1
|
Gibaut QM, Li C, Cheng A, Moranguinho I, Mori LP, Valente ST. FUBP3 enhances HIV-1 transcriptional activity and regulates immune response pathways in T cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102525. [PMID: 40248217 PMCID: PMC12005928 DOI: 10.1016/j.omtn.2025.102525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/21/2025] [Indexed: 04/19/2025]
Abstract
Far-upstream element-binding protein 3 (FUBP3) was identified at actively transcribing HIV promoters through chromatin affinity purification and mass spectrometry. Known for regulating cellular processes such as transcription and translation by binding to DNAs and RNAs, FUBP3's role in HIV transcriptional regulation was previously unrecognized. This study reveals that FUBP3 enhances HIV-1 transcriptional activation by interacting with Tat and trans-activation response (TAR)-RNA, critical for boosting viral transcription through recruitment of activating factors that promote RNA polymerase II (RNAPII) elongation. Transcriptomic analysis, chromatin immunoprecipitation, and biochemical assays demonstrated that FUBP3 associates with and stabilizes TAR-RNA, in a Tat-dependent manner, and enhances Tat steady-state levels via interaction with Tat's basic domain. Suppressing FUBP3 decreased HIV-1 transcription and altered expression of host genes linked to T cell activation and inflammation, underscoring its broad regulatory impact. Additionally, FUBP3 was enriched at active promoters, confirming its role in transcriptional regulation at specific genomic locations. These findings highlight FUBP3's critical role in the HIV-1 life cycle and suggest its potential as a therapeutic target in HIV-1 infection. Additionally, this study expands our understanding of FUBP3's functions in oncogenic and inflammatory pathways.
Collapse
Affiliation(s)
- Quentin M.R. Gibaut
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458, USA
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Chuan Li
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Anqi Cheng
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458, USA
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Ines Moranguinho
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Luisa P. Mori
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458, USA
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Susana T. Valente
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL 33458, USA
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| |
Collapse
|
2
|
Valiuska S, Elder KK, McKay SJ, Ciudad CJ, Noé V, Brooks TA. Combinatorial Anti-Cancer Effect of Polypurine Reverse Hoogsteen Hairpins against KRAS and MYC Targeting in Prostate and Pancreatic Cancer Cell Lines. Genes (Basel) 2024; 15:1332. [PMID: 39457457 PMCID: PMC11507358 DOI: 10.3390/genes15101332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Introduction: KRAS and MYC are proto-oncogenes that are strictly regulated in healthy cells that have key roles in several processes such as cell growth, proliferation, differentiation, or apoptosis. These genes are tightly interconnected, and their dysregulation can lead to cancer progression. We previously individually targeted these oncogenes using Polypurine Reverse Hoogsteen (PPRH) hairpins, mostly targeting the complementary strand of G-quadruplex-forming sequences. We validated them in vitro in different cancer cell lines with deregulated KRAS and/or MYC. In this work we focused on our understanding of the cooperative dynamics between these oncogenes, by investigating the combined impact of PPRHs targeting KRAS and MYC in pancreatic and prostate cancer cells. Results: The combinations had a modulatory impact on the expression of both oncogenes, with transcriptional and translational downregulation occurring five days post-treatment. Out of the four tested PPRHs, MYC-targeting PPRHs, especially HpMYC-G4-PR-C directed against the promoter, showed a greater cytotoxic and expression modulation effect. When both KRAS- and MYC-targeting PPRHs were applied in combination, a synergistic reduction in cell viability was observed. Conclusion: The simultaneous targeting of KRAS and MYC demonstrates efficacy in gene modulation, thus in decreasing cell proliferation and viability.
Collapse
Affiliation(s)
- Simonas Valiuska
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona (UB), 08028 Barcelona, Spain; (S.V.); (C.J.C.)
- Instituto de Nanociencia y Nanotecnología (IN2UB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Kayla K. Elder
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13902, USA; (K.K.E.); (S.J.M.)
| | - Steven J. McKay
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13902, USA; (K.K.E.); (S.J.M.)
| | - Carlos J. Ciudad
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona (UB), 08028 Barcelona, Spain; (S.V.); (C.J.C.)
- Instituto de Nanociencia y Nanotecnología (IN2UB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Véronique Noé
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona (UB), 08028 Barcelona, Spain; (S.V.); (C.J.C.)
- Instituto de Nanociencia y Nanotecnología (IN2UB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Tracy A. Brooks
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13902, USA; (K.K.E.); (S.J.M.)
| |
Collapse
|
3
|
Chan KI, Zhang S, Li G, Xu Y, Cui L, Wang Y, Su H, Tan W, Zhong Z. MYC Oncogene: A Druggable Target for Treating Cancers with Natural Products. Aging Dis 2024; 15:640-697. [PMID: 37450923 PMCID: PMC10917530 DOI: 10.14336/ad.2023.0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/20/2023] [Indexed: 07/18/2023] Open
Abstract
Various diseases, including cancers, age-associated disorders, and acute liver failure, have been linked to the oncogene, MYC. Animal testing and clinical trials have shown that sustained tumor volume reduction can be achieved when MYC is inactivated, and different combinations of therapeutic agents including MYC inhibitors are currently being developed. In this review, we first provide a summary of the multiple biological functions of the MYC oncoprotein in cancer treatment, highlighting that the equilibrium points of the MYC/MAX, MIZ1/MYC/MAX, and MAD (MNT)/MAX complexes have further potential in cancer treatment that could be used to restrain MYC oncogene expression and its functions in tumorigenesis. We also discuss the multifunctional capacity of MYC in various cellular cancer processes, including its influences on immune response, metabolism, cell cycle, apoptosis, autophagy, pyroptosis, metastasis, angiogenesis, multidrug resistance, and intestinal flora. Moreover, we summarize the MYC therapy patent landscape and emphasize the potential of MYC as a druggable target, using herbal medicine modulators. Finally, we describe pending challenges and future perspectives in biomedical research, involving the development of therapeutic approaches to modulate MYC or its targeted genes. Patients with cancers driven by MYC signaling may benefit from therapies targeting these pathways, which could delay cancerous growth and recover antitumor immune responses.
Collapse
Affiliation(s)
- Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Siyuan Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Yida Xu
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Liao Cui
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang 524000, China
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Huanxing Su
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| |
Collapse
|
4
|
Zehtabcheh S, Yousefi AM, Momeny M, Bashash D. C-Myc inhibition intensified the anti-leukemic properties of Imatinib in chronic myeloid leukemia cells. Mol Biol Rep 2023; 50:10157-10167. [PMID: 37924446 DOI: 10.1007/s11033-023-08832-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/19/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Due to its remarkable efficacy in producing hematologic, cytogenetic, and molecular remissions, the FDA approved Imatinib as the first-line treatment for newly diagnosed Chronic Myeloid Leukemia (CML) patients. However, in some patients, failure to completely eradicate leukemic cells and the escape of these cells from death will lead to the development of resistance to Imatinib, and many are concerned about the prospects of this Tyrosine Kinase Inhibitor (TKI). It has been documented that the compensatory overexpression of c-Myc is among the most critical mechanisms that promote drug efflux and resistance in CML stem cells. METHODS In order to examine the potential of c-Myc inhibition through the use of 10058-F4 to enhance the anti-leukemic properties of Imatinib, we conducted trypan blue and MTT assays. Additionally, we employed flow cytometric analysis and qRT-PCR to assess the effects of this combination on cell cycle progression and apoptosis. RESULTS The findings of our study indicate that the combination of 10058-F4 and Imatinib exhibited significantly stronger anti-survival and anti-proliferative effects on CML-derived-K562 cells in comparison to either agent administered alone. It is noteworthy that these results were also validated in the CML-derived NALM-1 cell line. Molecular analysis of this synergistic effect revealed that the inhibition of c-Myc augmented the efficacy of Imatinib by modulating the expression of genes related to cell cycle, apoptosis, autophagy, and proteasome. CONCLUSIONS Taken together, the findings of this investigation have demonstrated that the suppression of the c-Myc oncoprotein through the use of 10058-F4 has augmented the effectiveness of Imatinib, suggesting that this amalgamation could offer a fresh perspective on an adjunctive treatment for individuals with CML. Nevertheless, additional scrutiny, encompassing in-vivo examinations and clinical trials, is requisite.
Collapse
MESH Headings
- Humans
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Fusion Proteins, bcr-abl/genetics
- Drug Resistance, Neoplasm/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Apoptosis
Collapse
Affiliation(s)
- Sara Zehtabcheh
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Momeny
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Smirnov E, Molínová P, Chmúrčiaková N, Vacík T, Cmarko D. Non-canonical DNA structures in the human ribosomal DNA. Histochem Cell Biol 2023; 160:499-515. [PMID: 37750997 DOI: 10.1007/s00418-023-02233-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 09/27/2023]
Abstract
Non-canonical structures (NCS) refer to the various forms of DNA that differ from the B-conformation described by Watson and Crick. It has been found that these structures are usual components of the genome, actively participating in its essential functions. The present review is focused on the nine kinds of NCS appearing or likely to appear in human ribosomal DNA (rDNA): supercoiling structures, R-loops, G-quadruplexes, i-motifs, DNA triplexes, cruciform structures, DNA bubbles, and A and Z DNA conformations. We discuss the conditions of their generation, including their sequence specificity, distribution within the locus, dynamics, and beneficial and detrimental role in the cell.
Collapse
Affiliation(s)
- Evgeny Smirnov
- Laboratory of Cell Biology, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00, Prague, Czech Republic.
| | - Pavla Molínová
- Laboratory of Cell Biology, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00, Prague, Czech Republic
| | - Nikola Chmúrčiaková
- Laboratory of Cell Biology, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00, Prague, Czech Republic
| | - Tomáš Vacík
- Laboratory of Cell Biology, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00, Prague, Czech Republic
| | - Dušan Cmarko
- Laboratory of Cell Biology, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00, Prague, Czech Republic
| |
Collapse
|
6
|
Kotekar A, Singh AK, Devaiah BN. BRD4 and MYC: power couple in transcription and disease. FEBS J 2023; 290:4820-4842. [PMID: 35866356 PMCID: PMC9867786 DOI: 10.1111/febs.16580] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/16/2022] [Accepted: 07/20/2022] [Indexed: 01/26/2023]
Abstract
The MYC proto-oncogene and BRD4, a BET family protein, are two cardinal proteins that have a broad influence in cell biology and disease. Both proteins are expressed ubiquitously in mammalian cells and play central roles in controlling growth, development, stress responses and metabolic function. As chromatin and transcriptional regulators, they play a critical role in regulating the expression of a burgeoning array of genes, maintaining chromatin architecture and genome stability. Consequently, impairment of their function or regulation leads to many diseases, with cancer being the most predominant. Interestingly, accumulating evidence indicates that regulation of the expression and functions of MYC are tightly intertwined with BRD4 at both transcriptional and post-transcriptional levels. Here, we review the mechanisms by which MYC and BRD4 are regulated, their functions in governing various molecular mechanisms and the consequences of their dysregulation that lead to disease. We present a perspective of how the regulatory mechanisms for the two proteins could be entwined at multiple points in a BRD4-MYC nexus that leads to the modulation of their functions and disease upon dysregulation.
Collapse
Affiliation(s)
- Aparna Kotekar
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Amit Kumar Singh
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
7
|
Waszkiewicz R, Ranasinghe M, Fogg JM, Catanese DJ, Ekiel-Jeżewska ML, Lisicki M, Demeler B, Zechiedrich L, Szymczak P. DNA supercoiling-induced shapes alter minicircle hydrodynamic properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.04.522747. [PMID: 36711572 PMCID: PMC9881935 DOI: 10.1101/2023.01.04.522747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
DNA in cells is organized in negatively supercoiled loops. The resulting torsional and bending strain allows DNA to adopt a surprisingly wide variety of 3-D shapes. This interplay between negative supercoiling, looping, and shape influences how DNA is stored, replicated, transcribed, repaired, and likely every other aspect of DNA activity. To understand the consequences of negative supercoiling and curvature on the hydrodynamic properties of DNA, we submitted 336 bp and 672 bp DNA minicircles to analytical ultracentrifugation (AUC). We found that the diffusion coefficient, sedimentation coefficient, and the DNA hydrodynamic radius strongly depended on circularity, loop length, and degree of negative supercoiling. Because AUC cannot ascertain shape beyond degree of non-globularity, we applied linear elasticity theory to predict DNA shapes, and combined these with hydrodynamic calculations to interpret the AUC data, with reasonable agreement between theory and experiment. These complementary approaches, together with earlier electron cryotomography data, provide a framework for understanding and predicting the effects of supercoiling on the shape and hydrodynamic properties of DNA.
Collapse
Affiliation(s)
- Radost Waszkiewicz
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Maduni Ranasinghe
- University of Lethbridge, Dept. of Chemistry and Biochemistry, Alberta, T1K3M4, Canada
| | - Jonathan M. Fogg
- Department of Molecular Virology and Microbiology, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Pharmacology and Chemical Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Daniel J. Catanese
- Department of Biosciences, Rice University, 6100 Main St., Houston, TX 77005-1827, USA
| | - Maria L. Ekiel-Jeżewska
- Institute of Fundamental Technological Research, Polish Academy of Sciences, A. Pawińskiego 5B, 02-106 Warsaw, Poland,Co-contributing authors: MLE-J: , ML: , BD: , LZ: , PS:
| | - Maciej Lisicki
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland,Co-contributing authors: MLE-J: , ML: , BD: , LZ: , PS:
| | - Borries Demeler
- University of Lethbridge, Dept. of Chemistry and Biochemistry, Alberta, T1K3M4, Canada,University of Montana, Dept. of Chemistry and Biochemistry, Missoula, MT 59812, USA,Co-contributing authors: MLE-J: , ML: , BD: , LZ: , PS:
| | - Lynn Zechiedrich
- Department of Molecular Virology and Microbiology, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Pharmacology and Chemical Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA,Co-contributing authors: MLE-J: , ML: , BD: , LZ: , PS:
| | - Piotr Szymczak
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland,Co-contributing authors: MLE-J: , ML: , BD: , LZ: , PS:
| |
Collapse
|
8
|
Weber LI, Hartl M. Strategies to target the cancer driver MYC in tumor cells. Front Oncol 2023; 13:1142111. [PMID: 36969025 PMCID: PMC10032378 DOI: 10.3389/fonc.2023.1142111] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/10/2023] [Indexed: 03/29/2023] Open
Abstract
The MYC oncoprotein functions as a master regulator of cellular transcription and executes non-transcriptional tasks relevant to DNA replication and cell cycle regulation, thereby interacting with multiple proteins. MYC is required for fundamental cellular processes triggering proliferation, growth, differentiation, or apoptosis and also represents a major cancer driver being aberrantly activated in most human tumors. Due to its non-enzymatic biochemical functions and largely unstructured surface, MYC has remained difficult for specific inhibitor compounds to directly address, and consequently, alternative approaches leading to indirect MYC inhibition have evolved. Nowadays, multiple organic compounds, nucleic acids, or peptides specifically interfering with MYC activities are in preclinical or early-stage clinical studies, but none of them have been approved so far for the pharmacological treatment of cancer patients. In addition, specific and efficient delivery technologies to deliver MYC-inhibiting agents into MYC-dependent tumor cells are just beginning to emerge. In this review, an overview of direct and indirect MYC-inhibiting agents and their modes of MYC inhibition is given. Furthermore, we summarize current possibilities to deliver appropriate drugs into cancer cells containing derailed MYC using viral vectors or appropriate nanoparticles. Finding the right formulation to target MYC-dependent cancers and to achieve a high intracellular concentration of compounds blocking or attenuating oncogenic MYC activities could be as important as the development of novel MYC-inhibiting principles.
Collapse
|
9
|
Valiuska S, Psaras AM, Noé V, Brooks TA, Ciudad CJ. Targeting MYC Regulation with Polypurine Reverse Hoogsteen Oligonucleotides. Int J Mol Sci 2022; 24:ijms24010378. [PMID: 36613820 PMCID: PMC9820101 DOI: 10.3390/ijms24010378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/07/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
The oncogene MYC has key roles in transcription, proliferation, deregulating cellular energetics, and more. Modulating the expression or function of the MYC protein is a viable therapeutic goal in an array of cancer types, and potential inhibitors of MYC with high specificity and selectivity are of great interest. In cancer cells addicted to their aberrant MYC function, suppression can lead to apoptosis, with minimal effects on non-addicted, non-oncogenic cells, providing a wide therapeutic window for specific and efficacious anti-tumor treatment. Within the promoter of MYC lies a GC-rich, G-quadruplex (G4)-forming region, wherein G4 formation is capable of mediating transcriptional downregulation of MYC. Such GC-rich regions of DNA are prime targets for regulation with Polypurine Reverse Hoogsteen hairpins (PPRHs). The current study designed and examined PPRHs targeting the G4-forming and four other GC-rich regions of DNA within the promoter or intronic regions. Six total PPRHs were designed, examined in cell-free conditions for target engagement and in cells for transcriptional modulation, and correlating cytotoxic activity in pancreatic, prostate, neuroblastoma, colorectal, ovarian, and breast cancer cells. Two lead PPRHs, one targeting the promoter G4 and one targeting Intron 1, were identified with high potential for further development as an innovative approach to both G4 stabilization and MYC modulation.
Collapse
Affiliation(s)
- Simonas Valiuska
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Alexandra Maria Psaras
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13902, USA
| | - Véronique Noé
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Tracy A. Brooks
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY 13902, USA
- Correspondence: (C.J.C.); (T.A.B.); Tel.: +34-93-403-4455 (C.J.C.)
| | - Carlos J. Ciudad
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: (C.J.C.); (T.A.B.); Tel.: +34-93-403-4455 (C.J.C.)
| |
Collapse
|
10
|
Ahmadi SE, Rahimi S, Zarandi B, Chegeni R, Safa M. MYC: a multipurpose oncogene with prognostic and therapeutic implications in blood malignancies. J Hematol Oncol 2021; 14:121. [PMID: 34372899 PMCID: PMC8351444 DOI: 10.1186/s13045-021-01111-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/12/2021] [Indexed: 12/17/2022] Open
Abstract
MYC oncogene is a transcription factor with a wide array of functions affecting cellular activities such as cell cycle, apoptosis, DNA damage response, and hematopoiesis. Due to the multi-functionality of MYC, its expression is regulated at multiple levels. Deregulation of this oncogene can give rise to a variety of cancers. In this review, MYC regulation and the mechanisms by which MYC adjusts cellular functions and its implication in hematologic malignancies are summarized. Further, we also discuss potential inhibitors of MYC that could be beneficial for treating hematologic malignancies.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rouzbeh Chegeni
- Medical Laboratory Sciences Program, College of Health and Human Sciences, Northern Illinois University, DeKalb, IL, USA.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Fu PY, Hu B, Ma XL, Tang WG, Yang ZF, Sun HX, Yu MC, Huang A, Hu JW, Zhou CH, Fan J, Xu Y, Zhou J. Far upstream element-binding protein 1 facilitates hepatocellular carcinoma invasion and metastasis. Carcinogenesis 2021; 41:950-960. [PMID: 31587040 DOI: 10.1093/carcin/bgz171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/20/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022] Open
Abstract
Previous research suggests that far upstream element-binding protein 1 (FUBP1) plays an important role in various tumors including epatocellular carcinoma (HCC). However, the role of FUBP1 in liver cancer remains controversial, and the regulatory pathway by FUBP1 awaits to be determined. This study aims to identify the role of FUBP1 in HCC progression. Our result shows that the high level of FUBP1 expression in HCC predicts poor prognosis after surgery. Overexpression of FUBP1 promotes HCC proliferation, invasion, and metastasis by activating transforming growth factor-β (TGF-β)/Smad pathway and enhancing epithelial-mesenchymal transition (EMT) in vitro and in vivo. Inhibitor of Thrombospondin-1 (LSKL) could inhibit HCC proliferation and invasion in vitro and in vivo by blocking the activation of TGF-β/Smad pathway mediated by thrombospondin-1 (THBS1). Our study identified the critical role of FUBP1-THBS1-TGF-β signaling axis in HCC and provides potentially new therapeutic modalities in HCC.
Collapse
Affiliation(s)
- Pei-Yao Fu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Bo Hu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Xiao-Lu Ma
- Laboratory Medicine Department, Shanghai Tumor Center of Fudan University, Shanghai, P.R. China
| | - Wei-Guo Tang
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, P.R. China
| | - Zhang-Fu Yang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Hai-Xiang Sun
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Min-Cheng Yu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Ao Huang
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Jin-Wu Hu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Chen-Hao Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Yang Xu
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Brown SL, Kendrick S. The i-Motif as a Molecular Target: More Than a Complementary DNA Secondary Structure. Pharmaceuticals (Basel) 2021; 14:ph14020096. [PMID: 33513764 PMCID: PMC7911047 DOI: 10.3390/ph14020096] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/25/2022] Open
Abstract
Stretches of cytosine-rich DNA are capable of adopting a dynamic secondary structure, the i-motif. When within promoter regions, the i-motif has the potential to act as a molecular switch for controlling gene expression. However, i-motif structures in genomic areas of repetitive nucleotide sequences may play a role in facilitating or hindering expansion of these DNA elements. Despite research on the i-motif trailing behind the complementary G-quadruplex structure, recent discoveries including the identification of a specific i-motif antibody are pushing this field forward. This perspective reviews initial and current work characterizing the i-motif and providing insight into the biological function of this DNA structure, with a focus on how the i-motif can serve as a molecular target for developing new therapeutic approaches to modulate gene expression and extension of repetitive DNA.
Collapse
|
13
|
Rosselot C, Baumel-Alterzon S, Li Y, Brill G, Lambertini L, Katz LS, Lu G, Garcia-Ocaña A, Scott DK. The many lives of Myc in the pancreatic β-cell. J Biol Chem 2021; 296:100122. [PMID: 33239359 PMCID: PMC7949031 DOI: 10.1074/jbc.rev120.011149] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
Diabetes results from insufficient numbers of functional pancreatic β-cells. Thus, increasing the number of available functional β-cells ex vivo for transplantation, or regenerating them in situ in diabetic patients, is a major focus of diabetes research. The transcription factor, Myc, discovered decades ago lies at the nexus of most, if not all, known proliferative pathways. Based on this, many studies in the 1990s and early 2000s explored the potential of harnessing Myc expression to expand β-cells for diabetes treatment. Nearly all these studies in β-cells used pathophysiological or supraphysiological levels of Myc and reported enhanced β-cell death, dedifferentiation, or the formation of insulinomas if cooverexpressed with Bcl-xL, an inhibitor of apoptosis. This obviously reduced the enthusiasm for Myc as a therapeutic target for β-cell regeneration. However, recent studies indicate that "gentle" induction of Myc expression enhances β-cell replication without induction of cell death or loss of insulin secretion, suggesting that appropriate levels of Myc could have therapeutic potential for β-cell regeneration. Furthermore, although it has been known for decades that Myc is induced by glucose in β-cells, very little is known about how this essential anabolic transcription factor perceives and responds to nutrients and increased insulin demand in vivo. Here we summarize the previous and recent knowledge of Myc in the β-cell, its potential for β-cell regeneration, and its physiological importance for neonatal and adaptive β-cell expansion.
Collapse
Affiliation(s)
- Carolina Rosselot
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sharon Baumel-Alterzon
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yansui Li
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gabriel Brill
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Luca Lambertini
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Liora S Katz
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Geming Lu
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adolfo Garcia-Ocaña
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - Donald K Scott
- Diabetes Obesity Metabolism Institute, and the Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
14
|
Bonacci T, Emanuele MJ. Dissenting degradation: Deubiquitinases in cell cycle and cancer. Semin Cancer Biol 2020; 67:145-158. [PMID: 32201366 PMCID: PMC7502435 DOI: 10.1016/j.semcancer.2020.03.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/27/2020] [Accepted: 03/09/2020] [Indexed: 01/01/2023]
Abstract
Since its discovery forty years ago, protein ubiquitination has been an ever-expanding field. Virtually all biological processes are controlled by the post-translational conjugation of ubiquitin onto target proteins. In addition, since ubiquitin controls substrate degradation through the action of hundreds of enzymes, many of which represent attractive therapeutic candidates, harnessing the ubiquitin system to reshape proteomes holds great promise for improving disease outcomes. Among the numerous physiological functions controlled by ubiquitin, the cell cycle is among the most critical. Indeed, the discovery that the key drivers of cell cycle progression are regulated by the ubiquitin-proteasome system (UPS) epitomizes the connection between ubiquitin signaling and proliferation. Since cancer is a disease of uncontrolled cell cycle progression and proliferation, targeting the UPS to stop cancer cells from cycling and proliferating holds enormous therapeutic potential. Ubiquitination is reversible, and ubiquitin is removed from substrates by catalytic proteases termed deubiquitinases or DUBs. While ubiquitination is tightly linked to proliferation and cancer, the role of DUBs represents a layer of complexity in this landscape that remains poorly captured. Due to their ability to remodel the proteome by altering protein degradation dynamics, DUBs play an important and underappreciated role in the cell cycle and proliferation of both normal and cancer cells. Moreover, due to their enzymatic protease activity and an open ubiquitin binding pocket, DUBs are likely to be important in the future of cancer treatment, since they are among the most druggable enzymes in the UPS. In this review we summarize new and important findings linking DUBs to cell cycle and proliferation, as well as to the etiology and treatment of cancer. We also highlight new advances in developing pharmacological approaches to attack DUBs for therapeutic benefit.
Collapse
Affiliation(s)
- Thomas Bonacci
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Michael J Emanuele
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States.
| |
Collapse
|
15
|
Bansal R, Hussain S, Chanana UB, Bisht D, Goel I, Muthuswami R. SMARCAL1, the annealing helicase and the transcriptional co-regulator. IUBMB Life 2020; 72:2080-2096. [PMID: 32754981 DOI: 10.1002/iub.2354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022]
Abstract
The ATP-dependent chromatin remodeling proteins play an important role in DNA repair. The energy released by ATP hydrolysis is used for myriad functions ranging from nucleosome repositioning and nucleosome eviction to histone variant exchange. In addition, the distant member of the family, SMARCAL1, uses the energy to reanneal stalled replication forks in response to DNA damage. Biophysical studies have shown that this protein has the unique ability to recognize and bind specifically to DNA structures possessing double-strand to single-strand transition regions. Mutations in SMARCAL1 have been linked to Schimke immuno-osseous dysplasia, an autosomal recessive disorder that exhibits variable penetrance and expressivity. It has long been hypothesized that the variable expressivity and pleiotropic phenotypes observed in the patients might be due to the ability of SMARCAL1 to co-regulate the expression of a subset of genes within the genome. Recently, the role of SMARCAL1 in regulating transcription has been delineated. In this review, we discuss the biophysical and functional properties of the protein that help it to transcriptionally co-regulate DNA damage response as well as to bind to the stalled replication fork and stabilize it, thus ensuring genomic stability. We also discuss the role of SMARCAL1 in cancer and the possibility of using this protein as a chemotherapeutic target.
Collapse
Affiliation(s)
- Ritu Bansal
- Chromatin Remodeling Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Saddam Hussain
- Chromatin Remodeling Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Upasana Bedi Chanana
- Chromatin Remodeling Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Deepa Bisht
- Chromatin Remodeling Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Isha Goel
- Chromatin Remodeling Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rohini Muthuswami
- Chromatin Remodeling Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
16
|
Steinberger J, Robert F, Hallé M, Williams DE, Cencic R, Sawhney N, Pelletier D, Williams P, Igarashi Y, Porco JA, Rodriguez AD, Kopp B, Bachmann B, Andersen RJ, Pelletier J. Tracing MYC Expression for Small Molecule Discovery. Cell Chem Biol 2019; 26:699-710.e6. [PMID: 30880156 DOI: 10.1016/j.chembiol.2019.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/19/2018] [Accepted: 02/07/2019] [Indexed: 12/16/2022]
Abstract
Our inability to effectively "drug" targets such as MYC for therapeutic purposes requires the development of new approaches. We report on the implementation of a phenotype-based assay for monitoring MYC expression in multiple myeloma cells. The open reading frame (ORF) encoding an unstable variant of GFP was engineered immediately downstream of the MYC ORF using CRISPR/Cas9, resulting in co-expression of both proteins from the endogenous MYC locus. Using fluorescence readout as a surrogate for MYC expression, we implemented a pilot screen in which ∼10,000 compounds were prosecuted. Among known MYC expression inhibitors, we identified cardiac glycosides and cytoskeletal disruptors to be quite potent. We demonstrate the power of CRISPR/Cas9 engineering in establishing phenotype-based assays to identify gene expression modulators.
Collapse
Affiliation(s)
- Jutta Steinberger
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Francis Robert
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Maxime Hallé
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - David E Williams
- Departments of Chemistry and Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Regina Cencic
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Neha Sawhney
- Vanderbilt Institute of Chemical Biology, Department of Chemistry, Vanderbilt University, Nashville, 37235, USA
| | - Dylan Pelletier
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Philip Williams
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Yasuhiro Igarashi
- Biotechnology Research Center, Toyama Prefectural University, Toyama 939-0398, Japan
| | - John A Porco
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA 02215, USA
| | - Abimael D Rodriguez
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR 00926, USA
| | - Brigitte Kopp
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Brian Bachmann
- Vanderbilt Institute of Chemical Biology, Department of Chemistry, Vanderbilt University, Nashville, 37235, USA
| | - Raymond J Andersen
- Departments of Chemistry and Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada; The Rosalind and Morris Goodman Cancer Research Center and the Department of Oncology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
17
|
Debaize L, Troadec MB. The master regulator FUBP1: its emerging role in normal cell function and malignant development. Cell Mol Life Sci 2019; 76:259-281. [PMID: 30343319 PMCID: PMC11105487 DOI: 10.1007/s00018-018-2933-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/06/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022]
Abstract
The human Far Upstream Element (FUSE) Binding Protein 1 (FUBP1) is a multifunctional DNA- and RNA-binding protein involved in diverse cellular processes. FUBP1 is a master regulator of transcription, translation, and RNA splicing. FUBP1 has been identified as a potent pro-proliferative and anti-apoptotic factor by modulation of complex networks. FUBP1 is also described either as an oncoprotein or a tumor suppressor. Especially, FUBP1 overexpression is observed in a growing number of cancer and leads to a deregulation of targets that includes the fine-tuned MYC oncogene. Moreover, recent loss-of-function analyses of FUBP1 establish its essential functions in hematopoietic stem cell maintenance and survival. Therefore, FUBP1 appears as an emerging suspect in hematologic disorders in addition to solid tumors. The scope of the present review is to describe the advances in our understanding of the molecular basis of FUBP1 functions in normal cells and carcinogenesis. We also delineate the recent progresses in the understanding of the master role of FUBP1 in normal and pathological hematopoiesis. We conclude that FUBP1 is not only worth studying biologically but is also of clinical relevance through its pivotal role in regulating multiple cellular processes and its involvement in oncogenesis.
Collapse
Affiliation(s)
- Lydie Debaize
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, F-35000, Rennes, France
| | - Marie-Bérengère Troadec
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, F-35000, Rennes, France.
- Univ Brest, INSERM, EFS, UMR 1078, GGB, F-29200, Brest, France.
- CHRU de Brest, laboratoire de cytogénétique, F-29200, Brest, France.
| |
Collapse
|
18
|
Porter JR, Fisher BE, Baranello L, Liu JC, Kambach DM, Nie Z, Koh WS, Luo J, Stommel JM, Levens D, Batchelor E. Global Inhibition with Specific Activation: How p53 and MYC Redistribute the Transcriptome in the DNA Double-Strand Break Response. Mol Cell 2017; 67:1013-1025.e9. [PMID: 28867293 PMCID: PMC5657607 DOI: 10.1016/j.molcel.2017.07.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/30/2017] [Accepted: 07/28/2017] [Indexed: 12/24/2022]
Abstract
In response to stresses, cells often halt normal cellular processes, yet stress-specific pathways must bypass such inhibition to generate effective responses. We investigated how cells redistribute global transcriptional activity in response to DNA damage. We show that an oscillatory increase of p53 levels in response to double-strand breaks drives a counter-oscillatory decrease of MYC levels. Using RNA sequencing (RNA-seq) of newly synthesized transcripts, we found that p53-mediated reduction of MYC suppressed general transcription, with the most highly expressed transcripts reduced to a greater extent. In contrast, upregulation of p53 targets was relatively unaffected by MYC suppression. Reducing MYC during the DNA damage response was important for cell-fate regulation, as counteracting MYC repression reduced cell-cycle arrest and elevated apoptosis. Our study shows that global inhibition with specific activation of transcriptional pathways is important for the proper response to DNA damage; this mechanism may be a general principle used in many stress responses.
Collapse
Affiliation(s)
- Joshua R Porter
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Brian E Fisher
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Laura Baranello
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Julia C Liu
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA; National Institute of General Medical Sciences, NIH, Bethesda, MD 20892, USA
| | - Diane M Kambach
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Zuqin Nie
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Woo Seuk Koh
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ji Luo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jayne M Stommel
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - David Levens
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Eric Batchelor
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
19
|
Myc target gene, long intergenic noncoding RNA, Linc00176 in hepatocellular carcinoma regulates cell cycle and cell survival by titrating tumor suppressor microRNAs. Oncogene 2017; 37:75-85. [DOI: 10.1038/onc.2017.312] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/25/2017] [Accepted: 07/28/2017] [Indexed: 12/12/2022]
|
20
|
Zaytseva O, Quinn LM. Controlling the Master: Chromatin Dynamics at the MYC Promoter Integrate Developmental Signaling. Genes (Basel) 2017; 8:genes8040118. [PMID: 28398229 PMCID: PMC5406865 DOI: 10.3390/genes8040118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/15/2017] [Accepted: 04/07/2017] [Indexed: 02/06/2023] Open
Abstract
The transcription factor and cell growth regulator MYC is potently oncogenic and estimated to contribute to most cancers. Decades of attempts to therapeutically target MYC directly have not resulted in feasible clinical applications, and efforts have moved toward indirectly targeting MYC expression, function and/or activity to treat MYC-driven cancer. A multitude of developmental and growth signaling pathways converge on the MYC promoter to modulate transcription through their downstream effectors. Critically, even small increases in MYC abundance (<2 fold) are sufficient to drive overproliferation; however, the details of how oncogenic/growth signaling networks regulate MYC at the level of transcription remain nebulous even during normal development. It is therefore essential to first decipher mechanisms of growth signal-stimulated MYC transcription using in vivo models, with intact signaling environments, to determine exactly how these networks are dysregulated in human cancer. This in turn will provide new modalities and approaches to treat MYC-driven malignancy. Drosophila genetic studies have shed much light on how complex networks signal to transcription factors and enhancers to orchestrate Drosophila MYC (dMYC) transcription, and thus growth and patterning of complex multicellular tissue and organs. This review will discuss the many pathways implicated in patterning MYC transcription during development and the molecular events at the MYC promoter that link signaling to expression. Attention will also be drawn to parallels between mammalian and fly regulation of MYC at the level of transcription.
Collapse
Affiliation(s)
- Olga Zaytseva
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia.
- School of Biomedical Sciences, University of Melbourne, Parkville 3010, Australia.
| | - Leonie M Quinn
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia.
- School of Biomedical Sciences, University of Melbourne, Parkville 3010, Australia.
| |
Collapse
|
21
|
Hao T, Gaerig VC, Brooks TA. Nucleic acid clamp-mediated recognition and stabilization of the physiologically relevant MYC promoter G-quadruplex. Nucleic Acids Res 2016; 44:11013-11023. [PMID: 27789698 PMCID: PMC5159522 DOI: 10.1093/nar/gkw1006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/11/2016] [Accepted: 10/18/2016] [Indexed: 01/24/2023] Open
Abstract
The MYC proto-oncogene is upregulated, often at the transcriptional level, in ∼80% of all cancers. MYC's promoter is governed by a higher order G-quadruplex (G4) structure in the NHE III1 region. Under a variety of conditions, multiple isoforms have been described to form from the first four continuous guanine runs (G41–4) predominating under the physiologically relevant supercoiled conditions. In the current study, short oligonucleotides complementing the 5′- and 3′-regions flanking the G4 have been connected by an abasic linker to form G4 clamps, varying both linker length and G4 isoform being targeted. Clamp A with an 18 Å linker was found to have marked affinity for its target isomer (G41–4) over the other major structures (G42–5 and G41–5, recognized by clamps B and C, respectively), and to be able to shift equilibrating DNA to foster greater G4 formation. In addition, clamp A, but not B or C, is able to modulate MYC promoter activity with a significant and dose-dependent effect on transcription driven by the Del4 plasmid. This linked clamp-mediated approach to G4 recognition represents a novel therapeutic mechanism with specificity for an individual promoter structure, amenable to a large array of promoters.
Collapse
Affiliation(s)
- Taisen Hao
- BioMolecular Sciences, University of Mississippi, University, MS 38677, USA
| | - Vanessa C Gaerig
- Pharmacy, Charleston Area Medical Center Memorial Hospital, Charleston, WV 25304, USA
| | - Tracy A Brooks
- BioMolecular Sciences, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
22
|
Abstract
MYC is a transcription factor, which not only directly modulates multiple aspects of transcription and co‐transcriptional processing (e.g. RNA‐Polymerase II initiation, elongation, and mRNA capping), but also indirectly influences several steps of RNA metabolism, including both constitutive and alternative splicing, mRNA stability, and translation efficiency. As MYC is an oncoprotein whose expression is deregulated in multiple human cancers, identifying its critical downstream activities in tumors is of key importance for designing effective therapeutic strategies. With this knowledge and recent technological advances, we now have multiple angles to reach the goal of targeting MYC in tumors, ranging from the direct reduction of MYC levels, to the dampening of selected house‐keeping functions in MYC‐overexpressing cells, to more targeted approaches based on MYC‐induced secondary effects.
Collapse
Affiliation(s)
- Cheryl M Koh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Arianna Sabò
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Ernesto Guccione
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,National Cancer Centre Singapore, Singapore
| |
Collapse
|
23
|
Sharma T, Bansal R, Haokip DT, Goel I, Muthuswami R. SMARCAL1 Negatively Regulates C-Myc Transcription By Altering The Conformation Of The Promoter Region. Sci Rep 2015; 5:17910. [PMID: 26648259 PMCID: PMC4673416 DOI: 10.1038/srep17910] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 11/09/2015] [Indexed: 12/18/2022] Open
Abstract
SMARCAL1, a member of the SWI2/SNF2 protein family, stabilizes replication forks during DNA damage. In this manuscript, we provide the first evidence that SMARCAL1 is also a transcriptional co-regulator modulating the expression of c-Myc, a transcription factor that regulates 10-15% genes in the human genome. BRG1, SMARCAL1 and RNAPII were found localized onto the c-myc promoter. When HeLa cells were serum starved, the occupancy of SMARCAL1 on the c-myc promoter increased while that of BRG1 and RNAPII decreased correlating with repression of c-myc transcription. Using Active DNA-dependent ATPase A Domain (ADAAD), the bovine homolog of SMARCAL1, we show that the protein can hydrolyze ATP using a specific region upstream of the CT element of the c-myc promoter as a DNA effector. The energy, thereby, released is harnessed to alter the conformation of the promoter DNA. We propose that SMARCAL1 negatively regulates c-myc transcription by altering the conformation of its promoter region during differentiation.
Collapse
Affiliation(s)
| | - Ritu Bansal
- School of Life Sciences, JNU, New Delhi 110067
| | | | - Isha Goel
- School of Life Sciences, JNU, New Delhi 110067
| | | |
Collapse
|
24
|
Xiang JF, Yang L, Chen LL. The long noncoding RNA regulation at the MYC locus. Curr Opin Genet Dev 2015; 33:41-8. [PMID: 26254776 DOI: 10.1016/j.gde.2015.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 07/15/2015] [Accepted: 07/20/2015] [Indexed: 01/17/2023]
Abstract
Aberrant expression of long noncoding RNAs (lncRNAs) has been linked to cancers. The MYC oncoprotein is a key contributor to the development of many human tumors. Recent studies have revealed that a number of lncRNAs originating from the human 8q24 locus previously known to corresponding to a 'gene desert' are transcribed and play important roles in MYC regulation. In this review, we highlight recent progress in how these lncRNAs participate in control of MYC levels in normal and tumor cells.
Collapse
Affiliation(s)
- Jian-Feng Xiang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Yang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China.
| |
Collapse
|
25
|
USP22 acts as an oncogene by regulating the stability of cyclooxygenase-2 in non-small cell lung cancer. Biochem Biophys Res Commun 2015; 460:703-8. [DOI: 10.1016/j.bbrc.2015.03.093] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/08/2015] [Indexed: 11/20/2022]
|
26
|
In silico identification of novel ligands for G-quadruplex in the c-MYC promoter. J Comput Aided Mol Des 2014; 29:339-48. [PMID: 25527072 DOI: 10.1007/s10822-014-9826-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 12/11/2014] [Indexed: 10/24/2022]
Abstract
G-quadruplex DNA formed in NHEIII1 region of oncogene promoter inhibits transcription of the genes. In this study, virtual screening combining pharmacophore-based search and structure-based docking screening was conducted to discover ligands binding to G-quadruplex in promoter region of c-MYC. Several hit ligands showed the selective PCR-arresting effects for oligonucleotide containing c-MYC G-quadruplex forming sequence. Among them, three hits selectively inhibited cell proliferation and decreased c-MYC mRNA level in Ramos cells, where NHEIII1 is included in translocated c-MYC gene for overexpression. Promoter assay using two kinds of constructs with wild-type and mutant sequences showed that interaction of these ligands with the G-quadruplex resulted in turning-off of the reporter gene. In conclusion, combined virtual screening methods were successfully used for discovery of selective c-MYC promoter G-quadruplex binders with anticancer activity.
Collapse
|
27
|
Mognol GP, de Araujo-Souza PS, Robbs BK, Teixeira LK, Viola JP. Transcriptional regulation of thec-Mycpromoter by NFAT1 involves negative and positive NFAT-responsive elements. Cell Cycle 2014; 11:1014-28. [DOI: 10.4161/cc.11.5.19518] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
28
|
Mohanty AK, Datta A, Venkatraj V. Using the message passing algorithm on discrete data to detect faults in boolean regulatory networks. Algorithms Mol Biol 2014. [DOI: 10.1186/s13015-014-0020-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
29
|
Abstract
An important problem in the study of cancer is the understanding of the heterogeneous nature of the cell population. The clonal evolution of the tumor cells results in the tumors being composed of multiple subpopulations. Each subpopulation reacts differently to any given therapy. This calls for the development of novel (regulatory network) models, which can accommodate heterogeneity in cancerous tissues. In this paper, we present a new approach to model heterogeneity in cancer. We model heterogeneity as an ensemble of deterministic Boolean networks based on prior pathway knowledge. We develop the model considering the use of qPCR data. By observing gene expressions when the tissue is subjected to various stimuli, the compositional breakup of the tissue under study can be determined. We demonstrate the viability of this approach by using our model on synthetic data, and real-world data collected from fibroblasts.
Collapse
|
30
|
Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus. Cell Res 2014; 24:513-31. [PMID: 24662484 PMCID: PMC4011346 DOI: 10.1038/cr.2014.35] [Citation(s) in RCA: 570] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/06/2013] [Accepted: 01/27/2012] [Indexed: 12/12/2022] Open
Abstract
The human 8q24 gene desert contains multiple enhancers that form tissue-specific long-range chromatin loops with the MYC oncogene, but how chromatin looping at the MYC locus is regulated remains poorly understood. Here we demonstrate that a long noncoding RNA (lncRNA), CCAT1-L, is transcribed specifically in human colorectal cancers from a locus 515 kb upstream of MYC. This lncRNA plays a role in MYC transcriptional regulation and promotes long-range chromatin looping. Importantly, the CCAT1-L locus is located within a strong super-enhancer and is spatially close to MYC. Knockdown of CCAT1-L reduced long-range interactions between the MYC promoter and its enhancers. In addition, CCAT1-L interacts with CTCF and modulates chromatin conformation at these loop regions. These results reveal an important role of a previously unannotated lncRNA in gene regulation at the MYC locus.
Collapse
|
31
|
Hebenstreit D. Are gene loops the cause of transcriptional noise? Trends Genet 2013; 29:333-8. [PMID: 23663933 DOI: 10.1016/j.tig.2013.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/22/2013] [Accepted: 04/02/2013] [Indexed: 12/14/2022]
Abstract
Expression levels of the same mRNA or protein vary significantly among the cells of an otherwise identical population. Such biological noise has great functional implications and is largely due to transcriptional bursting, the episodic production of mRNAs in short, intense bursts, interspersed by periods of transcriptional inactivity. Bursting has been demonstrated in a wide range of pro- and eukaryotic species, attesting to its universal importance. However, the mechanistic origins of bursting remain elusive. A different type of phenomenon, which has also been suggested to be widespread, is the physical interaction between the promoter and 3' end of a gene. Several functional roles have been proposed for such gene loops, including the facilitation of transcriptional reinitiation. Here, I discuss the most recent findings related to these subjects and argue that gene loops are a likely cause of transcriptional bursting and, thus, biological noise.
Collapse
Affiliation(s)
- Daniel Hebenstreit
- School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
32
|
Amarillo I, Bui PH, Kantarci S, Rao N, Shackley BS, García R, Tirado CA. Atypical rearrangement involving 3'-IGH@ and a breakpoint at least 400 Kb upstream of an intact MYC in a CLL patient with an apparently balanced t(8;14)(q24.1;q32) and negative MYC expression. Mol Cytogenet 2013; 6:5. [PMID: 23369149 PMCID: PMC3599416 DOI: 10.1186/1755-8166-6-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/13/2012] [Indexed: 12/25/2022] Open
Abstract
The t(8;14)(q24.1;q32), the cytogenetic hallmark of Burkitt's lymphoma, is also found, but rarely, in cases of chronic lymphocytic leukemia (CLL). Such translocation typically results in a MYC-IGH@ fusion subsequently deregulating and overexpressing MYC on der 14q32. In CLL, atypical rearrangements resulting in its gain or loss, within or outside of IGH@ or MYC locus, have been reported, but their clinical significance remains uncertain. Herein, we report a 67 year-old male with complex cytogenetic findings of apparently balanced t(8;14) and unreported complex rearrangements of IGH@ and MYC loci. His clinical, morphological and immunophenotypic features were consistent with the diagnosis of CLL.Interphase FISH studies revealed deletions of 11q22.3 and 13q14.3, and an extra copy of IGH@, indicative of rearrangement. Karyotype analysis showed an apparently balanced t(8;14)(q24.1;q32). Sequential GPG-metaphase FISH studies revealed abnormal signal patterns: rearrangement of IGH break apart probe with the 5'-IGH@ on derivative 8q24.1 and the 3'-IGH@ retained on der 14q; absence of MYC break apart-specific signal on der 8q; and, the presence of unsplit 5'-MYC-3' break apart probe signals on der 14q. The breakpoint on 8q24.1 was found to be at least 400 Kb upstream of 5' of MYC. In addition, FISH studies revealed two abnormal clones; one with 13q14.3 deletion, and the other, with concurrent 11q deletion and atypical rearrangements. Chromosome microarray analysis (CMA) detected a 7.1 Mb deletion on 11q22.3-q23.3 including ATM, a finding consistent with FISH results. While no significant copy number gain or loss observed on chromosomes 8, 12 and 13, a 455 Kb microdeletion of uncertain clinical significance was detected on 14q32.33. Immunohistochemistry showed co-expression of CD19, CD5, and CD23, positive ZAP-70 expression and absence of MYC expression. Overall findings reveal an apparently balanced t(8;14) and atypical complex rearrangements involving 3'-IGH@ and a breakpoint at least 400 Kb upstream of MYC, resulting in the relocation of the intact 5'-MYC-3' from der 8q, and apposition to 3'-IGH@ at der 14q. This case report provides unique and additional cytogenetic data that may be of clinical significance in such a rare finding in CLL. It also highlights the utility of conventional and sequential metaphase FISH in understanding complex chromosome anomalies and their association with other clinical findings in patients with CLL. To the best of our knowledge, this is the first CLL reported case with such an atypical rearrangement in a patient with a negative MYC expression.
Collapse
Affiliation(s)
- Ina Amarillo
- Clinical Molecular Cytogenetics Laboratory, Medicine, David Geffen UCLA School of Medicine, Los Angeles, CA, USA.,Department of Pathology & Laboratory, Medicine, David Geffen UCLA School of Medicine, Los Angeles, CA, USA
| | - Peter H Bui
- Clinical Molecular Cytogenetics Laboratory, Medicine, David Geffen UCLA School of Medicine, Los Angeles, CA, USA.,Department of Pathology & Laboratory, Medicine, David Geffen UCLA School of Medicine, Los Angeles, CA, USA
| | - Sibel Kantarci
- Clinical Molecular Cytogenetics Laboratory, Medicine, David Geffen UCLA School of Medicine, Los Angeles, CA, USA.,Department of Pathology & Laboratory, Medicine, David Geffen UCLA School of Medicine, Los Angeles, CA, USA
| | - Nagesh Rao
- Clinical Molecular Cytogenetics Laboratory, Medicine, David Geffen UCLA School of Medicine, Los Angeles, CA, USA.,Department of Pathology & Laboratory, Medicine, David Geffen UCLA School of Medicine, Los Angeles, CA, USA
| | - Brit S Shackley
- Department of Pathology & Laboratory, Medicine, David Geffen UCLA School of Medicine, Los Angeles, CA, USA
| | - Rolando García
- Cytogenetics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Carlos A Tirado
- Clinical Molecular Cytogenetics Laboratory, Medicine, David Geffen UCLA School of Medicine, Los Angeles, CA, USA.,Department of Pathology & Laboratory, Medicine, David Geffen UCLA School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
33
|
Zivraj KH, Rehbein M, Ölschläger-Schütt J, Schob C, Falley K, Buck F, Schweizer M, Schepis A, Kremmer E, Richter D, Kreienkamp HJ, Kindler S. The RNA-binding protein MARTA2 regulates dendritic targeting of MAP2 mRNAs in rat neurons. J Neurochem 2013; 124:670-84. [PMID: 23121659 DOI: 10.1111/jnc.12079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 10/08/2012] [Accepted: 10/13/2012] [Indexed: 11/30/2022]
Abstract
Dendritic targeting of mRNAs encoding the microtubule-associated protein 2 (MAP2) in neurons involves a cis-acting dendritic targeting element. Two rat brain proteins, MAP2-RNA trans-acting protein (MARTA)1 and MARTA2, bind to the cis-element with both high affinity and specificity. In this study, affinity-purified MARTA2 was identified as orthologue of human far-upstream element binding protein 3. In neurons, it resides in somatodendritic granules and dendritic spines and associates with MAP2 mRNAs. Expression of a dominant-negative variant of MARTA2 disrupts dendritic targeting of endogenous MAP2 mRNAs, while not noticeably altering the level and subcellular distribution of polyadenylated mRNAs as a whole. Finally, MAP2 transcripts associate with the microtubule-based motor KIF5 and inhibition of KIF5, but not cytoplasmic dynein function disrupts extrasomatic trafficking of MAP2 mRNA granules. Thus, in neurons MARTA2 appears to represent a key trans-acting factor involved in KIF5-mediated dendritic targeting of MAP2 mRNAs.
Collapse
Affiliation(s)
- Krishna H Zivraj
- Institute for Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhang J, Chen QM. Far upstream element binding protein 1: a commander of transcription, translation and beyond. Oncogene 2012; 32:2907-16. [PMID: 22926519 DOI: 10.1038/onc.2012.350] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The far upstream binding protein 1 (FBP1) was first identified as a DNA-binding protein that regulates c-Myc gene transcription through binding to the far upstream element (FUSE) in the promoter region 1.5 kb upstream of the transcription start site. FBP1 collaborates with TFIIH and additional transcription factors for optimal transcription of the c-Myc gene. In recent years, mounting evidence suggests that FBP1 acts as an RNA-binding protein and regulates mRNA translation or stability of genes, such as GAP43, p27(Kip) and nucleophosmin. During retroviral infection, FBP1 binds to and mediates replication of RNA from Hepatitis C and Enterovirus 71. As a nuclear protein, FBP1 may translocate to the cytoplasm in apoptotic cells. The interaction of FBP1 with p38/JTV-1 results in FBP1 ubiquitination and degradation by the proteasomes. Transcriptional and post-transcriptional regulations by FBP1 contribute to cell proliferation, migration or cell death. FBP1 association with carcinogenesis has been reported in c-Myc dependent or independent manner. This review summarizes biochemical features of FBP1, its mechanism of action, FBP family members and the involvement of FBP1 in carcinogenesis.
Collapse
Affiliation(s)
- J Zhang
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA
| | | |
Collapse
|
35
|
Abstract
We propose that the well-documented therapeutic actions of repeated physical activities over human lifespan are mediated by the rapidly turning over proto-oncogenic Myc (myelocytomatosis) network of transcription factors. This transcription factor network is unique in utilizing promoter and epigenomic (acetylation/deacetylation, methylation/demethylation) mechanisms for controlling genes that include those encoding intermediary metabolism (the primary source of acetyl groups), mitochondrial functions and biogenesis, and coupling their expression with regulation of cell growth and proliferation. We further propose that remote functioning of the network occurs because there are two arms of this network, which consists of driver cells (e.g., working myocytes) that metabolize carbohydrates, fats, proteins, and oxygen and produce redox-modulating metabolites such as H₂O₂, NAD⁺, and lactate. The exercise-induced products represent autocrine, paracrine, or endocrine signals for target recipient cells (e.g., aortic endothelium, hepatocytes, and pancreatic β-cells) in which the metabolic signals are coupled with genomic networks and interorgan signaling is activated. And finally, we propose that lactate, the major metabolite released from working muscles and transported into recipient cells, links the two arms of the signaling pathway. Recently discovered contributions of the Myc network in stem cell development and maintenance further suggest that regular physical activity may prevent age-related diseases such as cardiovascular pathologies, cancers, diabetes, and neurological functions through prevention of stem cell dysfunctions and depletion with aging. Hence, regular physical activities may attenuate the various deleterious effects of the Myc network on health, the wild side of the Myc-network, through modulating transcription of genes associated with glucose and energy metabolism and maintain a healthy human status.
Collapse
Affiliation(s)
- Kishorchandra Gohil
- Exercise Physiology Laboratory, Dept. of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
36
|
Abstract
The iconic history of the Myc oncoprotein encompasses 3 decades of intense scientific discovery. There is no question that Myc has been a pioneer, advancing insight into the molecular basis of cancer as well as functioning as a critical control center for several diverse biological processes and regulatory mechanisms. This narrative chronicles the journey and milestones that have defined the understanding of Myc, and it provides an opportunity to consider future directions in this challenging yet rewarding field.
Collapse
Affiliation(s)
- Amanda R Wasylishen
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
37
|
Kang H, Lieberman PM. Mechanism of glycyrrhizic acid inhibition of Kaposi's sarcoma-associated herpesvirus: disruption of CTCF-cohesin-mediated RNA polymerase II pausing and sister chromatid cohesion. J Virol 2011; 85:11159-69. [PMID: 21880767 PMCID: PMC3194953 DOI: 10.1128/jvi.00720-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 08/22/2011] [Indexed: 12/24/2022] Open
Abstract
Glycyrrhizic acid (GA), a derivative of licorice, selectively inhibits the growth of lymphocytes latently infected with Kaposi's sarcoma-associated herpesvirus. The mechanism involves the deregulation of the multicistronic latency transcript, including the failure to generate the mature forms of viral mRNA encoding LANA. We show here that GA disrupts an RNA polymerase II (RNAPII) complex that accumulates at the CTCF-cohesin binding site within the first intron of the latency transcript. GA altered the enrichment of the RNAPII pausing complex, along with pausing factors SPT5 and NELF-A, at the intragenic CTCF-cohesin binding sites. GA blocked the interaction of cohesin subunit SMC3 with another cohesin subunit, RAD21, and reduced SPT5 interaction with RNAPII. Covalent coupling of GA to a solid support revealed that GA interacts with several cellular proteins, including SMC3 and SPT5, but not their respective interaction partners RAD21 and RNAPII. GA treatment also inhibited the transcription of some cellular genes, like c-myc, which contain a similar CTCF-cohesin binding site within the first intron. We also found that GA leads to a more general loss of sister chromatid cohesion for cellular chromosomes. These findings suggest that RNAPII pauses at intragenic CTCF-cohesin binding sites and that abrogation of this pausing by GA leads to loss of proper mRNA production and defects in sister chromatid cohesion, a process important for both viral and cellular chromosome stability.
Collapse
Affiliation(s)
- Hyojeung Kang
- The Wistar Institute, Philadelphia, Pennsylvania 19104
- Kyungpook National University, Daegu, South Korea
| | | |
Collapse
|
38
|
Atanassov BS, Dent SYR. USP22 regulates cell proliferation by deubiquitinating the transcriptional regulator FBP1. EMBO Rep 2011; 12:924-30. [PMID: 21779003 DOI: 10.1038/embor.2011.140] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 06/13/2011] [Accepted: 06/14/2011] [Indexed: 02/06/2023] Open
Abstract
Ubiquitin-specific protease 22 (USP22) edits the histone code by deubiquitinating H2A and H2B as part of the mammalian SAGA (Spt-Ada-Gcn5) complex, and is required for transcriptional regulation and normal cell-cycle progression. Here, we show that USP22 affects the expression of p21 by altering far upstream element (FUSE)-binding protein 1 (FBP1) ubiquitination, as ablation of USP22 leads to increased FBP1 ubiquitination and decreased FBP1 protein occupancy at the p21 gene. Surprisingly, increased polyubiquitination of FBP1 does not alter its protein stability, but instead modulates the stable recruitment of FBP1 to target loci. Our results indicate a mechanism by which USP22 regulates cell proliferation and tumorigenesis.
Collapse
Affiliation(s)
- Boyko S Atanassov
- Department of Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Science Park, Smithville, 78957, USA
| | | |
Collapse
|
39
|
Abstract
The enigmatic MYC oncogene, which participates broadly in cancers, revealed itself recently as the maestro of an unfolding symphony of cell growth, proliferation, death, and metabolism. The study of MYC is arguably most challenging to its students but at the same time exhilarating when MYC reveals its deeply held secrets. It is the excitement of our richer understanding of MYC that is captured in each review of this special issue of Genes & Cancer. Collectively, our deeper understanding of MYC reveals that it is a symphony conductor, controlling a large orchestra of target genes. Although MYC controls many orchestra sections, which are necessary but not sufficient for Myc function, ribosome biogenesis stands out to reveal Myc's primordial function particularly in fruit flies. Because ribosome biogenesis and the associated translational machinery are bioenergetically demanding, Myc's other target genes involved in energy metabolism must be coupled with energy demand to ensure that cells can replicate their genome and produce daughter cells. Normal cells have feedback loops that diminish MYC expression when nutrients are scarce. On the other hand, when deregulated Myc transforms cells, their constitutive bioenergetic demand can trigger cell death when energy is unavailable. This special issue captures the unfolding symphony of MYC-mediated tumorigenesis through reviews that span from a timeline of MYC research, fundamental understanding of how the MYC gene itself is regulated, the study of Myc in model organisms, Myc function, and target genes to translational research in search of new therapeutic modalities for the treatment of cancer.
Collapse
Affiliation(s)
- Chi V Dang
- Division of Hematology, Department of Medicine, and Departments of Cell Biology, Oncology, Pathology, and Molecular Biology & Genetics, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
40
|
8q24 prostate, breast, and colon cancer risk loci show tissue-specific long-range interaction with MYC. Proc Natl Acad Sci U S A 2010; 107:9742-6. [PMID: 20453196 DOI: 10.1073/pnas.0910668107] [Citation(s) in RCA: 303] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The 8q24 gene desert contains risk loci for multiple epithelial cancers, including colon, breast, and prostate. Recent evidence suggests these risk loci contain enhancers. In this study, data are presented showing that each risk locus bears epigenetic marks consistent with enhancer elements and forms a long-range chromatin loop with the MYC proto-oncogene located several hundred kilobases telomeric and that these interactions are tissue-specific. We therefore propose that the 8q24 risk loci operate through a common mechanism-as tissue-specific enhancers of MYC.
Collapse
|
41
|
Pomerantz MM, Beckwith CA, Regan MM, Wyman SK, Petrovics G, Chen Y, Hawksworth DJ, Schumacher FR, Mucci L, Penney KL, Stampfer MJ, Chan JA, Ardlie KG, Fritz BR, Parkin RK, Lin DW, Dyke M, Herman P, Lee S, Oh WK, Kantoff PW, Tewari M, McLeod DG, Srivastava S, Freedman ML. Evaluation of the 8q24 prostate cancer risk locus and MYC expression. Cancer Res 2009; 69:5568-74. [PMID: 19549893 DOI: 10.1158/0008-5472.can-09-0387] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Polymorphisms at 8q24 are robustly associated with prostate cancer risk. The risk variants are located in nonprotein coding regions and their mechanism has not been fully elucidated. To further dissect the function of this locus, we tested two hypotheses: (a) unannotated microRNAs (miRNA) are transcribed in the region, and (b) this region is a cis-acting enhancer. Using next generation sequencing, 8q24 risk regions were interrogated for known and novel miRNAs in histologically normal radical prostatectomy tissue. We also evaluated the association between the risk variants and transcript levels of multiple genes, focusing on the proto-oncogene, MYC. RNA expression was measured in histologically normal and tumor tissue from 280 prostatectomy specimens (from 234 European American and 46 African American patients), and paired germline DNA from each individual was genotyped for six 8q24 risk single nucleotide polymorphisms. No evidence was found for significant miRNA transcription within 8q24 prostate cancer risk loci. Likewise, no convincing association between RNA expression and risk allele status was detected in either histologically normal or tumor tissue. To our knowledge, this is one of the first and largest studies to directly assess miRNA in this region and to systematically measure MYC expression levels in prostate tissue in relation to inherited risk variants. These data will help to direct the future study of this risk locus.
Collapse
Affiliation(s)
- Mark M Pomerantz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Torres L, Sandoval J, Penella E, Zaragozá R, García C, Rodríguez JL, Viña JR, García-Trevijano ER. In vivo GSH depletion induces c-myc expression by modulation of chromatin protein complexes. Free Radic Biol Med 2009; 46:1534-42. [PMID: 19289167 DOI: 10.1016/j.freeradbiomed.2009.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 03/03/2009] [Accepted: 03/06/2009] [Indexed: 11/21/2022]
Abstract
We hypothesize that glutathione (GSH) fluctuations could have a prominent role in the modulation of c-myc expression through a mechanism affecting chromatin remodeling complexes. This could lead to an open chromatin structure accessible to transcription factors. We studied the in vivo effect of GSH depletion on these complexes bound to the c-myc promoter in the liver of l-buthionine-(S,R)-sulfoximine (BSO)-treated rats. Using chromatin immunoprecipitation we found that 3 h after BSO treatment the repressing complexes Id2 and Sin3A (part of a histone-deacetylase complex) were released from the c-myc promoter. STAT3 was phosphorylated and associated with its coactivator p300 with intrinsic acetyltransferase activity. Consequently, STAT3 was acetylated and bound to the c-myc promoter and histone H3 became hyperacetylated. At the same time, the RNApol II paused on the c-myc promoter was released, and the gene was overexpressed. After 6 h of BSO treatment, Id2/Sin3A returned to the c-myc promoter and the gene expression was down-regulated. Moreover, we observed a second peak of c-myc expression 48 h after BSO treatment, although at this time histone H3 was hypoacetylated and RNApol II paused, suggesting that this second peak was not subject to transcriptional control, but to posttranscriptional modulation. On the whole, our experiments suggest a novel mechanism for the effect of GSH on gene expression involving chromatin changes from a repressive to an open structure accessible to transcription factors such as STAT3.
Collapse
Affiliation(s)
- Luis Torres
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, E-46010 Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Just over 25 years ago, MYC, the human homologue of a retroviral oncogene, was identified. Since that time, MYC research has been intense and the advances impressive. On reflection, it is astonishing how each incremental insight into MYC regulation and function has also had an impact on numerous biological disciplines, including our understanding of molecular oncogenesis in general. Here we chronicle the major advances in our understanding of MYC biology, and peer into the future of MYC research.
Collapse
|
44
|
Rabkin CS, Janz S. Overview of mechanisms and consequences of chromosomal translocation. J Natl Cancer Inst Monogr 2008:1. [PMID: 18647992 DOI: 10.1093/jncimonographs/lgn021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Charles S Rabkin
- Viral Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA.
| | | |
Collapse
|