1
|
Wan Z, Wan Q, Qin X, Wang G, Lin H, Jin Y, Wan B, Ai L, Wei J. Long-term consumption of green tea protects the mental health of middle-aged and older adult men by improving inflammation levels. Front Public Health 2025; 13:1531953. [PMID: 40071113 PMCID: PMC11893420 DOI: 10.3389/fpubh.2025.1531953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/07/2025] [Indexed: 03/14/2025] Open
Abstract
Background Middle-aged and older adult men are at a heightened risk of depression. Green tea, as a popular beverage, has drawn widespread attention for its health benefits. However, there remains controversy over the effects of green tea on combating depression and regulating hormones. Objective This study aimed to investigate the effects of long-term green tea consumption on depression levels, hormones, and brain structure in, middle-aged and older adult men. Methods A total of 280 volunteers participated in the study, divided into a tea-drinking group and a control group. Basic demographic information and biological marker data, as well as MRI data from some of the volunteers, were collected. A controlled study was conducted to explore the effects of long-term tea drinking on them. Results BMI (p = 0.002), depression level (p = 0.003), insomnia severity (p = 0.008), and systemic inflammation index (p = 0.009) were significantly lower in the tea drinking group, and their testosterone levels were significantly higher than those in the control group (p = 0.001). Moreover, GM volume in the right precuneus in the control group was significantly reduced compared with that in the tea drinking group. Conclusion Long-term tea consumption helps reduce BMI and increase testosterone levels in middle-aged and older adult men, and it can also reduce their risk of depression by lowering inflammation and improving sleep quality. Additionally, long-term tea consumption may have the potential to delay brain aging in middle-aged and older adult men.
Collapse
Affiliation(s)
- Zhenyu Wan
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qirong Wan
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xucong Qin
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hong Lin
- Yichang Mental Health Center, Yichang, Hubei, China
| | - Yong Jin
- Yichang Mental Health Center, Yichang, Hubei, China
| | - Bing Wan
- Department of Radiology, Affiliated Renhe Hospital, China Three Gorges University, Yichang, Hubei, China
| | - Linfeng Ai
- Department of Radiology, Affiliated Renhe Hospital, China Three Gorges University, Yichang, Hubei, China
| | - Juan Wei
- Jingshan Psychiatric Hospital, Jingmen, Hubei, China
| |
Collapse
|
2
|
Martin LJ, Touaibia M. Prevention of Male Late-Onset Hypogonadism by Natural Polyphenolic Antioxidants. Nutrients 2024; 16:1815. [PMID: 38931170 PMCID: PMC11206339 DOI: 10.3390/nu16121815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Androgen production primarily occurs in Leydig cells located in the interstitial compartment of the testis. In aging males, testosterone is crucial for maintaining muscle mass and strength, bone density, sexual function, metabolic health, energy levels, cognitive function, as well as overall well-being. As men age, testosterone production by Leydig cells of the testes begins to decline at a rate of approximately 1% per year starting from their 30s. This review highlights recent findings concerning the use of natural polyphenolics compounds, such as flavonoids, resveratrol, and phenolic acids, to enhance testosterone production, thereby preventing age-related degenerative conditions associated with testosterone insufficiency. Interestingly, most of the natural polyphenolic antioxidants having beneficial effects on testosterone production tend to enhance the expression of the steroidogenic acute regulatory protein (Star) gene in Leydig cells. The STAR protein facilitates the entry of the steroid precursor cholesterol inside mitochondria, a rate-limiting step for androgen biosynthesis. Natural polyphenolic compounds can also improve the activities of steroidogenic enzymes, hypothalamus-pituitary gland axis signaling, and testosterone bioavailability. Thus, many polyphenolic compounds such as luteolin, quercetin, resveratrol, ferulic acid phenethyl ester or gigantol may be promising in delaying the initiation of late-onset hypogonadism accompanying aging in males.
Collapse
Affiliation(s)
- Luc J. Martin
- Biology Department, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Mohamed Touaibia
- Chemistry and Biochemistry Department, Université de Moncton, Moncton, NB E1A 3E9, Canada;
| |
Collapse
|
3
|
Wan Z, Qin X, Tian Y, Ouyang F, Wang G, Wan Q. Long-Term Consumption of Green Tea Can Reduce the Degree of Depression in Postmenopausal Women by Increasing Estradiol. Nutrients 2023; 15:4514. [PMID: 37960167 PMCID: PMC10650806 DOI: 10.3390/nu15214514] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Postmenopausal women face a higher risk of depression due to a combination of social and physiological factors. As a beverage rich in a variety of bioactive substances, green tea has significant effects on metabolism, inflammation and endocrine, and may reduce the risk of depression, but few studies have looked at the effects of green tea on postmenopausal women. Therefore, we designed this study to investigate the effects of long-term green tea consumption on inflammation, endocrine and depression levels in postmenopausal women. We investigated a tea-producing village and eventually included 386 postmenopausal women, both in the tea drinking and control groups. The results showed that there were significant differences in the degree of insomnia, degree of depression, BMI, SII and estradiol between the two groups. And, green tea consumption may reduce the risk of depression through the mediating pathway of sleep, SII and estradiol. In summary, long-term green tea consumption can reduce the risk of depression in postmenopausal women by reducing inflammation and increasing estradiol. This kind of living habit deserves further promotion.
Collapse
Affiliation(s)
- Zhenyu Wan
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430000, China; (Z.W.); (X.Q.)
| | - Xucong Qin
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430000, China; (Z.W.); (X.Q.)
| | - Yuling Tian
- Yichang City Clinical Research Center for Mental Disorders, Yichang 443000, China;
| | | | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430000, China; (Z.W.); (X.Q.)
| | - Qirong Wan
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan 430000, China; (Z.W.); (X.Q.)
| |
Collapse
|
4
|
Obesity and aging: Molecular mechanisms and therapeutic approaches. Ageing Res Rev 2021; 67:101268. [PMID: 33556548 DOI: 10.1016/j.arr.2021.101268] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023]
Abstract
The epidemic of obesity is a major challenge for health policymakers due to its far-reaching effects on population health and potentially overwhelming financial burden on healthcare systems. Obesity is associated with an increased risk of developing acute and chronic diseases, including hypertension, stroke, myocardial infarction, cardiovascular disease, diabetes, and cancer. Interestingly, the metabolic dysregulation associated with obesity is similar to that observed in normal aging, and substantial evidence suggests the potential of obesity to accelerate aging. Therefore, understanding the mechanism of fat tissue dysfunction in obesity could provide insights into the processes that contribute to the metabolic dysfunction associated with the aging process. Here, we review the molecular and cellular mechanisms underlying both obesity and aging, and how obesity and aging can predispose individuals to chronic health complications. The potential of lifestyle and pharmacological interventions to counter obesity and obesity-related pathologies, as well as aging, is also addressed.
Collapse
|
5
|
Improvement of Testicular Steroidogenesis Using Flavonoids and Isoflavonoids for Prevention of Late-Onset Male Hypogonadism. Antioxidants (Basel) 2020; 9:antiox9030237. [PMID: 32183155 PMCID: PMC7139932 DOI: 10.3390/antiox9030237] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/11/2022] Open
Abstract
Androgen production, being important for male fertility, is mainly accomplished by the Leydig cells from the interstitial compartment of the testis. Testosterone plays a critical role in testis development, normal masculinization, and the maintenance of spermatogenesis. Within seminiferous tubules, appropriate Sertoli cell function is highly dependent on testicular androgen levels and is essential to initiate and maintain spermatogenesis. During aging, testosterone production by the testicular Leydig cells declines from the 30s in humans at a rate of 1% per year. This review outlines the recent findings regarding the use of flavonoids and isoflavonoids to improve testosterone production, contributing to normal spermatogenesis and preventing age-related degenerative diseases associated with testosterone deficiency. With the cumulation of information on the actions of different flavonoids and isoflavonoids on steroidogenesis in Leydig cells, we can now draw conclusions regarding the structure-activity relationship on androgen production. Indeed, flavonoids having a 5,7-dihydroxychromen-4-one backbone tend to increase the expression of the steroidogenic acute regulatory protein (StAR), being critical for the entry of cholesterol into the mitochondria, leading to increased testosterone production from testis Leydig cells. Therefore, flavonoids and isoflavonoids such as chrysin, apigenin, luteolin, quercetin, and daidzein may be effective in delaying the initiation of late-onset hypogonadism associated with aging in males.
Collapse
|
6
|
Palachai N, Wattanathorn J, Muchimapura S, Thukham-mee W. Antimetabolic Syndrome Effect of Phytosome Containing the Combined Extracts of Mulberry and Ginger in an Animal Model of Metabolic Syndrome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5972575. [PMID: 31827683 PMCID: PMC6881582 DOI: 10.1155/2019/5972575] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/16/2019] [Accepted: 09/21/2019] [Indexed: 12/15/2022]
Abstract
Due to the antimetabolic syndrome effect of mulberry and ginger together with the advantages of the synergistic effect and phytosome encapsulation technique, we hypothesized that phytosome containing the combined extracts of mulberry and ginger (PMG) should be able to manage MetS. PMG was developed and assessed the phenolic content and biological activities associated with the pathophysiology of MetS. The antimetabolic syndrome effect and the possible underlying mechanisms in the animal model of MetS were also assessed. Male Wistar rats induced MetS by subjecting to a 16-week high-carbohydrate high-fat diet. MetS rats were orally given PMG at doses of 50, 100, and 200 mg/kg for 21 days. They were determined metabolic parameter changes in serum, histomorphology changes of adipose tissue, the inflammatory cytokines such as IL-6 and TNF-α, oxidative stress status, PPAR-γ, and HDAC3 in adipose tissue. Our in vitro data showed that PMG increased phenolic contents and biological activities. PMG significantly improved MetS parameters including body weight gain, lipid profiles, plasma glucose, HOMA-IR, and ACE. In addition, the density and size of adipocyte, adiposity index, and weights of adipose tissues were also improved. Moreover, the decrease in TNF-α and IL-6, oxidative stress status, and HDAC3 expression together with the increase in PPAR-γ expression in adipose tissue was also observed. These data suggest that PMG exhibit antimetabolic syndrome and the possible underlying mechanism may be associated partly with the modulation effect on HDAC3, PPAR-γ, and adipose tissue. In addition, PMG also improves oxidative stress and inflammation in MetS. Therefore, PMG can be served as the potential supplement to manage MetS. However, a clinical trial study is essential to confirm this health benefit.
Collapse
Affiliation(s)
- Nut Palachai
- Department of Physiology and Graduate School (Neuroscience Program), Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Integrative Complementary Alternative Medicine Research, Khon Kaen University, Khon Kaen 40002, Thailand
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Jintanaporn Wattanathorn
- Integrative Complementary Alternative Medicine Research, Khon Kaen University, Khon Kaen 40002, Thailand
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Supaporn Muchimapura
- Integrative Complementary Alternative Medicine Research, Khon Kaen University, Khon Kaen 40002, Thailand
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wipawee Thukham-mee
- Integrative Complementary Alternative Medicine Research, Khon Kaen University, Khon Kaen 40002, Thailand
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
7
|
Carrasco-Pozo C, Cires MJ, Gotteland M. Quercetin and Epigallocatechin Gallate in the Prevention and Treatment of Obesity: From Molecular to Clinical Studies. J Med Food 2019; 22:753-770. [PMID: 31084513 DOI: 10.1089/jmf.2018.0193] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Obesity is a worldwide epidemic, which is characterized by the excess accumulation of adipose tissue and to an extent that impairs both the physical and psychosocial health and well-being. There are several weight-loss strategies available, including dietary modification, pharmacotherapy, and bariatric surgery, but many are ineffective or not a long-term solution. Bioactive compounds present in medicinal plants and plant extracts, like polyphenols, constitute the oldest and most extensive form of alternative treatments for the prevention and management of obesity. Their consumption is currently increasing in the population due to the high cost, potential adverse effects, and limited benefits of the currently available pharmaceutical drugs. A great number of studies has explored how dietary polyphenols can interfere with the different mechanisms associated with obesity development. They suggest that these compounds can decrease energy and food intake, lipogenesis, and preadipocyte differentiation and proliferation, while increasing energy expenditure, lipolysis, and fat oxidation. Both quercetin, one of the most common dietary flavonols in the western diet, and epigallocatechin gallate (EGCG), the most abundant polyphenol in green tea, exhibit antiobesity effects in adipocyte cultures and animal models. However, the extrapolation of these potential benefits to obese humans remains unclear. Although quercetin supplementation does not seem to exert any beneficial effects on body weight, this polyphenol could prevent the obesity-associated mortality by reducing cardiovascular disease risk. An important consideration for the design of further trials is the occurrence of gene polymorphisms in key enzymes involved in flavanol metabolism, which determines a subject's sensitivity to catechins and seems, therefore, crucial for the success of the antiobesity intervention. Although the evidence supporting antiobesity effects is more consistent in EGCG than with quercetin studies, they could still be beneficial by reducing the cardiovascular risk of obese subjects, rather than inducing body weight loss.
Collapse
Affiliation(s)
- Catalina Carrasco-Pozo
- 1Department of Nutrition, Faculty of Medicine, University of Chile, Independencia, Chile.,2Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - María Jose Cires
- 1Department of Nutrition, Faculty of Medicine, University of Chile, Independencia, Chile
| | - Martin Gotteland
- 1Department of Nutrition, Faculty of Medicine, University of Chile, Independencia, Chile.,3Laboratory of Microbiology and Probiotics, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| |
Collapse
|
8
|
Encapsulated Mulberry Fruit Extract Alleviates Changes in an Animal Model of Menopause with Metabolic Syndrome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5360560. [PMID: 31182993 PMCID: PMC6512299 DOI: 10.1155/2019/5360560] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/29/2019] [Accepted: 02/20/2019] [Indexed: 12/31/2022]
Abstract
Currently, the therapeutic strategy against metabolic syndrome and its complications is required due to the increasing prevalence and its impact. Due to the benefits of both mulberry fruit extract and encapsulation technology, we hypothesized that encapsulated mulberry fruit extract (MME) could improve metabolic parameters and its complication risk in postmenopausal metabolic syndrome. To test this hypothesis, female Wistar rats were induced experimental menopause with metabolic syndrome by bilateral ovariectomy (OVX) and high-carbohydrate high-fat (HCHF) diet. Then, they were orally given MME at doses of 10, 50, and 250 mg/kg BW for 8 weeks and the parameters, such as percentage of body weight gain, total cholesterol, triglycerides, HDL-C, LDL-C, atherogenic index, fasting blood glucose, plasma glucose area under the curve, serum angiotensin-converting enzyme (ACE), oxidative stress status, histology, and protein expression of PPAR-γ, TNF-α, and NF-κB in adipose tissues were determined. MME improved body weight gain, adiposity index, glucose intolerance, lipid profiles, atherogenic index, ACE, oxidative stress status, and protein expression of TNF-α and NF-κB. Moreover, MME attenuated adipocyte hypertrophy and enhanced PPAR-γ expression. Taken altogether, MME decreased metabolic syndrome and its complication via the increased PPAR-γ expression. Therefore, MME is the potential candidate for improving metabolic syndrome and its related complications. However, further research in clinical trial is still necessary.
Collapse
|
9
|
Jayarathne S, Stull AJ, Miranda A, Scoggin S, Claycombe-Larson K, Kim JH, Moustaid-Moussa N. Tart Cherry Reduces Inflammation in Adipose Tissue of Zucker Fatty Rats and Cultured 3T3-L1 Adipocytes. Nutrients 2018; 10:E1576. [PMID: 30366378 PMCID: PMC6266132 DOI: 10.3390/nu10111576] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 12/30/2022] Open
Abstract
Obesity increases adipose tissue inflammation and secretion of pro-inflammatory adipokines, which have systemic effects on the organism's health status. Our objective was to dissect mechanisms of anti-inflammatory effects of tart cherry (TC) in adipose tissue of Zucker fatty rats, and cultured 3T3-L1 adipocytes. Rats were fed either a control diet, or 4% TC powder diets for eight weeks. Body and epididymal fat pad weights were not significantly different between control and TC groups. However, rats fed the TC diet had significantly reduced adipose tissue inflammation (p < 0.05), as determined by reduced mRNA levels of pro-inflammatory markers including interleukin-6 (IL-6), tumor necrosis factor alpha (TNFα), interleukin-1beta (IL-1β), monocyte chemoattractant protein 1 (MCP-1), inducible nitric oxide synthase (iNOS), and CD-11b, and increased mRNA levels of type-1 arginase (Arg-1) anti-inflammatory marker. Consistent with these in vivo results, TC significantly decreased expression of IL-6 mRNA and protein levels in lipopolysaccharide (LPS) stimulated adipocytes compared to those stimulated with LPS, but no TC. Moreover, both in vivo (rat adipose tissue) and in vitro (3T3-L1 adipocytes), phosphorylation of p65-NF-κB subunit was significantly reduced by TC. Additionally, TC decreased mRNA expression of fatty acid synthase (FASN), and increased expression of peroxisome proliferator-activated receptor alpha (PPARα), master regulator of lipid oxidation, and anti-oxidant markers nuclear factor erythroid-derived 2-related factor (NRFs) in both models. In conclusion, our findings indicate that TC downregulates inflammation in part via the nuclear factor kappa B (NF-κB) pathway in adipose tissue. Thus, TC may serve as a potential intervention to reduce obesity-associated inflammation.
Collapse
Affiliation(s)
- Shasika Jayarathne
- Department of Nutritional Sciences, Obesity Research Cluster, Texas Tech University, Lubbock, TX 79409, USA.
| | - April J Stull
- Department of Human Ecology, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA.
| | - Alexandra Miranda
- Department of Nutritional Sciences, Obesity Research Cluster, Texas Tech University, Lubbock, TX 79409, USA.
| | - Shane Scoggin
- Department of Nutritional Sciences, Obesity Research Cluster, Texas Tech University, Lubbock, TX 79409, USA.
| | | | - Jung Han Kim
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Obesity Research Cluster, Texas Tech University, Lubbock, TX 79409, USA.
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
10
|
Pan MH, Tung YC, Yang G, Li S, Ho CT. Molecular mechanisms of the anti-obesity effect of bioactive compounds in tea and coffee. Food Funct 2018; 7:4481-4491. [PMID: 27722362 DOI: 10.1039/c6fo01168c] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Obesity is a serious health problem in adults and children worldwide. However, the basic strategies for the management of obesity (diet, exercise, drugs and surgery) have limitations and side effects. Therefore, many researchers have sought to identify bioactive components in food. Tea and coffee are the most frequently consumed beverages in the whole world. Their health benefits have been studied for decades, especially those of green tea. The anti-obesity effect of tea and coffee has been studied for at least ten years. The results have shown decreased lipid accumulation in cells via the regulation of the cell cycle during adipogenesis, changes in transcription factors and lipogenesis-related proteins in the adipose tissue of animal models, and decreased body weight and visceral fat in humans. Tea and coffee also influence the gut microbiota in obese animals and humans. Although the anti-obesity mechanism of tea and coffee still needs further clarification, they may have potential as a new strategy to prevent or treat obesity.
Collapse
Affiliation(s)
- Min-Hsiung Pan
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, Hubei, China and Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan. and Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan and Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Yen-Chen Tung
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Guliang Yang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, Hubei, China
| | - Shiming Li
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, Hubei, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
11
|
Raso RA, Paim RRB, Pinheiro SVB, Tavares WC, Vasconcellos LDS, Alberti LR. Effects of chronic consumption of green tea on weight and body fat distribution of Wistar rats evaluated by computed tomography. Acta Cir Bras 2017; 32:342-349. [PMID: 28591363 DOI: 10.1590/s0102-865020170050000003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/18/2017] [Indexed: 01/10/2023] Open
Abstract
Purpose: To evaluate the effects of chronic consumption of green tea on body weight and distribution of visceral fat by Computed tomography in female Wistar rats. Methods: Wistar rats were divided into control group (n = 5), which received water and feed ad libitum, and green tea group (n = 8), in which water has been replaced by green tea. The animals were weighed weekly and Computed Tomography was used at the beginning (1st week) and end (18th week) of the experiment for evaluating the distribution of visceral fat. The animals were followed for 18 weeks. Results: There was no significant difference in body weight between the groups. However, there was significant difference in visceral fat area. The green tea group had less visceral fat area at the end of the experiment, 3.67 ± 1.2 cm2, while the control group showed an area of 6.25 ± 2.2 cm (p = 0.00). Conclusions: Chronic consumption of green tea leads to decreased visceral adipose tissue area.
Collapse
Affiliation(s)
- Renata Attademo Raso
- Master in Biomedicine, Instituto de Ensino e Pesquisa da Santa Casa, Belo Horizonte-MG, Brazil. Technical procedures; acquisition, analysis and interpretation of data; statistical analysis
| | - Rebecca Rodrigues Bergamaschini Paim
- Graduate student, Faculty of Medicine, Universidade Federal de Minas Gerais (UFMG), Belo HorizonteMG, Brazil. FAPEMIG scholarship. Acquisition; analysis and interpretation of data; manuscript preparation
| | - Sérgio Veloso Brant Pinheiro
- PhD, Biological Sciences, Instituto de Ciências Biológicas. Associate Professor, Department of Pediatrics, UFMG, Belo Horizonte-MG, Brazil. Scientific and intellectual content of the study
| | - Wilson Campos Tavares
- Physician, Assistant of Radiology, Hospital das Clínicas, UFMG, Belo Horizonte-MG, Brazil. Technical procedures; analysis, interpretation and acquisition of data
| | - Leonardo de Souza Vasconcellos
- PhD, Associate Professor, Department of Propedeutics, Faculty of Medicine, UFMG, Belo Horizonte-MG, Brazil. Conception and design of the study, critical revision
| | - Luiz Ronaldo Alberti
- PhD, Associate Professor, Department of Surgery, Faculty of Medicine, UFMG, and Instituto de Ensino e Pesquisa da Santa Casa, Belo Horizonte-MG, Brazil. Analysis and interpretation of data, critical revision, final approval
| |
Collapse
|
12
|
Green tea supplementation benefits body composition and improves bone properties in obese female rats fed with high-fat diet and caloric restricted diet. Nutr Res 2015; 35:1095-105. [PMID: 26525915 DOI: 10.1016/j.nutres.2015.09.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/18/2015] [Accepted: 09/21/2015] [Indexed: 12/15/2022]
Abstract
This study investigated the effects of green tea polyphenols (GTP) supplementation on body composition, bone properties, and serum markers in obese rats fed a high-fat diet (HFD) or a caloric restricted diet (CRD). Forty-eight female rats were fed an HFD ad libitum for 4 months, and then either continued on the HFD or the CRD with or without 0.5% GTP in water. Body composition, bone efficacy, and serum markers were measured. We hypothesized that GTP supplementation would improve body composition, mitigate bone loss, and restore bone microstructure in obese animals fed either HFD or CRD. CRD lowered percent fat mass; bone mass and trabecular number of tibia, femur and lumbar vertebrae; femoral strength; trabecular and cortical thickness of tibia; insulin-like growth factor-I and leptin. CRD also increased percent fat-free mass; trabecular separation of tibia and femur; eroded surface of tibia; bone formation rate and erosion rate at tibia shaft; and adiponectin. GTP supplementation increased femoral mass and strength (P = .026), trabecular thickness (P = .012) and number (P = .019), and cortical thickness of tibia (P < .001), and decreased trabecular separation (P = .021), formation rate (P < .001), and eroded surface (P < .001) at proximal tibia, and insulin-like growth factor-I and leptin. There were significant interactions (diet type × GTP) on osteoblast surface/bone surface, mineral apposition rate at periosteal and endocortical bones, periosteal bone formation rate, and trabecular thickness at femur and lumbar vertebrate (P < .05). This study demonstrates that GTP supplementation for 4 months benefited body composition and improved bone microstructure and strength in obese rats fed with HFD or HFD followed by CRD diet.
Collapse
|
13
|
Navarro E, Funtikova AN, Fíto M, Schröder H. Can metabolically healthy obesity be explained by diet, genetics, and inflammation? Mol Nutr Food Res 2015; 59:75-93. [PMID: 25418549 DOI: 10.1002/mnfr.201400521] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/18/2014] [Accepted: 11/18/2014] [Indexed: 12/20/2022]
Abstract
A substantial proportion of obese individuals do not present cardiometabolic complications such as diabetes, hypertension, or dyslipidemia. Some, but not all, prospective studies observe similar risk of cardiovascular events and all-cause mortality among individuals with this so-called "metabolically healthy obese" (MHO) phenotype, compared to the metabolically healthy normal weight or metabolically healthy non-obese phenotypes. Compared to the metabolically unhealthy obese (MUO) phenotype, MHO is often characterized by a more favorable inflammatory profile, less visceral fat, less infiltration of macrophages into adipose tissue, and smaller adipocyte cell size. Tipping the inflammation balance in adipose tissue might be particularly important for metabolic health in the obese. While the potential role of genetic predisposition or lifestyle factors such as diet in the MHO phenotype is yet to be clarified, it is well known that diet affects inflammation profile and contributes to the functionality of adipose tissue. This review will discuss genetic predisposition and the molecular mechanisms underlying the potential effect of food on the development of the metabolic phenotype characteristic of obesity.
Collapse
|
14
|
Novel insights of dietary polyphenols and obesity. J Nutr Biochem 2014; 25:1-18. [PMID: 24314860 DOI: 10.1016/j.jnutbio.2013.09.001] [Citation(s) in RCA: 647] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 07/15/2013] [Accepted: 09/04/2013] [Indexed: 12/14/2022]
Abstract
The prevalence of obesity has steadily increased over the past three decades both in the United States and worldwide. Recent studies have shown the role of dietary polyphenols in the prevention of obesity and obesity-related chronic diseases. Here, we evaluated the impact of commonly consumed polyphenols, including green tea catechins, especially epigallocatechin gallates, resveratrol and curcumin, on obesity and obesity-related inflammation. Cellular studies demonstrated that these dietary polyphenols reduce viability of adipocytes and proliferation of preadipocytes, suppress adipocyte differentiation and triglyceride accumulation, stimulate lipolysis and fatty acid β-oxidation, and reduce inflammation. Concomitantly, the polyphenols modulate signaling pathways including the adenosine-monophosphate-activated protein kinase, peroxisome proliferator activated receptor γ, CCAAT/enhancer binding protein α, peroxisome proliferator activator receptor gamma activator 1-alpha, sirtuin 1, sterol regulatory element binding protein-1c, uncoupling proteins 1 and 2, and nuclear factor-κB that regulate adipogenesis, antioxidant and anti-inflammatory responses. Animal studies strongly suggest that commonly consumed polyphenols described in this review have a pronounced effect on obesity as shown by lower body weight, fat mass and triglycerides through enhancing energy expenditure and fat utilization, and modulating glucose hemostasis. Limited human studies have been conducted in this area and are inconsistent about the antiobesity impact of dietary polyphenols probably due to the various study designs and lengths, variation among subjects (age, gender, ethnicity), chemical forms of the dietary polyphenols used and confounding factors such as other weight-reducing agents. Future randomized controlled trials are warranted to reconcile the discrepancies between preclinical efficacies and inconclusive clinic outcomes of these polyphenols.
Collapse
|
15
|
Abd El-Moneim RA, Abd El-Mouaty HM. A comparative histological, immunohistochemical, and biochemical study of the effect of green tea extracts or chromium picolinate administration on the white visceral adipose tissue and liver in albino rats fed on high-fat diet. THE EGYPTIAN JOURNAL OF HISTOLOGY 2013; 36:882-898. [DOI: 10.1097/01.ehx.0000439094.19244.a8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
16
|
Häussler S, Germeroth D, Friedauer K, Akter SH, Dänicke S, Sauerwein H. Characterization of the dynamics of fat cell turnover in different bovine adipose tissue depots. Res Vet Sci 2013; 95:1142-50. [PMID: 23932766 DOI: 10.1016/j.rvsc.2013.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 06/16/2013] [Accepted: 07/08/2013] [Indexed: 11/25/2022]
Abstract
In many but not all high producing cows, the energy requirements for milk yield and maintenance exceed energy intake by voluntary feed intake during early lactation. Prioritizing milk secretion, body reserves mainly from adipose tissue are mobilized and imply an increased risk for metabolic diseases. Reducing the energy output via milk by decreasing the milk fat content through feed supplements containing conjugated linoleic acids (CLAs) may attenuate the negative energy balance during this period. In two separate trials, variables characterizing fat cell turnover were investigated in different subcutaneous and visceral fat depots from primiparous heifers (n = 25) during early lactation, and subcutaneous fat from non-lactating, over-conditioned heifers (n = 12) by immunohistochemistry. The portion of apoptotic adipocytes was consistently greater than that of proliferating cells and preadipocytes; the sporadically observed effects of CLA were limited to visceral fat. Lactating heifers had more apoptosis and less preadipocytes than non-lactating heifers.
Collapse
Affiliation(s)
- S Häussler
- Institute of Animal Science, Physiology and Hygiene Group, University of Bonn, 53115 Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
17
|
Green tea intake is associated with urinary estrogen profiles in Japanese-American women. Nutr J 2013; 12:25. [PMID: 23413779 PMCID: PMC3584908 DOI: 10.1186/1475-2891-12-25] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 12/30/2012] [Indexed: 01/19/2023] Open
Abstract
Scope Intake of green tea may reduce the risk of breast cancer; polyphenols in this drink can influence enzymes that metabolize estrogens, known causal factors in breast cancer etiology. Methods and results We examined the associations of green tea intake (<1 time/week, 1-6 times weekly, or 7+ times weekly) with urinary estrogens and estrogen metabolites (jointly EM) in a cross-sectional sample of healthy Japanese American women, including 119 premenopausal women in luteal phase and 72 postmenopausal women. We fit robust regression models to each log-transformed EM concentration (picomoles per mg creatinine), adjusting for age and study center. In premenopausal women, intake of green tea was associated with lower luteal total EM (P trend = 0.01) and lower urinary 16-pathway EM (P trend = 0.01). In postmenopausal women, urinary estrone and estradiol were approximately 20% and 40% lower (P trend = 0.01 and 0.05, respectively) in women drinking green tea daily compared to those drinking <1 time/week. Adjustment for potential confounders (age at menarche, parity/age at first birth, body mass index, Asian birthplace, soy) did not change these associations. Conclusions Findings suggest that intake of green tea may modify estrogen metabolism or conjugation and in this way may influence breast cancer risk.
Collapse
|
18
|
Shen CL, Cao JJ, Dagda RY, Chanjaplammootil S, Lu C, Chyu MC, Gao W, Wang JS, Yeh JK. Green tea polyphenols benefits body composition and improves bone quality in long-term high-fat diet-induced obese rats. Nutr Res 2012; 32:448-57. [PMID: 22749181 DOI: 10.1016/j.nutres.2012.05.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 04/28/2012] [Accepted: 05/02/2012] [Indexed: 12/11/2022]
Abstract
This study investigates the effects of green tea polyphenols (GTPs) on body composition and bone properties along with mechanisms in obese female rats. Thirty-six 3-month-old Sprague Dawley female rats were fed either a low-fat (LF) or a high-fat (HF) diet for 4 months. Animals in the LF diet group continued on an LF diet for additional 4 months, whereas those in the HF diet group were divided into 2 groups: with GTP (0.5%) or without in drinking water, in addition to an HF diet for another 4 months. Body composition, femur bone mass and strength, serum endocrine and proinflammatory cytokines, and liver glutathione peroxidase (GPX) protein expression were determined. We hypothesized that supplementation of GTP in drinking water would benefit body composition, enhance bone quality, and suppress obesity-related endocrines in HF diet-induced obese female rats and that such changes are related to an elevation of antioxidant capacity and a reduction of proinflammatory cytokine production. After 8 months, compared with the LF diet, the HF diet increased percentage of fat mass and serum insulin-like growth factor I and leptin levels; reduced percentage of fat-free mass, bone strength, and GPX protein expression; but had no effect on bone mineral density and serum adiponectin levels in the rats. Green tea polyphenol supplementation increased percentage of fat-free mass, bone mineral density and strength, and GPX protein expression and decreased percentage of fat mass, serum insulin-like growth factor I, leptin, adiponectin, and proinflammatory cytokines in the obese rats. This study shows that GTP supplementation benefited body composition and bone properties in obese rats possibly through enhancing antioxidant capacity and suppressing inflammation.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430-8115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Schliep KC, Schisterman EF, Mumford SL, Pollack AZ, Zhang C, Ye A, Stanford JB, Hammoud AO, Porucznik CA, Wactawski-Wende J. Caffeinated beverage intake and reproductive hormones among premenopausal women in the BioCycle Study. Am J Clin Nutr 2012; 95:488-97. [PMID: 22237060 PMCID: PMC3260075 DOI: 10.3945/ajcn.111.021287] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Caffeinated beverages are widely consumed among women of reproductive age, but their association with reproductive hormones, and whether race modifies any such associations, is not well understood. OBJECTIVE We assessed the relation between caffeine and caffeinated beverage intake and reproductive hormones in healthy premenopausal women and evaluated the potential effect modification by race. DESIGN Participants (n = 259) were followed for up to 2 menstrual cycles and provided fasting blood specimens for hormonal assessment at up to 8 visits per cycle and four 24-h dietary recalls per cycle. Weighted linear mixed models and nonlinear mixed models with harmonic terms were used to estimate associations between caffeine and hormone concentrations, adjusted for age, adiposity, physical activity, energy and alcohol intakes, and perceived stress. On the basis of a priori assumptions, an interaction between race and caffeine was tested, and stratified results are presented. RESULTS Caffeine intake ≥200 mg/d was inversely associated with free estradiol concentrations among white women (β = -0.15; 95% CI: -0.26, -0.05) and positively associated among Asian women (β = 0.61; 95% CI: 0.31, 0.92). Caffeinated soda intake and green tea intake ≥1 cup/d (1 cup = 240 mL) were positively associated with free estradiol concentrations among all races: β = 0.14 (95% CI: 0.06, 0.22) and β = 0.26 (95% CI: 0.07, 0.45), respectively. CONCLUSIONS Moderate consumption of caffeine was associated with reduced estradiol concentrations among white women, whereas caffeinated soda and green tea intakes were associated with increased estradiol concentrations among all races. Further research is warranted on the association between caffeine and caffeinated beverages and reproductive hormones and whether these relations differ by race.
Collapse
Affiliation(s)
- Karen C Schliep
- Division of Epidemiology, Statistics, and Prevention Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
London E, Castonguay TW. High fructose diets increase 11β-hydroxysteroid dehydrogenase type 1 in liver and visceral adipose in rats within 24-h exposure. Obesity (Silver Spring) 2011; 19:925-32. [PMID: 21127473 DOI: 10.1038/oby.2010.284] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The increased prevalence of overweight and obesity in the United States during the past three decades coincides with a trend of increased sugar intake, especially fructose, leading to speculation that the two trends may be linked. The enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), that regulates intracellular tissue-specific glucocorticoid levels, is increased in adipose and suppressed in liver of obese humans and animals. Hexose-6-phosphate dehydrogenase (H6PDH) is colocalized with 11β-HSD1 and generates nicotinamide adenosine dinucleotide phosphate, the required cofactor for 11β-HSD1 reductase activity that converts inert glucocorticoid metabolite into active hormone. We examined the acute effects of ad lib access to 16% solutions of sucrose, fructose, or glucose and chow and water. Diets high in fructose, but not glucose or sucrose increased 11β-HSD1 mRNA within 24 h in liver and adipose by greater than two- and threefold, respectively (P ≤ 0.05). After 1 week, hepatic 11β-HSD1 mRNA and protein were suppressed by >60% in all sugar-fed groups, a phenomenon not previously reported in the absence of obesity. Sucrose- and fructose-fed rats had higher plasma triglycerides than did control or glucose-fed rats at both 24 h and 1 week (P ≤ 0.02), consistent with previously reported effects of fructose on lipid metabolism. We conclude that high-sugar diets initiate glucocorticoid dysregulation associated with obesity prior to the onset of phenotypic changes, and that high fructose diets specifically induce changes in 11β-HSD1 within 24-h exposure.
Collapse
Affiliation(s)
- Edra London
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| | | |
Collapse
|
21
|
Chan PC, Ramot Y, Malarkey DE, Blackshear P, Kissling GE, Travlos G, Nyska A. Fourteen-week toxicity study of green tea extract in rats and mice. Toxicol Pathol 2010; 38:1070-84. [PMID: 20884815 PMCID: PMC3175604 DOI: 10.1177/0192623310382437] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The toxicity of green tea extract (GTE) was evaluated in 14-week gavage studies in male and female F344/NTac rats and B6C3F1 mice at doses up to 1,000 mg/kg. In the rats, no treatment-related mortality was noted. In the mice, treatment-related mortality occurred in male and female mice in the 1,000 mg/kg dose groups. The cause of early deaths was likely related to liver necrosis. Treatment-related histopathological changes were seen in both species in the liver, nose, mesenteric lymph nodes, and thymus. In addition, in mice, changes were seen in the Peyer's patches, spleen, and mandibular lymph nodes. The no adverse effect level (NOAEL) for the liver in both species was 500 mg/kg. In the nose of rats, the NOAEL in males was 62.5 mg/kg, and in females no NOAEL was found. No NOAEL was found in the nose of female or male mice. The changes in the liver and nose were considered primary toxic effects of GTE, while the changes in other organs were considered to be secondary effects. The nose and liver are organs with high metabolic enzyme activity. The increased susceptibility of the nose and liver suggests a role for GTE metabolites in toxicity induction.
Collapse
Affiliation(s)
- Po C. Chan
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Yuval Ramot
- Hadassah—Hebrew University Medical Center, Jerusalem 91200, Israel
| | - David E. Malarkey
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Pamela Blackshear
- Integrated Laboratory Systems (ILS), Inc., Research Triangle Park, North Carolina, USA
| | - Grace E. Kissling
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Greg Travlos
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Abraham Nyska
- Consultant in Toxicological Pathology, Timrat, and Sackler School of Medicine, Tel Aviv University, Tel Aviv 36576, Israel
| |
Collapse
|
22
|
Yu PL, Pu HF, Chen SY, Wang SW, Wang PS. Effects of catechin, epicatechin and epigallocatechin gallate on testosterone production in rat leydig cells. J Cell Biochem 2010; 110:333-42. [PMID: 20432242 DOI: 10.1002/jcb.22541] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Catechins have been reported to have many pharmacological properties such as the effects of anti-oxidative, anti-inflammatory, anti-carcinogenic, anti-ultraviolet, and reduction of blood pressure as well as glucose and cholesterol levels. However, the effect of catechins on the reproductive mechanism is still unknown. In the present study, the effects of catechins on testosterone secretion in rat testicular Leydig cells (LCs) were explored. Both in vivo and in vitro investigations were performed. Purified LCs were incubated with or without catechin (CCN), epicatechin (EC), epigallocatechin gallate (EGCG, 10(-10)-10(-8) M) under challenge with human chorionic gonadotropin (hCG, 0.01 IU/ml), forskolin, SQ22536 (an adenylyl cyclase inhibitor), 8-bromo-adenosine 3':5'-cyclic monophosphate (8-Br-cAMP), A23187 (a calcium ionophore), and nifedipine (10(-5) M), respectively. To study the effects of catechins on steroidogenesis, steroidogenic precursors-stimulated testosterone release was examined. The functions of the steroidogenic enzymes including protein expression of cytochrome P450 side chain cleavage enzyme (P450scc) and steroidogenic acute regulatory (StAR) protein were investigated and expressed by Western blotting. Catechins increased plasma testosterone in vivo in male rats. In vitro, low-dose concentration of catechins increased gonadotropin releasing hormone (GnRH)-stimulated luteinizing hormone (LH) release by anterior pituitary gland and hCG-stimulated testosterone release by LCs of male rats. These results suggested that catechins stimulated testosterone production by acting on rat LCs via the mechanism of increasing the action of cAMP, but not P450scc, StAR protein or the activity of intracellular calcium. EC, one of the catechins increased the testosterone secretion by rat LCs via the enzyme activities of 17beta-hydroxysteroid dehydrogenase (17beta-HSD).
Collapse
Affiliation(s)
- Po-Ling Yu
- Department of Surgery, Taipei City Hospital, Taipei, Taiwan, Republic of China
| | | | | | | | | |
Collapse
|