenols seem to play a key role. The aim of the present review is to summarise the current knowledge about the beneficial effects reported for edible seaweed polyphenols in the amelioration of these prevalent conditions, focusing on both preclinical and clinical studies. This review will help to establish the basis for future studies in this promising field.
Collapse
Affiliation(s)
- Manuel Gómez-Guzmán
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071 Granada, Spain.
- Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), 18071 Granada, Spain.
| | - Alba Rodríguez-Nogales
- Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), 18071 Granada, Spain.
- CIBER-EHD, Department of Pharmacology, Centre for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain.
| | - Francesca Algieri
- Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), 18071 Granada, Spain.
- CIBER-EHD, Department of Pharmacology, Centre for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain.
| | - Julio Gálvez
- Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), 18071 Granada, Spain.
- CIBER-EHD, Department of Pharmacology, Centre for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain.
| |
Collapse
|
20
|
Williamson G, Kay CD, Crozier A. The Bioavailability, Transport, and Bioactivity of Dietary Flavonoids: A Review from a Historical Perspective. Compr Rev Food Sci Food Saf 2018; 17:1054-1112. [DOI: 10.1111/1541-4337.12351] [Citation(s) in RCA: 271] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 12/27/2022]
Affiliation(s)
| | - Colin D. Kay
- Food Bioprocessing and Nutrition Sciences, Plants for Human Health Inst. North Carolina State Univ. North Carolina Research Campus Kannapolis NC 28081 U.S.A
| | - Alan Crozier
- Dept. of Nutrition Univ. of California Davis CA 95616 U.S.A
- School of Medicine Dentistry and Nursing, Univ. Glasgow Glasgow G12 8QQ UK
| |
Collapse
|
21
|
Calabró V, Litterio MC, Fraga CG, Galleano M, Piotrkowski B. Effects of quercetin on heart nitric oxide metabolism in l-NAME treated rats. Arch Biochem Biophys 2018; 647:47-53. [PMID: 29621523 DOI: 10.1016/j.abb.2018.03.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/30/2018] [Accepted: 03/31/2018] [Indexed: 02/07/2023]
Abstract
This study investigated the effects of a quercetin-supplemented diet on the biochemical changes installed in the heart of NO-deficient rats in terms of oxidants production and NO bioavailability determinants. Sprague-Dawley rats were subjected to Nω-nitro-l-arginine methyl ester (l-NAME) treatment (360 mg/L l-NAME in the drinking water, 4 d) with or without supplementation with quercetin (4 g/kg diet). l-NAME administration led to increased blood pressure (BP) (30%), decreased nitric oxide synthase (NOS) activity (50%), and increases in NADPH oxidase (NOX)-dependent superoxide anion production (60%) and p47phox protein level (65%). The co-administration of quercetin prevented the increase in BP and the activation of NOX but did not modify the decrease in NOS activity caused by l-NAME. In addition, quercetin affected oxidative stress parameters as glutathione oxidation, and the activities of oxidant detoxifying enzymes superoxide dismutase, glutathione peroxidase, and catalase. Thus, quercetin administration counteracts l-NAME effects on NO bioavailability determinants in vivo, essentially through controlling NOX-mediated superoxide anion production.
Collapse
Affiliation(s)
- Valeria Calabró
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Buenos Aires, Argentina
| | - María C Litterio
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Buenos Aires, Argentina
| | - Cesar G Fraga
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Buenos Aires, Argentina; Department of Nutrition, University of California, Davis, USA
| | - Monica Galleano
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Buenos Aires, Argentina.
| | - Barbara Piotrkowski
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
22
|
Jin Z, Tan Q, Sun B. Telmisartan ameliorates vascular endothelial dysfunction in coronary slow flow phenomenon (CSFP). Cell Biochem Funct 2018; 36:18-26. [PMID: 29314204 DOI: 10.1002/cbf.3313] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/22/2017] [Accepted: 11/29/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Zhe Jin
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Medicine, Tsinghua University, Beijing, China
| | - Qindong Tan
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bei Sun
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
23
|
Xiao L, Liu L, Guo X, Zhang S, Wang J, Zhou F, Liu L, Tang Y, Yao P. Quercetin attenuates high fat diet-induced atherosclerosis in apolipoprotein E knockout mice: A critical role of NADPH oxidase. Food Chem Toxicol 2017; 105:22-33. [DOI: 10.1016/j.fct.2017.03.048] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/09/2017] [Accepted: 03/24/2017] [Indexed: 12/22/2022]
|
24
|
Díaz-de-Cerio E, Rodríguez-Nogales A, Algieri F, Romero M, Verardo V, Segura-Carretero A, Duarte J, Galvez J. The hypoglycemic effects of guava leaf ( Psidium guajava L.) extract are associated with improving endothelial dysfunction in mice with diet-induced obesity. Food Res Int 2017; 96:64-71. [DOI: 10.1016/j.foodres.2017.03.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/03/2017] [Accepted: 03/10/2017] [Indexed: 01/22/2023]
|
25
|
Mohammadi-Sartang M, Mazloom Z, Sherafatmanesh S, Ghorbani M, Firoozi D. Effects of supplementation with quercetin on plasma C-reactive protein concentrations: a systematic review and meta-analysis of randomized controlled trials. Eur J Clin Nutr 2017; 71:1033-1039. [DOI: 10.1038/ejcn.2017.55] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 03/12/2017] [Accepted: 03/15/2017] [Indexed: 11/10/2022]
|
26
|
Sahebkar A. Effects of quercetin supplementation on lipid profile: A systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2017; 57:666-676. [PMID: 25897620 DOI: 10.1080/10408398.2014.948609] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND In spite of promising experimental findings, randomized controlled trials (RCTs) have yielded mixed results on the impact of quercetin supplementation on plasma lipid levels. AIM The present study aimed to quantify the effects of quercetin on plasma lipids using a meta-analysis of RCTs. METHODS A systematic literature search of Medline was conducted for RCTs that investigated the efficacy of quercetin supplementation on plasma lipids comprising total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides. Weighted mean differences (WMDs) and 95% confidence intervals (CIs) were calculated for net changes in lipid concentrations using a random-effects model. Meta-regression analysis was conducted to assess the effect of quercetin dose and duration of supplementation as moderators on the calculated effect measures. RESULTS Five RCTs totaling 442 subjects (221 in the quercetin and 221 in the control group) fulfilled the eligibility criteria and selected for analyses. Combined estimate of effect size for the impact of quercetin on plasma LDL-C (WMD: 1.43 mg/dL, 95% CI: -0.92-3.78, p = 0.23), HDL-C (WMD: 0.26 mg/dL, 95% CI: -0.74-1.25, p = 0.61) and triglycerides (WMD: -9.42 mg/dL, 95% CI: -27.80-8.96, p = 0.32) was not statistically significant. However, a borderline significant but clinically non-relevant increase in total cholesterol was observed (WMD: 3.13 mg/dL, 95% CI: -0.01-6.27, p = 0.05). When the analysis was confined to the subgroups of studies with quercetin doses ≥500 mg/day and follow-up of ≥ 4 weeks, a significant increase in total cholesterol (WMD: 3.57 mg/dL, 95% CI: 0.21-6.92, p = 0.04) and a decline in triglycerides (WMD: -24.54 mg/dL, 95% CI: -33.09 to -15.99, p < 0.00001) was observed, but LDL-C and HDL-C concentrations remained unchanged (p > 0.05). Changes in plasma triglycerides, but not other indices of lipid profile, were significantly associated with quercetin dose (slope: -0.057; 95% CI: -0.103 to -0.010; p = 0.02) and duration of supplementation (slope: -5.314; 95% CI: -9.482 to -1.147; p = 0.01). CONCLUSION Available evidence from RCTs does not suggest any clinically relevant effect of quercetin supplementation on plasma lipids, apart from a significant reduction of triglycerides at doses above 50 mg/day.
Collapse
Affiliation(s)
- Amirhossein Sahebkar
- a Biotechnology Research Center , Mashhad University of Medical Sciences , Mashhad , Iran.,b Cardiovascular Research Center , Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
27
|
Li C, Zhang WJ, Frei B. Quercetin inhibits LPS-induced adhesion molecule expression and oxidant production in human aortic endothelial cells by p38-mediated Nrf2 activation and antioxidant enzyme induction. Redox Biol 2016; 9:104-113. [PMID: 27454768 PMCID: PMC4961307 DOI: 10.1016/j.redox.2016.06.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/21/2016] [Accepted: 06/25/2016] [Indexed: 01/26/2023] Open
Abstract
Atherosclerosis, the underlying cause of ischemic heart disease and stroke, is an inflammatory disease of arteries in a hyperlipidemic milieu. Endothelial expression of cellular adhesion molecules, such as endothelial-leukocyte adhesion molecule-1 (E-selectin) and intercellular adhesion molecule-1 (ICAM-1), plays a critical role in the initiation and progression of atherosclerosis. The dietary flavonoid, quercetin, has been reported to inhibit expression of cellular adhesion molecules, but the underlying mechanisms are incompletely understood. In this study, we found that quercetin dose-dependently (5–20 µM) inhibits lipopolysaccharide (LPS)-induced mRNA and protein expression of E-selectin and ICAM-1 in human aortic endothelial cells (HAEC). Incubation of HAEC with quercetin also significantly reduced LPS-induced oxidant production, but did not inhibit activation of the nuclear factor-kappaB (NF-κB). Furthermore, quercetin induced activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) and subsequent mRNA and protein expression of the antioxidant enzymes, heme oxygenase-1 (HO-1), NAD(P)H dehydrogenase, quinone 1, and glutamate-cysteine ligase. The induction of Nrf2 and antioxidant enzymes was partly inhibited by the p38 mitogen-activated protein kinase (p38) inhibitor, SB203580. Our results suggest that quercetin suppresses LPS-induced oxidant production and adhesion molecule expression by inducing Nrf2 activation and antioxidant enzyme expression, which is partially mediated by p38; and the inhibitory effect of quercetin on adhesion molecule expression is not due to inhibition of NF-κB activation, but instead due to antioxidant-independent effects of HO-1. Quercetin inhibits LPS-induced oxidant production and adhesion molecule expression. Quercetin activates p38 MAP kinase and Nrf2, upregulating heme oxygenase-1 (HO-1). HO-1 rather than NF-κB may account for quercetin’s anti-inflammatory effects.
Collapse
Affiliation(s)
- Chuan Li
- Linus Pauling Institute and Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Wei-Jian Zhang
- Linus Pauling Institute and Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Balz Frei
- Linus Pauling Institute and Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
28
|
Choi EY, Lee H, Woo JS, Jang HH, Hwang SJ, Kim HS, Kim WS, Kim YS, Choue R, Cha YJ, Yim JE, Kim W. Effect of onion peel extract on endothelial function and endothelial progenitor cells in overweight and obese individuals. Nutrition 2016; 31:1131-5. [PMID: 26233871 DOI: 10.1016/j.nut.2015.04.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 02/20/2015] [Accepted: 04/22/2015] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Acute or chronic intake of polyphenol-rich foods has been reported to improve endothelial function. Quercetin, found abundantly in onion, is a potent antioxidant flavonoid. The aim of this study was to investigate whether consumption of onion peel extract (OPE) improves endothelial function in healthy overweight and obese individuals. METHODS This was a randomized double-blind, placebo-controlled study. Seventy-two healthy overweight and obese participants were randomly assigned to receive a red, soft capsule of OPE (100 mg quercetin/d, 50 mg quercetin twice daily; n = 36 participants) or an identical placebo capsule (n = 36) for 12 wk. Endothelial function, defined by flow-mediated dilation (FMD), circulating endothelial progenitor cells (EPCs) by flow cytometry, and laboratory test were determined at baseline and after treatment. RESULTS Baseline characteristics and laboratory findings did not significantly differ between the two groups. Compared with baseline values, the OPE group showed significantly improved FMD at 12 wk (from 12.5 ± 5.2 to 15.2 ± 6.1; P = 0.002), whereas the placebo group showed no difference. Nitroglycerin-mediated dilation did not change in either group. EPC counts (44.2 ± 25.6 versus 52.3 ± 18.6; P = 0.005) and the percentage of EPCs were significantly increased in the OPE group. When FMD was divided into quartiles, rate of patients with endothelial dysfunction defined as lowest quartile (cutoff value, 8.6%) of FMD improved from 26% to 9% by OPE. CONCLUSION Medium-term administration of OPE an improvement in FMD and circulating EPCs.
Collapse
Affiliation(s)
- Eun-Yong Choi
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hansongyi Lee
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 447-701, Republic of Korea; Research Institute of Medical Nutrition, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Jong Shin Woo
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyun Hee Jang
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seung Joon Hwang
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyun Soo Kim
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Woo-Sik Kim
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Young-Seol Kim
- Division of Endocrinology, Department of Internal Medicine, Kyung Hee University College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ryowon Choue
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 447-701, Republic of Korea; Research Institute of Medical Nutrition, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Yong-Jun Cha
- Department of Food and Nutrition, Changwon National University, Changwon, Republic of Korea
| | - Jung-Eun Yim
- Department of Food and Nutrition, Changwon National University, Changwon, Republic of Korea
| | - Weon Kim
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University College of Medicine, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
29
|
Abstract
As flavonols are present in fruits and vegetables, they are consumed in considerable amounts in the diet. There is growing evidence that the well-recognized antioxidant, anti-inflammatory, and vasorelaxant actions of flavonols may, at least in part, result from modulation of biochemical signaling pathways and kinases. It is well established that diabetes is associated with increased cardiovascular morbidity and mortality. Despite clinical management of blood glucose levels, diabetes often results in cardiovascular disease. There is good evidence that endothelial dysfunction contributes significantly to the progression of diabetic cardiovascular diseases. This review describes the biological actions of flavonols that may ameliorate adverse cardiovascular events in diabetes. We discuss evidence that flavonols may be developed as novel pharmacological agents to prevent diabetes-induced vascular dysfunction.
Collapse
|
30
|
Jones HS, Gordon A, Magwenzi SG, Naseem K, Atkin SL, Courts FL. The dietary flavonol quercetin ameliorates angiotensin II-induced redox signaling imbalance in a human umbilical vein endothelial cell model of endothelial dysfunction via ablation of p47phox expression. Mol Nutr Food Res 2016; 60:787-97. [PMID: 26778209 DOI: 10.1002/mnfr.201500751] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/21/2015] [Accepted: 01/05/2016] [Indexed: 02/05/2023]
Abstract
SCOPE Quercetin is reported to reduce blood pressure in hypertensive but not normotensive humans, but the role of endothelial redox signaling in this phenomenon has not been assessed. This study investigated the effects of physiologically obtainable quercetin concentrations in a human primary cell model of endothelial dysfunction in order to elucidate the mechanism of action of its antihypertensive effects. METHODS AND RESULTS Angiotensin II (100 nM, 8 h) induced dysfunction, characterized by suppressed nitric oxide availability (85 ± 4% p<0.05) and increased superoxide production (136 ± 5 %, p<0.001). These effects were ablated by an NADPH oxidase inhibitor. Quercetin (3 μM, 8 h) prevented angiotensin II induced changes in nitric oxide and superoxide levels, but no effect upon nitric oxide or superoxide in control cells. The NADPH oxidase subunit p47(phox) was increased at the mRNA and protein levels in angiotensin II-treated cells (130 ± 14% of control, p<0.05), which was ablated by quercetin co-treatment. Protein kinase C activity was increased after angiotensin II treatment (136 ± 51%), however this was unaffected by quercetin co-treatment. CONCLUSION Physiologically obtainable quercetin concentrations are capable of ameliorating angiotensin II-induced endothelial nitric oxide and superoxide imbalance via protein kinase C-independent restoration of p47(phox) gene and protein expression.
Collapse
Affiliation(s)
- Huw S Jones
- Department of Sports, Health and Exercise Sciences, University of Hull, Hull, UK.,Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, UK
| | - Andrew Gordon
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, UK
| | - Simba G Magwenzi
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, UK
| | - Khalid Naseem
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, UK
| | - Stephen L Atkin
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, UK.,Weill Cornell Medical College Qatar, Doha, Qatar
| | - Fraser L Courts
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, UK.,Campden BRI, Station Road, Chipping Campden, Gloucestershire, UK
| |
Collapse
|
31
|
Shi MQ, Su FF, Xu X, Liu XT, Wang HT, Zhang W, Li X, Lian C, Zheng QS, Feng ZC. Cilostazol suppresses angiotensin II-induced apoptosis in endothelial cells. Mol Med Rep 2016; 13:2597-605. [PMID: 26862035 PMCID: PMC4768974 DOI: 10.3892/mmr.2016.4881] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 01/20/2016] [Indexed: 01/14/2023] Open
Abstract
Patients with essential hypertension undergo endothelial dysfunction, particularly in the conduit arteries. Cilostazol, a type III phosphodiesterase inhibitor, serves a role in the inhibition of platelet aggregation and it is widely used in the treatment of peripheral vascular diseases. Previous studies have suggested that cilostazol suppresses endothelial dysfunction; however, it remains unknown whether cilostazol protects the endothelial function in essential hypertension. The aim of the present study was to investigate whether, and how, cilostazol suppresses angiotensin II (angII)-induced endothelial dysfunction. Human umbilical vein endothelial cells (HUVECs) and Sprague Dawley rats were exposed to angII and treated with cilostazol. Endothelial cell apoptosis and function, nitric oxide and superoxide production, phosphorylation (p) of Akt, and caspase-3 protein expression levels were investigated. AngII exposure resulted in the apoptosis of endothelial cells in vitro and in vivo. In vitro, cilostazol significantly suppressed the angII-induced apoptosis of HUVECs; however, this effect was reduced in the presence of LY294002, a phosphoinositide 3 kinase (PI3K) inhibitor. Furthermore, cilostazol suppressed the angII-induced p-Akt downregulation and cleaved caspase-3 upregulation. These effects were also alleviated by LY294002. In vivo, cilostazol suppressed the angII-induced endothelial cell apoptosis and dysfunction. Cilostazol was also demonstrated to partially reduced the angII-induced increase in superoxide production. The results of the present study suggested that cilostazol suppresses endothelial apoptosis and dysfunction by modulating the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Miao-Qian Shi
- Department of Pediatrics, Affiliated Bayi Children's Hospital, General Military Hospital of Beijing PLA, Beijing Key Laboratory of Pediatric Organ Failure, Beijing 100700, P.R. China
| | - Fei-Fei Su
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xuan Xu
- Department of Pediatrics, Affiliated Bayi Children's Hospital, General Military Hospital of Beijing PLA, Beijing Key Laboratory of Pediatric Organ Failure, Beijing 100700, P.R. China
| | - Xiong-Tao Liu
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Hong-Tao Wang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Wei Zhang
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xue Li
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Cheng Lian
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Qiang-Sun Zheng
- Department of Cardiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhi-Chun Feng
- Department of Pediatrics, Affiliated Bayi Children's Hospital, General Military Hospital of Beijing PLA, Beijing Key Laboratory of Pediatric Organ Failure, Beijing 100700, P.R. China
| |
Collapse
|
32
|
Li W, Chen Z, Yan M, He P, Chen Z, Dai H. The protective role of isorhamnetin on human brain microvascular endothelial cells from cytotoxicity induced by methylglyoxal and oxygen-glucose deprivation. J Neurochem 2016; 136:651-659. [PMID: 26578299 DOI: 10.1111/jnc.13436] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 10/25/2015] [Accepted: 11/05/2015] [Indexed: 01/04/2023]
Abstract
As the first target of stroke, cerebral endothelial cells play a key role in brain vascular repair and maintenance, and their function is impeded in diabetes. Methylglyoxal (MGO), a reactive dicarbonyl produced during glucose metabolism, accumulates in diabetic patients. MGO and MGO-induced advanced glycation end-products (AGEs) could ameliorate stroke-induced brain vascular damage, closely related with ECs dysfunction. Using MGO plus oxygen-glucose deprivation (OGD) to mimic diabetic stroke, we reported the protective effect of isorhamnetin on OGD-induced cytotoxicity after MGO treatment on primary human brain microvascular endothelial cells (HBMEC) and explored the underlying mechanisms. Treatment of MGO for 24 h significantly enhanced 3-h OGD-induced HBMEC toxic effect, which was inhibited by pretreatment of isorhamnetin (100 μmol/L). Moreover, the protective effect of isorhamnetin is multiple function dependent, which includes anti-inflammation, anti-oxidative stress and anti-apoptosis effects. Besides its well-known inhibition on the mitochondria-dependent or intrinsic apoptotic pathway, isorhamnetin also reduced activation of the extrinsic apoptotic pathway, as characterized by the decreased expression and activity of caspase 3 and caspase 8. Furthermore, pretreatment with isorhamnetin specifically inhibited FAS/FASL expression and suppressed nuclear factor-kappa B nuclear translocation. Taken together, our results indicated that isorhamnetin protected against OGD-induced cytotoxicity after MGO treatment in cultured HBMEC due to its multiple protective effects and could inhibit Fas-mediated extrinsic apoptosis. Therefore, isorhamnetin is a promising reagent for the treatment of hyperglycemia and ischemia-induced cerebral vascular degeneration. A proposed model of the potential protective mechanism of isorhamnetin, a metabolite of quercetin, on methylglyoxal (MGO) treatment plus oxygen-glucose deprivation (OGD) exposure-induced cytotoxicity in cultured human brain microvascular endothelial cells. Isorhamnetin inhibits FasL-mediated extrinsic apoptosis and neurotrophic factor κB (NF-κB) nuclear translocation, which can induce the cell DNA damage. Therefore, the protective effect of isorhamnetin occurs through multiple functions, including anti-inflammation, anti-oxidative stress and anti-apoptosis. Therefore, isorhamnetin is a promising reagent for the treatment of hyperglycemia and ischemia-induced cerebral vascular degeneration.
Collapse
Affiliation(s)
- Wenlu Li
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhigang Chen
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Zhejiang University, Hangzhou, China
| | - Min Yan
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ping He
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhong Chen
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haibin Dai
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Carnitine palmitoyltransferase-1 up-regulation by PPAR-β/δ prevents lipid-induced endothelial dysfunction. Clin Sci (Lond) 2015; 129:823-37. [PMID: 26253087 DOI: 10.1042/cs20150111] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fatty acids cause endothelial dysfunction involving increased ROS (reactive oxygen species) and reduced NO (nitric oxide) bioavailability. We show that in MAECs (mouse aortic endothelial cells), the PPARβ/δ (peroxisome- proliferator-activated receptor β/δ) agonist GW0742 prevented the decreased A23187-stimulated NO production, phosphorylation of eNOS (endothelial nitric oxide synthase) at Ser1177 and increased intracellular ROS levels caused by exposure to palmitate in vitro. The impaired endothelium-dependent relaxation to acetylcholine in mouse aorta induced by palmitate was restored by GW0742. In vivo, GW0742 treatment prevented the reduced aortic relaxation, phosphorylation of eNOS at Ser1177, and increased ROS production and NADPH oxidase in mice fed on a high-fat diet. The PPARβ/δ antagonist GSK0660 abolished all of these protective effects induced by GW0742. This agonist enhanced the expression of CPT (carnitine palmitoyltransferase)-1. The effects of GW0742 on acetylcholine- induced relaxation in aorta and on NO and ROS production in MAECs exposed to palmitate were abolished by the CPT-1 inhibitor etomoxir or by siRNA targeting CPT-1. GW0742 also inhibited the increase in DAG (diacylglycerol), PKCα/βII (protein kinase Cα/βII) activation, and phosphorylation of eNOS at Thr495 induced by palmitate in MAECs, which were abolished by etomoxir. In conclusion, PPARβ/δ activation restored the lipid-induced endothelial dysfunction by up-regulation of CPT-1, thus reducing DAG accumulation and the subsequent PKC-mediated ROS production and eNOS inhibition.
Collapse
|
34
|
Major phenolic compounds in black currant (Ribes nigrum L.) buds: Variation due to genotype, ontogenetic stage and location. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
35
|
Abstract
One of the main mechanisms by which dietary flavonoids are thought to influence cardiovascular disease is via protection of the bioactivity of the endothelium-derived nitric oxide (NO). Additionally, flavonoids may also interfere with the signalling cascades of inflammation and prevent overproduction of NO and its deleterious consequences in shock and ischemia-reperfusion injury. In the present paper we review the evidence of the effects of flavonoids on NO. Flavonoids exert complex actions on the synthesis and bioavailability of NO which may result both in enhanced or decreased NO levels: (1) in cell free systems, several flavonoids may scavenge NO via its pro-oxidant properties by increasing superoxide. However, under conditions of oxidative stress, flavonoids may also protect NO from superoxide-driven inactivation. (2) In intact healthy tissues, some flavonoids increase eNOS activity in endothelial cells. Paradoxically this effect involves a pro-oxidant effect which results in Ca(2+)-dependent activation of eNOS. As inhibitors of PI3K, flavonoids may potentially inhibit the PI3K/Akt-dependent activation of eNOS. (3) Under conditions of inflammation and oxidative stress, flavonoids may prevent the inflammatory signalling cascades via inhibition of NFκB and thereby downregulate iNOS. On the other hand, they also prevent the overexpression of ROS generating enzymes, reducing superoxide and peroxynitrite levels, and hence preventing superoxide-induced NO inactivation and eNOS uncoupling. Therefore, the final effect of flavonoids on NO levels will depend on the flavonoid structure and the concentrations used, on the cell type under study and particularly on the presence of inflammatory/oxidative conditions.
Collapse
Affiliation(s)
- J Duarte
- Department of Pharmacology, University of Granada, 18071, Granada, Spain
| | | | | |
Collapse
|
36
|
Jimenez R, Lopez-Sepulveda R, Romero M, Toral M, Cogolludo A, Perez-Vizcaino F, Duarte J. Quercetin and its metabolites inhibit the membrane NADPH oxidase activity in vascular smooth muscle cells from normotensive and spontaneously hypertensive rats. Food Funct 2015; 6:409-14. [DOI: 10.1039/c4fo00818a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quercetin, the most abundant dietary flavonol, exerts antioxidant effects reducing vascular superoxide (O2−) and improving endothelial function in animal models of cardiovascular disease.
Collapse
Affiliation(s)
- R. Jimenez
- Department of Pharmacology
- School of Pharmacy
- University of Granada
- Spain
| | | | - M. Romero
- Department of Pharmacology
- School of Pharmacy
- University of Granada
- Spain
| | - M. Toral
- Department of Pharmacology
- School of Pharmacy
- University of Granada
- Spain
| | - A. Cogolludo
- Department of Pharmacology
- School of Medicine
- University Complutense of Madrid
- Ciber Enfermedades Respiratorias (Ciberes) and Instituto de Investigación Sanitaria Gregorio Marañón (IISGM)
- Madrid
| | - F. Perez-Vizcaino
- Department of Pharmacology
- School of Medicine
- University Complutense of Madrid
- Ciber Enfermedades Respiratorias (Ciberes) and Instituto de Investigación Sanitaria Gregorio Marañón (IISGM)
- Madrid
| | - J. Duarte
- Department of Pharmacology
- School of Pharmacy
- University of Granada
- Spain
| |
Collapse
|
37
|
González-Peña D, Angulo J, Vallejo S, Colina-Coca C, de Ancos B, Sánchez-Ferrer CF, Peiró C, Sánchez-Moreno C. High-cholesterol diet enriched with onion affects endothelium-dependent relaxation and NADPH oxidase activity in mesenteric microvessels from Wistar rats. Nutr Metab (Lond) 2014; 11:57. [PMID: 25926860 PMCID: PMC4413540 DOI: 10.1186/1743-7075-11-57] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 11/29/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The aim of the present study was to examine the effects of onion as functional ingredient on the oxidative status, lipoprotein levels (total cholesterol-TC, HDL-C, LDL-C), triacylglycerides (TAG) and vascular reactivity of mesenteric arteries in hypercholesterolemic Wistar rats. METHODS Twenty-four animals were fed with three different diets [control, high-cholesterol diet (HC) and high-cholesterol enriched with onion diet (HCO)]. After seven weeks of experimental feeding the rats were euthanized for blood and tissues collection. TC, HDL-C, LDL-C and TAG were measured, and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS(•+)) scavenging capacity and ferric reducing antioxidant power (FRAP) were determined in plasma. Superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzyme activities were assayed in erythrocyte lysates. Endothelium-dependent vasodilation to acetylcholine was evaluated in mesenteric arterial segments. NADPH oxidase (NOX) was also measured by lucigenin-derived chemiluminiscence. RESULTS The dietary cholesterol content significantly affected plasma lipoprotein levels, increased superoxide generation from NOX, and caused impaired endothelium-dependent vasodilation in the rat mesenteric arteries. Onion ingredient improved antioxidant status in HCO group, as it was evidenced by ABTS(•+) and FRAP values and SOD and GPx enzyme activities compared to the HC-fed group, reduced the increment in NOX activity and reversed endothelial dysfunction promoted by the HC diet. Scavenging of superoxide with TEMPOL or inhibition of NOX with apocynin improved endothelium-dependent vasodilation only in HC-fed rats. CONCLUSIONS Enrichment of diet with onion as functional ingredient could be proposed as a complementary approach to prevent or partially modulate vascular dysfunction, reducing some of the risk indexes linked to initial development of atherosclerosis.
Collapse
Affiliation(s)
- Diana González-Peña
- />Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), José Antonio Novais 10, ES-28040 Madrid, Spain
| | - Javier Angulo
- />Servicio de Histología-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), ES-28034 Madrid, Spain
| | - Susana Vallejo
- />Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, ES-28029 Madrid, Spain
| | - Clara Colina-Coca
- />Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), José Antonio Novais 10, ES-28040 Madrid, Spain
| | - Begoña de Ancos
- />Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), José Antonio Novais 10, ES-28040 Madrid, Spain
| | - Carlos F Sánchez-Ferrer
- />Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, ES-28029 Madrid, Spain
| | - Concepción Peiró
- />Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, ES-28029 Madrid, Spain
| | - Concepción Sánchez-Moreno
- />Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), José Antonio Novais 10, ES-28040 Madrid, Spain
| |
Collapse
|
38
|
Guo Y, Bruno RS. Endogenous and exogenous mediators of quercetin bioavailability. J Nutr Biochem 2014; 26:201-10. [PMID: 25468612 DOI: 10.1016/j.jnutbio.2014.10.008] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/19/2014] [Accepted: 10/21/2014] [Indexed: 01/28/2023]
Abstract
Quercetin is a dietary flavonol that has poor and highly variable bioavailability. Epidemiological studies suggest that higher dietary intakes of quercetin decease cardiovascular disease (CVD) risk. However, experimental findings examining its cardioprotective activities are inconsistent, thereby precluding a full understanding of its health benefits. Bioavailability of dietary constituents is a critical mediator of their health benefits. Thus, a better understanding of the factors regulating quercetin bioavailability is expected to support its potential role in managing CVD risk. This review provides an update on the evidence describing endogenous and exogenous factors responsible for the limited and highly variable bioavailability of quercetin. It focuses on pharmacokinetics studies in clinical and animal models, while also describing strategies aimed at improving quercetin bioavailability to better realize its cardioprotective activities in vivo that are routinely observed in vitro. Although significant advances have been made in understanding determinants of quercetin bioavailability, additional research in controlled trials is needed to more comprehensively examine dose-response effects, whether its cardioprotective activities improve in response to its greater bioavailability, and if the putative health benefits of quercetin are mediated directly or indirectly from one or more of its metabolites generated during xenobiotic metabolism.
Collapse
Affiliation(s)
- Yi Guo
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Richard S Bruno
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
39
|
Nakayama H, Tsuge N, Sawada H, Higashi Y. Chronic intake of onion extract containing quercetin improved postprandial endothelial dysfunction in healthy men. J Am Coll Nutr 2014; 32:160-4. [PMID: 23885989 DOI: 10.1080/07315724.2013.797858] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Epidemiologic studies have shown that dietary flavonoids reduce the risk of cardiovascular events. Onion is rich in quercetin, a strong antioxidant flavonoid. In some in vitro studies, quercetin improved endothelial function associated with atherosclerosis, a leading cause of cardiovascular events. OBJECTIVE The aim of this study was to determine whether chronic onion extract intake would improve postprandial endothelial dysfunction induced by an oral maltose load in healthy men. METHODS Healthy men (44±10 years, n=23) received 4.3 g of onion extract (containing 51 mg of quercetin) once a day for 30 days. Before and after the chronic onion extract intake, fasting and postprandial flow-mediated vasodilation (FMD) responses were measured. RESULTS Maltose loading significantly decreased FMD both before and after chronic onion extract intake (p=0.000037 and p=0.0035, respectively). The chronic onion extract intake did not significantly affect fasting FMD (p=0.069) but improved the postprandial FMD significantly from 5.1%±2.2% to 6.7%±2.6% (p=0.00015). The chronic onion extract intake did not alter systemic and forearm hemodynamics. CONCLUSION These findings suggest that chronic onion extract intake ameliorates postprandial endothelial dysfunction in healthy men and may be beneficial for improving cardiovascular health.
Collapse
|
40
|
Qin C, Yap S, Woodman OL. Antioxidants in the prevention of myocardial ischemia/reperfusion injury. Expert Rev Clin Pharmacol 2014; 2:673-95. [DOI: 10.1586/ecp.09.41] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
41
|
Seo K, Yang JH, Kim SC, Ku SK, Ki SH, Shin SM. The Antioxidant Effects of Isorhamnetin Contribute to Inhibit COX-2 Expression in Response to Inflammation: A Potential Role of HO-1. Inflammation 2013; 37:712-22. [DOI: 10.1007/s10753-013-9789-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
Hu ZP, Fang XL, Qian HY, Fang N, Wang BN, Wang Y. Telmisartan prevents angiotensin II-induced endothelial dysfunction in rabbit aorta via activating HGF/Met system and PPARγ pathway. Fundam Clin Pharmacol 2013; 28:501-11. [PMID: 24188213 DOI: 10.1111/fcp.12057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 10/11/2013] [Accepted: 10/31/2013] [Indexed: 01/06/2023]
Affiliation(s)
- Ze-Ping Hu
- Department of Cardiology; The First Affiliated Hospital; Anhui Medical University; 218 Jixi Road Hefei Anhui Province 230022 China
| | - Xiao-Ling Fang
- Operating Room; The First Affiliated Hospital; Anhui Medical University; 218 Jixi Road Hefei Anhui Province 230022 China
| | - Hai-Yan Qian
- Department of Cardiology; State Key Laboratory of Cardiovascular Disease; Fuwai Hospital; National Center for Cardiovascular Diseases; Chinese Academy of Medical Sciences and Peking Union Medical College; 167 North Lishi Road Xicheng District Beijing 100037 China
| | - Nan Fang
- Department of Cardiology; The First Affiliated Hospital; Anhui Medical University; 218 Jixi Road Hefei Anhui Province 230022 China
| | - Bang-Ning Wang
- Department of Cardiology; The First Affiliated Hospital; Anhui Medical University; 218 Jixi Road Hefei Anhui Province 230022 China
| | - Yuan Wang
- Laboratory of Molecular Biology and Department of Biochemistry; Anhui Medical University; 81 Meishan Road Hefei Anhui Province 230032 China
| |
Collapse
|
43
|
Lee BH, Hsu WH, Hsu YW, Pan TM. Dimerumic acid attenuates receptor for advanced glycation endproducts signal to inhibit inflammation and diabetes mediated by Nrf2 activation and promotes methylglyoxal metabolism into d-lactic acid. Free Radic Biol Med 2013; 60:7-16. [PMID: 23434766 DOI: 10.1016/j.freeradbiomed.2013.01.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 11/13/2012] [Accepted: 01/29/2013] [Indexed: 12/17/2022]
Abstract
This study was designed to evaluate the effects of dimerumic acid (DMA) on receptor for advanced glycation endproducts (RAGE) signal activation and THP-1 monocyte inflammation treated with S100b, a specific ligand of RAGE. We found that DMA inhibited inflammatory cytokine production via upregulation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and alleviated oxidative stress through attenuation of p47phox translocation to the membrane of S100b-treated THP-1 monocytes. We found that DMA activated Nrf2 mediated by the p38 kinase pathway in THP-1 monocytes. However, anti-inflammatory activity of DMA was attenuated by Nrf2 siRNA treatment. In an animal model, methylglyoxal (MG; 200mg/kg bw) was chosen to induce diabetes in Balb/C mice (6 weeks) in this work. The in vivo verification of anti-inflammation in peripheral blood mononuclear cells by DMA treatment was confirmed by tumor necrosis factor-α and interleukin-1β measurements. Oral glucose tolerance test, insulin tolerance test, hyperinsulinemia, and hyperglycemia were improved in MG-treated mice by DMA treatment and these effects were greater than those of silymarin and N-acetylcysteine. Furthermore, DMA increased hepatic glyoxalase mRNA and glutathione mediated by Nrf2 activation to metabolize MG into d-lactic acid, thereby reducing serum and hepatic AGE levels and suppressing inflammatory factor generation in MG-treated mice. However, DMA did not exert the antiglycation activity in MG-bovine serum albumin incubation. Taken together, the results indicate that DMA is a novel antioxidant and Nrf2 activator that lowers AGE levels and may prove to be an effective treatment for diabetes.
Collapse
Affiliation(s)
- Bao-Hong Lee
- Department of Biochemical Science & Technology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | | | | | | |
Collapse
|
44
|
Maione F, Cicala C, Musciacco G, De Feo V, Amat AG, Ialenti A, Mascolo N. Phenols, Alkaloids and Terpenes from Medicinal Plants with Antihypertensive and Vasorelaxant Activities. A Review of Natural Products as Leads to Potential Therapeutic Agents. Nat Prod Commun 2013. [DOI: 10.1177/1934578x1300800434] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Numerous studies support the cardiovascular effects of medicinal plants. This review examines plants whose antihypertensive and vasorelaxant effects have been scientifically validated. Our study selected only chemically characterized plants whose mode of action had already been investigated. The aim of the paper is to provide a quick way to identify medicinal plants and their constituents with antihypertensive and vasorelaxant activities.
Collapse
Affiliation(s)
- Francesco Maione
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Carla Cicala
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Giulia Musciacco
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Vincenzo De Feo
- Dipartimento di Scienze Farmaceutiche e Biomediche, Università degli Studi di Salerno, Via Ponte don Melillo, 84084, Fisciano (Salerno), Italy
| | - Anibal G. Amat
- Facultad de Ciencias Exactas, Quimicas y Naturales, Universidad Nacional de Misiones, Felix de Azara 1552, 3300 Posadas, Misiones, Argentina
| | - Armando Ialenti
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Nicola Mascolo
- Dipartimento di Farmacia, Università di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
45
|
Litterio MC, Jaggers G, Sagdicoglu Celep G, Adamo AM, Costa MA, Oteiza PI, Fraga CG, Galleano M. Blood pressure-lowering effect of dietary (-)-epicatechin administration in L-NAME-treated rats is associated with restored nitric oxide levels. Free Radic Biol Med 2012; 53:1894-902. [PMID: 22985936 DOI: 10.1016/j.freeradbiomed.2012.08.585] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 08/23/2012] [Indexed: 12/31/2022]
Abstract
Epidemiological and intervention studies have shown that the intake of certain chocolates or cocoa products decreases blood pressure (BP) in humans. (-)-Epicatechin is the most abundant flavanol present in cocoa seeds and its derived foods. This work investigates the effects of dietary (-)-epicatechin on BP in rats that received N(ω)-nitro-l-arginine methyl ester (L-NAME) for 4 days. (-)-Epicatechin administration prevented the 42mm Hg increase in BP associated with the inhibition of NO production in a dose-dependent manner (0.2-4.0g/kg diet). This BP effect was associated with a reduction in L-NAME-mediated increase in the indexes of oxidative stress (plasma TBARS and GSSG/GSH(2) ratio) and with a restoration of the NO concentration. At the vascular level, none of the treatments modified NOS expression, but (-)-epicatechin administration avoided the L-NAME-mediated decrease in eNOS activity and increase in both superoxide anion production and NOX subunit p47(phox) expression. In summary, (-)-epicatechin was able to prevent the increase in BP and in oxidative stress and restored NO bioavailability. The fact that (-)-epicatechin is present in several plants usually consumed by humans gives the possibility of developing diets rich in those plants or pharmacological strategies using that flavonoid to diminish BP in hypertensive subjects.
Collapse
Affiliation(s)
- Maria C Litterio
- Physical Chemistry-IBIMOL, School of Pharmacy and Biochemistry, University of Buenos Aires-CONICET, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Lau YS, Kwan CY, Ku TC, Hsieh WT, Wang HD, Nishibe S, Dharmani M, Mustafa MR. Apocynum venetum leaf extract, an antihypertensive herb, inhibits rat aortic contraction induced by angiotensin II: a nitric oxide and superoxide connection. JOURNAL OF ETHNOPHARMACOLOGY 2012; 143:565-571. [PMID: 22835814 DOI: 10.1016/j.jep.2012.07.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/04/2012] [Accepted: 07/13/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The leaves extract of Apocynum venetum (AVLE), also known as "luobuma", have long been used in traditional Chinese medicine to treat hypertension and depression in parts of China and it has been shown to possess anti-oxidant and anti-lipid peroxidation effects. AVLE (10 μg/ml) has been reported to have a long-lasting endothelium-dependent relaxant effect and this effect has been proposed to be due to its nitric oxide(NO)-releasing and superoxide anion(SOA)-scavenging properties. AIM OF THE STUDY The present study seeks to evaluate the differential actions of AVLE extract between Ang II- and PE-induced vasoconstriction and the involvement of superoxide anions. MATERIALS AND METHODS Single dose of Ang II (100 nM and 1 nM)- or PE (0.1 μM)-induced contraction were assessed in both endothelium-intact and -denuded aortic rings after pre-incubation of AVLE (10 μg/ml) for 15 min. The experiment was repeated in either the presence of NO synthase inhibitor, L-NAME (300 μM) or selective AT(1) receptor inhibitor, losartan (0.1 nM), or superoxide scavenger, tiron (1 mM) or a combination of L-NAME and AVLE. Superoxide production was measured by using enhanced-chemiluminescence assay. RESULTS We have demonstrated that AVLE (10 μg/ml) effectively suppressed the Ang II-induced contraction (100 nM and 1 nM) of both endothelium-intact and -denuded rat aortic rings. In endothelium-intact rings, L-NAME, reversed AVLE-induced inhibition of Ang II-contraction. PE-induced contraction was significantly inhibited by AVLE in endothelium-intact rings, but not in endothelium-denuded rings. The inhibition by AVLE of PE-induced contraction was totally abolished in the presence of L-NAME. Ang II-induced SOA production concentration dependently with the optimal effect seen at 100 nM of Ang II, and AVLE (0.3, 1, 10 μg/ml) reduced this effect. SOA production in Ang II-stimulated rings was significantly higher than unstimulated control rings, while PE did not stimulate SOA production at all. SOA formation in the presence of Ang II was also inhibited in the presence of SOD (superoxide scavenger), DPI (NADPH inhibitor) and losartan (specific AT(1) receptor antagonist). CONCLUSION These results collectively suggest that the ability of AVLE in inhibiting Ang II-induced contraction via its SOA scavenging properties and nitric oxide releasing effect may account for its usage as an antihypertensive treatment in traditional folk medicine.
Collapse
Affiliation(s)
- Y S Lau
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- Kinam Park
- Departments of Biomedical Engineering and Pharmaceutics, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
48
|
Novel nanocomposite stent coating releasing resveratrol and quercetin reduces neointimal hyperplasia and promotes re-endothelialization. J Control Release 2012; 159:27-33. [PMID: 22269665 DOI: 10.1016/j.jconrel.2012.01.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/04/2012] [Accepted: 01/10/2012] [Indexed: 11/21/2022]
Abstract
Late-term thrombosis associated with drug-eluting stents may be due to the non-selective actions of antimitogenic drugs on endothelial cells, leading to delayed vascular healing after stenting angioplasty. Currently, there is a need for stent-based therapies that can both attenuate neointimal hyperplasia and promote re-endothelialization. The aim of this study was to compare the effects of a resveratrol (R)- and quercetin (Q)-eluting stent with that of a bare metal stent (BMS) on neointimal hyperplasia and re-endothelialization in a rat model of arterial angioplasty and stenting. Miniature stents (2.5×1.25mm) were sprayed with nanocomposite coatings containing two concentrations of R:Q (50:25μg/cm(2) (RQ1) or 150:75μg/cm(2) (RQ2)). The stents were deployed into the common carotid artery of rats and their impact on vascular remodeling was compared to that of BMS. Luminal stenosis in arteries stented with RQ2-eluting stents was reduced by 64.6% (p<0.05) compared to arteries stented with BMS. Accompanying this effect was a 59.8% reduction in macrophage infiltration (p<0.05). There were no differences found between RQ1 and BMS. Finally, the RQ2-coated stent accelerated re-endothelialization by 50% compared with BMS (p<0.05). Thus, compared with BMS, local delivery of R and Q from a stent platform significantly reduced in-stent stenosis, while promoting re-endothelialization. These data suggest that R and Q may be favorable candidates for novel stent coatings, potentially reducing the risk of late thrombosis associated with drug-eluting stents.
Collapse
|
49
|
Kumar V, Thakur AK, Barothia ND, Chatterjee SS. Therapeutic potentials of Brassica juncea: an overview. ACTA ACUST UNITED AC 2011. [DOI: 10.5667/tang.2011.0005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Chronic ( − )-epicatechin improves vascular oxidative and inflammatory status but not hypertension in chronic nitric oxide-deficient rats. Br J Nutr 2011; 106:1337-48. [DOI: 10.1017/s0007114511004314] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The present study analysed the effects of the flavanol ( − )-epicatechin in rats after chronic inhibition of NO synthesis with NG-nitro-l-arginine methyl ester (l-NAME), at doses equivalent to those achieved in the studies involving human subjects. Wistar rats were randomly divided into four groups: (1) control-vehicle, (2) l-NAME, (3) l-NAME-epicatechin 2 (l-NAME-Epi 2) and (4) l-NAME-epicatechin 10 (l-NAME-Epi 10). Rats were daily given by oral administration for 4 weeks: vehicle, ( − )-epicatechin 2 or 10 mg/kg. Animals in the l-NAME groups daily received l-NAME 75 mg/100 ml in drinking-water. The evolution in systolic blood pressure and heart rate, and morphological and plasma variables, proteinuria, vascular superoxide, reactivity and protein expression at the end of the experiment were analysed. Chronic ( − )-epicatechin treatment did not modify the development of hypertension and only weakly affected the endothelial dysfunction induced by l-NAME but prevented the cardiac hypertrophy, the renal parenchyma and vascular lesions and proteinuria, and blunted the prostanoid-mediated enhanced endothelium-dependent vasoconstrictor responses and the cyclo-oxygenase-2 and endothelial NO synthase (eNOS) up-regulation. Furthermore, ( − )-epicatechin also increased Akt and eNOS phosphorylation and prevented the l-NAME-induced increase in systemic (plasma malonyldialdehyde and urinary 8-iso-PGF2α) and vascular (dihydroethidium staining, NADPH oxidase activity and p22phox up-regulation) oxidative stress, proinflammatory status (intercellular adhesion molecule-1, IL-1β and TNFα up-regulation) and extracellular-signal-regulated kinase 1/2 phosphorylation. The present study shows for the first time that chronic oral administration of ( − )-epicatechin does not improve hypertension but reduced pro-atherogenic pathways such as oxidative stress and proinflammatory status of the vascular wall induced by blockade of NO production.
Collapse
|