1
|
Wang A, Zhu J, Li Y, Jiao M, Zhang S, Ding ZL, Huang JA, Liu Z. Comprehensive analysis of Epha10 as a predictor of clinical prognosis and immune checkpoint therapy efficacy in non-small cell lung cancer. Sci Rep 2024; 14:19623. [PMID: 39179608 PMCID: PMC11344161 DOI: 10.1038/s41598-024-70466-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024] Open
Abstract
The EphA family belongs to a large group of membrane receptor tyrosine kinases. Emerging evidence indicates that the EphA family participates in tumour occurrence and progression. Nonetheless, the expression patterns and prognostic values of the nine EphAs in non-small cell lung cancer (NSCLC) have rarely been studied before. In the current study, we comprehensively analysed the expression and prognostic role of EphA family members by different means. The Cancer Genome Atlas and Gene Expression Profiling Interactive Analysis databases were used to investigate the expression of EphAs in NSCLC. The cBioPortal database was applied to analyse the prognostic values and genetic mutations of EphAs.We discovered that the expression of EphA10 was significantly higher in NSCLC tissues than in adjacent noncancerous tissues, and survival analyses showed that a higher level of EphA10 predicted poor prognosis. Further exploration into the role of EphA10 by ESTIMATE, CIBERSORT, and ssGSEA analysis found that it was also related to immune infiltration and higher expression of targets of ICI targets. In conclusion, this study revealed that among the EphA family members, EphA10 played an oncogenic role and was a promising biomarker for poor prognosis and better immunotherapy response in NSCLC.
Collapse
Affiliation(s)
- Anqi Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Jianjie Zhu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China
| | - Yue Li
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Min Jiao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Saiqun Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China
| | - Zong-Li Ding
- Department of Geriatrics, The Affiliated Huaian Hospital of Xuzhou Medical University, 62 Huaihai South Road, Huaian, 223002, Jiangsu, People's Republic of China
| | - Jian-An Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China.
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.
| | - Zeyi Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Institute of Respiratory Diseases, Soochow University, Suzhou, 215006, China.
- Suzhou Key Laboratory for Respiratory Diseases, Suzhou, 215006, China.
| |
Collapse
|
2
|
Tomuleasa C, Tigu AB, Munteanu R, Moldovan CS, Kegyes D, Onaciu A, Gulei D, Ghiaur G, Einsele H, Croce CM. Therapeutic advances of targeting receptor tyrosine kinases in cancer. Signal Transduct Target Ther 2024; 9:201. [PMID: 39138146 PMCID: PMC11323831 DOI: 10.1038/s41392-024-01899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 08/15/2024] Open
Abstract
Receptor tyrosine kinases (RTKs), a category of transmembrane receptors, have gained significant clinical attention in oncology due to their central role in cancer pathogenesis. Genetic alterations, including mutations, amplifications, and overexpression of certain RTKs, are critical in creating environments conducive to tumor development. Following their discovery, extensive research has revealed how RTK dysregulation contributes to oncogenesis, with many cancer subtypes showing dependency on aberrant RTK signaling for their proliferation, survival and progression. These findings paved the way for targeted therapies that aim to inhibit crucial biological pathways in cancer. As a result, RTKs have emerged as primary targets in anticancer therapeutic development. Over the past two decades, this has led to the synthesis and clinical validation of numerous small molecule tyrosine kinase inhibitors (TKIs), now effectively utilized in treating various cancer types. In this manuscript we aim to provide a comprehensive understanding of the RTKs in the context of cancer. We explored the various alterations and overexpression of specific receptors across different malignancies, with special attention dedicated to the examination of current RTK inhibitors, highlighting their role as potential targeted therapies. By integrating the latest research findings and clinical evidence, we seek to elucidate the pivotal role of RTKs in cancer biology and the therapeutic efficacy of RTK inhibition with promising treatment outcomes.
Collapse
Affiliation(s)
- Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj Napoca, Romania.
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania.
| | - Adrian-Bogdan Tigu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Raluca Munteanu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Cristian-Silviu Moldovan
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - David Kegyes
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Academy of Romanian Scientists, Ilfov 3, 050044, Bucharest, Romania
| | - Anca Onaciu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriel Ghiaur
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Department of Leukemia, Sidney Kimmel Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hermann Einsele
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
- Universitätsklinikum Würzburg, Medizinische Klinik II, Würzburg, Germany
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
3
|
Martins P, D’Souza RCJ, Skarne N, Lekieffre L, Horsefield S, Ranjankumar M, Li X, Le TT, Smith F, Smith C, Burrows J, Day BW, Khanna R. EphA3 CAR T cells are effective against glioblastoma in preclinical models. J Immunother Cancer 2024; 12:e009403. [PMID: 39111832 PMCID: PMC11308892 DOI: 10.1136/jitc-2024-009403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Adoptive T-cell therapy targeting antigens expressed in glioblastoma has emerged as a potential therapeutic strategy to prevent or delay recurrence and prolong overall survival in this aggressive disease setting. Ephrin receptor A3 (EphA3), which is highly expressed in glioblastoma; in particular, on the tumor vasculature and brain cancer stem cells, is an ideal target for immune-based therapies. METHODS We have designed an EphA3-targeted chimeric antigen receptor (CAR) using the single chain variable fragment of a novel monoclonal antibody, and assessed its therapeutic potential against EphA3-expressing patient-derived glioblastoma neurospheres, organoids and xenografted glioblastoma tumors in immunodeficient mice. RESULTS In vitro expanded EphA3 CAR T cells from healthy individuals efficiently recognize and kill EphA3-positive glioblastoma cells in vitro. Furthermore, these effector cells demonstrated curative efficacy in an orthotopic xenograft model of glioblastoma. EphA3 CAR T cells were equally effective in targeting patient-derived neurospheres and infiltrate, disaggregate, and induce apoptosis in glioblastoma-derived organoids. CONCLUSIONS This study provides compelling evidence supporting the therapeutic potential of EphA3 CAR T-cell therapy against glioblastoma by targeting EphA3 associated with brain cancer stem cells and the tumor vasculature. The ability to target patient-derived glioblastoma underscores the translational significance of this EphA3 CAR T-cell therapy in the pursuit of effective and targeted glioblastoma treatment strategies.
Collapse
Affiliation(s)
- Paulo Martins
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- The University of Queensland, Brisbane, Queensland, Australia
| | | | - Niclas Skarne
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Lea Lekieffre
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Shane Horsefield
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- The University of Queensland, Brisbane, Queensland, Australia
| | | | - Xiang Li
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Thuy T Le
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Fiona Smith
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Corey Smith
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Jacqueline Burrows
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Bryan W Day
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- Sid Faithfull Brain Cancer Laboratory, Brisbane, Queensland, Australia
| | - Rajiv Khanna
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
4
|
Guo X, Yang Y, Tang J, Xiang J. Ephs in cancer progression: complexity and context-dependent nature in signaling, angiogenesis and immunity. Cell Commun Signal 2024; 22:299. [PMID: 38811954 PMCID: PMC11137953 DOI: 10.1186/s12964-024-01580-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/23/2024] [Indexed: 05/31/2024] Open
Abstract
Eph receptors constitute the largest family of receptor tyrosine kinases, comprising 14 distinct members classified into two subgroups: EphAs and EphBs.. Despite their essential functions in normal physiological processes, accumulating evidence suggests that the involvement of the Eph family in cancer is characterized by a dual and often contradictory nature. Research indicates that Eph/ephrin bidirectional signaling influences cell-cell communication, subsequently regulating cell migration, adhesion, differentiation and proliferation. The contradictory functionalities may arise from the diversity of Eph signaling pathways and the heterogeneity of different cancer microenvironment. In this review, we aim to discuss the dual role of the Eph receptors in tumor development, attempting to elucidate the paradoxical functionality through an exploration of Eph receptor signaling pathways, angiogenesis, immune responses, and more. Our objective is to provide a comprehensive understanding of the molecular mechanisms underlying tumor development. Additionally, we will explore the evolving landscape of utilizing Eph receptors as potential targets for tumor therapy and diagnostic tools.
Collapse
Affiliation(s)
- Xiaoting Guo
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanyi Yang
- Health Management Center, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingqun Tang
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Juanjuan Xiang
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
5
|
Kim Y, Miller WT. Contrasting Effects of Cancer-Associated Mutations in EphA3 and EphB2 Kinases. Biochemistry 2024:10.1021/acs.biochem.3c00674. [PMID: 38252844 PMCID: PMC11265570 DOI: 10.1021/acs.biochem.3c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Erythropoietin-producing hepatoma (Eph) receptors are a family of tyrosine kinases that can act as tumor promoters or tumor suppressors, depending on the receptor and cancer cell type. Cancer-associated somatic mutations have been identified in all Eph receptors, but in most cases, the functional effects of the mutations are unknown. In this study, we expressed and purified the kinase domains of wild-type (WT) EphA3 and EphB2 along with 16 cancer-associated mutants. We identified mutations that decrease EphA3 activity and both activating and inhibitory mutations in EphB2. To shed light on the mechanisms by which the mutations altered kinase activity, we measured the thermal stabilities of the enzymes and performed steady-state kinetic experiments. We also expressed the full-length receptors in HEK293T cells to determine the cellular effects. WT EphB2 promoted downstream ERK signaling, while a kinase-inactive mutant (S706F) was similar to the control cells. In contrast, WT EphA3 (but not loss-of-function mutants) inhibited ERK signaling. The reciprocal effects of EphB2 and EphA3 on ERK phosphorylation in HEK293T cells were also evident in Ras-GTP loading. Thus, consistent with the dual roles of Eph receptors as tumor promoters and tumor suppressors, somatic mutations have the potential to increase or decrease Eph function, resulting in changes in the downstream signaling transduction.
Collapse
Affiliation(s)
- Yunyoung Kim
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York 11794, United States
| | - W Todd Miller
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York 11794, United States
- Department of Veterans Affairs Medical Center, Northport, New York 11768, United States
| |
Collapse
|
6
|
Bai H, Cheng L, Liu W, Xu WY, Huo Y, Diao L, Ji H, Xiong L. Genetic alterations predict poor efficacy, outcomes and resistance to second-line osimertinib treatment in non-small cell lung cancer. Am J Cancer Res 2024; 14:33-51. [PMID: 38323283 PMCID: PMC10839301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/01/2024] [Indexed: 02/08/2024] Open
Abstract
The genetic heterogeneity of non-small cell lung cancer (NSCLC) may impact clinical response and outcomes to targeted therapies. In second-line osimertinib treatment for NSCLC, real-world data on genetic biomarkers for treatment efficacy and prognosis remain incomplete. This real-world study involved 68 NSCLC patients receiving first-generation epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). All of these patients developed resistance, and 49 of them subsequently underwent second-line osimertinib treatment. A 639-gene DNA panel was employed to assess the impact of molecular alterations on treatment efficacy, clinical outcomes and resistance. The findings showed that the median progression-free survival (PFS) for second-line osimertinib therapy was 13.3 months. Genes alterations such as P21 (RAC1) activated kinase 5 (PAK5), RNA binding motif protein 10 (RBM10), and EPH receptor A3 (EPHA3) mutations were associated with significantly shorter PFS in osimertinib therapy. At multivariate analysis, they were all independent risk predictors of shorter PFS. Additionally, the median overall survival (OS) for osimertinib was 26.2 months. Glutamate ionotropic receptor NMDA type subunit 2A (GRIN2A), hepatocyte growth factor (HGF), and RBM10 mutations were significantly associated with poorer OS in osimertinib treatment. The multivariate analysis demonstrated that only RBM10 mutation emerged as an independent risk predictor of shorter OS. In vitro experiments showed that RBM10 mutations could promote the proliferation and migration ability of NSCLC cells and reduced cell apoptosis. The resistance mechanisms to osimertinib were heterogeneous. Histone cluster 1 H2B family member D (HIST1H2BD) acted as a novel resistance mechanism to osimertinib. Previously unreported HIST1H2BD mutations (p.K25Q and p.E36D) were detected in the NSCLC tissues. In vitro experiments confirmed that HIST1H2BD mutations led to resistance to osimertinib. In summary, we demonstrate that genetic biomarkers, such as PAK5, RBM10, and EPHA3, are independent predictors of PFS in second-line osimertinib treatment, with RBM10 emerging as an independent predictor of OS. Additionally, HIST1H2BD represents a novel resistance mutation to osimertinib. All of these findings offer valuable insights for making personalized treatment strategies for NSCLC patients.
Collapse
Affiliation(s)
- Hao Bai
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200030, P. R. China
| | - Lei Cheng
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200030, P. R. China
| | - Wanting Liu
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200030, P. R. China
| | - Wang-Yang Xu
- Singlera Genomics Ltd.Shanghai 201203, P. R. China
| | - Yingying Huo
- Singlera Genomics Ltd.Shanghai 201203, P. R. China
| | - Le Diao
- Singlera Genomics Ltd.Shanghai 201203, P. R. China
| | - Hao Ji
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200030, P. R. China
- Department of Healthcare Associated Infection Management, Shanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200030, P. R. China
| | - Liwen Xiong
- Department of Pulmonary and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200030, P. R. China
| |
Collapse
|
7
|
Abstract
Evidence implicating Eph receptor tyrosine kinases and their ephrin ligands (that together make up the 'Eph system') in cancer development and progression has been accumulating since the discovery of the first Eph receptor approximately 35 years ago. Advances in the past decade and a half have considerably increased the understanding of Eph receptor-ephrin signalling mechanisms in cancer and have uncovered intriguing new roles in cancer progression and drug resistance. This Review focuses mainly on these more recent developments. I provide an update on the different mechanisms of Eph receptor-ephrin-mediated cell-cell communication and cell autonomous signalling, as well as on the interplay of the Eph system with other signalling systems. I further discuss recent advances in elucidating how the Eph system controls tumour expansion, invasiveness and metastasis, supports cancer stem cells, and drives therapy resistance. In addition to functioning within cancer cells, the Eph system also mediates the reciprocal communication between cancer cells and cells of the tumour microenvironment. The involvement of the Eph system in tumour angiogenesis is well established, but recent findings also demonstrate roles in immune cells, cancer-associated fibroblasts and the extracellular matrix. Lastly, I discuss strategies under evaluation for therapeutic targeting of Eph receptors-ephrins in cancer and conclude with an outlook on promising future research directions.
Collapse
Affiliation(s)
- Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
8
|
Kundu S, Nunes L, Adler J, Mathot L, Stoimenov I, Sjöblom T. Recurring EPHB1 mutations in human cancers alter receptor signalling and compartmentalisation of colorectal cancer cells. Cell Commun Signal 2023; 21:354. [PMID: 38102712 PMCID: PMC10722860 DOI: 10.1186/s12964-023-01378-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/01/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Ephrin (EPH) receptors have been implicated in tumorigenesis and metastasis, but the functional understanding of mutations observed in human cancers is limited. We previously demonstrated reduced cell compartmentalisation for somatic EPHB1 mutations found in metastatic colorectal cancer cases. We therefore integrated pan-cancer and pan-EPH mutational data to prioritise recurrent EPHB1 mutations for functional studies to understand their contribution to cancer development and metastasis. METHODS Here, 79,151 somatic mutations in 9,898 samples of 33 different tumour types were analysed with a bioinformatic pipeline to find 3D-mutated cluster pairs and hotspot mutations in EPH receptors. From these, 15 recurring EPHB1 mutations were stably expressed in colorectal cancer followed by confocal microscopy based in vitro compartmentalisation assays and phospho-proteome analysis. RESULTS The 3D-protein structure-based bioinformatics analysis resulted in 63% EPHB1 mutants with compartmentalisation phenotypes vs 43% for hotspot mutations. Whereas the ligand-binding domain mutations C61Y, R90C, and R170W, the fibronectin domain mutation R351L, and the kinase domain mutation D762N displayed reduced to strongly compromised cell compartmentalisation, the kinase domain mutations R743W and G821R enhanced this phenotype. While mutants with reduced compartmentalisation also had reduced ligand induced receptor phosphorylation, the enhanced compartmentalisation was not linked to receptor phosphorylation level. Phosphoproteome mapping pinpointed the PI3K pathway and PIK3C2B phosphorylation in cells harbouring mutants with reduced compartmentalisation. CONCLUSIONS This is the first integrative study of pan-cancer EPH receptor mutations followed by in vitro validation, a robust way to identify cancer-causing mutations, uncovering EPHB1 mutation phenotypes and demonstrating the utility of protein structure-based mutation analysis in characterization of novel cancer genes. Video Abstract.
Collapse
Affiliation(s)
- Snehangshu Kundu
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Luís Nunes
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jeremy Adler
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lucy Mathot
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ivaylo Stoimenov
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tobias Sjöblom
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
9
|
Eph Receptors in Cancer. Biomedicines 2023; 11:biomedicines11020315. [PMID: 36830852 PMCID: PMC9953285 DOI: 10.3390/biomedicines11020315] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Eph receptor tyrosine kinases play critical functions during development, in the formation of tissue and organ borders, and the vascular and neural systems. Uniquely among tyrosine kinases, their activities are controlled by binding to membrane-bound ligands, called ephrins. Ephs and ephrins generally have a low expression in adults, functioning mainly in tissue homeostasis and plasticity, but are often overexpressed in cancers, where they are especially associated with undifferentiated or progenitor cells, and with tumour development, vasculature, and invasion. Mutations in Eph receptors also occur in various tumour types and are suspected to promote tumourigenesis. Ephs and ephrins have the capacity to operate as both tumour promoters and tumour suppressors, depending on the circumstances. They have been demonstrated to impact tumour cell proliferation, migration, and invasion in vitro, as well as tumour development, angiogenesis, and metastases in vivo, making them potential therapeutic targets. However, successful development of therapies will require detailed understanding of the opposing roles of Ephs in various cancers. In this review, we discuss the variations in Eph expression and functions in a variety of malignancies. We also describe the multiple strategies that are currently available to target them in tumours, including preclinical and clinical development.
Collapse
|
10
|
Wong KK, Bateman NW, Ng CW, Tsang YTM, Sun CS, Celestino J, Nguyen TV, Malpica A, Hillman RT, Zhang J, Futreal PA, Rojas C, Conrads KA, Hood BL, Dalgard CL, Wilkerson MD, Phippen NT, Conrads TP, Maxwell GL, Sood AK, Gershenson DM. Integrated multi-omic analysis of low-grade ovarian serous carcinoma collected from short and long-term survivors. J Transl Med 2022; 20:606. [PMID: 36528667 PMCID: PMC9758924 DOI: 10.1186/s12967-022-03820-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Low-grade serous ovarian cancer (LGSOC) is a rare disease that occurs more frequently in younger women than those with high-grade disease. The current treatment is suboptimal and a better understanding of the molecular pathogenesis of this disease is required. In this study, we compared the proteogenomic analyses of LGSOCs from short- and long-term survivors (defined as < 40 and > 60 months, respectively). Our goal was to identify novel mutations, proteins, and mRNA transcripts that are dysregulated in LGSOC, particularly in short-term survivors. METHODS Initially, targeted sequencing of 409 cancer-related genes was performed on 22 LGSOC and 6 serous borderline ovarian tumor samples. Subsequently, whole-genome sequencing analysis was performed on 14 LGSOC samples (7 long-term survivors and 7 short-term survivors) with matched normal tissue samples. RNA sequencing (RNA-seq), quantitative proteomics, and phosphoproteomic analyses were also performed. RESULTS We identified single-nucleotide variants (SNVs) (range: 5688-14,833 per sample), insertion and deletion variants (indels) (range: 880-1065), and regions with copy number variants (CNVs) (range: 62-335) among the 14 LGSOC samples. Among all SNVs and indels, 2637 mutation sites were found in the exonic regions. The allele frequencies of the detected variants were low (median12%). The identified recurrent nonsynonymous missense mutations included KRAS, NRAS, EIF1AX, UBR5, and DNM3 mutations. Mutations in DNM3 and UBR5 have not previously been reported in LGSOC. For the two samples, somatic DNM3 nonsynonymous missense mutations in the exonic region were validated using Sanger sequencing. The third sample contained two missense mutations in the intronic region of DNM3, leading to a frameshift mutation detected in RNA transcripts in the RNA-seq data. Among the 14 LGSOC samples, 7754 proteins and 9733 phosphosites were detected by global proteomic analysis. Some of these proteins and signaling pathways, such as BST1, TBXAS1, MPEG1, HBA1, and phosphorylated ASAP1, are potential therapeutic targets. CONCLUSIONS This is the first study to use whole-genome sequencing to detect somatic mutations in LGSOCs with matched normal tissues. We detected and validated novel mutations in DNM3, which were present in 3 of the 14 samples analyzed. Additionally, we identified novel indels, regions with CNVs, dysregulated mRNA, dysregulated proteins, and phosphosites that are more prevalent in short-term survivors. This integrated proteogenomic analysis can guide research into the pathogenesis and treatment of LGSOC.
Collapse
Affiliation(s)
- Kwong-Kwok Wong
- grid.240145.60000 0001 2291 4776Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Room T4-3900, Clinical Research Building, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Nicholas W. Bateman
- grid.414467.40000 0001 0560 6544Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for Advancement of Military Medicine, Inc., Bethesda, MD USA
| | - Chun Wai Ng
- grid.240145.60000 0001 2291 4776Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Room T4-3900, Clinical Research Building, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Yvonne T. M. Tsang
- grid.240145.60000 0001 2291 4776Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Room T4-3900, Clinical Research Building, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Charlotte S. Sun
- grid.240145.60000 0001 2291 4776Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Room T4-3900, Clinical Research Building, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Joseph Celestino
- grid.240145.60000 0001 2291 4776Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Room T4-3900, Clinical Research Building, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Tri V. Nguyen
- grid.240145.60000 0001 2291 4776Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Room T4-3900, Clinical Research Building, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Anais Malpica
- grid.240145.60000 0001 2291 4776Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - R. Tyler Hillman
- grid.240145.60000 0001 2291 4776Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Room T4-3900, Clinical Research Building, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Jianhua Zhang
- grid.240145.60000 0001 2291 4776Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - P. Andrew Futreal
- grid.240145.60000 0001 2291 4776Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Christine Rojas
- grid.414467.40000 0001 0560 6544Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD USA
| | - Kelly A. Conrads
- grid.414467.40000 0001 0560 6544Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for Advancement of Military Medicine, Inc., Bethesda, MD USA
| | - Brian L. Hood
- grid.414467.40000 0001 0560 6544Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD USA ,grid.201075.10000 0004 0614 9826Henry M. Jackson Foundation for Advancement of Military Medicine, Inc., Bethesda, MD USA
| | - Clifton L. Dalgard
- grid.265436.00000 0001 0421 5525Department of Anatomy, Physiology and Genetics and Center for Military Precision Health, Uniformed Services University of the Health Sciences, Bethesda, MD USA
| | - Matthew D. Wilkerson
- grid.265436.00000 0001 0421 5525Department of Anatomy, Physiology and Genetics and Center for Military Precision Health, Uniformed Services University of the Health Sciences, Bethesda, MD USA
| | - Neil T. Phippen
- grid.414467.40000 0001 0560 6544Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD USA
| | - Thomas P. Conrads
- grid.414629.c0000 0004 0401 0871Women’s Health Integrated Research Center at Inova Health System, Women’s Service Line, Inova Fairfax Medical Campus, Falls Church, VA USA ,grid.414467.40000 0001 0560 6544Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD USA
| | - George L. Maxwell
- grid.414629.c0000 0004 0401 0871Women’s Health Integrated Research Center at Inova Health System, Women’s Service Line, Inova Fairfax Medical Campus, Falls Church, VA USA ,grid.414467.40000 0001 0560 6544Gynecologic Cancer Center of Excellence, Department of Obstetrics and Gynecology, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD USA
| | - Anil K. Sood
- grid.240145.60000 0001 2291 4776Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Room T4-3900, Clinical Research Building, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - David M. Gershenson
- grid.240145.60000 0001 2291 4776Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Room T4-3900, Clinical Research Building, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| |
Collapse
|
11
|
Al-Mathkour MM, Dwead AM, Alp E, Boston AM, Cinar B. The Hippo effector YAP1/TEAD1 regulates EPHA3 expression to control cell contact and motility. Sci Rep 2022; 12:3840. [PMID: 35264657 PMCID: PMC8907295 DOI: 10.1038/s41598-022-07790-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/24/2022] [Indexed: 11/09/2022] Open
Abstract
The EPHA3 protein tyrosine kinase, a member of the ephrin receptor family, regulates cell fate, cell motility, and cell-cell interaction. These cellular events are critical for tissue development, immunological responses, and the processes of tumorigenesis. Earlier studies revealed that signaling via the STK4-encoded MST1 serine-threonine protein kinase, a core component of the Hippo pathway, attenuated EPHA3 expression. Here, we investigated the mechanism by which MST1 regulates EPHA3. Our findings have revealed that the transcriptional regulators YAP1 and TEAD1 are crucial activators of EPHA3 transcription. Silencing YAP1 and TEAD1 suppressed the EPHA3 protein and mRNA levels. In addition, we identified putative TEAD enhancers in the distal EPHA3 promoter, where YAP1 and TEAD1 bind and promote EPHA3 expression. Furthermore, EPHA3 knockout by CRISPR/Cas9 technology reduced cell-cell interaction and cell motility. These findings demonstrate that EPHA3 is transcriptionally regulated by YAP1/TEAD1 of the Hippo pathway, suggesting that it is sensitive to cell contact-dependent interactions.
Collapse
Affiliation(s)
- Marwah M Al-Mathkour
- Department of Biology and the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr, SW, Atlanta, GA, 30314, USA
| | - Abdulrahman M Dwead
- Department of Biology and the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr, SW, Atlanta, GA, 30314, USA
| | - Esma Alp
- Department of Biology and the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr, SW, Atlanta, GA, 30314, USA
| | - Ava M Boston
- Department of Biology and the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr, SW, Atlanta, GA, 30314, USA
| | - Bekir Cinar
- Department of Biology and the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr, SW, Atlanta, GA, 30314, USA. .,Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| |
Collapse
|
12
|
Bai H, Duan J, Li C, Xie W, Fang W, Xu Y, Wang G, Wan R, Sun J, Xu J, Wang X, Fei K, Zhao Z, Cai S, Zhang L, Wang J, Wang Z. EPHA mutation as a predictor of immunotherapeutic efficacy in lung adenocarcinoma. J Immunother Cancer 2021; 8:jitc-2020-001315. [PMID: 33303576 PMCID: PMC7733211 DOI: 10.1136/jitc-2020-001315] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
Background Ephrin type-A receptors (EPHA) are members of family of receptor tyrosine kinases and are related to tumor immunogenicity and immune microenvironment, however, the association between EPHA mutation (EPHAmut) and efficacy of immune checkpoint inhibitors (ICIs) has not been investigated in non-small cell lung cancer (NSCLC). Methods Multiple cohorts were used to assess the immunotherapeutic predictive performance of EPHAmut, including one discovery cohort (n=79) and two public validation cohort (cohort 1: NSCLC, n=165; cohort 2: pan-cancer, n=1662). The Cancer Genome Atlas cohort was used for prognostic analysis and mechanism exploration. Results In the discovery cohort, patients with EPHAmut had superior disease control rate (72.2% vs 36.1%, p=0.01) and progression-free survival (PFS) (HR 0.38; 95% CI 0.21 to 0.68; p<0.001) compared with those with wide-type EPHA (EPHAwt) in NSCLC. The association between EPHAmut and immunotherapy outcomes in NSCLC was consistently observed in the validation cohorts by multivariable models (cohort 1, PFS HR 0.59; 95% CI 0.37 to 0.96; p=0.03; cohort 2, overall survival (OS) HR 0.63; 95% CI 0.41 to 0.98; p=0.04). Further pooled estimates of the discovery and validation cohorts showed that patients with EPHAmut exhibited a significantly longer PFS and OS in lung adenocarcinoma (LUAD) while not squamous cell lung cancer (LUSC). Consistently, mechanism analysis revealed that patients with EPHAmut was associated with increased T cell signatures and downregulated transforming growth factor-β signaling compared with patients with EPHAwt in LUAD while not LUSC. Conclusions Our results demonstrated that EPHAmut is an independent classifier that could stratify patients with LUAD for ICIs therapy. Further prospective studies are warranted. Trial registration number NCC2016JZ-03, NCC2018-092.
Collapse
Affiliation(s)
- Hua Bai
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianchun Duan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chengcheng Li
- The Medical Department, Burning Rock Biotech, Guangzhou, China
| | - Wenzhuan Xie
- The Medical Department, 3D Medicines Inc, Shanghai, China
| | - Wenfeng Fang
- Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yu Xu
- The Medical Department, Burning Rock Biotech, Guangzhou, China
| | - Guoqiang Wang
- The Medical Department, Burning Rock Biotech, Guangzhou, China
| | - Rui Wan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jing Sun
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiachen Xu
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xin Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kailun Fei
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhengyi Zhao
- The Medical Department, 3D Medicines Inc, Shanghai, China
| | - Shangli Cai
- The Medical Department, Burning Rock Biotech, Guangzhou, China
| | - Li Zhang
- Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Lee S, Kim J, Jo J, Chang JW, Sim J, Yun H. Recent advances in development of hetero-bivalent kinase inhibitors. Eur J Med Chem 2021; 216:113318. [PMID: 33730624 DOI: 10.1016/j.ejmech.2021.113318] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
Identifying a pharmacological agent that targets only one of more than 500 kinases present in humans is an important challenge. One potential solution to this problem is the development of bivalent kinase inhibitors, which consist of two connected fragments, each bind to a dissimilar binding site of the bisubstrate enzyme. The main advantage of bivalent (type V) kinase inhibitors is generating more interactions with target enzymes that can enhance the molecules' selectivity and affinity compared to single-site inhibitors. Earlier type V inhibitors were not suitable for the cellular environment and were mostly used in in vitro studies. However, recently developed bivalent compounds have high kinase affinity, high biological and chemical stability in vivo. This review summarized the hetero-bivalent kinase inhibitors described in the literature from 2014 to the present. We attempted to classify the molecules by serine/threonine and tyrosine kinase inhibitors, and then each target kinase and its hetero-bivalent inhibitor was assessed in depth. In addition, we discussed the analysis of advantages, limitations, and perspectives of bivalent kinase inhibitors compared with the monovalent kinase inhibitors.
Collapse
Affiliation(s)
- Seungbeom Lee
- College of Pharmacy, CHA University, Pocheon-si, Gyeonggi-do, 11160, Republic of Korea
| | - Jisu Kim
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Jeyun Jo
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Jae Won Chang
- Department of Pharmacology & Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Department of Hematology & Medical Oncology, School of Medicine, Emory University, Atlanta, GA, USA; Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jaehoon Sim
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
14
|
Wang L, Tang S, Yu Y, Lv Y, Wang A, Yan X, Li N, Sha C, Sun K, Li Y. Intranasal Delivery of Temozolomide-Conjugated Gold Nanoparticles Functionalized with Anti-EphA3 for Glioblastoma Targeting. Mol Pharm 2021; 18:915-927. [PMID: 33417456 DOI: 10.1021/acs.molpharmaceut.0c00911] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glioblastoma multiforme (GBM) is a highly lethal and aggressive tumor of the brain that carries a poor prognosis. Temozolomide (TMZ) has been widely used as a first-line treatment for GBM. However, poor brain targeting, side effects, and drug resistance limit its application for the treatment of GBM. We designed a Temozolomide-conjugated gold nanoparticle functionalized with an antibody against the ephrin type-A receptor 3 (anti-EphA3-TMZ@GNPs) for targeted GBM therapy via intranasal administration. The system can bypass the blood-brain barrier and target active glioma cells to improve the glioma targeting of TMZ and enhance the treatment efficacy, while reducing the peripheral toxicity and drug resistance. The prepared anti-EphA3-TMZ@GNPs were 46.12 ± 2.0 nm and suitable for intranasal administration, which demonstrated high safety to the nasal mucosa in a toxicity assay. In vitro studies showed that anti-EphA3-TMZ@GNPs exhibited significantly enhanced cellular uptake and toxicity, and a higher cell apoptosis ratio has been seen compared with that of TMZ (54.9 and 14.1%, respectively) toward glioma cells (C6). The results from experiments on TMZ-resistant glioma cells (T98G) demonstrated that the IC50 of anti-EphA3-TMZ@GNPs (64.06 ± 0.16 μM) was 18.5-fold lower than that of TMZ. In addition, Western blot analysis also revealed that anti-EphA3-TMZ@GNPs effectively down-modulated expression of O6-methylguanine-DNA methyltransferase and increased chemosensitivity of T98G to TMZ. The antiglioma efficacy in vivo was investigated in orthotopic glioma-bearing rats, and the results demonstrated that the anti-EphA3-TMZ@GNPs prolonged the median survival time to 42 days and increased tumor-cell apoptosis dramatically compared with TMZ. In conclusion, anti-EphA3-TMZ@GNPs could serve as an intranasal drug delivery system for efficacious treatment of GBM.
Collapse
Affiliation(s)
- Liangxiao Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Shengnan Tang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Yawen Yu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Yanan Lv
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Aiping Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Xiuju Yan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Nuannuan Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Chunjie Sha
- State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Luye Pharmaceutical Co., Ltd., Yantai 264003, P.R. China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| | - Youxin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P.R. China
| |
Collapse
|
15
|
Chatterjee D, Chowdhury UF, Shohan MUS, Mohasin M, Kabir Y. In-silico predictions of deleterious SNPs in human ephrin type-A receptor 3 (EPHA3) gene. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
16
|
London M, Gallo E. Critical role of EphA3 in cancer and current state of EphA3 drug therapeutics. Mol Biol Rep 2020; 47:5523-5533. [PMID: 32621117 DOI: 10.1007/s11033-020-05571-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
Abstract
The erythropoietin-producing human hepatocellular (Eph) receptors are transmembrane glycoprotein members of the tyrosine kinase receptors family. The Ephs may bind to various ephrin ligands resulting in the phosphorylation of their tyrosine kinase domain and the activation of the Eph receptor. In this review we focus on EphA3, one receptor of the 14 different Ephs, as it carries out both redundant and restricted functions in the germline development of mammals and in the maintenance of various adult tissues. The loss of EphA3 regulation is correlated with various human malignancies, the most notable being cancer. This receptor is overexpressed and/or mutated in multiple tumors, and is also associated with poor prognosis and decreased survival in patients. Here we highlight the role of EphA3 in normal and malignant tissues that are specific to cancer; these include hematologic disorders, gastric cancer, glioblastoma multiforme, colorectal cancer, lung cancer, renal cell carcinoma, and prostate cancer. Moreover, various anticancer agents against EphA3 have been developed to either inhibit its kinase domain activity or to function as agonists. Thus, we examine the most potent small molecule drugs and mAb-based therapeutics against EphA3 that are currently in pre-clinical or clinical stages.
Collapse
Affiliation(s)
- Max London
- Department of Molecular Genetics, Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada
| | - Eugenio Gallo
- Department of Molecular Genetics, Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, M5S 3E1, Canada.
| |
Collapse
|
17
|
Chen P, Kuang P, Wang L, Li W, Chen B, Liu Y, Wang H, Zhao S, Ye L, Yu F, He Y, Zhou C. Mechanisms of drugs-resistance in small cell lung cancer: DNA-related, RNA-related, apoptosis-related, drug accumulation and metabolism procedure. Transl Lung Cancer Res 2020; 9:768-786. [PMID: 32676338 PMCID: PMC7354133 DOI: 10.21037/tlcr-19-547] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Small-cell lung cancer (SCLC), the highest malignant cancer amongst different types of lung cancer, has the feature of lower differentiation, rapid growth, and poor survival rate. Despite the dramatically initial sensitivity of SCLC to various types of treatment methods, including chemotherapy, radiotherapy and immunotherapy, the emergence of drugs-resistance is still a grandly clinical challenge. Therefore, in order to improve the prognosis and develop new therapeutic approaches, having a better understanding of the complex mechanisms of resistance in SCLC is of great clinical significance. This review summarized recent advances in understanding of multiple mechanisms which are involved in the resistance during SCLC treatment, including DNA-related process, RNA-related process, apoptosis-related mechanism, and the process of drug accumulation and metabolism.
Collapse
Affiliation(s)
- Peixin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Department of Medical School, Tongji University, Shanghai, China
| | - Peng Kuang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Department of Medical Oncology, The First Affiliated Hospital Of Nanchang University, Nanchang, China
| | - Lei Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Wei Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Bin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Yu Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Department of Medical School, Tongji University, Shanghai, China
| | - Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Department of Medical School, Tongji University, Shanghai, China
| | - Sha Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Lingyun Ye
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Feng Yu
- Department of Medical Oncology, The First Affiliated Hospital Of Nanchang University, Nanchang, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Buckens OJ, El Hassouni B, Giovannetti E, Peters GJ. The role of Eph receptors in cancer and how to target them: novel approaches in cancer treatment. Expert Opin Investig Drugs 2020; 29:567-582. [PMID: 32348169 DOI: 10.1080/13543784.2020.1762566] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Erythropoietin-producing human hepatocellular (Eph) receptors are among the largest family of tyrosine kinases that are divided into two classes: EphA and EphB receptors. Over the past two decades, their role in cancer has become more evident. AREAS COVERED There is a need for new anticancer treatments and more insight in the emerging role of Eph receptors in cancer. Molecular mechanisms underlying the pro-tumorigenic effects of Eph receptors could be exploited for future therapeutic strategies. This review describes the variability in expression levels and different effects on oncogenic and tumor suppressive downstream signaling of Eph receptors in various cancer types, and the small molecules, antibodies and peptides that target these receptors. EXPERT OPINION The complexity of Eph signaling is a challenge for the definition of clear targets for cancer treatment. Nevertheless, numerous drugs that target EphA2 and EphB4 are currently in clinical trials. However, some Eph targeted drugs also inhibit other tyrosine kinases, so it is unclear to what extent the targeting of Eph receptors contributes to their efficacy. Future research is warranted for an improved understanding of the full network in which Eph receptors function. This will be critical for the improvement of the anticancer effects of drugs that target the Eph receptors.
Collapse
Affiliation(s)
- Oscar J Buckens
- Amsterdam University College , Amsterdam, The Netherlands
- Laboratory Medical Oncology, Amsterdam UMC Location VUMC, CCA , Amsterdam, The Netherlands
| | - Btissame El Hassouni
- Laboratory Medical Oncology, Amsterdam UMC Location VUMC, CCA , Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Laboratory Medical Oncology, Amsterdam UMC Location VUMC, CCA , Amsterdam, The Netherlands
- Pharmacology Lab, AIRC Start up Unit, Fondazione Pisana per La Scienza , Pisa, Italy
| | - Godefridus J Peters
- Laboratory Medical Oncology, Amsterdam UMC Location VUMC, CCA , Amsterdam, The Netherlands
- Department of Biochemistry, Medical University of Gdansk , Gdansk, Poland
| |
Collapse
|
19
|
EphA3 Downregulation by Hypermethylation Associated with Lymph Node Metastasis and TNM Stage in Colorectal Cancer. Dig Dis Sci 2019; 64:1514-1522. [PMID: 30560328 DOI: 10.1007/s10620-018-5421-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 12/07/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND EphA3 is a member of Eph receptors, which is involved in tumorigenesis. The expression and clinical significance of EphA3 in colorectal cancer (CRC) have not been fully investigated. METHODS Four colon cancer cell lines and a set of CRC tissues were examined for EphA3 expression. The methylation status of a CpG island within the EphA3 promoter, the presence of four somatic EPHA3 mutations, and EPHA3 gene copy number variations were also analyzed in colon cancer cell lines. RESULTS EphA3 expression was lost in all colon cancer cell lines examined. EphA3 expression was lower in tumor tissues when compared with normal intestinal tissues (P < 0.001). A comparison of EphA3 immunohistochemical scores for tumor and matched normal intestinal tissues revealed that the protein was downregulated in 82/164 (50.0%), unchanged in 52/164 (31.7%), and upregulated in 30/164 (18.3%) cases of CRC. EphA3 expression was negatively associated with lymph node metastasis (P =0.014, rs=- 0.192) and TNM stage (P =0.001, rs=- 0.260). Downregulation of expression was more common in older patients (P =0.013, rs=0.193). Methylated promoter DNA was detected in all four colon cancer cell lines. Somatic mutations or EphA3 gene deletion was not detected. CONCLUSIONS EphA3 was downregulated in the majority of CRC. Hypermethylation of a CpG island within the EPHA3 promoter provides a possible mechanism. Loss of EphA3 expression was associated with lymph node metastasis and TNM stage and may therefore prove useful as a predictor for tumor spread in CRC.
Collapse
|
20
|
Ierodiakonou D, Coull BA, Zanobetti A, Postma DS, Boezen HM, Vonk JM, McKone EF, Schildcrout JS, Koppelman GH, Croteau-Chonka DC, Lumley T, Koutrakis P, Schwartz J, Gold DR, Weiss ST. Pathway analysis of a genome-wide gene by air pollution interaction study in asthmatic children. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2019; 29:539-547. [PMID: 31028280 PMCID: PMC10730425 DOI: 10.1038/s41370-019-0136-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 11/23/2018] [Accepted: 03/08/2019] [Indexed: 05/05/2023]
Abstract
OBJECTIVES We aimed to investigate the role of genetics in the respiratory response of asthmatic children to air pollution, with a genome-wide level analysis of gene by nitrogen dioxide (NO2) and carbon monoxide (CO) interaction on lung function and to identify biological pathways involved. METHODS We used a two-step method for fast linear mixed model computations for genome-wide association studies, exploring whether variants modify the longitudinal relationship between 4-month average pollution and post-bronchodilator FEV1 in 522 Caucasian and 88 African-American asthmatic children. Top hits were confirmed with classic linear mixed-effect models. We used the improved gene set enrichment analysis for GWAS (i-GSEA4GWAS) to identify plausible pathways. RESULTS Two SNPs near the EPHA3 (rs13090972 and rs958144) and one in TXNDC8 (rs7041938) showed significant interactions with NO2 in Caucasians but we did not replicate this locus in African-Americans. SNP-CO interactions did not reach genome-wide significance. The i-GSEA4GWAS showed a pathway linked to the HO-1/CO system to be associated with CO-related FEV1 changes. For NO2-related FEV1 responses, we identified pathways involved in cellular adhesion, oxidative stress, inflammation, and metabolic responses. CONCLUSION The host lung function response to long-term exposure to pollution is linked to genes involved in cellular adhesion, oxidative stress, inflammatory, and metabolic pathways.
Collapse
Affiliation(s)
- Despo Ierodiakonou
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Brent A Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Antonella Zanobetti
- Environmental Epidemiology and Risk Program, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Dirkje S Postma
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - H Marike Boezen
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Judith M Vonk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Edward F McKone
- Department of Respiratory Medicine, St. Vincent University Hospital, Dublin, Ireland
| | - Jonathan S Schildcrout
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, United States
| | - Gerard H Koppelman
- Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pediatric Pulmonology and Pediatric Allergology-Beatrix Children Hospital, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Damien C Croteau-Chonka
- Channing Division of Network Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Thomas Lumley
- Department of Biostatistics, University of Auckland, Auckland, New Zealand
| | - Petros Koutrakis
- Environmental Epidemiology and Risk Program, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Joel Schwartz
- Environmental Epidemiology and Risk Program, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Diane R Gold
- Environmental Epidemiology and Risk Program, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Channing Division of Network Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
21
|
Joshi H, Vastrad B, Vastrad C. Identification of Important Invasion-Related Genes in Non-functional Pituitary Adenomas. J Mol Neurosci 2019; 68:565-589. [PMID: 30982163 DOI: 10.1007/s12031-019-01318-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/29/2019] [Indexed: 12/18/2022]
Abstract
Non-functioning pituitary adenomas (NFPAs) are locally invasive with high morbidity. The objective of this study was to diagnose important genes and pathways related to the invasiveness of NFPAs and gain more insights into the underlying molecular mechanisms of NFPAs. The gene expression profiles of GSE51618 were downloaded from the Gene Expression Omnibus database with 4 non-invasive NFPA samples, 3 invasive NFPA samples, and 3 normal pituitary gland samples. Differentially expressed genes (DEGs) are screened between invasive NFPA samples and normal pituitary gland samples, followed by pathway and ontology (GO) enrichment analyses. Subsequently, a protein-protein interaction (PPI) network was constructed and analyzed for these DEGs, and module analysis was performed. In addition, a target gene-miRNA network and target gene-TF (transcription factor) network were analyzed for these DEGs. A total of 879 DEGs were obtained. Among them, 439 genes were upregulated and 440 genes were downregulated. Pathway enrichment analysis indicated that the upregulated genes were significantly enriched in cysteine biosynthesis/homocysteine degradation (trans-sulfuration) and PI3K-Akt signaling pathway, while the downregulated genes were mainly associated with docosahexaenoate biosynthesis III (mammals) and chemokine signaling pathway. GO enrichment analysis indicated that the upregulated genes were significantly enriched in animal organ morphogenesis, extracellular matrix, and hormone activity, while the downregulated genes were mainly associated with leukocyte chemotaxis, dendrites, and RAGE receptor binding. Subsequently, ESR1, SOX2, TTN, GFAP, WIF1, TTR, XIST, SPAG5, PPBP, AR, IL1R2, and HIST1H1C were diagnosed as the top hub genes in the upregulated and downregulated PPI networks and modules. In addition, HS3ST1, GPC4, CCND2, and SCD were diagnosed as the top hub genes in the upregulated and downregulated target gene-miRNA networks, while CISH, ISLR, UBE2E3, and CCNG2 were diagnosed as the top hub genes in the upregulated and downregulated target gene-TF networks. The new important DEGs and pathways diagnosed in this study may serve key roles in the invasiveness of NFPAs and indicate more molecular targets for the treatment of NFPAs.
Collapse
Affiliation(s)
- Harish Joshi
- Endocrine and Diabetes Care Center, Hubli, Karnataka, 5800029, India
| | - Basavaraj Vastrad
- Department of Pharmaceutics, SET'S College of Pharmacy, Dharwad, Karnataka, 580002, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, Karnataka, 580001, India.
| |
Collapse
|
22
|
Toyama M, Hamaoka Y, Katoh H. EphA3 is up-regulated by epidermal growth factor and promotes formation of glioblastoma cell aggregates. Biochem Biophys Res Commun 2019; 508:715-721. [PMID: 30528229 DOI: 10.1016/j.bbrc.2018.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 12/01/2018] [Indexed: 11/27/2022]
Abstract
EphA3, a member of the Eph family of receptor tyrosine kinases, has been reported to be overexpressed in some human cancers including glioblastoma. Here, we found that expression of EphA3 is up-regulated in response to epidermal growth factor (EGF) stimulation and promotes formation of cell aggregates in suspension culture of glioblastoma cells. Suppression of EphA3 expression by short hairpin RNA-mediated knockdown or CRISPR/Cas9-mediated gene deletion inhibited EGF-induced promotion of cell aggregate formation, whereas overexpression of EphA3 promoted formation of cell aggregates in suspension culture. EGF-induced EphA3 expression and promotion of cell aggregate formation required Akt activity. Furthermore, N-cadherin, whose expression was regulated by EGF and EphA3, contributed to the formation of cell aggregates in suspension culture. These results suggest that the regulation of EphA3 expression plays a critical role in glioblastoma cell growth in non-adherent conditions.
Collapse
Affiliation(s)
- Moe Toyama
- Laboratory of Molecular Neurobiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yuho Hamaoka
- Laboratory of Molecular Neurobiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hironori Katoh
- Laboratory of Molecular Neurobiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
23
|
Chen X, Lu B, Ma Q, Ji CD, Li JZ. EphA3 inhibits migration and invasion of esophageal cancer cells by activating the mesenchymal‑epithelial transition process. Int J Oncol 2018; 54:722-732. [PMID: 30483759 DOI: 10.3892/ijo.2018.4639] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/02/2018] [Indexed: 11/06/2022] Open
Abstract
Eph receptor tyrosine kinases are critical for cell‑cell communication during normal and oncogenic development. Eph receptor A3 (EphA3) expression is associated with tumor promotion in certain types of cancer; however, it acts as a tumor suppressor in others. The expression levels of EphA3 and its effects on tumor progression in esophageal squamous cell carcinoma (ESCC) cell lines were determined using reverse transcription‑quantitative polymerase chain reaction analysis and a Transwell invasion assay. The present study demonstrated that EphA3 expression was decreased in ESCC tissues and cell lines. Treatment with the DNA methylation inhibitor 5‑aza‑2'‑deoxycytidine increased the mRNA expression levels of EphA3 in the ESCC cell lines KYSE510 and KYSE30. In addition, overexpression of EphA3 in KYSE450 and KYSE510 cells inhibited cell migration and invasion. EphA3 overexpression also decreased RhoA GTPase. Furthermore, EphA3 overexpression induced mesenchymal‑epithelial transition, as demonstrated by epithelial‑like morphological alterations, increased expression of epithelial proteins (E‑cadherin and the tight junction protein 1 zonula occludens‑1) and decreased expression of mesenchymal proteins (Vimentin, N‑cadherin and Snail). Conversely, silencing EphA3 in KYSE410 cells triggered epithelial‑mesenchymal transition, and promoted cell migration and invasion. These results suggested that EphA3 may serve a tumor‑suppressor role in ESCC.
Collapse
Affiliation(s)
- Xia Chen
- Key Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, P.R. China
| | - Bin Lu
- International Joint Cancer Institute, Second Military Medical University, Shanghai 200433, P.R. China
| | - Qian Ma
- International Joint Cancer Institute, Second Military Medical University, Shanghai 200433, P.R. China
| | - Cheng-Dong Ji
- Department of Scientific Research Management, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, P.R. China
| | - Jian-Zhong Li
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
24
|
|
25
|
Wang Y, Shang Y, Li J, Chen W, Li G, Wan J, Liu W, Zhang M. Specific Eph receptor-cytoplasmic effector signaling mediated by SAM-SAM domain interactions. eLife 2018; 7:35677. [PMID: 29749928 PMCID: PMC5993539 DOI: 10.7554/elife.35677] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/10/2018] [Indexed: 02/06/2023] Open
Abstract
The Eph receptor tyrosine kinase (RTK) family is the largest subfamily of RTKs playing critical roles in many developmental processes such as tissue patterning, neurogenesis and neuronal circuit formation, angiogenesis, etc. How the 14 Eph proteins, via their highly similar cytoplasmic domains, can transmit diverse and sometimes opposite cellular signals upon engaging ephrins is a major unresolved question. Here, we systematically investigated the bindings of each SAM domain of Eph receptors to the SAM domains from SHIP2 and Odin, and uncover a highly specific SAM-SAM interaction-mediated cytoplasmic Eph-effector binding pattern. Comparative X-ray crystallographic studies of several SAM-SAM heterodimer complexes, together with biochemical and cell biology experiments, not only revealed the exquisite specificity code governing Eph/effector interactions but also allowed us to identify SAMD5 as a new Eph binding partner. Finally, these Eph/effector SAM heterodimer structures can explain many Eph SAM mutations identified in patients suffering from cancers and other diseases.
Collapse
Affiliation(s)
- Yue Wang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Yuan Shang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, China
| | - Jianchao Li
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, China
| | - Weidi Chen
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Gang Li
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jun Wan
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, China
| | - Wei Liu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Mingjie Zhang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, China
| |
Collapse
|
26
|
Salgia R, Kulkarni P, Gill PS. EphB4: A promising target for upper aerodigestive malignancies. Biochim Biophys Acta Rev Cancer 2018; 1869:128-137. [PMID: 29369779 PMCID: PMC5955724 DOI: 10.1016/j.bbcan.2018.01.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 12/14/2022]
Abstract
The erythropoietin-producing hepatocellular carcinoma (Eph) receptors are the largest family of receptor tyrosine kinases (RTKs) that include two major subclasses, EphA and EphB. They form an important cell communication system with critical and diverse roles in a variety of biological processes during embryonic development. However, dysregulation of the Eph/ephrin interactions is implicated in cancer contributing to tumour growth, metastasis, and angiogenesis. Here, we focus on EphB4 and review recent developments in elucidating its role in upper aerodigestive malignancies to include lung cancer, head and neck cancer, and mesothelioma. In particular, we summarize information regarding EphB4 structure/function and role in disease pathobiology. We also review the data supporting EphB4 as a potential pharmacological and immunotherapy target and finally, progress in the development of new therapeutic strategies including small molecule inhibitors of its activity is discussed. The emerging picture suggests that EphB4 is a valuable and attractive therapeutic target for upper aerodigestive malignancies.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Gene Expression Regulation, Neoplastic
- Head and Neck Neoplasms/drug therapy
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/metabolism
- Head and Neck Neoplasms/pathology
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mesothelioma/drug therapy
- Mesothelioma/genetics
- Mesothelioma/metabolism
- Mesothelioma/pathology
- Mesothelioma, Malignant
- Molecular Targeted Therapy
- Receptor, EphB4/antagonists & inhibitors
- Receptor, EphB4/genetics
- Receptor, EphB4/metabolism
- Signal Transduction
- Squamous Cell Carcinoma of Head and Neck
Collapse
Affiliation(s)
- Ravi Salgia
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, United States.
| | - Prakash Kulkarni
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, United States
| | - Prakash S Gill
- Department of Medicine, Division of Medical Oncology, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
27
|
Liu B, Wu C, Shen X, Pan W. A NOVEL AND EFFICIENT ALGORITHM FOR DE NOVO DISCOVERY OF MUTATED DRIVER PATHWAYS IN CANCER. Ann Appl Stat 2017; 11:1481-1512. [PMID: 29479394 DOI: 10.1214/17-aoas1042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Next-generation sequencing studies on cancer somatic mutations have discovered that driver mutations tend to appear in most tumor samples, but they barely overlap in any single tumor sample, presumably because a single driver mutation can perturb the whole pathway. Based on the corresponding new concepts of coverage and mutual exclusivity, new methods can be designed for de novo discovery of mutated driver pathways in cancer. Since the computational problem is a combinatorial optimization with an objective function involving a discontinuous indicator function in high dimension, many existing optimization algorithms, such as a brute force enumeration, gradient descent and Newton's methods, are practically infeasible or directly inapplicable. We develop a new algorithm based on a novel formulation of the problem as non-convex programming and non-convex regularization. The method is computationally more efficient, effective and scalable than existing Monte Carlo searching and several other algorithms, which have been applied to The Cancer Genome Atlas (TCGA) project. We also extend the new method for integrative analysis of both mutation and gene expression data. We demonstrate the promising performance of the new methods with applications to three cancer datasets to discover de novo mutated driver pathways.
Collapse
Affiliation(s)
- Binghui Liu
- Northeast Normal University.,University of Minnesota
| | | | | | | |
Collapse
|
28
|
Scott SN, Ostrovnaya I, Lin CM, Bouvier N, Bochner B, Iyer G, Solit D, Berger MF, Lin O. Next-generation sequencing of urine specimens: A novel platform for genomic analysis in patients with non-muscle-invasive urothelial carcinoma treated with bacille Calmette-Guérin. Cancer 2017; 125:416-426. [PMID: 28339163 PMCID: PMC5477237 DOI: 10.1002/cncy.21847] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Biopsies from patients with high-risk (HR) non-muscle-invasive urothelial carcinoma (NMIUC), especially flat urothelial carcinoma in situ, frequently contain scant diagnostic material or denuded mucosa only, and this precludes further extensive genomic analysis. This study evaluated the use of next-generation sequencing (NGS) analysis of urine cytology material from patients with HR NMIUC in an attempt to identify genetic alterations that might correlate with clinical features and responses to bacille Calmette-Guérin (BCG) treatment. METHODS Forty-one cytology slides from patients with HR NMIUC treated with intravesical BCG were selected for this study. Histological confirmation was available for all cases. The specimens were subjected to NGS analysis with a customized targeted exome capture assay composed of 341 genes. RESULTS In this cohort, genomic alterations were successfully identified in all cytology samples. Mutations were detected down to a 2% allele frequency and chromosomal rearrangements including copy number alterations and gene fusions were identified. The most frequently altered genes included telomerase reverse transcriptase (TERT), tumor protein 53 (TP53), Erb-B2 receptor tyrosine kinase 2 (ERBB2), and chromatin remodeling genes such as lysine demethylase 6A (KDM6A) and AT-rich interaction domain 1A (ARID1A). For patients with matched tumor tissue, cytology specimens revealed all mutations detected in tissue as well as additional mutations, and this suggested that urine might more effectively capture the full genetic heterogeneity of disease than an individual cystectomy. Alterations in multiple genes correlated with clinical and histopathological features, including responses to BCG treatment, flat architecture versus papillary architecture, and smoking history. CONCLUSIONS Urine specimens can replace tissue as a substrate for NGS analysis of HR NMIUC. Several genomic alterations identified in urine specimens might be associated with histological features and clinical characteristics. Cancer Cytopathol 2017;125:416-26. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Sasinya N. Scott
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Irina Ostrovnaya
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Caroline M. Lin
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nancy Bouvier
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bernard Bochner
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gopakumar Iyer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David Solit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael F. Berger
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Oscar Lin
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
29
|
Nasri B, Inokuchi M, Ishikawa T, Uetake H, Takagi Y, Otsuki S, Kojima K, Kawano T. High expression of EphA3 (erythropoietin-producing hepatocellular A3) in gastric cancer is associated with metastasis and poor survival. BMC Clin Pathol 2017; 17:8. [PMID: 28465671 PMCID: PMC5408411 DOI: 10.1186/s12907-017-0047-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 04/20/2017] [Indexed: 12/29/2022] Open
Abstract
Background As the major subfamily of receptor tyrosine, erythropoietin-producing hepatocellular (Eph) receptor has been related to progression and prognosis in different types of tumors. However, the role and mechanism of EPHA3 in gastric cancer is still not well understood. Methods Specimen were collected from 202 patients who underwent gastric resection for gastric adenocarcinoma. The expression of EphA3 was studied using immunohistochemistry. We analyzed the clinicopathological factors and prognostic relevance of EphA3 expression in gastric cancer. Results High expression of EphA3 was associated with male predominance (p = 0.031), differentiated histology (p < 0.001), depth of tumor (p = 0.002), lymph node metastasis (p = 0.001), distant metastasis (p = 0.021), liver metastasis (p = 0.024), advanced stage (p < 0.001), and high HER2 expression (p = 0.017). Relapse-free survival (RFS) was significantly worse in patients with high expression of EphA3 than in those with low expression of EphA3 (p = 0.014). Multivariate analysis for RFS showed that depth of tumor [hazard ratio (HR) 9.333, 95% confidence interval (CI) 2.183–39.911, p = 0.003] and lymph node metastasis [hazard ratio (HR) 5.734, 95% confidence interval (CI) 2.349–13.997, p < 0.001] were independent prognostic factors. Conclusions These findings suggest that high expression EphA3 may participate in metastasis and worse survival.
Collapse
Affiliation(s)
| | - Mikito Inokuchi
- Department of Surgical Oncology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Toshiaki Ishikawa
- Department of Surgical Oncology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Uetake
- Department of Surgical Oncology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Yoko Takagi
- Department of Translational Oncology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Sho Otsuki
- Department of Surgical Oncology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Kazuyuki Kojima
- Department of Surgical Oncology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Tatsuyuki Kawano
- Department of Surgical Oncology, Graduate School, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
30
|
Andretta E, Cartón-García F, Martínez-Barriocanal Á, de Marcondes PG, Jimenez-Flores LM, Macaya I, Bazzocco S, Bilic J, Rodrigues P, Nieto R, Landolfi S, Ramon y Cajal S, Schwartz S, Brown A, Dopeso H, Arango D. Investigation of the role of tyrosine kinase receptor EPHA3 in colorectal cancer. Sci Rep 2017; 7:41576. [PMID: 28169277 PMCID: PMC5294649 DOI: 10.1038/srep41576] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/22/2016] [Indexed: 12/23/2022] Open
Abstract
EPH signaling deregulation has been shown to be important for colorectal carcinogenesis and genome-wide sequencing efforts have identified EPHA3 as one of the most frequently mutated genes in these tumors. However, the role of EPHA3 in colorectal cancer has not been thoroughly investigated. We show here that ectopic expression of wild type EPHA3 in colon cancer cells did not affect their growth, motility/invasion or metastatic potential in vivo. Moreover, overexpression of mutant EPHA3 or deletion of the endogenous mutant EPHA3 in colon cancer cells did not affect their growth or motility. EPHA3 inactivation in mice did not initiate the tumorigenic process in their intestine, and had no effects on tumor size/multiplicity after tumor initiation either genetically or pharmacologically. In addition, immunohistochemical analysis of EPHA3 tumor levels did not reveal associations with survival or clinicopathological features of colorectal cancer patients. In conclusion, we show that EPHA3 does not play a major role in colorectal tumorigenesis. These results significantly contribute to our understanding of the role of EPH signaling during colorectal carcinogenesis, and highlighting the need for detailed functional studies to confirm the relevance of putative cancer driver genes identified in sequencing efforts of the cancer genome.
Collapse
Affiliation(s)
- Elena Andretta
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d’Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| | - Fernando Cartón-García
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d’Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| | - Águeda Martínez-Barriocanal
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d’Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| | - Priscila Guimarães de Marcondes
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d’Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| | - Lizbeth M. Jimenez-Flores
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d’Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| | - Irati Macaya
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d’Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| | - Sarah Bazzocco
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d’Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| | - Josipa Bilic
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d’Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| | - Paulo Rodrigues
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d’Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| | - Rocio Nieto
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d’Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| | | | | | - Simo Schwartz
- Group of Drug Delivery and Targeting, CIBBIM-Nanomedicine, Vall d’Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Arthur Brown
- Robarts Research Institute, London, Ontario, Canada
| | - Higinio Dopeso
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d’Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| | - Diego Arango
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d’Hebron University Hospital, Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| |
Collapse
|
31
|
Li M, Yang C, Liu X, Yuan L, Zhang F, Wang M, Miao D, Gu X, Jiang S, Cui B, Tong J, Yu Z. EphA3 promotes malignant transformation of colorectal epithelial cells by upregulating oncogenic pathways. Cancer Lett 2016; 383:195-203. [DOI: 10.1016/j.canlet.2016.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 09/26/2016] [Accepted: 10/02/2016] [Indexed: 10/20/2022]
|
32
|
Francica P, Aebersold DM, Medová M. Senescence as biologic endpoint following pharmacological targeting of receptor tyrosine kinases in cancer. Biochem Pharmacol 2016; 126:1-12. [PMID: 27574725 DOI: 10.1016/j.bcp.2016.08.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/25/2016] [Indexed: 12/11/2022]
Abstract
Cellular senescence was first described in 1961 in a seminal study by Hayflick and Moorhead as a limit to the replicative lifespan of somatic cells after serial cultivation. Since then, major advances in our understanding of senescence have been achieved suggesting that this mechanism is activated also by oncogenic stimuli, oxidative stress and DNA damage, giving rise to the concept of premature senescence. Regardless of the initial trigger, numerous experimental observations have been provided to support the notion that both replicative and premature senescence play pivotal roles in early stages of tumorigenesis and in response of tumor cells to anticancer treatments. Moreover, various studies have suggested that the induction of senescence by both chemo- and radiotherapy in a variety of cancer types correlates with treatment outcome. As it is widely accepted that cellular senescence may function as a fundamental barrier of tumor progression, the significance of senescence for clinical interventions that make use of novel molecular targeting-based modalities needs to be well defined. Interestingly, despite numerous studies evaluating efficacies of receptor tyrosine kinases (RTKs) targeting strategies in both preclinical and clinical settings, the relevance of RTKs inhibition-associated senescence in tumors remains less characterized. Here we review the available literature that describes premature senescence as a major mechanism following targeting of RTKs in preclinical as well as in clinical settings. Additionally, we discuss the possible role of diverse RTKs in regulating the induction of senescence following cellular stress and possible implications of this crosstalk in identification of biomarkers of inhibitor-mediated chemo- and radiosensitization approaches.
Collapse
Affiliation(s)
- Paola Francica
- Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, 3010 Bern, Switzerland; Department of Clinical Research, University of Bern, 3008 Bern, Switzerland
| | - Daniel M Aebersold
- Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, 3010 Bern, Switzerland; Department of Clinical Research, University of Bern, 3008 Bern, Switzerland
| | - Michaela Medová
- Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, 3010 Bern, Switzerland; Department of Clinical Research, University of Bern, 3008 Bern, Switzerland.
| |
Collapse
|
33
|
Wang X, Xu H, Cao G, Wu Z, Wang J. Loss of EphA3 Protein Expression Is Associated With Advanced TNM Stage in Clear-Cell Renal Cell Carcinoma. Clin Genitourin Cancer 2016; 15:e169-e173. [PMID: 27591824 DOI: 10.1016/j.clgc.2016.07.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/25/2016] [Accepted: 07/30/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND Erythropoietin-producing hepatocellular carcinoma (Eph) receptors constitute the largest family of receptor tyrosine kinases. Ephs and their ligands ephrins play an important role in development and carcinogenesis. The expression of EphA3, an Eph family member, has been investigated in a variety of human cancers, with mixed results. High levels of EphA3 protein expression have been reported in colorectal, prostate, and gastric cancers, whereas loss of protein expression has been reported in lung and hematopoietic cancers. EphA3 expression in clear-cell renal cell carcinoma (ccRCC) and its association with clinicopathological parameters has not previously been examined. The aim of this study was to determine the cancerous value of EphA3 protein expression in patients with ccRCC. MATERIALS AND METHODS This study included 68 patients with ccRCC. EphA3 protein expression was examined in ccRCC tissue samples using immunohistochemistry and a specific polyclonal antibody, and the correlation between EphA3 expression and clinicopathological parameters was subsequently evaluated. RESULTS High EphA3 protein expression was observed in all normal renal tubules. In the 68 ccRCC patient samples examined, EphA3 protein expression was detected in 19 cases (27.9%) and undetectable in 49 cases (72.1%). EphA3 protein expression was significantly associated with tumor diameter (P = .016) and tumor, node metastases stage (P = .029). No significant association between protein expression and sex (P = .387), age (P = .727), or nuclear grade (P = .243) was found. CONCLUSION Ourdata indicate that EphA3 protein expression is reduced in ccRCC, suggesting the possibility that this receptor functions as a tumor suppressor in this disease.
Collapse
Affiliation(s)
- Xiaolin Wang
- Department of Urology, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Haifei Xu
- Department of Urology, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Guangxin Cao
- Department of Urology, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Zhijun Wu
- Department of Radiotherapy, Nantong Tumor Hospital, Nantong, Jiangsu, China.
| | - Jiandong Wang
- Department of Pathology, Jinling Hospital, Nanjing, China.
| |
Collapse
|
34
|
EPHA3 regulates the multidrug resistance of small cell lung cancer via the PI3K/BMX/STAT3 signaling pathway. Tumour Biol 2016; 37:11959-11971. [PMID: 27101199 PMCID: PMC5080350 DOI: 10.1007/s13277-016-5048-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 04/01/2016] [Indexed: 11/18/2022] Open
Abstract
Multidrug resistance (MDR) is a major obstacle to the treatment of small cell lung cancer (SCLC). EPHA3 has been revealed to be the most frequently mutated Eph receptor gene in lung cancer with abnormal expression. Growing evidence indicates that the signaling proteins of EPHA3 downstream, including PI3K, BMX and STAT3, play crucial roles in tumorigenesis and cancer progression. To explore the possible role of EPHA3 in MDR, we assessed the influence of EPHA3 on chemoresistance, cell cycle, apoptosis, and tumor growth, as well as the relationship between EPHA3 and the expression of PI3K, BMX, and STAT3 in SCLC. We observed that overexpression of EPHA3 in SCLC cells decreased chemoresistance by increasing apoptosis and inducing G0/G1 arrest, accompanied by reduced phosphorylation of PI3K/BMX/STAT3 signaling pathway. Knockdown of EPHA3 expression generated a resistant phenotype of SCLC, as a result of decreased apoptosis and induced G2/M phase arrest. And re-expression of EPHA3 in these cells reversed the resistant phenotype. Meanwhile, increased phosphorylation of PI3K/BMX/STAT3 signaling pathway was observed in these cells with EPHA3 deficiency. Notably, both PI3K inhibitor (LY294002) and BMX inhibitor (LFM-A13) impaired the chemoresistance enhanced by EPHA3 deficiency in SCLC cell lines. Furthermore, EPHA3 inhibited growth of SCLC cells in vivo and was correlated with longer overall survival of SCLC patients. Thus, we first provide the evidences that EPHA3 is involved in regulating the MDR of SCLC via PI3K/BMX/STAT3 signaling and may be a new therapeutic target in SCLC.
Collapse
|
35
|
Singh DR, Cao Q, King C, Salotto M, Ahmed F, Zhou XY, Pasquale EB, Hristova K. Unliganded EphA3 dimerization promoted by the SAM domain. Biochem J 2015; 471:101-9. [PMID: 26232493 PMCID: PMC4692061 DOI: 10.1042/bj20150433] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/28/2015] [Accepted: 07/31/2015] [Indexed: 01/03/2023]
Abstract
The erythropoietin-producing hepatocellular carcinoma A3 (EphA3) receptor tyrosine kinase (RTK) regulates morphogenesis during development and is overexpressed and mutated in a variety of cancers. EphA3 activation is believed to follow a 'seeding mechanism' model, in which ligand binding to the monomeric receptor acts as a trigger for signal-productive receptor clustering. We study EphA3 lateral interactions on the surface of live cells and we demonstrate that EphA3 forms dimers in the absence of ligand binding. We further show that these dimers are stabilized by interactions involving the EphA3 sterile α-motif (SAM) domain. The discovery of unliganded EphA3 dimers challenges the current understanding of the chain of EphA3 activation events and suggests that EphA3 may follow the 'pre-formed dimer' model of activation known to be relevant for other receptor tyrosine kinases. The present work also establishes a new role for the SAM domain in promoting Eph receptor lateral interactions and signalling on the cell surface.
Collapse
Affiliation(s)
- Deo R Singh
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21212, U.S.A
| | - QingQing Cao
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21212, U.S.A
| | - Christopher King
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21212, U.S.A
| | - Matt Salotto
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21212, U.S.A
| | - Fozia Ahmed
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21212, U.S.A
| | - Xiang Yang Zhou
- Vaccine Center, The Wistar Institute, Philadelphia, PA 19104, U.S.A
| | - Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, U.S.A
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21212, U.S.A. Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD 21212, U.S.A.
| |
Collapse
|
36
|
Reid TE, Fortunak JM, Wutoh A, Simon Wang X. Cheminfomatic-based Drug Discovery of Human Tyrosine Kinase Inhibitors. Curr Top Med Chem 2015; 16:1452-62. [PMID: 26369823 DOI: 10.2174/1568026615666150915120814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 06/27/2015] [Accepted: 08/25/2015] [Indexed: 01/18/2023]
Abstract
Receptor Tyrosine Kinases (RTKs) are essential components for regulating cell-cell signaling and communication events in cell growth, proliferation, differentiation, survival and metabolism. Deregulation of RTKs and their associated signaling pathways can lead to a wide variety of human diseases such as immunodeficiency, diabetes, arterosclerosis, psoriasis and cancer. Thus RTKs have become one of the most important drug targets families in recent decade. Pharmaceutical companies have dedicated their research efforts towards the discovery of small-molecule inhibitors of RTKs, many of which had been approved by the U.S. Food and Drug Administration (US FDA) or are currently in clinical trials. The great successes in the development of small-molecule inhibitors of RTKs are largely attributed to the use of modern cheminformatic approaches to identifying lead scaffolds. Those include the quantitative structure-activity relationship (QSAR) modeling, as well as the structure-, and ligand-based pharmacophore modeling techniques in this case. Herein we inspected the literature thoroughly in an effort to conduct a comparative analysis of major findings regarding the essential structure-activity relationships (SARs)/pharmacophore features of known active RTK inhibitors, most of which were collected from cheminformatic modeling approaches.
Collapse
Affiliation(s)
| | | | | | - Xiang Simon Wang
- Molecular Modeling and Drug Discovery Core Laboratory for District of Columbia Center for AIDS Research (DC CFAR), Department of Pharmaceutical Sciences, Howard University, Washington, District of Columbia 20059, USA.
| |
Collapse
|
37
|
Ferguson BD, Carol Tan YH, Kanteti RS, Liu R, Gayed MJ, Vokes EE, Ferguson MK, John Iafrate A, Gill PS, Salgia R. Novel EPHB4 Receptor Tyrosine Kinase Mutations and Kinomic Pathway Analysis in Lung Cancer. Sci Rep 2015; 5:10641. [PMID: 26073592 PMCID: PMC4466581 DOI: 10.1038/srep10641] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 04/28/2015] [Indexed: 12/11/2022] Open
Abstract
Lung cancer outcomes remain poor despite the identification of several potential therapeutic targets. The EPHB4 receptor tyrosine kinase (RTK) has recently emerged as an oncogenic factor in many cancers, including lung cancer. Mutations of EPHB4 in lung cancers have previously been identified, though their significance remains unknown. Here, we report the identification of novel EPHB4 mutations that lead to putative structural alterations as well as increased cellular proliferation and motility. We also conducted a bioinformatic analysis of these mutations to demonstrate that they are mutually exclusive from other common RTK variants in lung cancer, that they correspond to analogous sites of other RTKs’ variations in cancers, and that they are predicted to be oncogenic based on biochemical, evolutionary, and domain-function constraints. Finally, we show that EPHB4 mutations can induce broad changes in the kinome signature of lung cancer cells. Taken together, these data illuminate the role of EPHB4 in lung cancer and further identify EPHB4 as a potentially important therapeutic target.
Collapse
Affiliation(s)
- Benjamin D Ferguson
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - Yi-Hung Carol Tan
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, Illinois, United States of America
| | - Rajani S Kanteti
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, Illinois, United States of America
| | - Ren Liu
- Department of Medicine, Division of Medical Oncology, University of Southern California, Los Angeles, California, United States of America
| | - Matthew J Gayed
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, Illinois, United States of America
| | - Everett E Vokes
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, Illinois, United States of America
| | - Mark K Ferguson
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America.,Comprehensive Cancer Center, University of Chicago, Chicago, Illinois, United States of America
| | - A John Iafrate
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Parkash S Gill
- Department of Medicine, Division of Medical Oncology, University of Southern California, Los Angeles, California, United States of America
| | - Ravi Salgia
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, Illinois, United States of America.,Comprehensive Cancer Center, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
38
|
Forse GJ, Uson ML, Nasertorabi F, Kolatkar A, Lamberto I, Pasquale EB, Kuhn P. Distinctive Structure of the EphA3/Ephrin-A5 Complex Reveals a Dual Mode of Eph Receptor Interaction for Ephrin-A5. PLoS One 2015; 10:e0127081. [PMID: 25993310 PMCID: PMC4439037 DOI: 10.1371/journal.pone.0127081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/11/2015] [Indexed: 11/19/2022] Open
Abstract
The Eph receptor tyrosine kinase/ephrin ligand system regulates a wide spectrum of physiological processes, while its dysregulation has been implicated in cancer progression. The human EphA3 receptor is widely upregulated in the tumor microenvironment and is highly expressed in some types of cancer cells. Furthermore, EphA3 is among the most highly mutated genes in lung cancer and it is also frequently mutated in other cancers. We report the structure of the ligand-binding domain of the EphA3 receptor in complex with its preferred ligand, ephrin-A5. The structure of the complex reveals a pronounced tilt of the ephrin-A5 ligand compared to its orientation when bound to the EphA2 and EphB2 receptors and similar to its orientation when bound to EphA4. This tilt brings an additional area of ephrin-A5 into contact with regions of EphA3 outside the ephrin-binding pocket thereby enlarging the size of the interface, which is consistent with the high binding affinity of ephrin-A5 for EphA3. This large variation in the tilt of ephrin-A5 bound to different Eph receptors has not been previously observed for other ephrins.
Collapse
Affiliation(s)
- Garry Jason Forse
- Dornsife College of Letters, Arts and Sciences, University of Southern California, 3430 S. Vermont Ave., Suite 105 (110), MC3301, Los Angeles, CA, 90089–3301, United States of America
| | - Maria Loressa Uson
- Dornsife College of Letters, Arts and Sciences, University of Southern California, 3430 S. Vermont Ave., Suite 105 (110), MC3301, Los Angeles, CA, 90089–3301, United States of America
| | - Fariborz Nasertorabi
- Dornsife College of Letters, Arts and Sciences, University of Southern California, 3430 S. Vermont Ave., Suite 105 (110), MC3301, Los Angeles, CA, 90089–3301, United States of America
| | - Anand Kolatkar
- Dornsife College of Letters, Arts and Sciences, University of Southern California, 3430 S. Vermont Ave., Suite 105 (110), MC3301, Los Angeles, CA, 90089–3301, United States of America
| | - Ilaria Lamberto
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California, 92037, United States of America
| | - Elena Bianca Pasquale
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California, 92037, United States of America
- Department of Pathology, University of California San Diego, La Jolla, California, 92093, United States of America
| | - Peter Kuhn
- Dornsife College of Letters, Arts and Sciences, University of Southern California, 3430 S. Vermont Ave., Suite 105 (110), MC3301, Los Angeles, CA, 90089–3301, United States of America
- * E-mail:
| |
Collapse
|
39
|
Zhao Y, Li H, Wu R, Li S, Wang P, Wang H, Wang J, Zhou J. Antitumor Effects of Oncolytic Adenovirus-Carrying siRNA Targeting Potential Oncogene EphA3. PLoS One 2015; 10:e0126726. [PMID: 25978371 PMCID: PMC4433270 DOI: 10.1371/journal.pone.0126726] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/07/2015] [Indexed: 11/18/2022] Open
Abstract
Conditionally replicating adenoviruses (CRAds) armed with antitumor transgenes hold promise for cancer treatment. In previous studies, we showed that the 1504-siRNA targeting potential oncogene EphA3 was an efficient therapeutic transgene and that the telomerase reverse transcriptase promoter (TERTp) driving the CRAd was a more advanced generation of CRAd. Therefore, we combined Ad-TERTp-E1A-1504 by inserting 1504-siRNA into the CRAd to study its antitumor effects and mechanism of action, using Ad-TERTp-E1A-NC and nonreplicating adenovirus carrying 1504-siRNA as controls. Cell viability assays and ED50 studies of growth inhibition confirmed that Ad-TERTp-E1A-1504 has 3.5- and 1,400-fold greater ability to kill EphA3- and TERT-expressing tumor cells compared to Ad-TERTp-E1A-NC and Ad-ΔE1A-1504, respectively. Also, Ad-TERTp-E1A-1504 had little effect on cells that modestly expressed EphA3 and TERT such as 2BS. The antitumor efficacy of Ad-TERTp-E1A-1504 was also validated in vivo. Furthermore, the virus yield of Ad-TERTp-E1A-1504 in C4-2B was ~1,000 times greater than that in 2BS. No obvious differences were observed between Ad-TERTp-E1A-1504 and Ad-TERTp-E1A-NC. Both acridine orange staining and Beclin1 protein measurements indicated that autophagy with Ad-TERTp-E1A-1504 at 5 and 10 MOI was higher than that of Ad-TERTp-E1A-NC. Finally, the classical negatively regulated autophagy signaling pathway, PI3K/AKT/mTOR, was suppressed (reduced phosphorylated form) in contrast to NC, and that this was mediated by 1504-siRNA. Thus, Ad- TERTp-E1A-1504 does not harm normal cells but has dual inhibiting and killing effects on TERT- and EphA3-positive tumor cells, and this effect is mediated by the AKT/mTOR signaling pathway via induction of autophagy. These data may offer a foundation for novel antitumor therapies targeting this mechanism.
Collapse
Affiliation(s)
- Yali Zhao
- Astronaut Research and Training Center of China, Beijing, P. R. China
| | - Hailiang Li
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, P. R. China
- Southern Medical University, Guangzhou, P. R. China
| | - Ruiqin Wu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, P. R. China
| | - Shanhu Li
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, P. R. China
| | - Peng Wang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, P. R. China
| | - Hongtao Wang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, P. R. China
| | - Jian Wang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, P. R. China
| | - Jianguang Zhou
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, P. R. China
| |
Collapse
|
40
|
Molecular Analysis of a Recurrent Sarcoma Identifies a Mutation in FAF1. Sarcoma 2015; 2015:839182. [PMID: 25861239 PMCID: PMC4377510 DOI: 10.1155/2015/839182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/11/2015] [Indexed: 11/25/2022] Open
Abstract
A patient presented with a recurrent sarcoma (diagnosed as leiomyosarcoma) 12 years after the removal of an initial cancer (diagnosed as extracompartmental osteosarcoma) distally on the same limb. Following surgery, the sarcoma and unaffected muscle and bone were subjected to measurements of DNA exome sequence, RNA and protein expression, and transcription factor binding. The investigation provided corroboration of the diagnosis leiomyosarcoma, as the major upregulations in this tumor comprise muscle-specific gene products and calcium-regulating molecules (calcium is an important second messenger in smooth muscle cells). A likely culprit for the disease is the point mutation S181G in FAF1, which may cause a loss of apoptotic function consecutive to transforming DNA damage. The RNA levels of genes for drug transport and metabolism were extensively skewed in the tumor tissue as compared to muscle and bone. The results suggest that the tumor represents a recurrence of a dormant metastasis from an originally misdiagnosed neoplasm. A loss of FAF1 function could cause constitutive WNT pathway activity (consistent with the downstream inductions of IGF2BP1 and E2F1 in this cancer). While the study has informed on drug transport and drug metabolism pharmacogenetics, it has fallen short of identifying a suitable target for molecular therapy.
Collapse
|
41
|
Lahtela J, Pradhan B, Närhi K, Hemmes A, Särkioja M, Kovanen PE, Brown A, Verschuren EW. The putative tumor suppressor gene EphA3 fails to demonstrate a crucial role in murine lung tumorigenesis or morphogenesis. Dis Model Mech 2015; 8:393-401. [PMID: 25713296 PMCID: PMC4381338 DOI: 10.1242/dmm.019257] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/12/2015] [Indexed: 01/04/2023] Open
Abstract
Treatment of non-small cell lung cancer (NSCLC) is based on histological analysis and molecular profiling of targetable driver oncogenes. Therapeutic responses are further defined by the landscape of passenger mutations, or loss of tumor suppressor genes. We report here a thorough study to address the physiological role of the putative lung cancer tumor suppressor EPH receptor A3 (EPHA3), a gene that is frequently mutated in human lung adenocarcinomas. Our data shows that homozygous or heterozygous loss of EphA3 does not alter the progression of murine adenocarcinomas that result from Kras mutation or loss of Trp53, and we detected negligible postnatal expression of EphA3 in adult wild-type lungs. Yet, EphA3 was expressed in the distal mesenchyme of developing mouse lungs, neighboring the epithelial expression of its Efna1 ligand; this is consistent with the known roles of EPH receptors in embryonic development. However, the partial loss of EphA3 leads only to subtle changes in epithelial Nkx2-1, endothelial Cd31 and mesenchymal Fgf10 RNA expression levels, and no macroscopic phenotypic effects on lung epithelial branching, mesenchymal cell proliferation, or abundance and localization of CD31-positive endothelia. The lack of a discernible lung phenotype in EphA3-null mice might indicate lack of an overt role for EPHA3 in the murine lung, or imply functional redundancy between EPHA receptors. Our study shows how biological complexity can challenge in vivo functional validation of mutations identified in sequencing efforts, and provides an incentive for the design of knock-in or conditional models to assign the role of EPHA3 mutation during lung tumorigenesis.
Collapse
Affiliation(s)
- Jenni Lahtela
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FI-00014, Finland
| | - Barun Pradhan
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FI-00014, Finland
| | - Katja Närhi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FI-00014, Finland
| | - Annabrita Hemmes
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FI-00014, Finland
| | - Merja Särkioja
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FI-00014, Finland
| | - Panu E Kovanen
- Department of Pathology, HUSLAB and Haartman Institute, Helsinki University Central Hospital and University of Helsinki FI-00014, Finland
| | - Arthur Brown
- Spinal Cord Injury Team, Robarts Research Institute, University of Western Ontario, London, ON N6A 5K8, Canada
| | - Emmy W Verschuren
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki FI-00014, Finland.
| |
Collapse
|
42
|
Al-Ejeh F, Offenhäuser C, Lim YC, Stringer BW, Day BW, Boyd AW. Eph family co-expression patterns define unique clusters predictive of cancer phenotype. Growth Factors 2014; 32:254-64. [PMID: 25410964 DOI: 10.3109/08977194.2014.984807] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Eph genes are the largest sub-family of receptor tyrosine kinases; however, it is most likely the least understood and the arena for many conflicting reports. In this tribute to Prof. Martin Lackmann and Prof. Tony Pawson, we utilized The Cancer Genome Atlas resources to shed new light on the understanding of this family. We found that mutation and expression analysis define two clusters of co-expressed Eph family genes that relate to aggressive phenotypes across multiple cancer types. Analysis of signal transduction pathways using reverse-phase protein arrays revealed a network of interactions, which associates cluster-specific Eph genes with epithelial-mesenchymal transition, metabolism, DNA-damage repair and apoptosis. Our findings support the role of the Eph family in modulating cancer progression and reveal distinct patterns of Eph expression, which correlate with disease outcome. These observations provide further rationale for seeking cancer therapies, which target the Eph/ephrin system.
Collapse
Affiliation(s)
- Fares Al-Ejeh
- Brain Cancer Research Unit & Leukaemia Foundation Research Unit, QIMR Berghofer Medical Research Institute , Brisbane, Queensland , Australia
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Eph receptor tyrosine kinases control cell-cell interactions during normal and oncogenic development, and are implicated in a range of processes including angiogenesis, stem cell maintenance and metastasis. They are thus of great interest as targets for cancer therapy. EphA3, originally isolated from leukemic and melanoma cells, is presently one of the most promising therapeutic targets, with multiple tumor-promoting roles in a variety of cancer types. This review focuses on EphA3, its functions in controlling cellular behavior, both in normal and pathological development, and most particularly in cancer.
Collapse
Affiliation(s)
- Peter W Janes
- Department of Biochemistry and Molecular Biology, Monash University , Victoria , Australia and
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
The erythropoietin-producing hepatocellular carcinoma (Eph) receptor tyrosine kinase family plays important roles in developmental processes, adult tissue homeostasis, and various diseases. Interaction with Eph receptor-interacting protein (ephrin) ligands on the surface of neighboring cells triggers Eph receptor kinase-dependent signaling. The ephrins can also transmit signals, leading to bidirectional cell contact-dependent communication. Moreover, Eph receptors and ephrins can function independently of each other through interplay with other signaling systems. Given their involvement in many pathological conditions ranging from neurological disorders to cancer and viral infections, Eph receptors and ephrins are increasingly recognized as attractive therapeutic targets, and various strategies are being explored to modulate their expression and function. Eph receptor/ephrin upregulation in cancer cells, the angiogenic vasculature, and injured or diseased tissues also offer opportunities for Eph/ephrin-based targeted drug delivery and imaging. Thus, despite the challenges presented by the complex biology of the Eph receptor/ephrin system, exciting possibilities exist for therapies exploiting these molecules.
Collapse
Affiliation(s)
- Antonio Barquilla
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037; ,
| | | |
Collapse
|
45
|
Dai D, Huang Q, Nussinov R, Ma B. Promiscuous and specific recognition among ephrins and Eph receptors. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1844:1729-40. [PMID: 25017878 PMCID: PMC4157952 DOI: 10.1016/j.bbapap.2014.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/01/2014] [Accepted: 07/02/2014] [Indexed: 01/04/2023]
Abstract
Eph-ephrin interactions control the signal transduction between cells and play an important role in carcinogenesis and other diseases. The interactions between Eph receptors and ephrins of the same subclass are promiscuous; there are cross-interactions between some subclasses, but not all. To understand how Eph-ephrin interactions can be both promiscuous and specific, we investigated sixteen energy landscapes of four Eph receptors (A2, A4, B2, and B4) interacting with four ephrin ligands (A1, A2, A5, and B2). We generated conformational ensembles and recognition energy landscapes starting from separated Eph and ephrin molecules and proceeding up to the formation of Eph-ephrin complexes. Analysis of the Eph-ephrin recognition trajectories and the co-evolution entropy of 400 ligand binding domains of Eph receptor and 241 ephrin ligands identified conserved residues during the recognition process. Our study correctly predicted the promiscuity and specificity of the interactions and provided insights into their recognition. The dynamic conformational changes during Eph-ephrin recognition can be described by progressive conformational selection and population shift events, with two dynamic salt bridges between EphB4 and ephrin-B2 contributing to the specific recognition. EphA3 cancer-related mutations lowered the binding energies. The specificity is not only controlled by the final stage of the interaction across the protein-protein interface, but also has large contributions from binding kinetics with the help of dynamic intermediates along the pathway from the separated Eph and ephrin to the Eph-ephrin complex.
Collapse
Affiliation(s)
- Dandan Dai
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China.
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA; Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
46
|
Eph receptor tyrosine kinases in cancer stem cells. Cytokine Growth Factor Rev 2014; 26:1-6. [PMID: 24933439 DOI: 10.1016/j.cytogfr.2014.05.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 05/12/2014] [Indexed: 01/01/2023]
Abstract
Eph receptor tyrosine kinases (RTKs) and their ligands, ephrins, play critical roles in development, tissue homeostasis, and cancer. Because Eph receptors are expressed in most adult stem cell niches and in many types of cancers, it has been long suspected that this family of RTKs may also regulate the function of cancer stem-like cells (CSCs). This review will focus on recent studies to elucidate the contribution of Eph/ephrin molecules in CSC self-renewal and tumorigenicity, as well as describe efforts to target these molecules in cancer. Because CSCs are often resistant to therapeutic intervention and have been shown to depend on Eph RTKs for self-renewal, targeting Eph receptors may hold promise for the treatment of drug-resistant cancers.
Collapse
|
47
|
|
48
|
Reungwetwattana T, Dy GK. Targeted therapies in development for non-small cell lung cancer. J Carcinog 2013; 12:22. [PMID: 24574860 PMCID: PMC3927069 DOI: 10.4103/1477-3163.123972] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 09/15/2013] [Indexed: 12/11/2022] Open
Abstract
The iterative discovery in various malignancies during the past decades that a number of aberrant tumorigenic processes and signal transduction pathways are mediated by "druggable" protein kinases has led to a revolutionary change in drug development. In non-small cell lung cancer (NSCLC), the ErbB family of receptors (e.g., EGFR [epidermal growth factor receptor], HER2 [human epidermal growth factor receptor 2]), RAS (rat sarcoma gene), BRAF (v-raf murine sarcoma viral oncogene homolog B1), MAPK (mitogen-activated protein kinase) c-MET (c-mesenchymal-epithelial transition), FGFR (fibroblast growth factor receptor), DDR2 (discoidin domain receptor 2), PIK3CA (phosphatidylinositol-4,5-bisphosphate3-kinase, catalytic subunit alpha)), PTEN (phosphatase and tensin homolog), AKT (protein kinase B), ALK (anaplastic lym phoma kinase), RET (rearranged during transfection), ROS1 (reactive oxygen species 1) and EPH (erythropoietin-producing hepatoma) are key targets of various agents currently in clinical development. These oncogenic targets exert their selective growth advantage through various intercommunicating pathways, such as through RAS/RAF/MEK, phosphoinositide 3-kinase/AKT/mammalian target of rapamycin and SRC-signal transduction and transcription signaling. The recent clinical studies, EGFR tyrosine kinase inhibitors and crizotinib were considered as strongly effective targeted therapies in metastatic NSCLC. Currently, five molecular targeted agents were approved for treatment of advanced NSCLC: Gefitinib, erlotinib and afatinib for positive EGFR mutation, crizotinib for positive echinoderm microtubule-associated protein-like 4 (EML4)-ALK translocation and bevacizumab. Moreover, oncogenic mutant proteins are subject to regulation by protein trafficking pathways, specifically through the heat shock protein 90 system. Drug combinations affecting various nodes in these signaling and intracellular processes are predicted and demonstrated to be synergistic and advantageous in overcoming treatment resistance compared with monotherapy approaches. Understanding the role of the tumor microenvironment in the development and maintenance of the malignant phenotype provided additional therapeutic approaches as well. More recently, improved knowledge on tumor immunology has set the stage for promising immunotherapies in NSCLC. This review will focus on the rationale for the development of targeted therapies in NSCLC and the various strategies employed in preventing or overcoming the inevitable occurrence of treatment resistance.
Collapse
Affiliation(s)
- Thanyanan Reungwetwattana
- Department of Internal Medicine, Division of Medical Oncology, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Grace Kho Dy
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
49
|
Falivelli G, Lisabeth EM, de la Torre ER, Perez-Tenorio G, Tosato G, Salvucci O, Pasquale EB. Attenuation of eph receptor kinase activation in cancer cells by coexpressed ephrin ligands. PLoS One 2013; 8:e81445. [PMID: 24348920 PMCID: PMC3857839 DOI: 10.1371/journal.pone.0081445] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/21/2013] [Indexed: 12/20/2022] Open
Abstract
The Eph receptor tyrosine kinases mediate juxtacrine signals by interacting “in trans” with ligands anchored to the surface of neighboring cells via a GPI-anchor (ephrin-As) or a transmembrane segment (ephrin-Bs), which leads to receptor clustering and increased kinase activity. Additionally, soluble forms of the ephrin-A ligands released from the cell surface by matrix metalloproteases can also activate EphA receptor signaling. Besides these trans interactions, recent studies have revealed that Eph receptors and ephrins coexpressed in neurons can also engage in lateral “cis” associations that attenuate receptor activation by ephrins in trans with critical functional consequences. Despite the importance of the Eph/ephrin system in tumorigenesis, Eph receptor-ephrin cis interactions have not been previously investigated in cancer cells. Here we show that in cancer cells, coexpressed ephrin-A3 can inhibit the ability of EphA2 and EphA3 to bind ephrins in trans and become activated, while ephrin-B2 can inhibit not only EphB4 but also EphA3. The cis inhibition of EphA3 by ephrin-B2 implies that in some cases ephrins that cannot activate a particular Eph receptor in trans can nevertheless inhibit its signaling ability through cis association. We also found that an EphA3 mutation identified in lung cancer enhances cis interaction with ephrin-A3. These results suggest a novel mechanism that may contribute to cancer pathogenesis by attenuating the tumor suppressing effects of Eph receptor signaling pathways activated by ephrins in trans.
Collapse
Affiliation(s)
- Giulia Falivelli
- Sanford-Burnham Medical Research Institute, San Diego, California, United States of America
- Department Pharmacology, University of Bologna, Bologna, Italy
| | - Erika Mathes Lisabeth
- Sanford-Burnham Medical Research Institute, San Diego, California, United States of America
| | | | - Gizeh Perez-Tenorio
- Sanford-Burnham Medical Research Institute, San Diego, California, United States of America
| | - Giovanna Tosato
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ombretta Salvucci
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Elena B. Pasquale
- Sanford-Burnham Medical Research Institute, San Diego, California, United States of America
- Department of Pathology, University of California San Diego, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
50
|
Mäki-Nevala S, Kaur Sarhadi V, Tuononen K, Lagström S, Ellonen P, Rönty M, Wirtanen A, Knuuttila A, Knuutila S. Mutated ephrin receptor genes in non-small cell lung carcinoma and their occurrence with driver mutations-targeted resequencing study on formalin-fixed, paraffin-embedded tumor material of 81 patients. Genes Chromosomes Cancer 2013; 52:1141-9. [PMID: 24123310 DOI: 10.1002/gcc.22109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 08/13/2013] [Indexed: 01/29/2023] Open
Abstract
Non-small cell lung carcinoma (NSCLC) is the most common subtype of lung cancer. The oncogenic potential of receptor tyrosine kinases (RTKs) is widely known and they are potential targets for tailored therapy. Ephrin receptors (Ephs) form the largest group of RTKs. Nevertheless, Ephs are not widely studied in NSCLC so far. The aim of our study was to investigate novel mutations of Eph genes (EPHA1-8, EPHB1-4, EPHB6) and their association with clinically relevant mutations in BRAF, EML4-ALK, EGFR, INSR, KDR, KRAS, MET, PDGFRA, PDGFRB, PIK3, PTEN, RET, and TP53 in NSCLC patients. Targeted resequencing was conducted on 81 formalin-fixed, paraffin-embedded NSCLC tumor specimens. We analyzed missense and nonsense mutations harbored in the coding regions of the selected genes. We found 18 novel mutations of Ephs in 20% (16 of 81) of the patients. Nearly half of these mutations occurred in the protein kinase domain. The mutations were not mutually exclusive with other clinically relevant mutations. Our study shows that Ephs are frequently mutated in NSCLC patients, and occur together with other known mutations relevant to the pathogenicity of NSCLC.
Collapse
Affiliation(s)
- Satu Mäki-Nevala
- Department of Pathology, Haartman Institute, University of Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|