1
|
Hou YC, Tseng SM, Kuo TC, Wu JM, Chen KY, Wu MH, Yang PJ, Lee PC, Chen PD, Yeh SL, Lin MT. The role of glutamine and leucine supplementation in liver metabolic reprogramming during sepsis. Life Sci 2025; 374:123708. [PMID: 40360090 DOI: 10.1016/j.lfs.2025.123708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 04/13/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025]
Abstract
AIMS Glutamine (Gln) and leucine (Leu) are amino acids known for modulating various biological functions. This study aimed to identify metabolism-related genes and their transcriptional pattern changes after Gln and/or Leu administration using next-generation sequencing technology in the liver during sepsis, a condition known to lead to liver metabolic reprogramming and damage. MATERIALS AND METHODS C57BL/6J mice were randomly assigned to a sham control group (C) and four septic groups subjected to cecal ligation and puncture (CLP). The septic groups were as follows: S group, sepsis control with saline injection after CLP; Gln group, injected with Gln after CLP; Leu group, injected with Leu after CLP; and GL group, injected with Gln plus Leu after CLP. All mice were sacrificed on day 4 after the operation, and liver samples were collected for further analysis. KEY FINDINGS Gln and/or Leu administration during sepsis significantly altered the hepatic transcriptome with different gene expression patterns. Notably, the G group had the highest number of gene changes among the amino acid-treated groups. Gln administration was associated with more pronounced downregulation of leukocyte inflammatory genes. Carbohydrate metabolic pathways were suppressed, but the oxidative phosphorylation pathway was enhanced by Gln administration, potentially improving metabolic reprogramming during sepsis. SIGNIFICANCE Gln and/or Leu treatment showed promise in alleviating sepsis-induced liver injury; however, only Gln administration alone demonstrated beneficial effects on hepatic macronutrient and energy metabolism during sepsis. These results highlight the potential therapeutic significance of specific amino acids on attenuating hepatic metabolic dysregulation and injury in septic insult.
Collapse
Affiliation(s)
- Yu-Chen Hou
- Master Program in Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan; School of Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Shang-Ming Tseng
- Department of Traumatology, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ting-Chun Kuo
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jin-Ming Wu
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuen-Yuan Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Hsun Wu
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Jen Yang
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Chu Lee
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Da Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sung-Ling Yeh
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Tsan Lin
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
2
|
Hu Z, Wang C, Wang C, He J, Yan Y, Xu Z, Yu Y, Yu Y, Cheng H, Liu L, Tang M, Zhang C, Yu H, Jing J, Cheng W. The comparative efficacy of L-glutamine, celecoxib, and glucosamine sulfate in osteoarthritis management. Sci Rep 2025; 15:8992. [PMID: 40089639 PMCID: PMC11910618 DOI: 10.1038/s41598-025-93357-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/06/2025] [Indexed: 03/17/2025] Open
Abstract
To explore the therapeutic efficacy of L-glutamine (L-Gln) on pathological progression and clinical symptoms of osteoarthritis (OA), and compare with glucosamine sulfate (GS), and celecoxib (CXB). Rats were administered sodium chloride, L-Gln, GS, or CXB via gavage for eight weeks starting from the fifth week after sham operation or Anterior Cruciate Ligament Transection (ACLT) + Medial Meniscectomy (MMx). Then the severity of knee OA in rats was evaluated by serological analysis, histological examination and imaging examination. In addition, patients with mild primary OA were administered L-Gln, GS, or CXB orally for 12 weeks in accordance with the randomization principle. The efficacy end points were the change from baseline to week 24 in the pain and physical function subscale scores of the Western Ontario and McMaster Universities OA Index (WOMAC), and Lequesne score. Treatment with L-Gln alleviated the increased concentration of serum cartilage degradation markers caused by OA in rats. Histological tests showed improvement in knee joint cartilage destruction after treatment. Three-dimensional CT scans and reconstructions revealed a reduction in osteophyte formation and subchondral bone loss. L-glutamine performed as well as or better than glucosamine sulfate and celecoxib in all comparative measures among the three treatment groups. In clinical trials, the WOMAC pain and physical function subscale scores, as well as the Lequesne score, decreased from baseline in all three patient groups during follow-up, with no significant differences observed between the groups. Our research indicates that L-Gln is comparable to GS and CXB in improving the pathological progression and clinical efficacy of OA, which makes it a promising drug for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Zhongyao Hu
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | | | - Chen Wang
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Junyan He
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yiqun Yan
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zelin Xu
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yangmang Yu
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Ya Yu
- Huoshan County Hospital, Lu'an, 237299, Anhui, China
| | - Huan Cheng
- Huoshan County Hospital of Traditional Chinese Medicine, Lu'an, 237200, Anhui, China
| | - Lei Liu
- Suzhou Municipal Hospital in Anhui Province, Suzhou, 234000, Anhui, China
| | - Miao Tang
- Suzhou Municipal Hospital in Anhui Province, Suzhou, 234000, Anhui, China
| | - Chun Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Haoran Yu
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Juehua Jing
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Wendan Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
3
|
Pan Y, Sindelar M, Stancliffe E, Shriver LP, Middleton RP, Patti GJ. Effects of Dietary Medium-Chain Triglyceride Supplementation on the Serum Metabolome of Young Adult and Senior Canines. Animals (Basel) 2024; 14:3577. [PMID: 39765481 PMCID: PMC11672509 DOI: 10.3390/ani14243577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/23/2024] [Accepted: 11/24/2024] [Indexed: 01/11/2025] Open
Abstract
In dogs, brain aging may lead to cognitive decline and cognitive dysfunction syndrome (CDS) [...].
Collapse
Affiliation(s)
- Yuanlong Pan
- Nestlé Purina Research, St. Louis, MO 63164, USA;
| | - Miriam Sindelar
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; (M.S.); (E.S.); (L.P.S.)
- Center for Mass Spectrometry and Metabolic Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA
- Center for Human Nutrition, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Ethan Stancliffe
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; (M.S.); (E.S.); (L.P.S.)
- Center for Mass Spectrometry and Metabolic Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA
- Center for Human Nutrition, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Leah P. Shriver
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; (M.S.); (E.S.); (L.P.S.)
- Center for Mass Spectrometry and Metabolic Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA
- Center for Human Nutrition, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | - Gary J. Patti
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA; (M.S.); (E.S.); (L.P.S.)
- Center for Mass Spectrometry and Metabolic Tracing, Washington University in St. Louis, St. Louis, MO 63130, USA
- Center for Human Nutrition, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
4
|
Yipeng Z, Chao C, Ranran L, Tingting P, Hongping Q. Metabolism: a potential regulator of neutrophil fate. Front Immunol 2024; 15:1500676. [PMID: 39697327 PMCID: PMC11652355 DOI: 10.3389/fimmu.2024.1500676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
Neutrophils are essential components of the innate immune system that defend against the invading pathogens, such as bacteria, viruses, and fungi, as well as having regulatory roles in various conditions, including tissue repair, cancer immunity, and inflammation modulation. The function of neutrophils is strongly related to their mode of cell death, as different types of cell death involve various cellular and molecular alterations. Apoptosis, a non-inflammatory and programmed type of cell death, is the most common in neutrophils, while other modes of cell death, including NETOsis, necrosis, necroptosis, autophagy, pyroptosis, and ferroptosis, have specific roles in neutrophil function regulation. Immunometabolism refers to energy and substance metabolism in immune cells, and profoundly influences immune cell fate and immune system function. Intercellular and intracellular signal transduction modulate neutrophil metabolism, which can, in turn, alter their activities by influencing various cell signaling pathways. In this review, we compile an extensive body of evidence demonstrating the role of neutrophil metabolism in their various forms of cell death. The review highlights the intricate metabolic characteristics of neutrophils and their interplay with various types of cell death.
Collapse
Affiliation(s)
| | | | | | - Pan Tingting
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University
School of Medicine, Shanghai, China
| | - Qu Hongping
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University
School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Li J, Chen Y, Yang Y, Yang Y, Wu Z. High-level L-Gln compromises intestinal amino acid utilization efficiency and inhibits protein synthesis by GCN2/eIF2α/ATF4 signaling pathway in piglets fed low-crude protein diets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:480-487. [PMID: 39659992 PMCID: PMC11629563 DOI: 10.1016/j.aninu.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 12/12/2024]
Abstract
Gln, one of the most abundant amino acids (AA) in the body, performs a diverse range of fundamental physiological functions. However, information about the role of dietary Gln on AA levels, transporters, protein synthesis, and underlying mechanisms in vivo is scarce. The present study aimed to explore the effects of low-crude protein diet inclusion with differential doses of L-Gln on intestinal AA levels, transporters, protein synthesis, and potential mechanisms in weaned piglets. A total of 128 healthy weaned piglets (Landrace × Yorkshire) were randomly allocated into four treatments with four replicates. Pigs in the four groups were fed a low-crude protein diet containing 0%, 1%, 2%, or 3% L-Gln for 28 d. L-Gln administration markedly (linear, P < 0.05) increased Ala, Arg, Asn, Asp, Glu, Gln, His, Ile, Lys, Met, Orn, Phe, Ser, Thr, Tyr, and Val levels and promoted trypsin activity in the jejunal content of piglets. Moreover, L-Gln treatment significantly enhanced concentrations of colonic Gln and Trp, and serum Thr (linear, P < 0.01), and quadratically increased serum Lys and Phe levels (P < 0.05), and decreased plasma Glu, Ile, and Leu levels (linear, P < 0.05). Further investigation revealed that L-Gln administration significantly upregulated Atp1a1, Slc1a5, Slc3a2, Slc6a14, Slc7a5, Slc7a7, and Slc38a1 relative expressions in the jejunum (linear, P < 0.05). Additionally, dietary supplementation with L-Gln enhanced protein abundance of general control nonderepressible 2 (GCN2, P = 0.010), phosphorylated eukaryotic initiation factor 2 subunit alpha (eIF2α, P < 0.001), and activating transcription factor 4 (ATF4) in the jejunum of piglets (P = 0.008). These results demonstrated for the first time that a low crude protein diet with high-level L-Gln inclusion exhibited side effects on piglets. Specifically, 2% and 3% L-Gln administration exceeded the intestinal utilization capacity and compromised the jejunal AA utilization efficiency, which is independent of digestive enzyme activities. A high level of L-Gln supplementation would inhibit protein synthesis by GCN2/eIF2α/ATF4 signaling in piglets fed low-protein diets, which, in turn, upregulates certain AA transporters to maintain AA homeostasis.
Collapse
Affiliation(s)
- Jun Li
- State Key Laboratory of Animal Nutrition and Feeding, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Yinfeng Chen
- State Key Laboratory of Animal Nutrition and Feeding, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Yang Yang
- State Key Laboratory of Animal Nutrition and Feeding, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Cecchi N, Romanelli R, Ricevuti F, Carbone MG, Dinardo M, Cesarano E, De Michele A, Messere G, Morra S, Scognamiglio A, Spagnuolo MI. Bioactives in Oral Nutritional Supplementation: A Pediatric Point of View. Nutrients 2024; 16:2067. [PMID: 38999815 PMCID: PMC11243142 DOI: 10.3390/nu16132067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Oral nutritional supplements (ONSs) are crucial for supporting the nutritional needs of pediatric populations, particularly those with medical conditions or dietary deficiencies. Bioactive compounds within ONSs play a pivotal role in enhancing health outcomes by exerting various physiological effects beyond basic nutrition. However, the comprehensive understanding of these bioactives in pediatric ONSs remains elusive. OBJECTIVE This systematic narrative review aims to critically evaluate the existing literature concerning bioactive compounds present in oral nutritional supplements from a pediatric standpoint, focusing on their types, sources, bioavailability, physiological effects, and clinical implications. METHODS A systematic search was conducted across the major academic databases, including PubMed, Scopus, and Web of Science, employing predefined search terms related to oral nutritional supplements, bioactives, and pediatrics. Studies published between 2013 and 2024 were considered eligible for inclusion. Data extraction and synthesis were performed according to the PRISMA guidelines. RESULTS The initial search yielded 558 of articles, of which 72 met the inclusion criteria. The included studies encompassed a diverse range of bioactive compounds present in pediatric ONS formulations, including, but not limited to, vitamins, minerals, amino acids, prebiotics, probiotics, and phytonutrients. These bioactives were sourced from various natural and synthetic origins and were found to exert beneficial effects on growth, development, immune function, gastrointestinal health, cognitive function, and overall well-being in pediatric populations. However, variations in bioavailability, dosing, and clinical efficacy were noted across different compounds and formulations. CONCLUSIONS Bioactive compounds in oral nutritional supplements offer promising avenues for addressing the unique nutritional requirements and health challenges faced by pediatric populations. However, further research is warranted to elucidate the optimal composition, dosage, and clinical applications of these bioactives in pediatric ONS formulations. A deeper understanding of these bioactive compounds and their interplay with pediatric health may pave the way for personalized and effective nutritional interventions in pediatric clinical practice.
Collapse
Affiliation(s)
- Nicola Cecchi
- Clinical Nutrition Unit, A.O.R.N. Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Roberta Romanelli
- Clinical Nutrition Unit, A.O.R.N. Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Flavia Ricevuti
- Clinical Nutrition Unit, A.O.R.N. Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Maria Grazia Carbone
- Clinical Nutrition Unit, A.O.R.N. Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Michele Dinardo
- Clinical Nutrition Unit, A.O.R.N. Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Elisabetta Cesarano
- Clinical Nutrition Unit, A.O.R.N. Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Alfredo De Michele
- Clinical Nutrition Unit, A.O.R.N. Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Giovanni Messere
- Clinical Nutrition Unit, A.O.R.N. Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Salvatore Morra
- Clinical Nutrition Unit, A.O.R.N. Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | - Armando Scognamiglio
- Clinical Nutrition Unit, A.O.R.N. Santobono-Pausilipon Children's Hospital, 80129 Naples, Italy
| | | |
Collapse
|
7
|
Gianotti L, Nespoli L, Sandini M. Pharmaconutrition: Which substrates? EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024; 50:106798. [PMID: 36526494 DOI: 10.1016/j.ejso.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
With the term "pharmaconutrition" or "immunonutrition" is intended the use of specific nutritional substrates having the ability of modulating specific mechanisms involved in several immune and inflammatory pathways. To achieve these goals, these substrates have to be administered with over physiologic dose. Glutamine and omega-3 polyunsaturated fatty acids, used as single substrate, did not show clear clinical advantages on solid endpoints such as postoperative complications. Despite several multiple substrate enteral feeds are available on the market, very few of them have been tested in randomized clinical trial to prove efficacy. The most extensive investigated formulation is a combination of arginine, omega-3 fatty acids, ribonucleic acid with or without glutamine. Several meta-analyses of randomized clinical trials have been conducted to compare the effects of enteral immunonutrition with control diets on post-surgical morbidity. The results consistently showed that the use of enteral multiple substrate formulas significantly reduced infectious complications and duration of hospitalization. In a more contemporary view, pharmaconutrition should be tested more accurately in the contest of enhanced recovery programs, during neoadjuvant chemotherapy, and in the prehabilitation setting.
Collapse
Affiliation(s)
- Luca Gianotti
- School of Medicine and Surgery, Milano-Bicocca University, Department of Surgery, IRCCS San Gerardo Hospital, Monza, Italy.
| | - Luca Nespoli
- School of Medicine and Surgery, Milano-Bicocca University, Department of Surgery, IRCCS San Gerardo Hospital, Monza, Italy
| | - Marta Sandini
- Surgical Oncology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| |
Collapse
|
8
|
Liu X, Li J, Zhang Z, He Y, Wang M, Zhao Y, Lin S, Liu T, Liao Y, Zhang N, Yuan K, Ling Y, Liu Z, Chen X, Chen Z, Chen R, Wang X, Gu B. Acetylation of xenogeneic silencer H-NS regulates biofilm development through the nitrogen homeostasis regulator in Shewanella. Nucleic Acids Res 2024; 52:2886-2903. [PMID: 38142446 PMCID: PMC11014242 DOI: 10.1093/nar/gkad1219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023] Open
Abstract
Adjusting intracellular metabolic pathways and adopting suitable live state such as biofilms, are crucial for bacteria to survive environmental changes. Although substantial progress has been made in understanding how the histone-like nucleoid-structuring (H-NS) protein modulates the expression of the genes involved in biofilm formation, the precise modification that the H-NS protein undergoes to alter its DNA binding activity is still largely uncharacterized. This study revealed that acetylation of H-NS at Lys19 inhibits biofilm development in Shewanella oneidensis MR-1 by downregulating the expression of glutamine synthetase, a critical enzyme in glutamine synthesis. We further found that nitrogen starvation, a likely condition in biofilm development, induces deacetylation of H-NS and the trimerization of nitrogen assimilation regulator GlnB. The acetylated H-NS strain exhibits significantly lower cellular glutamine concentration, emphasizing the requirement of H-NS deacetylation in Shewanella biofilm development. Moreover, we discovered in vivo that the activation of glutamine biosynthesis pathway and the concurrent suppression of the arginine synthesis pathway during both pellicle and attached biofilms development, further suggesting the importance of fine tune nitrogen assimilation by H-NS acetylation in Shewanella. In summary, posttranslational modification of H-NS endows Shewanella with the ability to respond to environmental needs by adjusting the intracellular metabolism pathways.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Jun Li
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Zhixuan Zhang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510080, China
| | - Yizhou He
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Mingfang Wang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Yunhu Zhao
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Shituan Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianlang Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiwen Liao
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Ni Zhang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Kaixuan Yuan
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Yong Ling
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Ziyao Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaozhong Chen
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Zhe Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ran Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Gu
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| |
Collapse
|
9
|
Feng X, Ma R, Wang Y, Tong L, Wen W, Mu T, Tian J, Yu B, Gu Y, Zhang J. Non-targeted metabolomics identifies biomarkers in milk with high and low milk fat percentage. Food Res Int 2024; 179:113989. [PMID: 38342531 DOI: 10.1016/j.foodres.2024.113989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 02/13/2024]
Abstract
Milk is widely recognized as an important food source with health benefits. Different consumer groups have different requirements for the content and proportion of milk fat; therefore, it is necessary to investigate the differential metabolites and their regulatory mechanisms in milk with high and low milk fat percentages (MFP). In this study, untargeted metabolomics was performed on milk samples from 13 cows with high milk fat percentage (HF) and 13 cows with low milk fat percentage (LF) using ultra-high performance liquid chromatography coupled with mass spectrometry (UHPLC-MS/MS). Forty-eight potential differentially labeled compounds were screened using the orthogonal partial least squares-discriminant analysis (OPLS-DA) combined with the weighted gene co-expression network analysis (WGCNA) method. Amino acid metabolism was the key metabolic pathway with significant enrichment of L-histidine, 5-oxoproline, L-aspartic acid, and L-glutamic acid. The negative correlation with MFP differentiated the HF and LF groups. To further determine the potential regulatory role of these amino acids on milk fat metabolism, the expression levels of marker genes in the milk fat synthesis pathway were explored. It was noticed that L-histidine reduced milk fat concentration primarily by inhibiting the triglycerides (TAG) synthesis pathway. L-aspartic acid and L-glutamic acid inhibited milk fat synthesis through the fatty acid de novo and TAG synthesis pathways. This study provides new insights into the mechanism underlying milk fat synthesis and milk quality improvement.
Collapse
Affiliation(s)
- Xiaofang Feng
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Ruoshuang Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Ying Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Lijia Tong
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Wan Wen
- Animal Husbandry Extension Station, Yinchuan, China
| | - Tong Mu
- School of Life Science, Yan'an University, Yanan 716000, China
| | - Jia Tian
- Animal Husbandry Extension Station, Yinchuan, China
| | - Baojun Yu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yaling Gu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Juan Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
10
|
Alqudah A, Qnais E, Wedyan M, Awali A, Bseiso Y, Gammoh O. Amino acid profiles: exploring their diagnostic and pathophysiological significance in hypertension. Mol Biol Rep 2024; 51:200. [PMID: 38270677 DOI: 10.1007/s11033-023-09107-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
Hypertension, a major contributor to cardiovascular morbidity, is closely linked to amino acid metabolism. Amino acids, particularly branched-chain amino acids (BCAAs) and aromatic amino acids (AAAs), may play pivotal roles in the pathogenesis and potential management of hypertension. This review investigated the relationships between amino acid profiles, specifically BCAAs and AAAs, and hypertension, and examined their potential as diagnostic and therapeutic targets. An in-depth analysis was conducted on studies highlighting the associations of specific amino acids such as arginine, glycine, proline, glutamine, and the BCAAs and AAAs with hypertension. BCAAs and AAAs, alongside other amino acids like arginine, glycine, and proline, showed significant correlations with hypertension. These amino acids influence multiple pathways including nitric oxide synthesis, vascular remodeling, and neurotransmitter production, among others. Distinct amino acid profiles were discerned between hypertensive and non-hypertensive individuals. Amino acid profiling, particularly the levels of BCAAs and AAAs, offers promising avenues in the diagnostic and therapeutic strategies for hypertension. Future studies are crucial to confirm these findings and to delineate amino acid-based interventions for hypertension treatment.
Collapse
Affiliation(s)
- Abdelrahim Alqudah
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan.
| | - Esam Qnais
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Mohammed Wedyan
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Ayat Awali
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Yousra Bseiso
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Omar Gammoh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| |
Collapse
|
11
|
Islam SJ, Liu C, Mohandas AN, Rooney K, Nayak A, Mehta A, Ko YA, Kim JH, Sun YV, Dunbar SB, Lewis TT, Taylor HA, Uppal K, Jones DP, Quyyumi AA, Searles CD. Metabolomic signatures of ideal cardiovascular health in black adults. Sci Rep 2024; 14:1794. [PMID: 38245568 PMCID: PMC10799852 DOI: 10.1038/s41598-024-51920-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
Plasma metabolomics profiling is an emerging methodology to identify metabolic pathways underlying cardiovascular health (CVH). The objective of this study was to define metabolomic profiles underlying CVH in a cohort of Black adults, a population that is understudied but suffers from disparate levels of CVD risk factors. The Morehouse-Emory Cardiovascular (MECA) Center for Health Equity study cohort consisted of 375 Black adults (age 53 ± 10, 39% male) without known CVD. CVH was determined by the AHA Life's Simple 7 (LS7) score, calculated from measured blood pressure, body mass index (BMI), fasting blood glucose and total cholesterol, and self-reported physical activity, diet, and smoking. Plasma metabolites were assessed using untargeted high-resolution metabolomics profiling. A metabolome wide association study (MWAS) identified metabolites associated with LS7 score after adjusting for age and sex. Using Mummichog software, metabolic pathways that were significantly enriched in metabolites associated with LS7 score were identified. Metabolites representative of these pathways were compared across clinical domains of LS7 score and then developed into a metabolomics risk score for prediction of CVH. We identified novel metabolomic signatures and pathways associated with CVH in a cohort of Black adults without known CVD. Representative and highly prevalent metabolites from these pathways included glutamine, glutamate, urate, tyrosine and alanine, the concentrations of which varied with BMI, fasting glucose, and blood pressure levels. When assessed in conjunction, these metabolites were independent predictors of CVH. One SD increase in the novel metabolomics risk score was associated with a 0.88 higher LS7 score, which translates to a 10.4% lower incident CVD risk. We identified novel metabolomic signatures of ideal CVH in a cohort of Black Americans, showing that a core group of metabolites central to nitrogen balance, bioenergetics, gluconeogenesis, and nucleotide synthesis were associated with CVH in this population.
Collapse
Affiliation(s)
- Shabatun J Islam
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Chang Liu
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Appesh N Mohandas
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Kimberly Rooney
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Aditi Nayak
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Anurag Mehta
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Yi-An Ko
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jeong Hwan Kim
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Yan V Sun
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Health Care System, Decatur, GA, USA
| | - Sandra B Dunbar
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Tené T Lewis
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Herman A Taylor
- Department of Medicine, Morehouse School of Medicine, Atlanta, GA, USA
| | - Karan Uppal
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Arshed A Quyyumi
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Charles D Searles
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
- Atlanta VA Health Care System, Decatur, GA, USA.
| |
Collapse
|
12
|
Jiang J, Hu Y, Fang D, Luo J. Glutamine synthetase and hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2023; 47:102248. [PMID: 37979911 DOI: 10.1016/j.clinre.2023.102248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/02/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Glutamine synthetase (GS) is an enzyme that converts ammonia and glutamate to glutamine using adenosine triphosphate. GS is expressed in the brain, kidney, and liver tissues under normal physiological conditions. GS is involved in abnormal lipid metabolism of the liver by catalyzing de novo synthesis of glutamine, thereby inducing liver inflammation. Metabolic dysfunction-associated steatotic liver diseases (MASLD), such as Metabolic Associated Fatty Liver Disease and Metabolic Associated Steato Hepatitis, are considered risk factors for HCC. GS may also be involved in the development and progression of hepatocellular carcinoma (HCC) through other signaling pathways, including the rapamycin (mTOR) and Wnt/β-catenin signaling pathways. Furthermore, the correct combination of HSP70, GPC3, and GS can improve the accuracy and precision of HCC diagnosis. However, the prognostic value of GS in different HCC populations remains controversial. The expression of GS affects the sensitivity of HCC cells to radiotherapy and chemotherapy. In addition, immunotherapy has been approved for the treatment of advanced HCC. This article delves into the development and application of GS in HCC, laying a theoretical foundation for the subsequent exploration of GS as a potential target for treating HCC.
Collapse
Affiliation(s)
- Jinghua Jiang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China
| | - Yiting Hu
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Zhejiang Shuren University, Shulan International Medical College, Hangzhou, Zhejiang, China
| | - Dazhang Fang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China
| | - JianSheng Luo
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, China.
| |
Collapse
|
13
|
Fan L, Liu X, Deng Y, Zheng X. Preparation of Glutamine-Enriched Fermented Feed from Corn Gluten Meal and Its Functionality Evaluation. Foods 2023; 12:4336. [PMID: 38231836 PMCID: PMC10706031 DOI: 10.3390/foods12234336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
China faces a persistent deficiency in feed protein resources. Enhancing the utilization efficiency of indigenous feed protein resources emerges as a viable strategy to alleviate the current deficit in protein feed supply. Corn gluten meal (CGM), characterized by a high proportion of crude protein and glutamine, is predominantly employed in animal feed. Nonetheless, the water-insolubility of CGM protein hampers its protein bioavailability when utilized as feed material. The aim of this study was to augment protein bioavailability, liberate glutamine peptides from CGM, and produce glutamine-enriched CGM fermented feed. We executed a co-fermentation protocol using Bacillus subtilis A5, Lactobacillus 02002, and acid protease to generate the CGM fermented feed. Subsequent in vivo experiments with broilers were conducted to assess the efficacy of the fermented product. The findings revealed that the soluble protein, glutamine, small peptides, and lactic acid contents in the fermented feed increased by 69.1%, 700%, 47.6%, and 125.9%, respectively. Incorporating 15% and 30% CGM fermented feed into the diet markedly enhanced the growth performance and intestinal health of broilers, positively modulated the cecal microbiota structure, and augmented the population of beneficial bacteria, specifically Lactobacillus. These results furnish both experimental and theoretical foundations for deploying CGM fermented feed as an alternative protein feed resource.
Collapse
Affiliation(s)
- Lei Fan
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China;
| | - Xiaolan Liu
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China;
- Key Laboratory of Corn Deep Processing Theory and Technology of Heilongjiang Province, College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China;
| | - Yongping Deng
- Key Laboratory of Corn Deep Processing Theory and Technology of Heilongjiang Province, College of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China;
| | - Xiqun Zheng
- College of Food, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
14
|
Zheng Y, Yao Y, Ge T, Ge S, Jia R, Song X, Zhuang A. Amino acid metabolism reprogramming: shedding new light on T cell anti-tumor immunity. J Exp Clin Cancer Res 2023; 42:291. [PMID: 37924140 PMCID: PMC10623764 DOI: 10.1186/s13046-023-02845-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/28/2023] [Indexed: 11/06/2023] Open
Abstract
Metabolic reprogramming of amino acids has been increasingly recognized to initiate and fuel tumorigenesis and survival. Therefore, there is emerging interest in the application of amino acid metabolic strategies in antitumor therapy. Tremendous efforts have been made to develop amino acid metabolic node interventions such as amino acid antagonists and targeting amino acid transporters, key enzymes of amino acid metabolism, and common downstream pathways of amino acid metabolism. In addition to playing an essential role in sustaining tumor growth, new technologies and studies has revealed amino acid metabolic reprograming to have wide implications in the regulation of antitumor immune responses. Specifically, extensive crosstalk between amino acid metabolism and T cell immunity has been reported. Tumor cells can inhibit T cell immunity by depleting amino acids in the microenvironment through nutrient competition, and toxic metabolites of amino acids can also inhibit T cell function. In addition, amino acids can interfere with T cells by regulating glucose and lipid metabolism. This crucial crosstalk inspires the exploitation of novel strategies of immunotherapy enhancement and combination, owing to the unprecedented benefits of immunotherapy and the limited population it can benefit. Herein, we review recent findings related to the crosstalk between amino acid metabolism and T cell immunity. We also describe possible approaches to intervene in amino acid metabolic pathways by targeting various signaling nodes. Novel efforts to combine with and unleash potential immunotherapy are also discussed. Hopefully, some strategies that take the lead in the pipeline may soon be used for the common good.
Collapse
Affiliation(s)
- Yue Zheng
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China
| | - Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China
| | - Tongxin Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China.
| | - Xin Song
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China.
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 20025, P. R. China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 20025, P. R. China.
| |
Collapse
|
15
|
Jovanović D, Schön JC, Zagorac D, Zarubica A, Matović B, Zagorac J. Energy Landscape of Relaxation and Interaction of an Amino Acid, Glutamine (L), on Pristine and Au/Ag/Cu-Doped TiO 2 Surfaces. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2688. [PMID: 37836329 PMCID: PMC10574630 DOI: 10.3390/nano13192688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Studying the interaction of inorganic systems with organic ones is a highly important avenue for finding new drugs and treatment methods. Tumor cells show an increased demand for amino acids due to their rapid proliferation; thus, targeting their metabolism is becoming a potential oncological therapeutic strategy. One of the inorganic materials that show antitumor properties is titanium dioxide, while its doping was found to enhance interactions with biological systems. Thus, in this study, we investigated the energy landscape of glutamine (L), an amino acid, on pristine and doped TiO2 surfaces. We first locally optimized 2D-slab structures of pristine and Au/Ag/Cu-doped anatase (001 and 101 surfaces) and similarly optimized a single molecule of glutamine in vacuum. Next, we placed the pre-optimized glutamine molecule in various orientations and on a variety of locations onto the relaxed substrate surfaces (in vacuum) and performed ab initio relaxations of the molecule on the substrate slabs. We employed the DFT method with a GGA-PBE functional implemented in the Quantum Espresso code. Comparisons of the optimized conformations and electronic structures of the amino acid in vacuum and on the surfaces yield useful insights into various biological processes.
Collapse
Affiliation(s)
- Dušica Jovanović
- Materials Science Laboratory, Institute of Nuclear Sciences Vinča, University of Belgrade, 11000 Belgrade, Serbia; (D.J.); (D.Z.); (B.M.)
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, 18000 Niš, Serbia;
| | | | - Dejan Zagorac
- Materials Science Laboratory, Institute of Nuclear Sciences Vinča, University of Belgrade, 11000 Belgrade, Serbia; (D.J.); (D.Z.); (B.M.)
- Center for Synthesis, Processing and Characterization of Materials for Application in the Extreme Conditions-Cextreme Lab, 11000 Belgrade, Serbia
| | - Aleksandra Zarubica
- Department of Chemistry, Faculty of Science and Mathematics, University of Niš, 18000 Niš, Serbia;
| | - Branko Matović
- Materials Science Laboratory, Institute of Nuclear Sciences Vinča, University of Belgrade, 11000 Belgrade, Serbia; (D.J.); (D.Z.); (B.M.)
- Center for Synthesis, Processing and Characterization of Materials for Application in the Extreme Conditions-Cextreme Lab, 11000 Belgrade, Serbia
| | - Jelena Zagorac
- Materials Science Laboratory, Institute of Nuclear Sciences Vinča, University of Belgrade, 11000 Belgrade, Serbia; (D.J.); (D.Z.); (B.M.)
- Center for Synthesis, Processing and Characterization of Materials for Application in the Extreme Conditions-Cextreme Lab, 11000 Belgrade, Serbia
| |
Collapse
|
16
|
Angelis D, Jaleel MA, Brion LP. Hyperglycemia and prematurity: a narrative review. Pediatr Res 2023; 94:892-903. [PMID: 37120652 DOI: 10.1038/s41390-023-02628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/01/2023]
Abstract
Hyperglycemia is commonly encountered in extremely preterm newborns and physiologically can be attributed to immaturity in several biochemical pathways related to glucose metabolism. Although hyperglycemia is associated with a variety of adverse outcomes frequently described in this population, evidence for causality is lacking. Variations in definitions and treatment approaches have further complicated the understanding and implications of hyperglycemia on the immediate and long-term effects in preterm newborns. In this review, we describe the relationship between hyperglycemia and organ development, outcomes, treatment options, and potential gaps in knowledge that need further research. IMPACT: Hyperglycemia is common and less well described than hypoglycemia in extremely preterm newborns. Hyperglycemia can be attributed to immaturity in several cellular pathways involved in glucose metabolism in this age group. Hyperglycemia has been shown to be associated with a variety of adverse outcomes frequently described in this population; however, evidence for causality is lacking. Variations in definitions and treatment approaches have complicated the understanding and the implications of hyperglycemia on the immediate and long-term effects outcomes. This review describes the relationship between hyperglycemia and organ development, outcomes, treatment options, and potential gaps in knowledge that need further research.
Collapse
Affiliation(s)
- Dimitrios Angelis
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Mambarambath A Jaleel
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Luc P Brion
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
17
|
Durante W. Glutamine Deficiency Promotes Immune and Endothelial Cell Dysfunction in COVID-19. Int J Mol Sci 2023; 24:7593. [PMID: 37108759 PMCID: PMC10144995 DOI: 10.3390/ijms24087593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused the death of almost 7 million people worldwide. While vaccinations and new antiviral drugs have greatly reduced the number of COVID-19 cases, there remains a need for additional therapeutic strategies to combat this deadly disease. Accumulating clinical data have discovered a deficiency of circulating glutamine in patients with COVID-19 that associates with disease severity. Glutamine is a semi-essential amino acid that is metabolized to a plethora of metabolites that serve as central modulators of immune and endothelial cell function. A majority of glutamine is metabolized to glutamate and ammonia by the mitochondrial enzyme glutaminase (GLS). Notably, GLS activity is upregulated in COVID-19, favoring the catabolism of glutamine. This disturbance in glutamine metabolism may provoke immune and endothelial cell dysfunction that contributes to the development of severe infection, inflammation, oxidative stress, vasospasm, and coagulopathy, which leads to vascular occlusion, multi-organ failure, and death. Strategies that restore the plasma concentration of glutamine, its metabolites, and/or its downstream effectors, in conjunction with antiviral drugs, represent a promising therapeutic approach that may restore immune and endothelial cell function and prevent the development of occlusive vascular disease in patients stricken with COVID-19.
Collapse
Affiliation(s)
- William Durante
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
18
|
Belenichev IF, Aliyeva OG, Popazova OO, Bukhtiyarova NV. Involvement of heat shock proteins HSP70 in the mechanisms of endogenous neuroprotection: the prospect of using HSP70 modulators. Front Cell Neurosci 2023; 17:1131683. [PMID: 37138769 PMCID: PMC10150069 DOI: 10.3389/fncel.2023.1131683] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
This analytical review summarizes literature data and our own research on HSP70-dependent mechanisms of neuroprotection and discusses potential pharmacological agents that can influence HSP70 expression to improve neurological outcomes and effective therapy. The authors formed a systemic concepts of the role of HSP70-dependent mechanisms of endogenous neuroprotection aimed at stopping the formation of mitochondrial dysfunction, activation of apoptosis, desensitization of estrogen receptors, reduction of oxidative and nitrosative stress, prevention of morpho-functional changes in brain cells during cerebral ischemia, and experimentally substantiated new target links for neuroprotection. Heat shock proteins (HSPs) are an evolutionarily integral part of the functioning of all cells acting as intracellular chaperones that support cell proteostasis under normal and various stress conditions (hyperthermia, hypoxia, oxidative stress, radiation, etc.). The greatest curiosity in conditions of ischemic brain damage is the HSP70 protein, as an important component of the endogenous neuroprotection system, which, first of all, performs the function of intracellular chaperones and ensures the processes of folding, holding and transport of synthesized proteins, as well as their degradation, both under normoxic conditions and stress-induced denaturation. A direct neuroprotective effect of HSP70 has been established, which is realized through the regulation the processes of apoptosis and cell necrosis due to a long-term effect on the synthesis of antioxidant enzymes, chaperone activity, and stabilization of active enzymes. An increase in the level of HSP70 leads to the normalization of the glutathione link of the thiol-disulfide system and an increase in the resistance of cells to ischemia. HSP 70 is able to activate and regulate compensatory ATP synthesis pathways during ischemia. It was found that in response to the cerebral ischemia formation, HIF-1a is expressed, which initiates the launch of compensatory mechanisms for energy production. Subsequently, the regulation of these processes switches to HSP70, which "prolongs" the action of HIF-1a, and also independently maintains the expression of mitochondrial NAD-dependent malate dehydrogenase activity, thereby maintaining the activity of the malate-aspartate shuttle mechanism for a long time. During ischemia of organs and tissues, HSP70 performs a protective function, which is realized through increased synthesis of antioxidant enzymes, stabilization of oxidatively damaged macromolecules, and direct anti-apoptotic and mitoprotective action. Such a role of these proteins in cellular reactions during ischemia raises the question of the development of new neuroprotective agents which are able to provide modulation/protection of the genes encoding the synthesis of HSP 70 and HIF-1a proteins. Numerous studies of recent years have noted the important role of HSP70 in the implementation of the mechanisms of metabolic adaptation, neuroplasticity and neuroprotection of brain cells, so the positive modulation of the HSP70 system is a perspective concept of neuroprotection, which can improve the efficiency of the treatment of ischemic-hypoxic brain damage and be the basis for substantiating of the feasibility of using of HSP70 modulators as promising neuroprotectors.
Collapse
Affiliation(s)
- Igor F. Belenichev
- Department of Pharmacology and Medical Formulation With Course of Normal Physiology, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Olena G. Aliyeva
- Department of Medical Biology, Parasitology and Genetics, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Olena O. Popazova
- Department of Histology, Cytology and Embryology, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Nina V. Bukhtiyarova
- Department of Clinical Laboratory Diagnostics, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| |
Collapse
|
19
|
Ma Y, Zhao G, Wang C, An M, Ma C, Liu Z, Wang J, Yang K. Effects of supplementation with different concentrations of L-citrulline on the plasma amino acid concentration, reproductive hormone concentrations, antioxidant capacity, and reproductive performance of Hu ewes. ANIMAL PRODUCTION SCIENCE 2023; 63:853-861. [DOI: doi.org/10.1071/an22290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Context L-citrulline (L-Cit) does not degrade in the rumen and has the ability to form peptide bonds in the body; however, it does not participate in protein synthesis. Aims This study aimed to evaluate the effects of L-Cit on the reproductive performance of Hu ewes. Methods In total, 30 ewes were randomly categorised into five groups. The control group was fed with a basic diet, whereas the Experimental Groups I, II, III, and IV were provided feed supplemented with 5, 10, 15, and 20 g/day of L-Cit respectively. Blood samples of ewes were collected 4 h after feeding on Day 21 of the experiment and before feeding on Day 30. The optimal supplementary feeding dose was selected on the basis of blood biochemical indexes. Overall, ninety 2-year-old ewes were classified into two groups. The control group was fed with a basic diet and the experimental group was fed with a diet supplemented with 10 g/day of L-Cit. After 30 days of supplementary feeding, reproductive performance of ewes was determined. Key results The plasma concentrations of Cit, ornithine, and arginine in ewes increased linearly with an increase in the level of L-Cit supplementation. The plasma concentrations of gonadotropin-releasing hormone, luteinising hormone, and follicle-stimulating hormone in the experimental group increased significantly compared with those in the control group. The plasma total antioxidant capacity and catalase, superoxide dismutase, and glutathione peroxidase in the experimental group were significantly higher than those in the control group, whereas the concentrations of malondialdehyde in all experimental groups were significantly lower than those in the control group. The conception, lambing, and double lambing rates of the experimental group were increased by 28.76%, 15.90%, and 40.21% respectively. Conclusions Supplementation with different doses of L-Cit can improve the concentrations of some plasma amino acids and reproductive hormones as well as antioxidant capacity of ewes. Supplementary feeding with 10 g/day of L-Cit could increase the lambing and double lambing rates of ewes. Implication L-Cit can improve the reproductive performance of ewes.
Collapse
|
20
|
Klatt KC, Petviashvili EJ, Moore DD. LRH-1 induces hepatoprotective nonessential amino acids in response to acute liver injury. J Clin Invest 2023; 133:168805. [PMID: 37009899 PMCID: PMC10065065 DOI: 10.1172/jci168805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
Acute hepatic injury is observed in response to various stressors, including trauma, ingestion of hepatic toxins, and hepatitis. Investigations to date have focused on extrinsic and intrinsic signals required for hepatocytes to proliferate and regenerate the liver in response to injury, though there is a more limited understanding of induced stress responses promoting hepatocyte survival upon acute injury. In this issue of the JCI, Sun and colleagues detail a mechanism by which local activation of the nuclear receptor liver receptor homolog-1 (LRH-1; NR5A2) directly induces de novo asparagine synthesis and expression of asparagine synthetase (ASNS) in response to injury and show that this response restrains hepatic damage. This work opens up several avenues for inquiry, including the potential for asparagine supplementation to ameliorate acute hepatic injury.
Collapse
|
21
|
Hou YC, Wu JM, Chen KY, Wu MH, Yang PJ, Lee PC, Chen PD, Yeh SL, Lin MT. Glutamine and leucine administration attenuates muscle atrophy in sepsis. Life Sci 2023; 314:121327. [PMID: 36584912 DOI: 10.1016/j.lfs.2022.121327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/02/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
AIMS This study investigated whether l-glutamine (Gln) and/or l-leucine (Leu) administration could attenuate muscle atrophy in a mouse model of cecal ligation and puncture (CLP)-induced sepsis. MATERIALS AND METHODS Septic mice were given a daily intraperitoneal injection of Gln, Leu, or Gln plus Leu, and mice were sacrificed on either day 1 or 4 after CLP. Blood and muscles were collected for analysis of amino acid contents and markers related to protein degradation, muscle regeneration, and protein synthesis. KEY FINDINGS Leu treatment alone increased both muscle mass and total muscle protein content on day 4 after CLP. Gln administration reduced muscular Gln contents on day 1 and enhanced plasma Gln levels on day 4. Higher plasma branched-chain amino acid (BCAA) abundances and lower muscular BCAA levels were observed in Leu-treated mice on day 4. Gln and Leu individually suppressed muscle expressions of the E3 ubiquitin ligase genes, Trim63 and Fbxo32, on day 4 after CLP. As to muscle expressions of myogenic genes, both Gln and Leu upregulated Myog expression on day 1, but Leu alone enhanced Myf5 gene expression, whereas Gln plus Leu increased MyoD and Myog expression levels on day 4. Akt/mammalian target of rapamycin (mTOR) signaling was only activated by Gln and Leu when individually administered. SIGNIFICANCE Gln and/or Leu administration reduces sepsis-induced muscle degradation and promotes myogenic gene expressions. Leu treatment alone had more-pronounced effects on maintaining muscle mass during sepsis. A combination of Gln and Leu failed to show synergistic effects on alleviating sepsis-induced muscle atrophy.
Collapse
Affiliation(s)
- Yu-Chen Hou
- Master Program in Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan; School of Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Jin-Ming Wu
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuen-Yuan Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Hsun Wu
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Jen Yang
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Chu Lee
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Da Chen
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sung-Ling Yeh
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Tsan Lin
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
22
|
Ex Vivo Evaluation of Glutamine Treatment in Sepsis and Trauma in a Human Peripheral Blood Mononuclear Cells Model. Nutrients 2023; 15:nu15010252. [PMID: 36615909 PMCID: PMC9824313 DOI: 10.3390/nu15010252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
We aimed to assess the lipopolysaccharide (LPS), or heat shock (HS) induction, and glutamine-modulating effects on heat shock protein-90α (HSP90α) and cytokines in an ex vivo model using peripheral blood mononuclear cells (PBMCs). The PBMCs of patients with septic shock, trauma-related systemic inflammatory response syndrome (SIRS), and healthy subjects were incubated with 1 μg/mL LPS at 43 °C (HS). Glutamine 10 mM was added 1 hour before or after induction or not at all. We measured mRNA HSP90α, monocyte (m) and lymphocyte (l) HSP90α proteins, interleukin (IL)-1b, -6, -8, -10, tumor necrosis factor-α (TNF-α), and monocyte chemoattractant protein-1 (MCP-1) supernatant levels. Heat shock increased the HSP90α mRNA and mHSP90α in all groups (10-fold in sepsis, p < 0.001 and p = 0.047, respectively). LPS induced the mHSP90α and lHSP90α in healthy (p < 0.001) and mHSP90α in SIRS (p = 0.004) but not in sepsis. LPS induced the cytokines at 24 and 48 h in all groups, especially in trauma (p < 0.001); HS only induced the IL-8 in healthy (p = 0.003) and septic subjects (p = 0.05). Glutamine at 10 mM before or after stimulation did not alter any induction effect of LPS or HS on HSP90α mRNA and mHSP90α protein in sepsis. In SIRS, glutamine before LPS decreased the mHSP90α but increased it when given after HS (p = 0.018). Before or after LPS (p = 0.049) and before HS (p = 0.018), glutamine decreased the lHSP90α expression in sepsis but increased it in SIRS when given after HS (p = 0.003). Regarding cytokines, glutamine enhanced the LPS-induced MCP-1 at 48 h in healthy (p = 0.011), SIRS (p < 0.001), and sepsis (p = 0.006). In conclusion, glutamine at 10 mM, before or after LPS and HS, modulates mHSP90α and lHSP90α in sepsis and SIRS differently and unpredictably. Although it does not alter the stimulation effect on interleukins, glutamine enhances the LPS induction effect on supernatant MCP-1 in all groups. Future research should seek to elucidate better the impact of glutamine and temperature modulation on HSP90α and MCP-1 pathways in sepsis and trauma.
Collapse
|
23
|
Glutamine supplementation moderately affects growth, plasma metabolite and free amino acid patterns in neonatal low birth weight piglets. Br J Nutr 2022; 128:2330-2340. [PMID: 35144703 PMCID: PMC9723486 DOI: 10.1017/s0007114522000459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Low birth weight (LBW) neonates show impaired growth compared with normal birth weight (NBW) neonates. Glutamine (Gln) supplementation benefits growth of weaning piglets, while the effect on neonates is not sufficiently clear. We examined the effect of neonatal Gln supplementation on piglet growth, milk intake and metabolic parameters. Sow-reared pairs of newborn LBW (0·8-1·2 kg) and NBW (1·4-1·8 kg) male piglets received Gln (1 g/kg body mass (BM)/d; Gln-LBW, Gln-NBW; n 24/group) or isonitrogenous alanine (1·22 g/kg BM/d; Ala-LBW; Ala-NBW; n 24/group) supplementation at 1-5 or 1-12 d of age (daily in three equal portions at 07:00, 12:00 and 17:00 by syringe feeding). We measured piglet BM, milk intake (1, 11-12 d), plasma metabolite, insulin, amino acid (AA) and liver TAG concentrations (5, 12 d). The Gln-LBW group had higher BM (+7·5%, 10 d, P = 0·066; 11-12 d, P < 0·05) and milk intake (+14·7%, P = 0·015) than Ala-LBW. At 5 d, Ala-LBW group had higher plasma TAG (+34·7%, P < 0·1) and lower carnosine (-22·5%, P < 0·05) than Ala-NBW and Gln-LBW, and higher liver TAG (+66·9%, P = 0·029) than Ala-NBW. At 12 d, plasma urea was higher (+37·5%, P < 0·05) with Gln than Ala supplementation. Several proteinogenic AA in plasma were lower (P < 0·05) in Ala-NBW v. Gln-NBW. Plasma arginine was higher (P < 0·05) in Gln-NBW v Ala-NBW piglets (5, 12 d). Supplemental Gln moderately improved growth and milk intake and affected lipid metabolism in LBW piglets and AA metabolism in NBW piglets, suggesting effects on intestinal and liver function.
Collapse
|
24
|
Production of Corn Protein Hydrolysate with Glutamine-Rich Peptides and Its Antagonistic Function in Ulcerative Colitis In Vivo. Foods 2022; 11:foods11213359. [PMID: 36359970 PMCID: PMC9657542 DOI: 10.3390/foods11213359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Ulcerative colitis is a typical chronic inflammatory disease of the gastrointestinal tract, which has become a serious hazard to human health. The purpose of the present study was to evaluate the antagonistic effect of corn protein hydrolysate with glutamine-rich peptides on ulcerative colitis. The sequential hydrolysis of corn gluten meal by Alcalase and Protamex was conducted to prepare the hydrolysate, and then the mouse ulcerative colitis model induced by dextran sulfate sodium was applied to evaluate its biological activities. The results indicated that the hydrolysate significantly improved weight loss (p < 0.05), reduced the colonic shortening and the disease activity index, diminished the infiltration of inflammatory cells in the colonic tissue, and reduced the permeability of the colonic mucosa in mice. In addition, the hydrolysate decreased the contents of pro-inflammatory factors IL-1β, IL-6, and TNF-α, increased the anti-inflammatory factor IL-10 and oxidative stress markers GSH-Px and SOD in the animal tests. Moreover, the hydrolysate also regulated the abundance and diversity of the intestinal microbiota, improved the microbiota structure, and increased the content of beneficial bacteria including Lactobacillus and Pediococcus. These results indicated that the hydrolysate might be used as an alternative natural product for the prevention of ulcerative colitis and could be further developed into a functional food.
Collapse
|
25
|
Cotoia A, Cantatore LP, Beck R, Tullo L, Fortarezza D, Marchese F, Ferrara G, Cinnella G. Immunological effects of glutamine supplementation in polytrauma patients in intensive care unit. JOURNAL OF ANESTHESIA, ANALGESIA AND CRITICAL CARE 2022; 2:41. [PMCID: PMC10246383 DOI: 10.1186/s44158-022-00068-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/30/2022] [Indexed: 06/23/2023]
Abstract
Background In polytrauma intensive care unit (ICU) patients, glutamine (GLN) becomes a “conditionally essential” amino acid; its role has been extensively studied in numerous clinical trials but their results are inconclusive. We evaluated the IgA-mediated humoral immunity after GLN supplementation in polytrauma ICU patients. Methods All consecutive patients with polytrauma who required mechanical ventilation and enteral nutrition (EN) provided within 24 h since the admission in ICU at the University Hospital of Foggia from September 2016 to February 2017 were included. Thereafter, two groups were identified: patients treated by conventional EN (25 kcal/kg/die) and patients who have received conventional EN enriched with 50 mg/kg/ideal body weight of alanyl-GLN 20% intravenously. We analysed the plasmatic concentration of IgA, CD3+/CD4+ T helper lymphocytes, CD3+/CD8+ T suppressor lymphocytes, CD3+/CD19+ B lymphocytes, IL-4 and IL-2 at admission and at 4 and 8 days. Results We identified 30 patients, with 15 subjects per group. IgA levels increased significantly in GLN vs the control group at T0, T4 and T8. CD3+/CD4+ T helper lymphocyte and CD3+/CD8+ T suppressor lymphocyte levels significantly increased in GLN vs the control group at T4 and T8. CD3+/CD19+ B lymphocyte levels increased significantly in GLN vs the control group only at T8. IL-2 and IL-4 levels showed no significant differences when comparing GLN with the control group. Conclusions Our study showed that there was an improvement in humoral and cell-mediated immunity with GLN supplementation in polytrauma ICU patients using recommended doses.
Collapse
Affiliation(s)
- Antonella Cotoia
- Department of Medical and Surgical Sciences, Anesthesia and Intensive Care Unit, Policlinico Riuniti Foggia, University of Foggia, Foggia, Italy
| | - Leonarda Pia Cantatore
- Department of Medical and Surgical Sciences, Anesthesia and Intensive Care Unit, Policlinico Riuniti Foggia, University of Foggia, Foggia, Italy
| | - Renata Beck
- Department of Medical and Surgical Sciences, Anesthesia and Intensive Care Unit, Policlinico Riuniti Foggia, University of Foggia, Foggia, Italy
| | - Livio Tullo
- Department of Medical and Surgical Sciences, Anesthesia and Intensive Care Unit, Policlinico Riuniti Foggia, University of Foggia, Foggia, Italy
| | - Donatella Fortarezza
- Department of Medical and Surgical Sciences, Anesthesia and Intensive Care Unit, Policlinico Riuniti Foggia, University of Foggia, Foggia, Italy
| | - Flavia Marchese
- Department of Medical and Surgical Sciences, Anesthesia and Intensive Care Unit, Policlinico Riuniti Foggia, University of Foggia, Foggia, Italy
| | - Giuseppe Ferrara
- Department of Medical and Surgical Sciences, Anesthesia and Intensive Care Unit, Policlinico Riuniti Foggia, University of Foggia, Foggia, Italy
| | - Gilda Cinnella
- Department of Medical and Surgical Sciences, Anesthesia and Intensive Care Unit, Policlinico Riuniti Foggia, University of Foggia, Foggia, Italy
| |
Collapse
|
26
|
Feng X, Li X, Liu N, Hou N, Sun X, Liu Y. Glutaminolysis and CD4 + T-cell metabolism in autoimmunity: From pathogenesis to therapy prospects. Front Immunol 2022; 13:986847. [PMID: 36211442 PMCID: PMC9537545 DOI: 10.3389/fimmu.2022.986847] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/08/2022] [Indexed: 12/03/2022] Open
Abstract
The recent increase in the pathogenesis of autoimmune diseases revealed the critical role of T cells. Investigation into immunometabolism has drawn attention to metabolic processes other than glycometabolism. In rapidly dividing immune cells, including T lymphocytes, the consumption of glutamine is similar to or higher than that of glucose even though glucose is abundant. In addition to contributing to many processes critical for cellular integrity and function, glutamine, as the most abundant amino acid, was recently regarded as an immunomodulatory nutrient. A better understanding of the biological regulation of glutaminolysis in T cells will provide a new perspective for the treatment of autoimmune diseases. In this review, we summarized the current knowledge of glutamine catabolism in CD4+ T-cell subsets of autoimmunity. We also focused on potential treatments targeting glutaminolysis in patients with autoimmune diseases. Knowledge of immunometabolism is constantly evolving, and glutamine metabolism may be a potential therapeutic target for autoimmune disease therapy.
Collapse
Affiliation(s)
- Xiaojin Feng
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xue Li
- Department of Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Na Liu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Ningning Hou
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yongping Liu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
27
|
Claiborne MD, Leone R. Differential glutamine metabolism in the tumor microenvironment – studies in diversity and heterogeneity: A mini-review. Front Oncol 2022; 12:1011191. [PMID: 36203456 PMCID: PMC9531032 DOI: 10.3389/fonc.2022.1011191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022] Open
Abstract
Increased glutamine metabolism is a hallmark of many cancer types. In recent years, our understanding of the distinct and diverse metabolic pathways through which glutamine can be utilized has grown more refined. Additionally, the different metabolic requirements of the diverse array of cell types within the tumor microenvironment complicate the strategy of targeting any particular glutamine pathway as cancer therapy. In this Mini-Review, we discuss recent advances in further clarifying the cellular fate of glutamine through different metabolic pathways. We further discuss potential promising strategies which exploit the different requirements of cells in the tumor microenvironment as it pertains to glutamine metabolism in an attempt to suppress cancer growth and enhance anti-tumor immune responses.
Collapse
Affiliation(s)
- Michael D. Claiborne
- Department of Medicine, Scripps Green Hospital and Scripps Clinic, La Jolla, CA, United States
| | - Robert Leone
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medicine, Baltimore, MD, United States
- *Correspondence: Robert Leone,
| |
Collapse
|
28
|
Dual contribution of the mTOR pathway and of the metabolism of amino acids in prostate cancer. Cell Oncol (Dordr) 2022; 45:831-859. [PMID: 36036882 DOI: 10.1007/s13402-022-00706-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Prostate cancer is the leading cause of cancer in men, and its incidence increases with age. Among other risk factors, pre-existing metabolic diseases have been recently linked with prostate cancer, and our current knowledge recognizes prostate cancer as a condition with important metabolic anomalies as well. In malignancies, metabolic disorders are commonly associated with aberrations in mTOR, which is the master regulator of protein synthesis and energetic homeostasis. Although there are reports demonstrating the high dependency of prostate cancer cells for lipid derivatives and even for carbohydrates, the understanding regarding amino acids, and the relationship with the mTOR pathway ultimately resulting in metabolic aberrations, is still scarce. CONCLUSIONS AND PERSPECTIVES In this review, we briefly provide evidence supporting prostate cancer as a metabolic disease, and discuss what is known about mTOR signaling and prostate cancer. Next, we emphasized on the amino acids glutamine, leucine, serine, glycine, sarcosine, proline and arginine, commonly related to prostate cancer, to explore the alterations in their regulatory pathways and to link them with the associated metabolic reprogramming events seen in prostate cancer. Finally, we display potential therapeutic strategies for targeting mTOR and the referred amino acids, as experimental approaches to selectively attack prostate cancer cells.
Collapse
|
29
|
Proteome-Wide Differential Effects of Peritoneal Dialysis Fluid Properties in an In Vitro Human Endothelial Cell Model. Int J Mol Sci 2022; 23:ijms23148010. [PMID: 35887356 PMCID: PMC9317527 DOI: 10.3390/ijms23148010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 01/27/2023] Open
Abstract
To replace kidney function, peritoneal dialysis (PD) utilizes hyperosmotic PD fluids with specific physico-chemical properties. Their composition induces progressive damage of the peritoneum, leading to vasculopathies, decline of membrane function, and PD technique failure. Clinically used PD fluids differ in their composition but still remain bioincompatible. We mapped the molecular pathomechanisms in human endothelial cells induced by the different characteristics of widely used PD fluids by proteomics. Of 7894 identified proteins, 3871 were regulated at least by 1 and 49 by all tested PD fluids. The latter subset was enriched for cell junction-associated proteins. The different PD fluids individually perturbed proteins commonly related to cell stress, survival, and immune function pathways. Modeling two major bioincompatibility factors of PD fluids, acidosis, and glucose degradation products (GDPs) revealed distinct effects on endothelial cell function and regulation of cellular stress responses. Proteins and pathways most strongly affected were members of the oxidative stress response. Addition of the antioxidant and cytoprotective additive, alanyl-glutamine (AlaGln), to PD fluids led to upregulation of thioredoxin reductase-1, an antioxidant protein, potentially explaining the cytoprotective effect of AlaGln. In conclusion, we mapped out the molecular response of endothelial cells to PD fluids, and provided new evidence for their specific pathomechanisms, crucial for improvement of PD therapies.
Collapse
|
30
|
Poulsen KO, Meng F, Lanfranchi E, Young JF, Stanton C, Ryan CA, Kelly AL, Sundekilde UK. Dynamic Changes in the Human Milk Metabolome Over 25 Weeks of Lactation. Front Nutr 2022; 9:917659. [PMID: 35911093 PMCID: PMC9331903 DOI: 10.3389/fnut.2022.917659] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022] Open
Abstract
Human milk (HM) provides essential nutrition for ensuring optimal infant growth and development postpartum. Metabolomics offers insight into the dynamic composition of HM. Studies have reported the impact of lactation stage, maternal genotype, and gestational age on HM metabolome. However, the majority of the studies have considered changes within the first month of lactation or sampled with large intervals. This leaves a gap in the knowledge of progressing variation in HM composition beyond the first month of lactation. The objective of this study was to investigate whether the HM metabolome from mothers with term deliveries varies beyond 1 month of lactation, during the period in which HM is considered fully mature. Human milk samples (n = 101) from 59 mothers were collected at weeks 1-2, 3-5, 7-9, and 20-25 postpartum and analyzed using 1H nuclear magnetic resonance spectroscopy. Several metabolites varied over lactation and exhibited dynamic changes between multiple time points. Higher levels of HM oligosaccharides, cis-aconitate, O-phosphocholine, O-acetylcarnitine, gluconate, and citric acid were observed in early lactation, whereas later in lactation, levels of lactose, 3-fucosyllactose, glutamine, glutamate, and short- and medium-chain fatty acids were increased. Notably, we demonstrate that the HM metabolome is dynamic during the period of maturity.
Collapse
Affiliation(s)
- Katrine Overgaard Poulsen
- Department of Food Science, Aarhus University, Aarhus, Denmark
- Sino-Danish Center for Education and Research, Aarhus, Denmark
| | - Fanyu Meng
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Elisa Lanfranchi
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
- ACIB – Austrian Centre of Industrial Biotechnology, Graz, Austria
| | | | | | - C. Anthony Ryan
- Brookfield School of Medicine and Health, University College Cork, Cork, Ireland
| | - Alan L. Kelly
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | | |
Collapse
|
31
|
Experimental Investigation on the Bioprotective Role of Trehalose on Glutamine Solutions by Infrared Spectroscopy. MATERIALS 2022; 15:ma15124329. [PMID: 35744387 PMCID: PMC9231094 DOI: 10.3390/ma15124329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 12/15/2022]
Abstract
Glutamine plays a significant role in several basic metabolic processes and is an important regulator of heat shock protein response. The present work is focused on the analysis of the thermal response of aqueous solutions of Glutamine and aqueous solutions of Glutamine in the presence of Trehalose by means of infrared absorption technique. The performed study shows how in the case of a multicomponent system, characterized by a huge number of spectral contributions whose assignment are questionable, the Spectral Distance (SD) and the Cross Wavelet Correlation (XWT) approaches are able to furnish explanatory parameters that can characterize the variations in the spectra behaviour, which is an efficient tool for quantitative comparisons. With this purpose, the analysis has been performed by evaluating the SD and the XWT parameters for the whole investigated spectral range, i.e., 4000–400 cm−1, for scans collected as a function of temperature in the range 20 °C ÷ 60 °C both for Glutamine/Water compounds and for Glutamine /Water/Trehalose mixtures. By means of these analyses, it is found that in aqueous solutions of Glutamine, with respect to aqueous solutions of Glutamine in the presence of Trehalose, the SD and XWT temperature trends follow a linear behaviour where the angular coefficient for Glutamine /Water/Trehalose compounds are lower than that of the Glutamine-Water system in both cases. The obtained findings suggest that Trehalose stabilizes Glutamine against heat treatment.
Collapse
|
32
|
Sautchuk R, Eliseev RA. Cell energy metabolism and bone formation. Bone Rep 2022; 16:101594. [PMID: 35669927 PMCID: PMC9162940 DOI: 10.1016/j.bonr.2022.101594] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
Energy metabolism plays an important role in cell and tissue ability to effectively function, maintain homeostasis, and perform repair. Yet, the role of energy metabolism in skeletal tissues in general and in bone, in particular, remains understudied. We, here, review the aspects of cell energy metabolism relevant to bone tissue, such as: i) availability of substrates and oxygen; ii) metabolism regulatory mechanisms most active in bone tissue, e.g. HIF and BMP; iii) crosstalk of cell bioenergetics with other cell functions, e.g. proliferation and differentiation; iv) role of glycolysis and mitochondrial oxidative phosphorylation in osteogenic lineage; and v) most significant changes in bone energy metabolism observed in aging and other pathologies. In addition, we review available methods to study energy metabolism on a subcellular, cellular, tissue, and live animal levels.
Collapse
Affiliation(s)
- Rubens Sautchuk
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, 601 Elmwood Ave, Rochester, NY 14642, United States
| | - Roman A. Eliseev
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, 601 Elmwood Ave, Rochester, NY 14642, United States
| |
Collapse
|
33
|
Intravenous Arginine Administration Attenuates the Inflammatory Response and Improves Metabolic Profiles in Diet-Induced Obese Mice after Sleeve Gastrectomy. Metabolites 2022; 12:metabo12020153. [PMID: 35208227 PMCID: PMC8878086 DOI: 10.3390/metabo12020153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/21/2022] [Accepted: 01/29/2022] [Indexed: 11/26/2022] Open
Abstract
Sleeve gastrectomy (SG) is a bariatric surgery that can effectively reduce weight and improve obesity-associated comorbidities. However, surgical stress intensifies inflammation and imbalanced metabolic profiles. Arginine (Arg) is a nutrient with immunomodulatory and anti-inflammatory properties. This study evaluated the short-term effects of Arg administration on adipocyte inflammation and metabolic alterations in obese mice after SG. Mice were assigned to normal and high-fat diet (HFD) groups. After 16 weeks, the HFD group were divided to sham (SH), SG with saline (SS), or Arg (SA) groups. SS and SA groups were postoperatively injected with saline or Arg via the tail vein and sacrificed at day 1 or 3 after the SG, respectively. Results showed that obesity caused elevated plasma glucose and leptin levels. The SG operation enhanced the expression of inflammatory cytokines and macrophage infiltration in adipose tissues, whereas hepatocyte gene expressions associated with lipid β-oxidation were downregulated. Arg treatment reversed the expressions of β-oxidation-associated genes and reduced lipid peroxide production in the liver. Additionally, adipose tissue expressions of inflammatory chemokines were reduced, while the M2 macrophage marker increased after surgery. The findings suggest that postoperative Arg administration elicited more balanced hepatic lipid metabolism, polarized macrophages toward the anti-inflammatory type, and attenuated adipocyte inflammation shortly after SG.
Collapse
|
34
|
Yang T, Yan X, Cao Y, Bao T, Li G, Gu S, Xiong K, Xiao T. Meta-analysis of Glutamine on Immune Function and Post-Operative Complications of Patients With Colorectal Cancer. Front Nutr 2021; 8:765809. [PMID: 34938760 PMCID: PMC8686683 DOI: 10.3389/fnut.2021.765809] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/28/2021] [Indexed: 12/21/2022] Open
Abstract
The aim of this meta-analysis was to evaluate the clinical significance of glutamine in the management of patients with colorectal cancer (CRC) after radical operation. Electronic databases, including PubMed, EMBASE, MEDLINE, Cochrane Library, Chinese Biomedical Database (CBM), China National Knowledge Infrastructure (CNKI), VIP medicine information system (VIP), and Wanfang electronic databases were comprehensively searched from inception to 30, July 2021. Prospective randomized trials with glutamine vs. routine nutrition or blank therapy were selected. The immune function related indicators (including IgA, IgG, IgM, CD4+, CD8+, and the ratio of CD4+/CD8+), post-operative complications [including surgical site infection (SSI), anastomotic leakage, and length of hospital stay (LOS)], and corresponding 95% confidence intervals (CIs) were assessed in the pooled analysis. Subsequently, the heterogeneity between studies, sensitivity, publication bias, and meta-regression analysis were performed. Consequently, 31 studies which contained 2,201 patients (1,108 in the glutamine group and 1,093 in the control group) were included. Results of pooled analysis indicated that glutamine significantly improved the humoral immune function indicators [including IgA (SMD = 1.15, 95% CI: 0.72–1.58), IgM (SMD = 0.68, 95% CI: 0.48–0.89), and IgG (SMD = 1.10, 95% CI: 0.70–1.50)], and the T cell immune function indicators [including CD4+ (SMD = 0.76, 95% CI: 0.53–0.99) and the ratio of CD4+/CD8+ (SMD = 0.92, 95% CI: 0.57–1.28)]. Meanwhile, the content of CD8+ was decreased significantly (SMD = −0.50, 95% CI: −0.91 to −0.10) followed by glutamine intervention. Pooled analysis of SSI (RR = 0.48, 95% CI: 0.30–0.75), anastomotic leakage (RR = 0.23, 95% CI: 0.09–0.61), and LOS (SMD = −1.13, 95% CI: −1.68 to −0.58) were decreased significantly in glutamine group compared with control group. Metaregression analysis revealed that the covariate of small-sample effects influenced the robustness and reliability of IgG outcome potentially. Findings of the present work demonstrated that glutamine ought to be applied as an effective immunenutrition therapy in the treatment of patients with CRC after radical surgery. The present meta-analysis has been registered in PROSPERO (no. CRD42021243327). Systematic Review Registration:https://www.crd.york.ac.uk/PROSPERO, Identifier: CRD42021243327.
Collapse
Affiliation(s)
- Tao Yang
- Colorectal and Anal Surgery, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xuhong Yan
- Department of Dermatovenereology, Chengdu Second People's Hospital, Chengdu, China
| | - Yibo Cao
- Colorectal and Anal Surgery, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Tiantian Bao
- Colorectal and Anal Surgery, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Guangsong Li
- Department of Pharmacy, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Shengliang Gu
- College of Clinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Kai Xiong
- College of Clinical Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Tianbao Xiao
- Colorectal and Anal Surgery, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
35
|
Svetikienė M, Trybė D, Strioga M, Veželienė J, Isajevas V, Malickaitė R, Jurgauskienė L, Ringaitienė D, Šerpytis M, Šipylaitė J. Impact of Immunonutrition on T Cell Activation: A Randomized Control Study in Cardiac Surgery Patients. Acta Med Litu 2021; 28:240-252. [PMID: 35637935 PMCID: PMC9133614 DOI: 10.15388/amed.2021.28.2.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 11/22/2022] Open
Abstract
Background. Cardiac surgery provokes an intense inflammatory response that can cause an immunosuppressive state and adverse postoperative outcomes. We recently showed that postoperative immunonutrition with glutamine in “fragile” low-risk cardiac surgery patients was associated with a significantly increased level of CD3+ and CD4+ T cells. In order to clarify the biological relevance and clinical importance of these findings, we investigated whether an increase in the CD4+ T cell level was caused by changes in the systemic inflammatory response (caused by surgery or infection) and if it was associated with their activation status. Methods. A randomized control study of low operative risk but “fragile” cardiac surgery patients was performed. Patients were randomized into immunonutrition (IN) and control groups (C). The IN group received normal daily meals plus special immune nutrients for 5 days postoperatively, while the C group received only normal daily meals. Laboratory parameters were investigated before surgery and on the sixth postoperative day and the groups were compared accordingly. The expression of the CD69+ marker was investigated to determine T cell activation status. Serum concentrations of cytokines (interleukin-10 (IL-10), tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6)) and C-reactive protein (CRP) were determined to assess the systemic inflammatory response, while procalcitonin (PCT) levels were evaluated to confirm or deny possible bacterial infection. Results. Fifty-five patients were enrolled in the study. Twenty-seven (49.1%) were randomized in the IN group. Results show that on the sixth postoperative day, the CD4+CD69+ and CD8+CD69+ counts did not differ between the IN and C groups, accordingly 0.25 [0.16–0.50] vs 0.22 [0.13-0.41], p=0.578 and 0.13 [0.06–0.3] vs 0.09 [0.05–0.14], p=0.178. Also, statistically significant differences were not observed in the cytokine levels (IN and C groups: TNF-α 8.13 [7.32–10.31] vs 8.78 [7.65–11.2], p=0.300; IL-6 14.65 [9.28–18.95] vs 12.25 [8.55–22.50], p=0.786; IL-10 5.0 [5.0–5.0] vs 5.0 [5.0–5.0], p=0.343 respectively), which imply that an elevated T cell count is not associated with the systemic inflammatory response. Also, PCT (IN and C groups: 0.03 [0.01–0.09] vs 0.05 [0.03–0.08], p=0.352) and CRP (IN and C groups 62.7 [34.2–106.0] vs 63.7 [32.9–91.0], p=0.840) levels did not differ between the two groups. Moreover, low levels of PCT indicated that the increase in T cell count was not determined by bacterial infection. Conclusions. Our findings showed that CD4+ T cell levels were associated with neither the systemic inflammatory response nor bacterial infection. Secondly, increases in T cells are not accompanied by their activation status. These results suggest a hypothesis that a higher postoperative T cell concentration may be associated with postoperative immunonutrition in low-risk cardiac surgery patients with intact cellular vitality, i.e. “fragile”. However, immunonutrition alone did not affect T cell activation status.
Collapse
|
36
|
Protective Effects of Glutamine and Leucine Supplementation on Sepsis-Induced Skeletal Muscle Injuries. Int J Mol Sci 2021; 22:ijms222313003. [PMID: 34884807 PMCID: PMC8657647 DOI: 10.3390/ijms222313003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 01/02/2023] Open
Abstract
This study investigated the effects of l-glutamine (Gln) and/or l-leucine (Leu) administration on sepsis-induced skeletal muscle injuries. C57BL/6J mice were subjected to cecal ligation and puncture to induce polymicrobial sepsis and then given an intraperitoneal injection of Gln, Leu, or Gln plus Leu beginning at 1 h after the operation with re-injections every 24 h. All mice were sacrificed on either day 1 or day 4 after the operation. Blood and muscles were collected for analysis of inflammation and oxidative damage-related biomolecules. Results indicated that both Gln and Leu supplementation alleviated sepsis-induced skeletal muscle damage by reducing monocyte infiltration, calpain activity, and mRNA expression levels of inflammatory cytokines and hypoxia-inducible factor-1α. Furthermore, septic mice treated with Gln had higher percentages of blood anti-inflammatory monocytes and muscle M2 macrophages, whereas Leu treatment enhanced the muscle expressions of mitochondrion-related genes. However, there were no synergistic effects when Gln and Leu were simultaneously administered. These findings suggest that both Gln and Leu had prominent abilities to attenuate inflammation and degradation of skeletal muscles in the early and/or late phases of sepsis. Moreover, Gln promoted the switch of leukocytes toward an anti-inflammatory phenotype, while Leu treatment maintained muscle bioenergetic function.
Collapse
|
37
|
Moriguti EKU, Rosique MJ, Tirapelli LF, Tirapelli DPC, Jordão AA, Evora PRB, Beldi VFM, Farina Junior JA. Oral glutamine dipeptide or oral glutamine free amino acid reduces burned injury progression in rats. BRAZ J BIOL 2021; 84:e250936. [PMID: 34755813 DOI: 10.1590/1519-6984.250936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/09/2021] [Indexed: 11/22/2022] Open
Abstract
This study was carried out to evaluate the effect of Glutamine, as a dipeptide or a free amino acid form, on the progression of burn injuries in rats. Thirty male Wistar rats were burned with a comb metal plate heated in boiling water (98 °C) for three minutes, creating four rectangular full-thickness burn areas separated by three unburned interspaces (zone of stasis) in both dorsum sides. The animals were randomized into three groups (n=10): saline solution (G1-Control) and treated groups that orally received Glutamine as dipeptide (G2-Dip) or free amino acid (G3-FreeAA). Two and seven days after burn injury, lesions were photographed for unburned interspaces necrosis evolution assessment. Seven days after injury, glutathione seric was measured and histopathological analysis was performed. By photographs, there was a significant reduction in necrosis progression in G3-Free-AA between days two and seven. Histopathological analysis at day 7 showed a significantly higher stasis zone without necrosis and a higher number of fibroblasts in G2-Dip and G3-FreeAA compared with G1-Control. Also, glutathione serum dosage was higher in G2-Dip. The plasmatic glutathione levels were higher in the G2-Dip than the G1-Control, and there was a trend to higher levels in G3-FreeAA. The reduction in histological lesions, greater production of fibroblasts, and greater amounts of glutathione may have benefited the evolution of burn necrosis, which showed greater preservation of interspaces.
Collapse
Affiliation(s)
- E K U Moriguti
- Universidade de São Paulo - USP, Hospital das Clínicas, Unidade de Queimados, Ribeirão Preto, SP, Brasil
| | - M J Rosique
- Universidade de São Paulo - USP, Faculdade de Medicina de Ribeirão Preto, Departamento de Cirurgia e Anatomia, Ribeirão Preto, SP, Brasil
| | - L F Tirapelli
- Universidade de São Paulo - USP, Faculdade de Medicina de Ribeirão Preto, Departamento de Cirurgia e Anatomia, Ribeirão Preto, SP, Brasil
| | - D P C Tirapelli
- Universidade de São Paulo - USP, Faculdade de Medicina de Ribeirão Preto, Departamento de Cirurgia e Anatomia, Ribeirão Preto, SP, Brasil
| | - A A Jordão
- Universidade de São Paulo - USP, Faculdade de Medicina de Ribeirão Preto, Departamento de Ciências da Saúde, Ribeirão Preto, SP, Brasil
| | - P R B Evora
- Universidade de São Paulo - USP, Faculdade de Medicina de Ribeirão Preto, Departamento de Cirurgia e Anatomia, Ribeirão Preto, SP, Brasil
| | - V F M Beldi
- Universidade de São Paulo - USP, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP, Brasil
| | - J A Farina Junior
- Universidade de São Paulo - USP, Hospital das Clínicas, Unidade de Queimados, Ribeirão Preto, SP, Brasil.,Universidade de São Paulo - USP, Faculdade de Medicina de Ribeirão Preto, Departamento de Cirurgia e Anatomia, Ribeirão Preto, SP, Brasil
| |
Collapse
|
38
|
Glutamine Homeostasis and Its Role in the Adaptive Strategies of the Blind Mole Rat, Spalax. Metabolites 2021; 11:metabo11110755. [PMID: 34822413 PMCID: PMC8620300 DOI: 10.3390/metabo11110755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 12/20/2022] Open
Abstract
Oxidative metabolism is fine-tuned machinery that combines two tightly coupled fluxes of glucose and glutamine-derived carbons. Hypoxia interrupts the coordination between the metabolism of these two nutrients and leads to a decrease of the system efficacy and may eventually cause cell death. The subterranean blind mole rat, Spalax, is an underexplored, underground, hypoxia-tolerant mammalian group which spends its life under sharply fluctuating oxygen levels. Primary Spalax cells are an exceptional model to study the metabolic strategies that have evolved in mammals inhabiting low-oxygen niches. In this study we explored the metabolic frame of glutamine (Gln) homeostasis in Spalax skin cells under normoxic and hypoxic conditions and their impacts on the metabolism of rat cells. Targeted metabolomics employing liquid chromatography and mass spectrometry (LC-MS) was used to track the fate of heavy glutamine carbons (13C5 Gln) after 24 h under normoxia or hypoxia (1% O2). Our results indicated that large amounts of glutamine-originated carbons were detected as proline (Pro) and hydroxyproline (HPro) in normoxic Spalax cells with a further increase under hypoxia, suggesting a strategy for reduced Gln carbons storage in proteins. The intensity of the flux and the presence of HPro suggests collagen as a candidate protein that is most abundant in animals, and as the primary source of HPro. An increased conversion of αKG to 2 HG that was indicated in hypoxic Spalax cells prevents the degradation of hypoxia-inducible factor 1α (HIF-1α) and, consequently, maintains cytosolic and mitochondrial carbons fluxes that were uncoupled via inhibition of the pyruvate dehydrogenase complex. A strong antioxidant defense in Spalax cells can be attributed, at least in part, to the massive usage of glutamine-derived glutamate for glutathione (GSH) production. The present study uncovers additional strategies that have evolved in this unique mammal to support its hypoxia tolerance, and probably contribute to its cancer resistance, longevity, and healthy aging.
Collapse
|
39
|
Dmitriev AV, Machulina IA, Shestopalov AE. [Glutamine as a component of nutritional and metabolic therapy for surgical patients in ICU]. Khirurgiia (Mosk) 2021:98-106. [PMID: 34363451 DOI: 10.17116/hirurgia202108198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Glutamine is the most abundant amino acid in the human body that is involved in various metabolic processes. The development of hypermetabolic and hypercatabolic syndrome that accompanies critical conditions of ICU patients is associated with a decrease in the concentration of glutamine, especially in the blood plasma and muscles. This process may last for quite a long time and lead to a number of complications up to a fatal outcome. This review was aimed to analyze clinical studies conducted over the past 20 years that demonstrate the effect of intravenous infusion of glutamine dipeptide as part of balanced parenteral nutrition on the perioperative period: the severity of inflammatory response; the state of the intestinal mucosa; the incidence and severity of complications; mortality; the duration of stay in the ICU and hospital in general, etc. The analysis was performed using systematic reviews and meta-analyses based on randomized double-blind, placebo-controlled trials in different countries selected in the main databases (PubMed, EMBASE, Web of Science, The Cochrane Library, etc.). Most of the reports state that the inclusion of glutamine dipeptide in nutritional and metabolic therapy (NMT) in surgical patients reduces the frequency and severity of infectious complications and mortality, reduces the length of stay in ICU and in hospital in general, improves the biochemical parameters that reflect the condition of patients, and reduces the treatment costs. Thus, the conducted systematic reviews and meta-analyses confirm that the use of the parenteral form of glutamine dipeptide (Dipeptiven 20%) as part of balanced standard parenteral nutrition (PN) is a clinically and pharmacoeconomically justified strategy of NMT in surgical ICU patients.
Collapse
Affiliation(s)
- A V Dmitriev
- Northwest Society for Parenteral and Enteral Nutrition, Saint Petersbur, Northwest Society for Parenteral and Enteral Nutrition, Saint Petersburg
| | - I A Machulina
- SBHI City Clinical Hospital No. 70 named after E.O. Mukhin of the Moscow City Health Department, Mosco, SBHI City Clinical Hospital No. 70 named after E.O. Mukhin of the Moscow City Health Department, Moscow
| | - A E Shestopalov
- FSBE FPE Russian Medical Academy of Continuous Professional Education of the Ministry of Health of Russia, Mosco, FSBE FPE Russian Medical Academy of Continuous Professional Education of the Ministry of Health of Russia, Moscow.,FSBI N.N. Burdenko Main Military Clinical Hospital of the Ministry of Defense of Russia, Mosco, FSBI N.N. Burdenko Main Military Clinical Hospital of the Ministry of Defense of Russia, Moscow
| |
Collapse
|
40
|
Abooshahab R, Hooshmand K, Razavi F, Dass CR, Hedayati M. A glance at the actual role of glutamine metabolism in thyroid tumorigenesis. EXCLI JOURNAL 2021; 20:1170-1183. [PMID: 34345235 PMCID: PMC8326501 DOI: 10.17179/excli2021-3826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022]
Abstract
Thyroid cancers (TCs) are the most prevalent malignancy of the endocrine system and the seventh most common cancer in women. According to estimates from the Global Cancer Observatory (GCO) in 2020, the incidence of thyroid cancer globally was 586,000 cases. As thyroid cancer incidences have dramatically increased, identifying the most important metabolic pathways and biochemical markers involved in thyroid tumorigenesis can be critical strategies for controlling the prevalence and ultimately treatment of this disease. Cancer cells undergo cellular metabolism and energy alteration in order to promote cell proliferation and invasion. Glutamine is one of the most abundant free amino acids in the human body that contributes to cancer metabolic remodeling as a carbon and nitrogen source to sustain cell growth and proliferation. In the present review, glutamine metabolism and its regulation in cancer cells are highlighted. Thereafter, emphasis is given to the perturbation of glutamine metabolism in thyroid cancer, focusing on metabolomics studies.
Collapse
Affiliation(s)
- Raziyeh Abooshahab
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Curtin Medical School, Curtin University, Bentley 6102, Australia
| | | | - Fatemeh Razavi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Crispin R Dass
- Curtin Medical School, Curtin University, Bentley 6102, Australia.,Curtin Health Innovation Research Institute, Bentley, 6102, Australia
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Mukha A, Kahya U, Linge A, Chen O, Löck S, Lukiyanchuk V, Richter S, Alves TC, Peitzsch M, Telychko V, Skvortsov S, Negro G, Aschenbrenner B, Skvortsova II, Mirtschink P, Lohaus F, Hölscher T, Neubauer H, Rivandi M, Labitzky V, Lange T, Franken A, Behrens B, Stoecklein NH, Toma M, Sommer U, Zschaeck S, Rehm M, Eisenhofer G, Schwager C, Abdollahi A, Groeben C, Kunz-Schughart LA, Baretton GB, Baumann M, Krause M, Peitzsch C, Dubrovska A. GLS-driven glutamine catabolism contributes to prostate cancer radiosensitivity by regulating the redox state, stemness and ATG5-mediated autophagy. Theranostics 2021; 11:7844-7868. [PMID: 34335968 PMCID: PMC8315064 DOI: 10.7150/thno.58655] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
Radiotherapy is one of the curative treatment options for localized prostate cancer (PCa). The curative potential of radiotherapy is mediated by irradiation-induced oxidative stress and DNA damage in tumor cells. However, PCa radiocurability can be impeded by tumor resistance mechanisms and normal tissue toxicity. Metabolic reprogramming is one of the major hallmarks of tumor progression and therapy resistance. Specific metabolic features of PCa might serve as therapeutic targets for tumor radiosensitization and as biomarkers for identifying the patients most likely to respond to radiotherapy. The study aimed to characterize a potential role of glutaminase (GLS)-driven glutamine catabolism as a prognostic biomarker and a therapeutic target for PCa radiosensitization. Methods: We analyzed primary cell cultures and radioresistant (RR) derivatives of the conventional PCa cell lines by gene expression and metabolic assays to identify the molecular traits associated with radiation resistance. Relative radiosensitivity of the cell lines and primary cell cultures were analyzed by 2-D and 3-D clonogenic analyses. Targeting of glutamine (Gln) metabolism was achieved by Gln starvation, gene knockdown, and chemical inhibition. Activation of the DNA damage response (DDR) and autophagy was assessed by gene expression, western blotting, and fluorescence microscopy. Reactive oxygen species (ROS) and the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) were analyzed by fluorescence and luminescence probes, respectively. Cancer stem cell (CSC) properties were investigated by sphere-forming assay, CSC marker analysis, and in vivo limiting dilution assays. Single circulating tumor cells (CTCs) isolated from the blood of PCa patients were analyzed by array comparative genome hybridization. Expression levels of the GLS1 and MYC gene in tumor tissues and amino acid concentrations in blood plasma were correlated to a progression-free survival in PCa patients. Results: Here, we found that radioresistant PCa cells and prostate CSCs have a high glutamine demand. GLS-driven catabolism of glutamine serves not only for energy production but also for the maintenance of the redox state. Consequently, glutamine depletion or inhibition of critical regulators of glutamine utilization, such as GLS and the transcription factor MYC results in PCa radiosensitization. On the contrary, we found that a combination of glutamine metabolism inhibitors with irradiation does not cause toxic effects on nonmalignant prostate cells. Glutamine catabolism contributes to the maintenance of CSCs through regulation of the alpha-ketoglutarate (α-KG)-dependent chromatin-modifying dioxygenase. The lack of glutamine results in the inhibition of CSCs with a high aldehyde dehydrogenase (ALDH) activity, decreases the frequency of the CSC populations in vivo and reduces tumor formation in xenograft mouse models. Moreover, this study shows that activation of the ATG5-mediated autophagy in response to a lack of glutamine is a tumor survival strategy to withstand radiation-mediated cell damage. In combination with autophagy inhibition, the blockade of glutamine metabolism might be a promising strategy for PCa radiosensitization. High blood levels of glutamine in PCa patients significantly correlate with a shorter prostate-specific antigen (PSA) doubling time. Furthermore, high expression of critical regulators of glutamine metabolism, GLS1 and MYC, is significantly associated with a decreased progression-free survival in PCa patients treated with radiotherapy. Conclusions: Our findings demonstrate that GLS-driven glutaminolysis is a prognostic biomarker and therapeutic target for PCa radiosensitization.
Collapse
Affiliation(s)
- Anna Mukha
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf (HZDR) Dresden, Germany
| | - Uğur Kahya
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf (HZDR) Dresden, Germany
| | - Annett Linge
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany
| | - Oleg Chen
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- Department of Cell Signaling, Institute of Cell Biology, NAS of Ukraine, Lviv, Ukraine
| | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Vasyl Lukiyanchuk
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf (HZDR) Dresden, Germany
| | - Susan Richter
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Tiago C Alves
- Department for Clinical Pathobiochemistry, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Mirko Peitzsch
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Vladyslav Telychko
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
| | - Sergej Skvortsov
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
- EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Giulia Negro
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
- EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Bertram Aschenbrenner
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
- EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Ira-Ida Skvortsova
- Department of Therapeutic Radiology and Oncology, Medical University of Innsbruck, Innsbruck, Austria
- EXTRO-Lab, Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Peter Mirtschink
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Fabian Lohaus
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Tobias Hölscher
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany
| | - Hans Neubauer
- Department of Obstetrics and Gynecology, Medical Faculty and University Hospital of the Heinrich-Heine University Düsseldorf, Germany
| | - Mahdi Rivandi
- Department of Obstetrics and Gynecology, Medical Faculty and University Hospital of the Heinrich-Heine University Düsseldorf, Germany
| | - Vera Labitzky
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Germany
| | - Tobias Lange
- Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Germany
| | - André Franken
- Department of Obstetrics and Gynecology, Medical Faculty and University Hospital of the Heinrich-Heine University Düsseldorf, Germany
| | - Bianca Behrens
- General, Visceral and Paediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Nikolas H Stoecklein
- General, Visceral and Paediatric Surgery, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Marieta Toma
- Institute of Pathology, University of Bonn, Bonn, Germany
- Institute of Pathology, Universitätsklinikum Carl Gustav Carus Dresden, Dresden, Germany
| | - Ulrich Sommer
- Institute of Pathology, Universitätsklinikum Carl Gustav Carus Dresden, Dresden, Germany
| | - Sebastian Zschaeck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Maximilian Rehm
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Graeme Eisenhofer
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Christian Schwager
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK) Core Center, Clinical Cooperation Units (CCU) Translational Radiation Oncology and Radiation Oncology, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), German Cancer Research Center (DKFZ) and Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg Medical Faculty (HDMF), Heidelberg University, Heidelberg, Germany
| | - Amir Abdollahi
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK) Core Center, Clinical Cooperation Units (CCU) Translational Radiation Oncology and Radiation Oncology, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), German Cancer Research Center (DKFZ) and Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg Medical Faculty (HDMF), Heidelberg University, Heidelberg, Germany
| | - Christer Groeben
- Department of Urology, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Leoni A Kunz-Schughart
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany
| | - Gustavo B Baretton
- Institute of Pathology, Universitätsklinikum Carl Gustav Carus Dresden, Dresden, Germany
| | - Michael Baumann
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Mechthild Krause
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf (HZDR) Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany
| | - Claudia Peitzsch
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany
| | - Anna Dubrovska
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf (HZDR) Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany
| |
Collapse
|
42
|
Liu Y, Yang Y, Yao R, Hu Y, Liu P, Lian S, Lv H, Xu B, Li S. Dietary supplementary glutamine and L-carnitine enhanced the anti-cold stress of Arbor Acres broilers. Arch Anim Breed 2021; 64:231-243. [PMID: 34159254 PMCID: PMC8209504 DOI: 10.5194/aab-64-231-2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/01/2021] [Indexed: 01/16/2023] Open
Abstract
Newborn poultry in cold regions often suffer from cold stress,
causing a series of changes in their physiology and metabolism, leading to
slow growth and decreased production performance. However, a single
anti-stress substance cannot completely or maximally eliminate or alleviate
the various effects of cold stress on animals. Therefore, the effects of the
supplemented glutamine and L-carnitine on broilers under low temperature
were evaluated in this study. Broilers were randomly allocated into 16
groups which were respectively fed with different levels of glutamine and
L-carnitine according to the L16 (45) orthogonal experimental
design for 3 weeks (the first week is the adaptive feeding period; the
second and third weeks are the cold exposure period). Growth performance
was recorded, and blood samples were collected during cold exposure. The
results showed the supplementation had altered the plasma parameters, growth
performance and cold-induced oxidative stress. The increase of
corticosterone and suppression of thyroid hormone was ameliorated.
Supplemented groups had lower daily feed intake and feed-to-gain ratio, higher
daily weight gain and better relative weights of immune organs. Plasma
glucose, total protein, blood urea nitrogen and alkaline phosphatase
changed as well. Oxidative stress was mollified due to the improved
activities of superoxide dismutase and glutathione peroxidase, heightened
total antioxidant capacity and stable malondialdehyde. Dietary glutamine and
L-carnitine improve the growth performance, nutritional status and cold
stress response of broilers at low temperature, and their interaction
occurred.
Collapse
Affiliation(s)
- Yang Liu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Yuying Yang
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Ruizhi Yao
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, 028000, PR China
| | - Yajie Hu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Peng Liu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Shuai Lian
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Hongming Lv
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Bin Xu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Shize Li
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| |
Collapse
|
43
|
Host cell glutamine metabolism as a potential antiviral target. Clin Sci (Lond) 2021; 135:305-325. [PMID: 33480424 DOI: 10.1042/cs20201042] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/08/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022]
Abstract
A virus minimally contains a nucleic acid genome packaged by a protein coat. The genome and capsid together are known as the nucleocapsid, which has an envelope containing a lipid bilayer (mainly phospholipids) originating from host cell membranes. The viral envelope has transmembrane proteins that are usually glycoproteins. The proteins in the envelope bind to host cell receptors, promoting membrane fusion and viral entry into the cell. Virus-infected host cells exhibit marked increases in glutamine utilization and metabolism. Glutamine metabolism generates ATP and precursors for the synthesis of macromolecules to assemble progeny viruses. Some compounds derived from glutamine are used in the synthesis of purines and pyrimidines. These latter compounds are precursors for the synthesis of nucleotides. Inhibitors of glutamine transport and metabolism are potential candidate antiviral drugs. Glutamine is also an essential nutrient for the functions of leukocytes (lymphocyte, macrophage, and neutrophil), including those in virus-infected patients. The increased glutamine requirement for immune cell functions occurs concomitantly with the high glutamine utilization by host cells in virus-infected patients. The development of antiviral drugs that target glutamine metabolism must then be specifically directed at virus-infected host cells to avoid negative effects on immune functions. Therefore, the aim of this review was to describe the landscape of cellular glutamine metabolism to search for potential candidates to inhibit glutamine transport or glutamine metabolism.
Collapse
|
44
|
Fakhrinnisa TA, Susilo I, Mustika A, Sofyan MS. Effect of Intravenous Glutamine on Caspase-12 Expression in the Apoptosis of the Glomerular Epithelial Cells of Male Rats Exposed to Cisplatin. Asian Pac J Cancer Prev 2021; 22:457-462. [PMID: 33639660 PMCID: PMC8190340 DOI: 10.31557/apjcp.2021.22.2.457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Cisplatin is potent chemotherapy for broad-spectrum malignancies treatment, but its use is limited by organ toxicity effects, including nephrotoxicity. Glutamine prevents cisplatin nephrotoxicity by inhibiting the oxidative stress in kidney cell apoptosis. METHODS This research examined the nephroprotective effects of intravenous glutamine on the glomerular epithelium of male rats (Rattus norvegicus). 30 male rats were randomly divided into (1) P0 as the control group; (2) P1 that was administered with single dose cisplatin (20 mg/kg BW) intraperitoneal injection; and (3) P2 that was administered with intravenous injection of glutamine (100 mg/kg BW) and single-dose cisplatin (20 mg/kg BW) intraperitoneal injection. The measurement of caspase-12 expression and apoptotic cells was performed using immunohistochemical methods. RESULTS The caspase-12 expression are as follows: P0 = 0.5 ± 0.15; P1 = 4.1 ± 0.86; P2 = 2.54 ± 0.72. The apoptotic cells are as follows: P0 = 14.5 ± 5.23 cells/field of view; P1 = 52.7 ± 17.06 cells/field of view; P2 = 31.5 ± 6.73 cells/field of view. There is a decrease in the caspase-12 expression and apoptotic cells after intravenous glutamine administration in male white rats' glomerular epithelial cells exposed to cisplatin. The decrease of caspase-12 expression is followed by a decrease in glomerular epithelium apoptosis after intravenous glutamine administration. CONCLUSION Immunohistochemical examination can be used as a marker of the nephrotoxic effect of cisplatin on the renal glomerular epithelium. Glutamine has been observed to give nephroprotective effect to cisplatin nephrotoxic effects.<br />.
Collapse
Affiliation(s)
- Tamara Aulia Fakhrinnisa
- Medicine Undergraduate Program, Faculty of Medicine, Airlangga University, Jalan Mayjen Prof. Dr. Moestopo 47, Surabaya, Indonesia
| | - Imam Susilo
- Department of Pathological Anatomy, Faculty of Medicine, Airlangga University, Jalan Mayjen Prof. Dr. Moestopo 47, Surabaya, Indonesia
| | - Arifa Mustika
- Department of Pharmacology, Faculty of Medicine, Airlangga University, Jalan Mayjen Prof. Dr. Moestopo 47, Surabaya, Indonesia
| | - Miyayu Soneta Sofyan
- Department of Health Faculty of Vocational Study, Airlangga University, Jalan Darmawangsa dalam 68-69 601551 Surabaya, Indonesia
| |
Collapse
|
45
|
Rusdiawan A, Taufikkurrachman T. Effect of Glutamine Supplement Administration on the Reduction of Muscular Fatigue Post-Eccentric Exercise. FOLIA MEDICA INDONESIANA 2021. [DOI: 10.20473/fmi.v55i4.24399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Eccentric activity can cause pain due to muscle damage and fatigue. Tired and damaged muscular state will degrade athletes' performance during a competition. Glutamine supplements are known to maintain plasma protein levels and can also improve muscle weakness due to inflammation that occurs after eccentric activity. The purpose of this study was to prove the effect of glutamine supplementation on the reduction of muscle fatigue after eccentric activity based on muscle strength and joint ROM. The subjects of this study were students of PJKR, IKIP Budi Utomo, who were randomly divided into 2 groups, the control group (K1) and treatment group (K2), each consisting of 22 respondents. The design of this research is randomized grsoup pre-test and post-test design. The eccentric activity performed was drop jumps on the bench with a height of 0.5 meters. Glutamine was administered orally after eccentric activity with a dose of 0.4 grams/kg BW in 450 ml water mineral 3 times (3 days). Measurement of Leg muscle strength was performed using Back and Leg Dynamometer by pulling with all the strength using leg muscles, whereas ROM measurements were measured using a goniometer performed on the knee joint in a passive way. The result of measurement obtained the mean of muscle strength of control group 63.7 ± 17.0 kg and treatment group 81.1 ± 17.0 kg at 72 hours. While result of ROM measurement obtained the mean of control group 124.3 ± 3.2 degrees and treatment group 131.7 ± 4.1 degrees at 72 hours. The analysis showed that glutamine administration in treatment group after eccentric activity increased leg muscle strength with p=0.000, and also increased knee joint ROM with p=0.000 at 72 hours after eccentric activity. In conclusion, glutamine administered with a dose of 0.4 gram/kg BW/day can increase leg muscle strength and knee joint ROM at 72 hours after eccentric activity.
Collapse
|
46
|
Chen C, Hou G, Zeng C, Ren Y, Chen X, Peng C. Metabolomic profiling reveals amino acid and carnitine alterations as metabolic signatures in psoriasis. Theranostics 2021; 11:754-767. [PMID: 33391503 PMCID: PMC7738860 DOI: 10.7150/thno.51154] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022] Open
Abstract
High-throughput metabolite profiling provides the opportunity to reveal metabolic mechanisms and identify biomarkers. Psoriasis is an immune-mediated chronic inflammatory disease. However, the role of metabolism in psoriasis pathogenesis remains unclear. Methods: Plasma samples of individuals (45 psoriasis and 45 sex-, age-, and BMI-matched healthy controls) were collected. Non-targeted metabolomics and amino acid- or carnitine-targeted metabolomics were conducted, then, plasma samples of mice induced by imiquimod (IMQ) were subjected to the amino acid- and carnitine-targeted metabolomic profiling. Flow cytometry was used to study the effect of L-carnitine (LC(C0)) on IMQ-induced psoriatic inflammation. Results: Through the non-targeted metabolomics approach, we detected significantly altered amino acids and carnitines in psoriasis patients. Amino acid-targeted metabolomic profiling identified 37 amino acids altered in psoriasis, of these 23 were markedly upregulated, including essential amino acids (EAAs), and branched-chain amino acids (BCAAs), whereas glutamine, cysteine, and asparagine were significantly down-regulated. Carnitine-targeted metabolomic profiling identified 40 significantly altered carnitines, 14 of which included palmitoylcarnitine (C16) and were markedly downregulated in psoriasis, whereas hexanoylcarnitine (C6) and 3-OH-octadecenoylcarnitine (C18:1-OH) were significantly upregulated. Interestingly, glutamine, asparagine, and C16 levels were negatively correlated with the PASI score. Moreover, a higher abundance of LC(C0) was associated with markedly reduced IMQ-induced epidermal thickening and infiltration of Th17 cells in skin lesions, indicating LC(C0) supplementation as a potential therapy for psoriasis treatment. Conclusion: Our results suggested the metabolism of amino acids and carnitines are significantly altered in psoriasis, especially the metabolism of EAAs, BCAAs, and LC(C0), which may play key roles in the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Chao Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Guixue Hou
- BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
| | - Chunwei Zeng
- BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
| | - Yan Ren
- BGI-Shenzhen, Shenzhen, Guangdong, 518083, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| |
Collapse
|
47
|
Sawant OB, Meng C, Wu G, Washburn SE. Prenatal alcohol exposure and maternal glutamine supplementation alter the mTOR signaling pathway in ovine fetal cerebellum and skeletal muscle. Alcohol 2020; 89:93-102. [PMID: 32777475 DOI: 10.1016/j.alcohol.2020.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 01/25/2023]
Abstract
Prenatal alcohol exposure causes fetal neurodevelopmental damage and growth restriction. Among regions of the brain, the cerebellum is the most vulnerable to developmental alcohol exposure. Despite vast research in the field, there is still a need to identify specific mechanisms by which alcohol causes this damage in order to design effective therapeutic interventions. The mammalian target of rapamycin (mTOR) is known to be associated with axonal regeneration, dendritic arborization, synaptic plasticity, cellular growth, autophagy, and many other cellular processes. Glutamine and glutamine-related amino acids play a key role in fetal development and are known to alter the mTOR pathway; recent research has shown that disturbances in their bioavailability and signaling pathways may mediate adverse effects of prenatal alcohol exposure. This study investigated the role of the mTOR signaling pathway in the fetal cerebellum and skeletal muscle after third trimester-equivalent prenatal alcohol exposure and maternal l-glutamine (GLN) supplementation using a sheep model. Fetal cerebella and skeletal muscles were sampled for Western blot analysis of mTOR and its downstream targets S6 kinase and eukaryotic initiation factor 4E-bindin protein (4E-BP1). The expression of cerebellar phosphorylated mTOR relative to the total mTOR was elevated in the alcohol+GLN group compared to the saline and GLN groups. Alcohol exposure increased the ratio of phosphorylated S6K to total S6K in fetal cerebellum, and no significant effect of GLN supplementation was observed. On contrary, maternal GLN supplementation reduced the activation of mTOR and S6K in fetal skeletal muscle, possibly to make GLN and other amino acids available for use by other organs. These findings suggest prenatal alcohol exposure and maternal GLN supplementation during the third trimester-equivalent alter the mTOR signaling cascade, which plays a possible key role in alcohol-induced developmental damage.
Collapse
|
48
|
Li PH, Zhang R, Cheng LQ, Liu JJ, Chen HZ. Metabolic regulation of immune cells in proinflammatory microenvironments and diseases during ageing. Ageing Res Rev 2020; 64:101165. [PMID: 32898718 DOI: 10.1016/j.arr.2020.101165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
The process of ageing includes molecular changes within cells and interactions between cells, eventually resulting in age-related diseases. Although various cells (immune cells, parenchymal cells, fibroblasts and endothelial cells) in tissues secrete proinflammatory signals in age-related diseases, immune cells are the major contributors to inflammation. Many studies have emphasized the role of metabolic dysregulation in parenchymal cells in age-related inflammatory diseases. However, few studies have discussed metabolic modifications in immune cells during ageing. In this review, we introduce the metabolic dysregulation of major nutrients (glucose, lipids, and amino acids) within immune cells during ageing, which leads to dysfunctional NAD + metabolism that increases immune cell senescence and leads to the acquisition of the corresponding senescence-associated secretory phenotype (SASP). We then focus on senescent immune cell interactions with parenchymal cells and the extracellular matrix and their involvement in angiogenesis, which lead to proinflammatory microenvironments in tissues and inflammatory diseases at the systemic level. Elucidating the roles of metabolic modifications in immune cells during ageing will provide new insights into the mechanisms of ageing and therapeutic directions for age-related inflammatory diseases.
Collapse
Affiliation(s)
- Pei-Heng Li
- Department of Internal Medicine, Peking Union Medical college Hospital, Beijing, China; State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ran Zhang
- Buck Institute for Research on Ageing, Novato, United States
| | - Li-Qin Cheng
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden
| | - Jin-Jing Liu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, China.
| | - Hou-Zao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
49
|
Shao H, Dong L, Feng Y, Wang C, Tong H. The protective effect of L-glutamine against acute Cantharidin-induced Cardiotoxicity in the mice. BMC Pharmacol Toxicol 2020; 21:71. [PMID: 33004081 PMCID: PMC7528483 DOI: 10.1186/s40360-020-00449-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 09/22/2020] [Indexed: 01/19/2023] Open
Abstract
Background Cantharidin (CTD) is a compound which have the potential to be exploited as an antitumor drug, and it has been demonstrated antitumor effects in a variety of cancers. However, the use is limited due to its severe toxicity. It has reported that it can induce fatal cardiac arrhythmias. Fortunately, we found that L-glutamine can alleviate cardiac toxicity caused by cantharidin in mice. Methods To investigate the protective effect of L-glutamine, we used a high dose of cantharidin in mice to create a model of cardiotoxicity. In the experimental mice, glutamine was given orally half an hour before they were administrated with cantharidin. The mice of control group were intraperitoneally injected with DMSO solution. The general state of all mice, cardiac mass index, electrocardiogram change and biological markers were determined. Hematoxylin-eosin staining (HE staining) of heart tissue was carried out in each group to reflect the protective effect of glutamine. To investigate the mechanisms underlying the injury and cardio-protection, multiple oxidative stress indexes were determined and succinate dehydrogenase activity was evaluated. Result The results showed that L-glutamine (Gln) pretreatment reduced weight loss and mortality. It also decreased the biological markers (p < 0.05), improved electrocardiogram and histological changes that CTD induced cardiotoxicity in mice. Subsequently, the group pretreated with L-glutamine before CTD treatment increases in MDA but decreases in SOD and GSH, in comparison to the group treated with CTD alone. Besides, succinate dehydrogenase activity also was improved when L-glutamine was administrated before cantharidin compared to cantharidin. Conclusions This study provided evidence that L-glutamine could protect cardiac cells against the acute cantharidin-induced cardiotoxicity and the protective mechanism of glutamine may be related to the myocardial cell membrane or the tricarboxylic acid cycle in the mitochondria.
Collapse
Affiliation(s)
- Haozhen Shao
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.,School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 10029, China
| | - Lei Dong
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 10029, China
| | - Yanyan Feng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 10029, China
| | - Chunhui Wang
- Fangshan Hospital of Beijing University of Chinese Medicine, Beijing, 102400, China.
| | - Hongxuan Tong
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China. .,School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 10029, China.
| |
Collapse
|
50
|
Yue C, Tian W, Wang W, Huang Q, Zhao R, Zhao Y, Li Q, Li J. The Impact of Perioperative Glutamine-supplemented Parenteral Nutrition on Outcomes of Patients Undergoing Abdominal Surgery: A Meta-analysis of Randomized Clinical Trials. Am Surg 2020. [DOI: 10.1177/000313481307900527] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The objective of this study was to evaluate the impact of perioperative glutamine-supplemented parenteral nutrition (GLN-PN) on clinical outcomes in patients undergoing abdominal surgery. MEDLINE, EMBASE, and the Cochrane Controlled Clinical Trials Register were searched to retrieve the eligible studies. Eligible studies were randomized controlled trials (RCTs) that compared the effect of GLN-PN and standard PN on clinical outcomes in patients undergoing abdominal surgery. Clinical outcomes of interest were postoperative mortality, length of hospital stay, morbidity of infectious complication, and cumulative nitrogen balance. Statistical analysis was conducted by RevMan 5.0 software from the Cochrane Collaboration. Sixteen RCTs with 773 patients were included in this meta-analysis. The results showed a significant decrease in the infectious complication rates of patients undergoing abdominal surgery receiving GLN-PN (risk ratio [RR], 0.48; 95% confidence interval [CI], 0.32 to 0.72; P = 0.0004). The overall effect indicated glutamine significantly reduced the length of hospital stay in the form of alanyl-glutamine (weighted mean difference [WMD], -3.17; 95% CI, -5.51 to -0.82; P = 0.008) and in the form of glycyl-glutamine (WMD, -3.40; 95% CI, -5.82 to -0.97; P = 0.006). A positive effect in improving postoperative cumulative nitrogen balance was observed between groups (WMD, 7.40; 95% CI, 3.16 to 11.63; P = 0.0006), but no mortality (RR, 1.52; 95% CI, 0.21 to 11.9; P = 0.68). Perioperative GLN-PN is effective and safe to shorten the length of hospital stay, reduce the morbidity of postoperative infectious complications, and improve nitrogen balance in patients undergoing abdominal surgery.
Collapse
Affiliation(s)
- Chao Yue
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Weiliang Tian
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wei Wang
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qian Huang
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Risheng Zhao
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yunzhao Zhao
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qiurong Li
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jieshou Li
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|