1
|
Carrothers S, Trevisan R, Jayasundara N, Pelletier N, Weeks E, Meyer JN, Di Giulio R, Weinhouse C. An epigenetic memory at the CYP1A gene in cancer-resistant, pollution-adapted killifish. Sci Rep 2025; 15:3033. [PMID: 39856074 PMCID: PMC11759692 DOI: 10.1038/s41598-024-82740-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/09/2024] [Indexed: 01/27/2025] Open
Abstract
Human exposure to polycyclic aromatic hydrocarbons (PAH) is a significant public health problem that will worsen with a warming climate and increased large-scale wildfires. Here, we characterize an epigenetic memory at the cytochrome P450 1 A (CYP1A) gene in wild Fundulus heteroclitus that have adapted to chronic, extreme PAH pollution. In wild-type fish, CYP1A is highly induced by PAH. In PAH-tolerant fish, CYP1A induction is blunted. Since CYP1A metabolically activates PAH, this memory protects these fish from PAH-mediated cancer. However, PAH-tolerant fish reared in clean water recover CYP1A inducibility, indicating a non-genetic effect. We observed epigenetic control of this reversible memory of generational PAH stress in F1 PAH-tolerant embryos. We detected a bivalent domain in the CYP1A promoter enhancer comprising both activating and repressive histone post-translational modifications. Activating modifications, relative to repressive ones, showed greater increases in response to PAH in sensitive embryos, relative to tolerant, consistent with greater gene activation. PAH-tolerant adult fish showed persistent induction of CYP1A long after exposure cessation, which is consistent with defective CYP1A shutoff. These results indicate that PAH-tolerant fish have epigenetic protection against PAH-induced cancer in early life that degrades in response to continuous gene activation.
Collapse
Affiliation(s)
- Samantha Carrothers
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, 97239, Portland, OR, USA
| | - Rafael Trevisan
- Nicholas School of the Environment, Duke University, 27701, Durham, NC, USA
- Univ Brest, Ifremer, CNRS, IRD, UMR 6539, LEMAR, Plouzané, 29280, France
| | - Nishad Jayasundara
- Nicholas School of the Environment, Duke University, 27701, Durham, NC, USA
| | - Nicole Pelletier
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, 97239, Portland, OR, USA
| | - Emma Weeks
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, 97239, Portland, OR, USA
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, 27701, Durham, NC, USA
| | - Richard Di Giulio
- Nicholas School of the Environment, Duke University, 27701, Durham, NC, USA
| | - Caren Weinhouse
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, 97239, Portland, OR, USA.
| |
Collapse
|
2
|
Gorman BR, Ji SG, Francis M, Sendamarai AK, Shi Y, Devineni P, Saxena U, Partan E, DeVito AK, Byun J, Han Y, Xiao X, Sin DD, Timens W, Moser J, Muralidhar S, Ramoni R, Hung RJ, McKay JD, Bossé Y, Sun R, Amos CI, Pyarajan S. Multi-ancestry GWAS meta-analyses of lung cancer reveal susceptibility loci and elucidate smoking-independent genetic risk. Nat Commun 2024; 15:8629. [PMID: 39366959 PMCID: PMC11452618 DOI: 10.1038/s41467-024-52129-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/27/2024] [Indexed: 10/06/2024] Open
Abstract
Lung cancer remains the leading cause of cancer mortality, despite declining smoking rates. Previous lung cancer GWAS have identified numerous loci, but separating the genetic risks of lung cancer and smoking behavioral susceptibility remains challenging. Here, we perform multi-ancestry GWAS meta-analyses of lung cancer using the Million Veteran Program cohort (approximately 95% male cases) and a previous study of European-ancestry individuals, jointly comprising 42,102 cases and 181,270 controls, followed by replication in an independent cohort of 19,404 cases and 17,378 controls. We then carry out conditional meta-analyses on cigarettes per day and identify two novel, replicated loci, including the 19p13.11 pleiotropic cancer locus in squamous cell lung carcinoma. Overall, we report twelve novel risk loci for overall lung cancer, lung adenocarcinoma, and squamous cell lung carcinoma, nine of which are externally replicated. Finally, we perform PheWAS on polygenic risk scores for lung cancer, with and without conditioning on smoking. The unconditioned lung cancer polygenic risk score is associated with smoking status in controls, illustrating a reduced predictive utility in non-smokers. Additionally, our polygenic risk score demonstrates smoking-independent pleiotropy of lung cancer risk across neoplasms and metabolic traits.
Collapse
Affiliation(s)
- Bryan R Gorman
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
- Booz Allen Hamilton, McLean, VA, USA
| | - Sun-Gou Ji
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
- BridgeBio Pharma, Palo Alto, CA, USA
| | - Michael Francis
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
- Booz Allen Hamilton, McLean, VA, USA
| | - Anoop K Sendamarai
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
- Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Yunling Shi
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
| | - Poornima Devineni
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
| | - Uma Saxena
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
| | - Elizabeth Partan
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
| | - Andrea K DeVito
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA
- Booz Allen Hamilton, McLean, VA, USA
| | - Jinyoung Byun
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Younghun Han
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Xiangjun Xiao
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Don D Sin
- The University of British Columbia Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - Wim Timens
- University Medical Centre Groningen, GRIAC (Groningen Research Institute for Asthma and COPD), University of Groningen, Groningen, Netherlands
- Department of Pathology & Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Jennifer Moser
- Office of Research and Development, Department of Veterans Affairs, Washington, DC, USA
| | - Sumitra Muralidhar
- Office of Research and Development, Department of Veterans Affairs, Washington, DC, USA
| | - Rachel Ramoni
- Office of Research and Development, Department of Veterans Affairs, Washington, DC, USA
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, University of Toronto, Toronto, ON, Canada
| | - James D McKay
- Section of Genetics, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Department of Molecular Medicine, Laval University, Quebec City, QC, Canada
| | - Ryan Sun
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Saiju Pyarajan
- Center for Data and Computational Sciences (C-DACS), VA Boston Healthcare System, Boston, MA, USA.
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Lee PH, Chen IC, Chen YM, Hsiao TH, Tseng JS, Huang YH, Hsu KH, Lin H, Yang TY, Shao YHJ. Using a Polygenic Risk Score to Improve the Risk Prediction of Non-Small Cell Lung Cancer in Taiwan. JCO Precis Oncol 2024; 8:e2400236. [PMID: 39348659 DOI: 10.1200/po.24.00236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/18/2024] [Accepted: 08/20/2024] [Indexed: 10/02/2024] Open
Abstract
PURPOSE Low-dose computed tomography (LDCT) can help reducing lung cancer mortality. In Taiwan, the existing screening criteria revolve around smoking habits and family history of lung cancer. The role of genetic variation in non-small cell lung cancer (NSCLC) development is increasingly recognized. In this study, we aimed to investigate the potential benefits of polygenic risk scores (PRSs) in predicting NSCLC and enhancing the effectiveness of screening programs. METHODS We conducted a retrospective cohort study that included participants without prior diagnosis of lung cancer and later received LDCT for lung cancer screening. Genetic data for these participants were obtained from the project of Taiwan Precision Medicine Initiative. We adopted the model of genome-wide association study-derived PRS calculation using 19 susceptibility loci associated with the risk of NSCLC as reported by Dai et al. RESULTS We studied a total of 2,287 participants (1,197 male, 1,090 female). More female participants developed NSCLC during the follow-up period (4.4% v 2.5%, P = .015). The only risk factor of NSCLC diagnosis among male participants was age. Among female participants, independent risk factors of NSCLC diagnosis were age (adjusted hazard ratio [aHR], 1.08 [95% CI, 1.04 to 1.11]), a family history of lung cancer (aHR, 3.21 [95% CI, 1.78 to 5.77]), and PRS fourth quartile (aHR, 2.97 [95% CI, 1.25 to 7.07]). We used the receiver operating characteristics to show an AUC value of 0.741 for the conventional model. With the further incorporation of PRS, the AUC rose to 0.778. CONCLUSION The evaluation of PRS for NSCLC prediction holds promise for enhancing the effectiveness of lung cancer screening in Taiwan especially in women. By incorporating genetic information, screening criteria can be tailored to identify individuals at higher risks of NSCLC.
Collapse
Affiliation(s)
- Po-Hsin Lee
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Translational Medicine Research Center, National Chung Hsing University, Taichung, Taiwan
| | - I-Chieh Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Ming Chen
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Rong Hsing Translational Medicine Research Center, National Chung Hsing University, Taichung, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Tzu-Hung Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Public Health, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
| | - Jeng-Sen Tseng
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yen-Hsiang Huang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Kuo-Hsuan Hsu
- Division of Critical Care and Respiratory Therapy, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Tsung-Ying Yang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Hsuan Joni Shao
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
4
|
Carrothers S, Trevisan R, Jayasundara N, Pelletier N, Weeks E, Meyer JN, Giulio RD, Weinhouse C. An epigenetic memory at the CYP1A gene in cancer-resistant, pollution-adapted killifish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607951. [PMID: 39185187 PMCID: PMC11343184 DOI: 10.1101/2024.08.14.607951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Human exposure to polycyclic aromatic hydrocarbons (PAH) is a significant and growing public health problem. Frequent, high dose exposures are likely to increase due to a warming climate and increased frequency of large-scale wildfires. Here, we characterize an epigenetic memory at the cytochrome P450 1A (CYP1A) gene in a population of wild Fundulus heteroclitus that has adapted to chronic, extreme PAH pollution. In wild-type fish, CYP1A is highly induced by PAH. In PAH-tolerant fish, CYP1A induction is blunted. Since CYP1A metabolically activates PAH, this memory protects these fish from PAH-mediated cancer. However, PAH-tolerant fish reared in clean water recover CYP1A inducibility, indicating that blunted induction is a non-genetic memory of prior exposure. To explore this possibility, we bred depurated wild fish from PAH-sensitive and - tolerant populations, manually fertilized exposure-naïve embryos, and challenged them with PAH. We observed epigenetic control of the reversible memory of generational PAH stress in F1 PAH-tolerant embryos. Specifically, we observed a bivalent domain in the CYP1A promoter enhancer comprising both activating and repressive histone post-translational modifications. Activating modifications, relative to repressive ones, showed greater increases in response to PAH in sensitive embryos, relative to tolerant, consistent with greater gene activation. Also, PAH-tolerant adult fish showed persistent induction of CYP1A long after exposure cessation, which is consistent with defective CYP1A shutoff and recovery to baseline. Since CYP1A expression is inversely correlated with cancer risk, these results indicate that PAH-tolerant fish have epigenetic protection against PAH-induced cancer in early life that degrades in response to continuous gene activation.
Collapse
Affiliation(s)
- Samantha Carrothers
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University
| | - Rafael Trevisan
- Nicholas School of the Environment, Duke University
- Current address: Univ Brest, Ifremer, CNRS, IRD, UMR 6539, LEMAR, Plouzané, 29280, France
| | | | - Nicole Pelletier
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University
| | - Emma Weeks
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University
| | | | - Caren Weinhouse
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University
| |
Collapse
|
5
|
Tian X, Liu Z. Single nucleotide variants in lung cancer. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:88-94. [PMID: 39169933 PMCID: PMC11332866 DOI: 10.1016/j.pccm.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Indexed: 08/23/2024]
Abstract
Germline genetic variants, including single-nucleotide variants (SNVs) and copy number variants (CNVs), account for interpatient heterogeneity. In the past several decades, genome-wide association studies (GWAS) have identified multiple lung cancer-associated SNVs in Caucasian and Chinese populations. These variants either reside within coding regions and change the structure and function of cancer-related proteins or reside within non-coding regions and alter the expression level of cancer-related proteins. The variants can be used not only for cancer risk assessment and prevention but also for the development of new therapies. In this review, we discuss the lung cancer-associated SNVs identified to date, their contributions to lung tumorigenesis and prognosis, and their potential use in predicting prognosis and implementing therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoling Tian
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhe Liu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
6
|
Senkin S, Moody S, Díaz-Gay M, Abedi-Ardekani B, Cattiaux T, Ferreiro-Iglesias A, Wang J, Fitzgerald S, Kazachkova M, Vangara R, Le AP, Bergstrom EN, Khandekar A, Otlu B, Cheema S, Latimer C, Thomas E, Atkins JR, Smith-Byrne K, Cortez Cardoso Penha R, Carreira C, Chopard P, Gaborieau V, Keski-Rahkonen P, Jones D, Teague JW, Ferlicot S, Asgari M, Sangkhathat S, Attawettayanon W, Świątkowska B, Jarmalaite S, Sabaliauskaite R, Shibata T, Fukagawa A, Mates D, Jinga V, Rascu S, Mijuskovic M, Savic S, Milosavljevic S, Bartlett JMS, Albert M, Phouthavongsy L, Ashton-Prolla P, Botton MR, Silva Neto B, Bezerra SM, Curado MP, Zequi SDC, Reis RM, Faria EF, de Menezes NS, Ferrari RS, Banks RE, Vasudev NS, Zaridze D, Mukeriya A, Shangina O, Matveev V, Foretova L, Navratilova M, Holcatova I, Hornakova A, Janout V, Purdue MP, Rothman N, Chanock SJ, Ueland PM, Johansson M, McKay J, Scelo G, Chanudet E, Humphreys L, de Carvalho AC, Perdomo S, Alexandrov LB, Stratton MR, Brennan P. Geographic variation of mutagenic exposures in kidney cancer genomes. Nature 2024; 629:910-918. [PMID: 38693263 PMCID: PMC11111402 DOI: 10.1038/s41586-024-07368-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 03/28/2024] [Indexed: 05/03/2024]
Abstract
International differences in the incidence of many cancer types indicate the existence of carcinogen exposures that have not yet been identified by conventional epidemiology make a substantial contribution to cancer burden1. In clear cell renal cell carcinoma, obesity, hypertension and tobacco smoking are risk factors, but they do not explain the geographical variation in its incidence2. Underlying causes can be inferred by sequencing the genomes of cancers from populations with different incidence rates and detecting differences in patterns of somatic mutations. Here we sequenced 962 clear cell renal cell carcinomas from 11 countries with varying incidence. The somatic mutation profiles differed between countries. In Romania, Serbia and Thailand, mutational signatures characteristic of aristolochic acid compounds were present in most cases, but these were rare elsewhere. In Japan, a mutational signature of unknown cause was found in more than 70% of cases but in less than 2% elsewhere. A further mutational signature of unknown cause was ubiquitous but exhibited higher mutation loads in countries with higher incidence rates of kidney cancer. Known signatures of tobacco smoking correlated with tobacco consumption, but no signature was associated with obesity or hypertension, suggesting that non-mutagenic mechanisms of action underlie these risk factors. The results of this study indicate the existence of multiple, geographically variable, mutagenic exposures that potentially affect tens of millions of people and illustrate the opportunities for new insights into cancer causation through large-scale global cancer genomics.
Collapse
Affiliation(s)
- Sergey Senkin
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Sarah Moody
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Marcos Díaz-Gay
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Behnoush Abedi-Ardekani
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Thomas Cattiaux
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Aida Ferreiro-Iglesias
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Jingwei Wang
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Stephen Fitzgerald
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Mariya Kazachkova
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Raviteja Vangara
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Anh Phuong Le
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Erik N Bergstrom
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Azhar Khandekar
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Burçak Otlu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
- Department of Health Informatics, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Saamin Cheema
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Calli Latimer
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Emily Thomas
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Joshua Ronald Atkins
- Cancer Epidemiology Unit, The Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Karl Smith-Byrne
- Cancer Epidemiology Unit, The Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | | | - Christine Carreira
- Evidence Synthesis and Classification Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Priscilia Chopard
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Valérie Gaborieau
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Pekka Keski-Rahkonen
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - David Jones
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Jon W Teague
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Sophie Ferlicot
- Service d'Anatomie Pathologique, Assistance Publique-Hôpitaux de Paris, Univeristé Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Mojgan Asgari
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
| | - Surasak Sangkhathat
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Worapat Attawettayanon
- Division of Urology, Department of Surgery, Faculty of Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Beata Świątkowska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, Łódź, Poland
| | - Sonata Jarmalaite
- Laboratory of Genetic Diagnostic, National Cancer Institute, Vilnius, Lithuania
- Department of Botany and Genetics, Institute of Biosciences, Vilnius University, Vilnius, Lithuania
| | - Rasa Sabaliauskaite
- Laboratory of Genetic Diagnostic, National Cancer Institute, Vilnius, Lithuania
| | - Tatsuhiro Shibata
- Laboratory of Molecular Medicine, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
- Division of Cancer Genomics, National Cancer Center Research Institute, Chuo-ku, Japan
| | - Akihiko Fukagawa
- Division of Cancer Genomics, National Cancer Center Research Institute, Chuo-ku, Japan
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Dana Mates
- Occupational Health and Toxicology Department, National Center for Environmental Risk Monitoring, National Institute of Public Health, Bucharest, Romania
| | - Viorel Jinga
- Urology Department, Carol Davila University of Medicine and Pharmacy, Prof. Dr. Th. Burghele Clinical Hospital, Bucharest, Romania
| | - Stefan Rascu
- Urology Department, Carol Davila University of Medicine and Pharmacy, Prof. Dr. Th. Burghele Clinical Hospital, Bucharest, Romania
| | - Mirjana Mijuskovic
- Clinic of Nephrology, Faculty of Medicine, Military Medical Academy, Belgrade, Serbia
| | - Slavisa Savic
- Department of Urology, University Hospital Dr D. Misovic Clinical Center, Belgrade, Serbia
| | - Sasa Milosavljevic
- International Organization for Cancer Prevention and Research, Belgrade, Serbia
| | - John M S Bartlett
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Monique Albert
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
- Ontario Tumour Bank, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Larry Phouthavongsy
- Ontario Tumour Bank, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Patricia Ashton-Prolla
- Experimental Research Center, Genomic Medicine Laboratory, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mariana R Botton
- Transplant Immunology and Personalized Medicine Unit, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Brasil Silva Neto
- Service of Urology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Post-Graduate Program in Medicine: Surgical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Maria Paula Curado
- Department of Epidemiology, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Stênio de Cássio Zequi
- Department of Urology, A. C. Camargo Cancer Center, São Paulo, Brazil
- National Institute for Science and Technology in Oncogenomics and Therapeutic Innovation, A.C. Camargo Cancer Center, São Paulo, Brazil
- Latin American Renal Cancer Group (LARCG), São Paulo, Brazil
- Department of Surgery, Division of Urology, Sao Paulo Federal University (UNIFESP), São Paulo, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Minho University, Braga, Portugal
| | - Eliney Ferreira Faria
- Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Brazil
- Department of Urology, Barretos Cancer Hospital, Barretos, Brazil
| | | | | | - Rosamonde E Banks
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Naveen S Vasudev
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - David Zaridze
- Department of Clinical Epidemiology, N. N. Blokhin National Medical Research Centre of Oncology, Moscow, Russia
| | - Anush Mukeriya
- Department of Clinical Epidemiology, N. N. Blokhin National Medical Research Centre of Oncology, Moscow, Russia
| | - Oxana Shangina
- Department of Clinical Epidemiology, N. N. Blokhin National Medical Research Centre of Oncology, Moscow, Russia
| | - Vsevolod Matveev
- Department of Urology, N. N. Blokhin National Medical Research Centre of Oncology, Moscow, Russia
| | - Lenka Foretova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Marie Navratilova
- Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Ivana Holcatova
- Institute of Public Health and Preventive Medicine, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Oncology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Anna Hornakova
- Institute of Hygiene and Epidemiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vladimir Janout
- Faculty of Health Sciences, Palacky University, Olomouc, Czech Republic
| | - Mark P Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | | | - Mattias Johansson
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - James McKay
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Ghislaine Scelo
- Observational and Pragmatic Research Institute Pte Ltd, Singapore, Singapore
| | - Estelle Chanudet
- Department of Pathology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Laura Humphreys
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Ana Carolina de Carvalho
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Sandra Perdomo
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Michael R Stratton
- Cancer, Ageing and Somatic Mutation, Wellcome Sanger Institute, Cambridge, UK
| | - Paul Brennan
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), Lyon, France.
| |
Collapse
|
7
|
Blechter B, Wong JYY, Chien LH, Shiraishi K, Shu XO, Cai Q, Zheng W, Ji BT, Hu W, Rahman ML, Jiang HF, Tsai FY, Huang WY, Gao YT, Han X, Steinwandel MD, Yang G, Daida YG, Liang SY, Gomez SL, DeRouen MC, Diver WR, Reddy AG, Patel AV, Le Marchand L, Haiman C, Kohno T, Cheng I, Chang IS, Hsiung CA, Rothman N, Lan Q. Age at lung cancer diagnosis in females versus males who never smoke by race and ethnicity. Br J Cancer 2024; 130:1286-1294. [PMID: 38388856 PMCID: PMC11014844 DOI: 10.1038/s41416-024-02592-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND We characterized age at diagnosis and estimated sex differences for lung cancer and its histological subtypes among individuals who never smoke. METHODS We analyzed the distribution of age at lung cancer diagnosis in 33,793 individuals across 8 cohort studies and two national registries from East Asia, the United States (US) and the United Kingdom (UK). Student's t-tests were used to assess the study population differences (Δ years) in age at diagnosis comparing females and males who never smoke across subgroups defined by race/ethnicity, geographic location, and histological subtypes. RESULTS We found that among Chinese individuals diagnosed with lung cancer who never smoke, females were diagnosed with lung cancer younger than males in the Taiwan Cancer Registry (n = 29,832) (Δ years = -2.2 (95% confidence interval (CI):-2.5, -1.9), in Shanghai (n = 1049) (Δ years = -1.6 (95% CI:-2.9, -0.3), and in Sutter Health and Kaiser Permanente Hawai'i in the US (n = 82) (Δ years = -11.3 (95% CI: -17.7, -4.9). While there was a suggestion of similar patterns in African American and non-Hispanic White individuals. the estimated differences were not consistent across studies and were not statistically significant. CONCLUSIONS We found evidence of sex differences for age at lung cancer diagnosis among individuals who never smoke.
Collapse
Affiliation(s)
- Batel Blechter
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| | - Jason Y Y Wong
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Li-Hsin Chien
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
- Department of Applied Mathematics, Chung-Yuan Christian University, Chung-Li, Taiwan
| | - Kouya Shiraishi
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Bu-Tian Ji
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Mohammad L Rahman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Hsin-Fang Jiang
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Fang-Yu Tsai
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Wen-Yi Huang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China
| | - Xijing Han
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mark D Steinwandel
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gong Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Yihe G Daida
- Center for Integrated Health Care Research, Kaiser Permanente Hawai'i, Honolulu, HI, USA
| | - Su-Ying Liang
- Palo Alto Medical Foundation Research Institute, Sutter Health, Palo Alto, CA, USA
| | - Scarlett L Gomez
- Greater Bay Area Cancer Registry, University of California, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Mindy C DeRouen
- Greater Bay Area Cancer Registry, University of California, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - W Ryan Diver
- Department of Population Science, American Cancer Society, Kennesaw, GA, USA
| | - Ananya G Reddy
- Department of Population Science, American Cancer Society, Kennesaw, GA, USA
| | - Alpa V Patel
- Department of Population Science, American Cancer Society, Kennesaw, GA, USA
| | | | - Christopher Haiman
- Greater Bay Area Cancer Registry, University of California, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Iona Cheng
- Greater Bay Area Cancer Registry, University of California, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - I-Shou Chang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Chao Agnes Hsiung
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
8
|
Xu M, Li C, Xiang L, Chen S, Chen L, Ling G, Hu Y, Yang L, Yuan X, Xia X, Zhang H. Assessing the causal relationship between 731 immunophenotypes and the risk of lung cancer: a bidirectional mendelian randomization study. BMC Cancer 2024; 24:270. [PMID: 38408977 PMCID: PMC10898084 DOI: 10.1186/s12885-024-12014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/16/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Previous studies have observed a link between immunophenotypes and lung cancer, both of which are closely associated with genetic factors. However, the causal relationship between them remains unclear. METHODS Bidirectional Mendelian randomization (MR) was performed on publicly available genome-wide association study (GWAS) summary statistics to analyze the causal relationships between 731 immunophenotypes and lung cancer. Sensitivity analyses were conducted to verify the robustness, heterogeneity, and potential horizontal pleiotropy of our findings. RESULTS Following Bonferroni adjustment, CD14- CD16+ monocyte (OR = 0.930, 95%CI 0.900-0.960, P = 8.648 × 10- 6, PBonferroni = 0.006) and CD27 on CD24+ CD27+ B cells (OR = 1.036, 95%CI 1.020-1.053, P = 1.595 × 10 - 5, PBonferroni = 0.012) were identified as having a causal role in lung cancer via the inverse variance weighted (IVW) method. At a more relaxed threshold, CD27 on IgD+ CD24+ B cell (OR = 1.035, 95%CI 1.017-1.053, P = 8.666 × 10- 5, PBonferroni = 0.063) and CD27 on switched memory B cell (OR = 1.037, 95%CI 1.018-1.056, P = 1.154 × 10- 4, PBonferroni = 0.084) were further identified. No statistically significant effects of lung cancer on immunophenotypes were found. CONCLUSIONS The elevated level of CD14- CD16+ monocytes was a protective factor against lung cancer. Conversely, CD27 on CD24+ CD27+ B cell was a risk factor. CD27 on class-switched memory B cells and IgD+ CD24+ B cells were potential risk factors for lung cancer. This research enhanced our comprehension of the interplay between immune responses and lung cancer risk. Additionally, these findings offer valuable perspectives for the development of immunologically oriented therapeutic strategies.
Collapse
Affiliation(s)
- Ming Xu
- The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Zhejiang, 325007, Wenzhou, PR China
| | - Chengkai Li
- The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Zhejiang, 325007, Wenzhou, PR China
| | - Liyan Xiang
- The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Zhejiang, 325007, Wenzhou, PR China
| | - Siyue Chen
- The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Zhejiang, 325007, Wenzhou, PR China
| | - Lin Chen
- The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Zhejiang, 325007, Wenzhou, PR China
| | - Gongxia Ling
- The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Zhejiang, 325007, Wenzhou, PR China
| | - Yanqing Hu
- The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Zhejiang, 325007, Wenzhou, PR China
| | - Lan Yang
- The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Zhejiang, 325007, Wenzhou, PR China
| | - Xiang Yuan
- The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Zhejiang, 325007, Wenzhou, PR China
| | - Xiaodong Xia
- The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Zhejiang, 325007, Wenzhou, PR China.
| | - Hailin Zhang
- The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, Zhejiang, 325007, Wenzhou, PR China.
- Department of Children's Respiration Disease, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, 109 West Xueyuan Road, Lucheng District, 325027, Wenzhou, Zhejiang, PR China.
| |
Collapse
|
9
|
Chou WC, Chen WT, Kuo CT, Chang YM, Lu YS, Li CW, Hung MC, Shen CY. Genetic insights into carbohydrate sulfotransferase 8 and its impact on the immunotherapy efficacy of cancer. Cell Rep 2024; 43:113641. [PMID: 38165805 DOI: 10.1016/j.celrep.2023.113641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/12/2023] [Accepted: 12/18/2023] [Indexed: 01/04/2024] Open
Abstract
Immune checkpoint blockade (ICB) is a promising therapy for solid tumors, but its effectiveness depends on biomarkers that are not precise. Here, we utilized genome-wide association study to investigate the association between genetic variants and tumor mutation burden to interpret ICB response. We identified 16 variants (p < 5 × 10-8) probed to 17 genes on 9 chromosomes. Subsequent analysis of one of the most significant loci in 19q13.11 suggested that the rs111308825 locus at the enhancer is causal, as its A allele impairs KLF2 binding, leading to lower carbohydrate sulfotransferase 8 (CHST8) expression. Breast cancer cells expressing CHST8 suppress T cell activation, and Chst8 loss attenuates tumor growth in a syngeneic mouse model. Further investigation revealed that programmed death-ligand 1 (PD-L1) and its homologs could be sulfated by CHST8, resulting in M2-like macrophage enrichment in the tumor microenvironment. Finally, we confirmed that low-CHST8 tumors have better ICB response, supporting the genetic effect and clinical value of rs111308825 for ICB efficacy prediction.
Collapse
Affiliation(s)
- Wen-Cheng Chou
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Wei-Ting Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chun-Tse Kuo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yao-Ming Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yen-Shen Lu
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Wei Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; College of Public Health, China Medical University, Taichung, Taiwan.
| |
Collapse
|
10
|
Wang L, Ma Y, Han W, Yang Q, Jamil M. Whole Exome Sequencing reveals clinically important pathogenic mutations in DNA repair genes across lung cancer patients. Am J Cancer Res 2023; 13:4989-5004. [PMID: 37970346 PMCID: PMC10636674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/24/2023] [Indexed: 11/17/2023] Open
Abstract
Lung cancer remains a substantial health challenge, with distinct genetic factors influencing disease susceptibility and progression. This study aimed to decipher the landscape of DNA repair gene mutations in Pakistani lung cancer patients using Whole Exome Sequencing (WES) and to investigate their potential functional implications through downstream analyses. WES analysis of genomic DNA from 15 lung cancer patients identified clinically important pathogenic mutations in 6 DNA repair genes, including, BReast CAncer gene 1 (BRCA1), BReast CAncer gene 2 (BRCA2), Excision Repair Cross Complementing rodent repair deficiency, complementation group 6 (ERCC6), Checkpoint Kinase 1 (CHEK1), mutY DNA glycosylase (MUTYH), and RAD51D (RAD51 Paralog D). Kaplan-Meier (KM) analysis showed that pathogenic mutations in BRCA1, BRCA2, ERCC6, CHEK1, MUTYH, and RAD51D genes were the prognostic biomarkers of worse OS in lung cancer patients. To explore the functional impact of these mutations, we performed Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Immunohistochemistry (IHC) analyses. Our results revealed a down-regulation in the expression of the mutated genes, indicating a potential link between the identified mutations and reduced gene activity. This down-regulation could contribute to compromised DNA repair efficiency, thereby fostering genomic instability in lung cancer cells. Furthermore, targeted bisulfite sequencing analysis was employed to assess the DNA methylation status of the mutated genes. Strikingly, hypermethylation in the promoters of BRCA1, BRCA2, ERCC6, CHEK1, MUTYH, and RAD51D was observed across lung cancer samples harboring pathogenic mutations, suggesting the involvement of epigenetic mechanism underlying the altered gene expression. In conclusion, this study provides insights into the genetic landscape of DNA repair gene mutations in Pakistani lung cancer patients. The observed pathogenic mutations in BRCA1, BRCA2, ERCC6, CHEK1, MUTYH, and RAD51D, coupled with their down-regulation and hypermethylation, suggest a potential convergence of genetic and epigenetic factors driving genomic instability in lung cancer cells. These findings contribute to our understanding of lung cancer susceptibility and highlight potential avenues for targeted therapeutic interventions in Pakistani lung cancer patients.
Collapse
Affiliation(s)
- Lanlan Wang
- Department of Medicine, The First People’s Hospital of ShangqiuShangqiu 476100, Henan, China
| | - Yali Ma
- Department of Oncology, Shangqiu First People’s HospitalShangqiu 476000, Henan, China
| | - Wenjie Han
- Department of Oncology, Shangqiu First People’s HospitalShangqiu 476000, Henan, China
| | - Qiumin Yang
- Department of Oncology, Shangqiu First People’s HospitalShangqiu 476000, Henan, China
| | - Muhammad Jamil
- PARC Arid Zone Research CenterDera Ismail Khan 29050, Pakistan
| |
Collapse
|
11
|
Zhan Y, Ruan X, Liu J, Huang D, Huang J, Huang J, Chun TTS, Ng ATL, Wu Y, Wei G, Jiang H, Xu D, Na R. Genetic Polymorphisms of the Telomerase Reverse Transcriptase Gene in Relation to Prostate Tumorigenesis, Aggressiveness and Mortality: A Cross-Ancestry Analysis. Cancers (Basel) 2023; 15:cancers15092650. [PMID: 37174115 PMCID: PMC10177366 DOI: 10.3390/cancers15092650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/23/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Telomerase reverse transcriptase (TERT) has been consistently associated with prostate cancer (PCa) risk. However, few studies have explored the association between TERT variants and PCa aggressiveness. METHODS Individual and genetic data were obtained from UK Biobank and a Chinese PCa cohort (Chinese Consortium for Prostate Cancer Genetics). RESULTS A total of 209,694 Europeans (14,550 PCa cases/195,144 controls) and 8873 Chinese (4438 cases/4435 controls) were involved. Nineteen susceptibility loci with five novel ones (rs144704378, rs35311994, rs34194491, rs144020096, and rs7710703) were detected in Europeans, whereas seven loci with two novel ones (rs7710703 and rs11291391) were discovered in the Chinese cohort. The index SNP for the two ancestries was rs2242652 (odds ratio [OR] = 1.16, 95% confidence interval [CI]:1.12-1.20, p = 4.12 × 10-16) and rs11291391 (OR = 1.73, 95%CI:1.34-2.25, p = 3.04 × 10-5), respectively. SNPs rs2736100 (OR = 1.49, 95%CI:1.31-1.71, p = 2.91 × 10-9) and rs2853677 (OR = 1.74, 95%CI:1.52-1.98, p = 3.52 × 10-16) were found significantly associated with aggressive PCa, while rs35812074 was marginally related to PCa death (hazard ratio [HR] = 1.61, 95%CI:1.04-2.49, p = 0.034). Gene-based analysis showed a significant association of TERT with PCa (European: p = 3.66 × 10-15, Chinese: p = 0.043) and PCa severity (p = 0.006) but not with PCa death (p = 0.171). CONCLUSION TERT polymorphisms were associated with prostate tumorigenesis and severity, and the genetic architectures of PCa susceptibility loci were heterogeneous among distinct ancestries.
Collapse
Affiliation(s)
- Yongle Zhan
- Division of Urology, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xiaohao Ruan
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiacheng Liu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Da Huang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jingyi Huang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jinlun Huang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tsun Tsun Stacia Chun
- Division of Urology, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ada Tsui-Lin Ng
- Division of Urology, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Division of Urology, Department of Surgery, Queen Mary Hospital, Hong Kong, China
| | - Yishuo Wu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Gonghong Wei
- Fudan University Shanghai Cancer Center & MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Danfeng Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rong Na
- Division of Urology, Department of Surgery, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
12
|
Cortez Cardoso Penha R, Smith-Byrne K, Atkins JR, Haycock PC, Kar S, Codd V, Samani NJ, Nelson C, Milojevic M, Gabriel AAG, Amos C, Brennan P, Hung RJ, Kachuri L, Mckay JD. Common genetic variations in telomere length genes and lung cancer: a Mendelian randomisation study and its novel application in lung tumour transcriptome. eLife 2023; 12:e83118. [PMID: 37079368 PMCID: PMC10118386 DOI: 10.7554/elife.83118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 04/03/2023] [Indexed: 04/21/2023] Open
Abstract
Background Genome-wide association studies (GWASs) have identified genetic susceptibility variants for both leukocyte telomere length (LTL) and lung cancer susceptibility. Our study aims to explore the shared genetic basis between these traits and investigate their impact on somatic environment of lung tumours. Methods We performed genetic correlation, Mendelian randomisation (MR), and colocalisation analyses using the largest available GWASs summary statistics of LTL (N=464,716) and lung cancer (N=29,239 cases and 56,450 controls). Principal components analysis based on RNA-sequencing data was used to summarise gene expression profile in lung adenocarcinoma cases from TCGA (N=343). Results Although there was no genome-wide genetic correlation between LTL and lung cancer risk, longer LTL conferred an increased risk of lung cancer regardless of smoking status in the MR analyses, particularly for lung adenocarcinoma. Of the 144 LTL genetic instruments, 12 colocalised with lung adenocarcinoma risk and revealed novel susceptibility loci, including MPHOSPH6, PRPF6, and POLI. The polygenic risk score for LTL was associated with a specific gene expression profile (PC2) in lung adenocarcinoma tumours. The aspect of PC2 associated with longer LTL was also associated with being female, never smokers, and earlier tumour stages. PC2 was strongly associated with cell proliferation score and genomic features related to genome stability, including copy number changes and telomerase activity. Conclusions This study identified an association between longer genetically predicted LTL and lung cancer and sheds light on the potential molecular mechanisms related to LTL in lung adenocarcinomas. Funding Institut National du Cancer (GeniLuc2017-1-TABAC-03-CIRC-1-TABAC17-022), INTEGRAL/NIH (5U19CA203654-03), CRUK (C18281/A29019), and Agence Nationale pour la Recherche (ANR-10-INBS-09).
Collapse
Affiliation(s)
- Ricardo Cortez Cardoso Penha
- Genomic Epidemiology branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO)LyonFrance
| | - Karl Smith-Byrne
- Cancer Epidemiology Unit, University of OxfordOxfordUnited Kingdom
| | - Joshua R Atkins
- Genomic Epidemiology branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO)LyonFrance
| | - Philip C Haycock
- MRC Integrative Epidemiology Unit, Bristol Population Health Science Institute, Bristol Medical School (PHS)BristolUnited Kingdom
| | - Siddhartha Kar
- MRC Integrative Epidemiology Unit, Bristol Population Health Science Institute, Bristol Medical School (PHS)BristolUnited Kingdom
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of LeicesterLeicesterUnited Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUnited Kingdom
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of LeicesterLeicesterUnited Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUnited Kingdom
| | - Christopher Nelson
- Department of Cardiovascular Sciences, University of LeicesterLeicesterUnited Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUnited Kingdom
| | - Maja Milojevic
- Genomic Epidemiology branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO)LyonFrance
| | - Aurélie AG Gabriel
- Ludwig Lausanne Branch, Faculty of Biology and MedicineLausanneSwitzerland
| | - Christopher Amos
- Institute for Clinical and Translational Research, Baylor College of MedicineHoustonUnited States
| | - Paul Brennan
- Genomic Epidemiology branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO)LyonFrance
| | - Rayjean J Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai HealthTorontoCanada
| | - Linda Kachuri
- Departament of Epidemiology and Population Health, Stanford UniversityStanfordUnited States
| | - James D Mckay
- Genomic Epidemiology branch, International Agency for Research on Cancer/World Health Organization (IARC/WHO)LyonFrance
| |
Collapse
|
13
|
Krantz SB, Zeeshan K, Kuchta KM, Hensing TA, Mangold KA, Zheng SL, Xu J. Germline mutations in high penetrance genes are associated with worse clinical outcomes in patients with non-small cell lung cancer. JTCVS OPEN 2022; 12:399-409. [PMID: 36590722 PMCID: PMC9801288 DOI: 10.1016/j.xjon.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/10/2022] [Accepted: 08/29/2022] [Indexed: 01/04/2023]
Abstract
Objective To determine the frequency of pathogenic mutations in high-penetrance genes (HPGs) in patients with non-small cell lung cancer (NSCLC) and identify whether such mutations are associated with clinicopathologic outcomes. Methods Patients with NSCLC who had consented to participate in a linked clinical database and biorepository underwent germline DNA sequencing using a next-generation sequencing panel that included cancer-associated HPGs and cancer risk-associated single nucleotide polymorphisms (SNPs). These data were linked to the clinical database to assess for associations between germline variants and clinical phenotype using Fisher's exact test and multivariable logistic and Cox regression. Results We analyzed 151 patients, among whom 33% carried any pathogenic HPG mutation and 23% had a genetic risk score (GRS) >1.5. Among the patients without any pathogenic mutation, 31% were at cancer stage II or higher, compared with 55% of those with 2 types of HPG mutations (P = .0293); 40% of patients with both types of HPG mutations had cancer recurrence, compared with 21% of patients without both types (P = .0644). In multivariable analysis, the presence of 2 types of HPG mutations was associated with higher cancer stage (odds ratio [OR], 3.32; P = .0228), increased recurrence of primary tumor (OR, 2.93; P = .0527), shorter time to recurrence (hazard ratio [HR], 3.03; P = .0119), and decreased cancer-specific (HR, 3.53; P = .0039) and overall survival (HR, 2.44; P = .0114). Conclusions The presence of mutations in HPGs is associated with higher cancer stage, increased risk of recurrence, and worse cancer-specific and overall survival in patients with NSCLC. Further large studies are needed to better delineate the role of HPGs in cancer recurrence and the potential benefit of adjuvant treatment in patients harboring such mutations.
Collapse
Affiliation(s)
- Seth B. Krantz
- Department of Surgery, NorthShore University HealthSystem, Evanston, Ill,Department of Surgery, Pritzker School of Medicine, University of Chicago, Chicago, Ill,Address for reprints: Seth B. Krantz, MD, NorthShore University HealthSystem, 2650 Ridge Ave, Walgreen Suite 2507, Evanston, IL 60201.
| | - Kanwal Zeeshan
- Department of Surgery, NorthShore University HealthSystem, Evanston, Ill
| | - Kristine M. Kuchta
- Department of Bioinformatics and Research Core, NorthShore University HealthSystem, Evanston, Ill
| | - Thomas A. Hensing
- Department of Medicine, NorthShore University HealthSystem, Evanston, Ill,Department of Medicine, Pritzker School of Medicine, University of Chicago, Chicago, Ill
| | - Kathy A. Mangold
- Department of Pathology, NorthShore University HealthSystem, Evanston, Ill,Department of Pathology, Pritzker School of Medicine, University of Chicago, Chicago, Ill
| | - S. Lilly Zheng
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Ill
| | - Jianfeng Xu
- Department of Surgery, Pritzker School of Medicine, University of Chicago, Chicago, Ill,Department of Medicine, Pritzker School of Medicine, University of Chicago, Chicago, Ill
| |
Collapse
|