1
|
Lee H, Kim Y, Kang S, Kim H, Kim JH, Kim W, Park H, Go GW. A comprehensive review of dietary supplements mission-specific health and performance enhancement in military soldiers. Food Sci Biotechnol 2025; 34:1219-1234. [PMID: 40110410 PMCID: PMC11914467 DOI: 10.1007/s10068-024-01728-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 03/22/2025] Open
Abstract
Soldiers undergo intensive physical training, maintain high levels of concentration, and require rapid recovery from various traumas, making them highly specialized individuals. Under high physical and mental stress conditions, soldiers experience health issues related to decreased muscle function, impaired immunity, depression, and cognitive decline. A growing need exists for dietary supplements to mitigate these issues, and the usage patterns of such supplements are continuously increasing. Therefore, as dietary supplement consumption rises within the military, a sophisticated approach to addressing nutritional supplement requirements is essential. We discuss health problems that may arise under stressful conditions in soldiers, suggesting various nutritional supplements that are essential to address these issues. In conclusion, these nutritional supplements can be used as promising interventions for numerous health problems, including enhanced muscle function, improved immunity, mental stress alleviation, and cognitive enhancement. This ultimately suggests a contribution to military personnel health and the strengthening of national defense capabilities.
Collapse
Affiliation(s)
- Haneul Lee
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Republic of Korea
| | - Younhee Kim
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Republic of Korea
| | - Sumin Kang
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Republic of Korea
| | - Hayoon Kim
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Republic of Korea
| | - Jong-Hee Kim
- Human-Tech Convergence ProgramMajor in Sport ScienceDivision of Sport Industry and Science, Hanyang University, Seoul, 04763 Korea
| | - Wooki Kim
- Department of Food and Nutrition, Yonsei University, Seoul, 03722 Republic of Korea
| | - Hongsuk Park
- Industry-Academic Cooperation Foundation, Kumoh National Institute of Technology, Gumi, 39177 South Korea
| | - Gwang-Woong Go
- Department of Food and Nutrition, Hanyang University, Seoul, 04763 Republic of Korea
| |
Collapse
|
2
|
Giménez Martínez RJ, Rivas García F, March Cerdá JC, Hernández-Ruíz Á, González Castro MI, Valverde-Merino MI, Huertas Camarasa FJ, Lloris Meseguer F, López-Viota Gallardo M. Bioactive Substances and Skin Health: An Integrative Review from a Pharmacy and Nutrition Perspective. Pharmaceuticals (Basel) 2025; 18:373. [PMID: 40143149 PMCID: PMC11944704 DOI: 10.3390/ph18030373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
The skin is one of the largest and most important organs of our body. There are numerous factors that are related to skin health, including lifestyle factors, nutrition, or skin care. Bioactive substances from plant and marine extracts play a key role in skin health. The aim of this research was to compile the main evidence on skin and bioactive substances. An integrative review was performed, reporting the main findings according to PRISMA (2020). Thirteen search equations were developed. After the applications of the equations and the process of screening and selection of articles, 95 references were compiled. The main results related to bioactive compounds were classified into food-derived components, nutraceuticals, symbiotics, active substances of marine origin, and substances from plant extracts). There are several factors that indicate that the use of bioactive compounds are interesting for skin health, highlighting some dietary nutrients, substances obtained from plant extracts and metabolites of marine origin that, showing anti-inflammatory and antimicrobial effects, are related to the improvement of some skin conditions or are active principles for cosmetics.
Collapse
Affiliation(s)
| | - Francisco Rivas García
- Municipal Health and Consumer Unit, Guadix City Council, 18500 Guadix, Spain;
- School of Health Sciences, Valencia International University, 46002 Valencia, Spain
| | - Joan Carles March Cerdá
- Andalusian School of Public Health, 18011 Granada, Spain;
- Biosanitary Research Institute (ibs. GRANADA), 18012 Granada, Spain
- Biomedical Research Network Centre (CiberESP), 28029 Madrid, Spain
| | - Ángela Hernández-Ruíz
- Department of Physiotherapy, Nutrition and Sports Sciences, Faculty of Health Sciences, Universidad Europea de Valencia, Paseo de la Alameda 7, 46010 Valencia, Spain;
- Faculty of Health Sciences, Miguel de Cervantes European University, C. del Padre Julio Chevalier, 2, 47012 Valladolid, Spain
| | | | | | | | - Fuensanta Lloris Meseguer
- Department of Educational Development and Vocational Training, Andalusian Government, 18016 Granada, Spain;
| | | |
Collapse
|
3
|
Hatch-McChesney A, Smith TJ. Nutrition, Immune Function, and Infectious Disease in Military Personnel: A Narrative Review. Nutrients 2023; 15:4999. [PMID: 38068857 PMCID: PMC10708187 DOI: 10.3390/nu15234999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Consuming a diet that meets energy demands and provides essential nutrients promotes a healthy immune system, while both under- and over-nutrition have been associated with immune dysfunction. Military personnel comprise a unique population who frequently endure multi-stressor environments, predisposing them to immune decrements. Additionally, 49% and 22% of active duty U.S. military personnel are classified as overweight and obese, respectively. A literature search on PubMed was conducted to identify studies, reports, review papers, and references within those sources relevant to the topic area. Military personnel experiencing either under- or over-nutrition can suffer from degraded health, readiness, and performance. Insufficient intake of nutrients during military operations increases infection risk and negatively impacts infection recovery. Energy, protein, iron, zinc, and vitamins C and D are nutritional areas of concern that may impact immune competence in a multi-stressor environment. Over-nutrition can promote accretion of excess body fat and obesity, which contributes to a chronic inflammatory state that coincides with immune impairments. Prioritizing efforts to optimize nutrient intake is one approach for reducing disease burden and improving readiness. This review discusses nutritional concerns concomitant to multi-stressor environments that impact immune function, and the relevance of obesity to infectious disease risk in the military population.
Collapse
Affiliation(s)
| | - Tracey J. Smith
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, 10 General Greene Ave, Natick, MA 01760, USA;
| |
Collapse
|
4
|
Rittenhouse MA, Barringer ND, Jaffe DA, Morogiello JM, Kegel JL, McNally BA, Deuster PA. Omega-3 Index improves after increased intake of foods with omega-3 polyunsaturated fatty acids among US service academy cadets. Nutr Res 2023; 117:30-37. [PMID: 37437467 DOI: 10.1016/j.nutres.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/14/2023]
Abstract
The inclusion of omega-3 fatty acids in our dietary intake is important for performance and recovery and may reduce the risk of various health issues. Studies have shown the omega-3 fatty acid status of US service members is low. The purpose of this study was to evaluate whether offering fish and omega-3-enhanced foods would increase the Omega-3 Index (O3I). We hypothesize cadets will increase O3I with enhanced omega-3 options more than fish alone. Food service venues at 3 US service academies offered fish and other omega-3 foods to cadets for 12 weeks. Questionnaires were used to collect information on the dietary habits and omega-3 food intake of participants. The O3I of each participant was measured at baseline, mid- (6 weeks), and after data collection (12 weeks) time points. Following the 12 weeks, we found a significant increase in O3I. More specifically, the intake of other omega-3 foods, smoothies (3 per week) and toppings (3 per week), increased O3I in cadets. This study identified a strategy encouraging omega-3 food intake and improving O3I among cadets. These results help us understand how we can more effectively impact military service member nutrition for optimal health and performance.
Collapse
Affiliation(s)
- Melissa A Rittenhouse
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA.
| | | | | | | | - Jessica L Kegel
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA.
| | - Beth A McNally
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA.
| | - Patricia A Deuster
- Consortium for Health and Military Performance, Department of Military and Emergency Medicine, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA.
| |
Collapse
|
5
|
Karl JP, Whitney CC, Wilson MA, Fagnant HS, Radcliffe PN, Chakraborty N, Campbell R, Hoke A, Gautam A, Hammamieh R, Smith TJ. Severe, short-term sleep restriction reduces gut microbiota community richness but does not alter intestinal permeability in healthy young men. Sci Rep 2023; 13:213. [PMID: 36604516 PMCID: PMC9816096 DOI: 10.1038/s41598-023-27463-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
Sleep restriction alters gut microbiota composition and intestinal barrier function in rodents, but whether similar effects occur in humans is unclear. This study aimed to determine the effects of severe, short-term sleep restriction on gut microbiota composition and intestinal permeability in healthy adults. Fecal microbiota composition, measured by 16S rRNA sequencing, and intestinal permeability were measured in 19 healthy men (mean ± SD; BMI 24.4 ± 2.3 kg/m2, 20 ± 2 years) undergoing three consecutive nights of adequate sleep (AS; 7-9 h sleep/night) and restricted sleep (SR; 2 h sleep/night) in random order with controlled diet and physical activity. α-diversity measured by amplicon sequencing variant (ASV) richness was 21% lower during SR compared to AS (P = 0.03), but α-diversity measured by Shannon and Simpson indexes did not differ between conditions. Relative abundance of a single ASV within the family Ruminococcaceae was the only differentially abundant taxon (q = 0.20). No between-condition differences in intestinal permeability or β-diversity were observed. Findings indicated that severe, short-term sleep restriction reduced richness of the gut microbiota but otherwise minimally impacted community composition and did not affect intestinal permeability in healthy young men.
Collapse
Affiliation(s)
- J. Philip Karl
- grid.420094.b0000 0000 9341 8465Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA USA
| | - Claire C. Whitney
- grid.420094.b0000 0000 9341 8465Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA USA
| | - Marques A. Wilson
- grid.420094.b0000 0000 9341 8465Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA USA
| | - Heather S. Fagnant
- grid.420094.b0000 0000 9341 8465Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA USA
| | - Patrick N. Radcliffe
- grid.420094.b0000 0000 9341 8465Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA USA ,grid.410547.30000 0001 1013 9784Oak Ridge Institute of Science and Education, Oak Ridge, TN USA
| | - Nabarun Chakraborty
- grid.507680.c0000 0001 2230 3166Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Ross Campbell
- grid.507680.c0000 0001 2230 3166Geneva Foundation, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Allison Hoke
- grid.507680.c0000 0001 2230 3166Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Aarti Gautam
- grid.507680.c0000 0001 2230 3166Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Rasha Hammamieh
- grid.507680.c0000 0001 2230 3166Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Tracey J. Smith
- grid.420094.b0000 0000 9341 8465Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA USA
| |
Collapse
|
6
|
Tong S, Li Q, Liu Q, Song B, Wu J. Recent advances of the nanocomposite hydrogel as a local drug delivery for diabetic ulcers. Front Bioeng Biotechnol 2022; 10:1039495. [PMID: 36267448 PMCID: PMC9577098 DOI: 10.3389/fbioe.2022.1039495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic ulcer is a serious complication of diabetes. Compared with that of healthy people, the skin of patients with a diabetic ulcer is more easily damaged and difficult to heal. Without early intervention, the disease will become increasingly serious, often leading to amputation or even death. Most current treatment methods cannot achieve a good wound healing effect. Numerous studies have shown that a nanocomposite hydrogel serves as an ideal drug delivery method to promote the healing of a diabetic ulcer because of its better drug loading capacity and stability. Nanocomposite hydrogels can be loaded with one or more drugs for application to chronic ulcer wounds to promote rapid wound healing. Therefore, this paper reviews the latest progress of delivery systems based on nanocomposite hydrogels in promoting diabetic ulcer healing. Through a review of the recent literature, we put forward the shortcomings and improvement strategies of nanocomposite hydrogels in the treatment of diabetic ulcers.
Collapse
Affiliation(s)
- Sen Tong
- School of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Qingyu Li
- School of Medicine, Jianghan University, Wuhan, China
| | - Qiaoyan Liu
- School of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Bo Song
- School of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- *Correspondence: Bo Song, ; Junzi Wu,
| | - Junzi Wu
- School of Basic Medical, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- *Correspondence: Bo Song, ; Junzi Wu,
| |
Collapse
|