1
|
Tabar V, Sarva H, Lozano AM, Fasano A, Kalia SK, Yu KKH, Brennan C, Ma Y, Peng S, Eidelberg D, Tomishima M, Irion S, Stemple W, Abid N, Lampron A, Studer L, Henchcliffe C. Phase I trial of hES cell-derived dopaminergic neurons for Parkinson's disease. Nature 2025:10.1038/s41586-025-08845-y. [PMID: 40240592 DOI: 10.1038/s41586-025-08845-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 02/26/2025] [Indexed: 04/18/2025]
Abstract
Parkinson's disease is a progressive neurodegenerative condition with a considerable health and economic burden1. It is characterized by the loss of midbrain dopaminergic neurons and a diminished response to symptomatic medical or surgical therapy as the disease progresses2. Cell therapy aims to replenish lost dopaminergic neurons and their striatal projections by intrastriatal grafting. Here, we report the results of an open-label phase I clinical trial (NCT04802733) of an investigational cryopreserved, off-the-shelf dopaminergic neuron progenitor cell product (bemdaneprocel) derived from human embryonic stem (hES) cells and grafted bilaterally into the putamen of patients with Parkinson's disease. Twelve patients were enrolled sequentially in two cohorts-a low-dose (0.9 million cells, n = 5) and a high-dose (2.7 million cells, n = 7) cohort-and all of the participants received one year of immunosuppression. The trial achieved its primary objectives of safety and tolerability one year after transplantation, with no adverse events related to the cell product. At 18 months after grafting, putaminal 18Fluoro-DOPA positron emission tomography uptake increased, indicating graft survival. Secondary and exploratory clinical outcomes showed improvement or stability, including improvement in the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) Part III OFF scores by an average of 23 points in the high-dose cohort. There were no graft-induced dyskinesias. These data demonstrate safety and support future definitive clinical studies.
Collapse
Affiliation(s)
- V Tabar
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Center for Stem Cell Biology, Sloan Kettering Institute, New York, NY, USA.
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - H Sarva
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - A M Lozano
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
- Krembil Brain Institute, Toronto, Ontario, Canada
| | - A Fasano
- Krembil Brain Institute, Toronto, Ontario, Canada
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada
| | - S K Kalia
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
- Krembil Brain Institute, Toronto, Ontario, Canada
| | - K K H Yu
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - C Brennan
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Y Ma
- Center for Neurosciences, Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - S Peng
- Center for Neurosciences, Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - D Eidelberg
- Center for Neurosciences, Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | | | - S Irion
- BlueRock Therapeutics, Cambridge, MA, USA
| | - W Stemple
- BlueRock Therapeutics, Cambridge, MA, USA
| | - N Abid
- BlueRock Therapeutics, Cambridge, MA, USA
| | - A Lampron
- BlueRock Therapeutics, Cambridge, MA, USA
| | - L Studer
- Center for Stem Cell Biology, Sloan Kettering Institute, New York, NY, USA
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - C Henchcliffe
- Department of Neurology, University of California, Irvine, CA, USA
| |
Collapse
|
2
|
Wan Y, Ding Y. Strategies and mechanisms of neuronal reprogramming. Brain Res Bull 2023; 199:110661. [PMID: 37149266 DOI: 10.1016/j.brainresbull.2023.110661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 03/02/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Traumatic injury and neurodegenerative diseases of the central nervous system (CNS) are difficult to treat due to the poorly regenerative nature of neurons. Engrafting neural stem cells into the CNS is a classic approach for neuroregeneration. Despite great advances, stem cell therapy still faces the challenges of overcoming immunorejection and achieving functional integration. Neuronal reprogramming, a recent innovation, converts endogenous non-neuronal cells (e.g., glial cells) into mature neurons in the adult mammalian CNS. In this review, we summarize the progress of neuronal reprogramming research, mainly focusing on strategies and mechanisms of reprogramming. Furthermore, we highlight the advantages of neuronal reprogramming and outline related challenges. Although the significant development has been made in this field, several findings are controversial. Even so, neuronal reprogramming, especially in vivo reprogramming, is expected to become an effective treatment for CNS neurodegenerative diseases.
Collapse
Affiliation(s)
- Yue Wan
- Department of Histology and Embryology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yan Ding
- Department of Histology and Embryology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Lane EL, Lelos MJ. Defining the unknowns for cell therapies in Parkinson's disease. Dis Model Mech 2022; 15:dmm049543. [PMID: 36165848 PMCID: PMC9555765 DOI: 10.1242/dmm.049543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
First-in-human clinical trials have commenced to test the safety and efficacy of cell therapies for people with Parkinson's disease (PD). Proof of concept that this neural repair strategy is efficacious is based on decades of preclinical studies and clinical trials using primary foetal cells, as well as a significant literature exploring more novel stem cell-derived products. Although several measures of efficacy have been explored, including the successful in vitro differentiation of stem cells to dopamine neurons and consistent alleviation of motor dysfunction in rodent models, many unknowns still remain regarding the long-term clinical implications of this treatment strategy. Here, we consider some of these outstanding questions, including our understanding of the interaction between anti-Parkinsonian medication and the neural transplant, the impact of the cell therapy on cognitive or neuropsychiatric symptoms of PD, the role of neuroinflammation in the therapeutic process and the development of graft-induced dyskinesias. We identify questions that are currently pertinent to the field that require further exploration, and pave the way for a more holistic understanding of this neural repair strategy for treatment of PD.
Collapse
Affiliation(s)
- Emma L. Lane
- Cardiff School of Pharmacy and Pharmaceutical Sciences, King Edward VII Avenue, Cardiff University, Cardiff CF10 3NB, UK
| | - Mariah J. Lelos
- School of Biosciences, Museum Avenue, Cardiff University, Cardiff CF10 3AX, UK
| |
Collapse
|
4
|
Extracellular Matrix Biomimetic Hydrogels, Encapsulated with Stromal Cell-Derived Factor 1, Improve the Composition of Foetal Tissue Grafts in a Rodent Model of Parkinson's Disease. Int J Mol Sci 2022; 23:ijms23094646. [PMID: 35563037 PMCID: PMC9101815 DOI: 10.3390/ijms23094646] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 02/05/2023] Open
Abstract
Clinical studies have provided evidence for dopamine (DA) cell replacement therapy in Parkinson’s Disease. However, grafts derived from foetal tissue or pluripotent stem cells (PSCs) remain heterogeneous, with a high proportion of non-dopaminergic cells, and display subthreshold reinnervation of target tissues, thereby highlighting the need to identify new strategies to improve graft outcomes. In recent work, Stromal Cell-Derived Factor-1 (SDF1), secreted from meninges, has been shown to exert many roles during ventral midbrain DA development and DA-directed differentiation of PSCs. Related, co-implantation of meningeal cells has been shown to improve neural graft outcomes, however, no direct evidence for the role of SDF1 in neural grafting has been shown. Due to the rapid degradation of SDF1 protein, here, we utilised a hydrogel to entrap the protein and sustain its delivery at the transplant site to assess the impact on DA progenitor differentiation, survival and plasticity. Hydrogels were fabricated from self-assembling peptides (SAP), presenting an epitope for laminin, the brain’s main extracellular matrix protein, thereby providing cell adhesive support for the grafts and additional laminin–integrin signalling to influence cell fate. We show that SDF1 functionalised SAP hydrogels resulted in larger grafts, containing more DA neurons, increased A9 DA specification (the subpopulation of DA neurons responsible for motor function) and enhanced innervation. These findings demonstrate the capacity for functionalised, tissue-specific hydrogels to improve the composition of grafts targeted for neural repair.
Collapse
|
5
|
Ashkan K, Velicu MA, Furlanetti L. Deep brain stimulation-induced neuroprotection: A critical appraisal. Eur J Paediatr Neurol 2022; 37:114-122. [PMID: 35189499 DOI: 10.1016/j.ejpn.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 10/19/2022]
Abstract
Over the last two decades deep brain stimulation (DBS) has become a widely used therapeutic alternative for a variety of neurological and psychiatric diseases. The extensive experience in the field of movement disorders has provided valuable knowledge and has led the path to its application to other hard-to-treat conditions. Despite the recognised symptomatic beneficial effects, its capacity to modify the course of a disease has been in constant debate. The ability to demonstrate neuroprotection relies on a thorough understanding of the functioning of both normal and pathological neural structures, as well as their stimulation induced alterations, all of which to this date remain incomplete. Consequently, there is no consensus over the definition of neuroprotection nor its means of quantification or evaluation. Additionally, neuroprotection has been indirectly addressed in most of the literature, challenging the efforts to narrow its interpretation. As such, a broad spectrum of evidence has been considered to demonstrate disease modifying interventions. This paper aims to provide a critical appraisal of the current evidence on potential neuroprotective effects of DBS in neurodegenerative brain disorders.
Collapse
Affiliation(s)
- Keyoumars Ashkan
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK; Department of Basic and Clinical Neuroscience, IoPPN, King's College London, UK; King's Health Partners Academic Health Sciences Centre, London, UK
| | - Maria Alexandra Velicu
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK; King's Health Partners Academic Health Sciences Centre, London, UK
| | - Luciano Furlanetti
- Department of Basic and Clinical Neuroscience, IoPPN, King's College London, UK; King's Health Partners Academic Health Sciences Centre, London, UK.
| |
Collapse
|
6
|
A combined cell and gene therapy approach for homotopic reconstruction of midbrain dopamine pathways using human pluripotent stem cells. Cell Stem Cell 2022; 29:434-448.e5. [PMID: 35180398 DOI: 10.1016/j.stem.2022.01.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/24/2021] [Accepted: 01/25/2022] [Indexed: 12/12/2022]
Abstract
Midbrain dopamine (mDA) neurons can be replaced in patients with Parkinson's disease (PD) in order to provide long-term improvement in motor functions. The limited capacity for long-distance axonal growth in the adult brain means that cells are transplanted ectopically, into the striatal target. As a consequence, several mDA pathways are not re-instated, which may underlie the incomplete restoration of motor function in patients. Here, we show that viral delivery of GDNF to the striatum, in conjunction with homotopic transplantation of human pluripotent stem-cell-derived mDA neurons, recapitulates brain-wide mDA target innervation. The grafts provided re-instatement of striatal dopamine levels and correction of motor function and also connectivity with additional mDA target nuclei not well innervated by ectopic grafts. These results demonstrate the remarkable capacity for achieving functional and anatomically precise reconstruction of long-distance circuitry in the adult brain by matching appropriate growth-factor signaling to grafting of specific cell types.
Collapse
|
7
|
Adachi H, Morizane A, Torikoshi S, Raudzus F, Taniguchi Y, Miyamoto S, Sekiguchi K, Takahashi J. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:767-777. [PMID: 35605097 PMCID: PMC9299512 DOI: 10.1093/stcltm/szac033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/18/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Hiromasa Adachi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Asuka Morizane
- Corresponding authors: Asuka Morizane, MD, PhD, Kobe City Medical Center General Hospital, Center for Clinical Research and Innovation, 2-1-1, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650 0046, Japan, Tel: +81 78 302 4321; Fax: +81 78 302 7537;
| | - Sadaharu Torikoshi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Fabian Raudzus
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Neuronal Signaling and Regeneration Unit, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Medical Education Center/International Education Section, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Susumu Miyamoto
- Kobe City Medical Center General Hospital, Center for Clinical Research and Innovation, Hyogo, Japan
| | - Kiyotoshi Sekiguchi
- Kiyotoshi Sekiguchi, PhD (for chimeric laminin fragments), Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan. Tel: +81 6 6105 5935; Fax: +81 6 6105 5935; Email;
| | - Jun Takahashi
- Jun Takahashi, MD, PhD, Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan. Tel: +81 75 366 7052; Fax: +81 75 366 7071;
| |
Collapse
|
8
|
Elabi OF, Davies JS, Lane EL. L-dopa-Dependent Effects of GLP-1R Agonists on the Survival of Dopaminergic Cells Transplanted into a Rat Model of Parkinson Disease. Int J Mol Sci 2021; 22:ijms222212346. [PMID: 34830228 PMCID: PMC8618072 DOI: 10.3390/ijms222212346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 12/27/2022] Open
Abstract
Cell therapy is a promising treatment for Parkinson's disease (PD), however clinical trials to date have shown relatively low survival and significant patient-to-patient variability. Glucagon Like Peptide-1 receptor (GLP-1R) agonists have potential neuroprotective effects on endogenous dopaminergic neurons. This study explores whether these agents could similarly support the growth and survival of newly transplanted neurons. 6-OHDA lesioned Sprague Dawley rats received intra-striatal grafts of dopaminergic ventral mesencephalic cells from embryonic day 14 Wistar rat embryos. Transplanted rats then received either saline or L-dopa (12 mg/kg) administered every 48 h prior to, and following cell transplantation. Peripheral GLP-1R agonist administration (exendin-4, 0.5 μg/kg twice daily or liraglutide, 100 μg/kg once daily) commenced immediately after cell transplantation and was maintained throughout the study. Graft survival increased under administration of exendin-4, with motor function improving significantly following treatment with both exendin-4 and liraglutide. However, this effect was not observed in rats administered with L-dopa. In contrast, L-dopa treatment with liraglutide increased graft volume, with parallel increases in motor function. However, this improvement was accompanied by an increase in leukocyte infiltration around the graft. The co-administration of L-dopa and exendin-4 also led to indicators of insulin resistance not seen with liraglutide, which may underpin the differential effects observed between the two GLP1-R agonists. Overall, there may be some benefit to the supplementation of grafted patients with GLP-1R agonists but the potential interaction with other pharmacological treatments needs to be considered in more depth.
Collapse
Affiliation(s)
- Osama F. Elabi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
- Correspondence: (O.F.E.); (E.L.L.)
| | - Jeffrey S. Davies
- Institute of Life Sciences, School of Medicine, Swansea University, Swansea SA2 8PP, UK;
| | - Emma L. Lane
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
- Correspondence: (O.F.E.); (E.L.L.)
| |
Collapse
|
9
|
Rizzo SA, Bartley O, Rosser AE, Newland B. Oxygen-glucose deprivation in neurons: implications for cell transplantation therapies. Prog Neurobiol 2021; 205:102126. [PMID: 34339808 DOI: 10.1016/j.pneurobio.2021.102126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/16/2021] [Accepted: 07/29/2021] [Indexed: 12/25/2022]
Abstract
Cell replacement therapies hold the potential to restore neuronal networks compromised by neurodegenerative diseases (such as Parkinson's disease or Huntington's disease), or focal tissue damage (via a stroke or spinal cord injury). Despite some promising results achieved to date, transplanted cells typically exhibit poor survival in the central nervous system, thus limiting therapeutic efficacy of the graft. Although cell death post-transplantation is likely to be multifactorial in causality, growing evidence suggests that the lack of vascularisation at the graft site, and the resulting ischemic host environment, may play a fundamental role in the fate of grafted cells. Herein, we summarise data showing how the deprivation of either oxygen, glucose, or both in combination, impacts the survival of neurons and review strategies which may improve graft survival in the central nervous system.
Collapse
Affiliation(s)
| | - Oliver Bartley
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Anne E Rosser
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK; Neuroscience and Mental Health Institute and B.R.A.I.N Unit, Cardiff University, School of Medicine, Hadyn Ellis Building, Maindy Road, CF24 4HQ, Cardiff, UK
| | - Ben Newland
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, CF10 3NB, Wales, UK; Leibniz Institute for Polymer Research Dresden (IPF), Hohe Straße 6, 01069, Dresden, Germany.
| |
Collapse
|
10
|
Libbrecht S, Van den Haute C, Welkenhuysen M, Braeken D, Haesler S, Baekelandt V. Chronic chemogenetic stimulation of the anterior olfactory nucleus reduces newborn neuron survival in the adult mouse olfactory bulb. J Neurochem 2021; 158:1186-1198. [PMID: 34338310 DOI: 10.1111/jnc.15486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 01/06/2023]
Abstract
During adult rodent life, newborn neurons are added to the olfactory bulb (OB) in a tightly controlled manner. Upon arrival in the OB, input synapses from the local bulbar network and the higher olfactory cortex precede the formation of functional output synapses, indicating a possible role for these regions in newborn neuron survival. An interplay between the environment and the piriform cortex in the regulation of newborn neuron survival has been suggested. However, the specific network and the neuronal cell types responsible for this effect have not been elucidated. Furthermore, the role of the other olfactory cortical areas in this process is not known. Here we demonstrate that pyramidal neurons in the mouse anterior olfactory nucleus, the first cortical area for odor processing, have a key role in the survival of newborn neurons. Using DREADD (Designer Receptors Exclusively Activated by Designer Drugs) technology, we applied chronic stimulation to the anterior olfactory nucleus and observed a decrease in newborn neurons in the OB through induction of apoptosis. These findings provide further insight into the network regulating neuronal survival in adult neurogenesis and strengthen the importance of the surrounding network for sustained integration of new neurons.
Collapse
Affiliation(s)
- Sarah Libbrecht
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Life Science Technologies Department, Imec, Leuven, Belgium
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium.,Leuven Viral Vector Core, KU Leuven, Leuven, Belgium
| | | | - Dries Braeken
- Life Science Technologies Department, Imec, Leuven, Belgium
| | - Sebastian Haesler
- Research Group Neurophysiology, Department of Neurosciences, KU Leuven, Leuven, Belgium.,VIB, Leuven, Belgium.,Neuroelectronics Research Flanders, Leuven, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Gordián-Vélez WJ, Chouhan D, España RA, Chen HI, Burdick JA, Duda JE, Cullen DK. Restoring lost nigrostriatal fibers in Parkinson's disease based on clinically-inspired design criteria. Brain Res Bull 2021; 175:168-185. [PMID: 34332016 DOI: 10.1016/j.brainresbull.2021.07.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022]
Abstract
Parkinson's disease is a neurodegenerative disease affecting around 10 million people worldwide. The death of dopaminergic neurons in the substantia nigra and the axonal fibers that constitute the nigrostriatal pathway leads to a loss of dopamine in the striatum that causes the motor symptoms of this disease. Traditional treatments have focused on reducing symptoms, while therapies with human fetal or stem cell-derived neurons have centered on implanting these cells in the striatum to restore its innervation. An alternative approach is pathway reconstruction, which aims to rebuild the entire structure of neurons and axonal fibers of the nigrostriatal pathway in a way that matches its anatomy and physiology. This type of repair could be more capable of reestablishing the signaling mechanisms that ensure proper dopamine release in the striatum and regulation of other motor circuit regions in the brain. In this manuscript, we conduct a review of the literature related to pathway reconstruction as a treatment for Parkinson's disease, delve into the limitations of these studies, and propose the requisite design criteria to achieve this goal at a human scale. We then present our tissue engineering-based platform to fabricate hydrogel-encased dopaminergic axon tracts in vitro for later implantation into the brain to replace and reconstruct the pathway. These tissue-engineered nigrostriatal pathways (TE-NSPs) can be characterized and optimized for cell number and phenotype, axon growth lengths and rates, and the capacity for synaptic connectivity and dopamine release. We then show original data of advances in creating these constructs matching clinical design criteria using human iPSC-derived dopaminergic neurons and a hyaluronic acid hydrogel. We conclude with a discussion of future steps that are needed to further optimize human-scale TE-NSPs and translate them into clinical products.
Collapse
Affiliation(s)
- Wisberty J Gordián-Vélez
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States; Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Dimple Chouhan
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Rodrigo A España
- Department of Neurobiology & Anatomy, College of Medicine, Drexel University, Philadelphia, PA, United States
| | - H Isaac Chen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Jason A Burdick
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - John E Duda
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - D Kacy Cullen
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States; Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States.
| |
Collapse
|
12
|
Torikoshi S, Morizane A, Shimogawa T, Samata B, Miyamoto S, Takahashi J. Exercise Promotes Neurite Extensions from Grafted Dopaminergic Neurons in the Direction of the Dorsolateral Striatum in Parkinson's Disease Model Rats. JOURNAL OF PARKINSONS DISEASE 2021; 10:511-521. [PMID: 31929121 PMCID: PMC7242856 DOI: 10.3233/jpd-191755] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Cell transplantation is expected to be a promising treatment for Parkinson’s disease (PD), in which re-innervation of the host striatum by grafted dopamine (DA) neurons is essential. In particular, the dorsolateral part of the striatum is important because it is the target of midbrain A9 DA neurons, which are degenerated in PD pathology. The effect of exercise on the survival and maturation of grafted neurons has been reported in several neurological disease models, but never in PD models. Objective: We investigated how exercise influences cell transplantation for PD, especially from the viewpoint of cell survival and neurite extensions. Methods: Ventral mesencephalic neurons from embryonic (E12.5) rats were transplanted into the striatum of adult 6-OHDA-lesioned rats. The host rats then underwent treadmill training as exercise after the transplantation. Six weeks after the transplantation, they were sacrificed, and the grafts in the striatum were analyzed. Results: The addition of exercise post-transplantation significantly increased the number of surviving DA neurons. Moreover, it promoted neurite extensions from the graft toward the dorsolateral part of the striatum. Conclusions: This study indicates a beneficial effect of exercise after cell transplantation in PD.
Collapse
Affiliation(s)
- Sadaharu Torikoshi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Asuka Morizane
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Takafumi Shimogawa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Bumpei Samata
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
13
|
Li JY, Li W. Postmortem Studies of Fetal Grafts in Parkinson's Disease: What Lessons Have We Learned? Front Cell Dev Biol 2021; 9:666675. [PMID: 34055800 PMCID: PMC8155361 DOI: 10.3389/fcell.2021.666675] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/06/2021] [Indexed: 12/28/2022] Open
Abstract
Neural transplantation is a potential therapeutic method for Parkinson’s disease (PD). Fetal dopaminergic (DA) neurons have been important transplantation cell sources in the history of replacement therapy for PD. Several decades of preclinical animal experiments and clinical trials using fetal DA neuron transplantation in PD therapy have shown not only promising results but also problems. In order to reveal possible factors influencing the clinical outcomes, we reviewed fetal DA neuron transplantation therapies from 1970s to present, with a special focus on postmortem studies. Firstly, we gave a general description of the clinical outcomes and neuroanatomy of grafted cases; secondly, we summarized the main available postmortem studies, including the cell survival, reinnervation, and pathology development. In the end, we further discussed the link between function and structure of the grafts, seeking for the possible factors contributing to a functional graft. With our review, we hope to provide references for future transplantation trials from a histological point of view.
Collapse
Affiliation(s)
- Jia-Yi Li
- Laboratory of Neurodegenerative Diseases and Repair, Institute of Health Sciences, China Medical University, Shenyang, China.,Neural Plasticity and Repair Unit, Wallenberg Neuroscience Centre, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Wen Li
- Laboratory of Neurodegenerative Diseases and Repair, Institute of Health Sciences, China Medical University, Shenyang, China.,Neural Plasticity and Repair Unit, Wallenberg Neuroscience Centre, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
14
|
Barbuti PA, Barker RA, Brundin P, Przedborski S, Papa SM, Kalia LV, Mochizuki H. Recent Advances in the Development of Stem-Cell-Derived Dopaminergic Neuronal Transplant Therapies for Parkinson's Disease. Mov Disord 2021; 36:1772-1780. [PMID: 33963552 DOI: 10.1002/mds.28628] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
The last decade has seen exciting advances in the development of potential stem cell-based therapies for Parkinson's disease (PD), which have used different types of stem cells as starting material. These cells have been developed primarily to replace dopamine-producing neurons in the substantia nigra that are progressively lost in the disease process. The aim is to largely restore lost motor functions, whilst not ever being curative. We discuss cell-based strategies that will have to fulfill important criteria to become effective and competitive therapies for PD. These criteria include reproducibly producing sufficient numbers of cells with an authentic substantia nigra dopamine neuron A9 phenotype, which can integrate into the host brain after transplantation and form synapses (considered crucial for long-term functional benefits). Furthermore, it is essential that transplanted cells exhibit no, or only very low levels of, proliferation without tumor formation at the site of grafting. Cumulative research has shown that stem cell-based approaches continue to have great potential in PD, but key questions remain to be answered. Here, we review the most recent progress in research on stem cell-based dopamine neuron replacement therapy for PD and briefly discuss what the immediate future might hold. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Peter A Barbuti
- Departments of Neurology, Pathology and Cell Biology, and Neuroscience, Columbia University, New York, New York, USA
| | - Roger A Barker
- Department of Clinical Neuroscience and WT-MRC Cambridge Stem Cell Institute, University of Cambridge and Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Patrik Brundin
- Van Andel Institute, Center for Parkinson's Disease, Department of Neurodegenerative Science, Grand Rapids, Michigan, USA
| | - Serge Przedborski
- Departments of Neurology, Pathology and Cell Biology, and Neuroscience, Columbia University, New York, New York, USA
| | - Stella M Papa
- Yerkes National Primate Research Center and Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lorraine V Kalia
- Division of Neurology, Department of Medicine, Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | | |
Collapse
|
15
|
Muckom RJ, Sampayo RG, Johnson HJ, Schaffer DV. Advanced Materials to Enhance Central Nervous System Tissue Modeling and Cell Therapy. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2002931. [PMID: 33510596 PMCID: PMC7840150 DOI: 10.1002/adfm.202002931] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Indexed: 05/04/2023]
Abstract
The progressively deeper understanding of mechanisms underlying stem cell fate decisions has enabled parallel advances in basic biology-such as the generation of organoid models that can further one's basic understanding of human development and disease-and in clinical translation-including stem cell based therapies to treat human disease. Both of these applications rely on tight control of the stem cell microenvironment to properly modulate cell fate, and materials that can be engineered to interface with cells in a controlled and tunable manner have therefore emerged as valuable tools for guiding stem cell growth and differentiation. With a focus on the central nervous system (CNS), a broad range of material solutions that have been engineered to overcome various hurdles in constructing advanced organoid models and developing effective stem cell therapeutics is reviewed. Finally, regulatory aspects of combined material-cell approaches for CNS therapies are considered.
Collapse
Affiliation(s)
- Riya J Muckom
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94704, USA
| | - Rocío G Sampayo
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94704, USA
| | - Hunter J Johnson
- Department of Bioengineering, UC Berkeley, Berkeley, CA 94704, USA
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94704, USA
| |
Collapse
|
16
|
Miyawaki Y, Samata B, Kikuchi T, Nishimura K, Takahashi J. Zonisamide promotes survival of human-induced pluripotent stem cell-derived dopaminergic neurons in the striatum of female rats. J Neurosci Res 2020; 98:1575-1587. [PMID: 32506530 PMCID: PMC7497107 DOI: 10.1002/jnr.24668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 11/12/2022]
Abstract
The transplantation of dopaminergic (DA) progenitors derived from pluripotent stem cells improves the behavior of Parkinson's disease model animals. However, the survival of DA progenitors is low, and the final yield of DA neurons is only approximately 0.3%–2% the number of transplanted cells. Zonisamide (ZNS) increases the number of survived DA neurons upon the transplantation of mouse‐induced pluripotent stem (iPS) cell‐derived DA progenitors in the rat striatum. In this study, we induced DA progenitors from human iPS cells and transplanted them into the striatum of female rats with daily administration of ZNS. The number of survived DA neurons was evaluated 1 and 4 months after transplantation by immunohistochemistry, which revealed that the number of survived DA neurons was significantly increased with the administration of ZNS. To assess the mechanism of action of ZNS, we performed a gene expression analysis to compare the gene expression profiles in striatum treated with or without ZNS. The analysis revealed that the expression of SLIT‐and NTRK‐like protein 6 (SLITRK6) was upregulated in rat striatum treated with ZNS. In conclusion, ZNS promotes the survival of DA neurons after the transplantation of human‐iPS cell‐derived DA progenitors in the rat striatum. SLITRK6 is suggested to be involved in this supportive effect of ZNS by modulating the environment of the host brain.
Collapse
Affiliation(s)
- Yoshifumi Miyawaki
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Bumpei Samata
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Tetsuhiro Kikuchi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Kaneyasu Nishimura
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
17
|
Quality Standards of Stem Cell Sources for Clinical Treatment of Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1266:9-19. [PMID: 33105492 DOI: 10.1007/978-981-15-4370-8_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A large number of experimental and clinical studies have shown that cell transplantation has therapeutic effects for PD, AD and other neurodegenerative diseases or damages. Good Manufacturing Practice (GMP) guidance must be defined to produce clinical-grade cells for transplantation to the patients. Standardized quality and clinical preparation procedures of the transplanted cells will ensure the therapeutic efficacy and reduce the side-effect risk of cell therapy. Here we review the cell quality standards governing the clinical transplantation of stem cells for neurodegenerative diseases to clinical practitioners. These quality standards include cell quality control, minimal suggested cell doses for undergoing cell transplantation, documentation of procedure and therapy, safety evaluation, efficacy evaluation, policy of repeated treatments, not charging the patients for unproven therapies, basic principles of cell therapy, and publishing responsibility.
Collapse
|
18
|
Chen C, Chen Q, Liu Y, Zhang C, Zhu K, Li X, Xie H, Zhang R. The cell repair research for Parkinson’s disease: A systematic review. JOURNAL OF NEURORESTORATOLOGY 2020. [DOI: 10.26599/jnr.2020.9040011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Background and Objective: Parkinson’s disease (PD) is a common neurodegenerative disease. Previous studies have demonstrated the effect of cell-based therapies, but their clinical efficacy and safety have not been evaluated. This review protocol aimed to systematically evaluate the effect of stem cell therapy in patients with PD and to develop an evidence base for guiding policy and practice. Methods: PubMed, Embase, MedlinePlus, The Lancet and Brain were searched over the period January 2001 to October 2019. The keywords used for searching were "Parkinson’s disease" and "cell therapy" and "mesenchymal stem cells" and "embryonic stem cells" and "brain-derived neural stem cells" and "neural progenitor cells" . The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement and a measurement tool, Assessment of Multiple Systematic Reviews (AMSTAR), to assess systematic reviews were used to assess the reporting quality and methodological quality. Data extracted included study details, participant details, intervention details and outcome. Results: Nine valid research papers were screened out by systematic analysis. These nine studies were carried out in different countries, with different populations and cell types. According to evaluation methods used, all of the transplantation therapies reported can improve the symptoms of PD patients. Conclusions: Cell transplantation is a potential treatment option for PD. More studies with strict study design, larger sample sizes, and longer follow-up are needed in the future.
Collapse
|
19
|
Han F, Hu B. Stem Cell Therapy for Parkinson's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1266:21-38. [PMID: 33105493 DOI: 10.1007/978-981-15-4370-8_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases caused by specific degeneration and loss of dopamine neurons in substantia nigra of the midbrain. PD is clinically characterized by motor dysfunctions and non-motor symptoms. Even though the dopamine replacement can improve the motor symptoms of PD, it cannot stop the neural degeneration and disease progression. Electrical deep brain stimulation (DBS) to the specific brain areas can improve the symptoms, but it eventually loses the effectiveness. Stem cell transplantation provides an exciting potential for the treatment of PD. Current available cell sources include neural stem cells (NSCs) from fetal brain tissues, human embryonic stem cells (hESCs) isolated from blastocyst, and induced pluripotent stem cells (iPSCs) reprogrammed from the somatic cells such as the fibroblasts and blood cells. Here, we summarize the research advance in experimental and clinical studies to transplant these cells into animal models and clinical patients, and specifically highlight the studies to use hESCs /iPSCs-derived dopaminergic precursor cells and dopamine neurons for the treatment of PD, at last propose future challenges for developing clinical-grade dopaminergic cells for treating the PD.
Collapse
Affiliation(s)
- Fabin Han
- The Institute for Translational Medicine, Affiliated Hospital, Shandong University, Jinan, Shandong, China. .,The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/Liaocheng People's Hospital, Liaocheng, Shandong, China. .,Shenzhen Research Institute, Shandong University, Shenzhen, Guangdong, China.
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Trabecular meshwork mesenchymal stem cell transplantation improve motor symptoms of parkinsonian rat model. Biologicals 2019; 61:61-67. [PMID: 31262640 DOI: 10.1016/j.biologicals.2019.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 03/21/2019] [Accepted: 06/26/2019] [Indexed: 01/26/2023] Open
Abstract
Stem cell transplantation is a new therapeutic strategy in the treatment of neurodegenerative disorders such as Parkinson's disease (PD). Therefore, in this study, the therapeutic effects of Trabecular Meshwork Mesenchymal Stem Cells (TM-MSCs) transplantation, as a new source of mesenchymal stem cells, were evaluated in the animal model of PD. After the development and confirmation of hemi-parkinsonian rats by administration of 6-hydroxy dopamine (6-OHDA) and apomorphine-induced rotation test, green fluorescent protein (GFP) labeled TM-MSCs (normal and induced cells) were transplanted in the striatum of rats. Next, the rotation test, rotarod test, open field, passive avoidance memory tests and immunohistochemistry for tyrosine hydroxylase (TH) were done. The results showed that the number of turns significantly decreased and the improvement of motor performance was achieved after cell transplantation. However, there was no significant difference in passive avoidance memory of animals documented by shuttle box test. The number of GFP- labeled cells expressing TH significantly is increased compared to the vehicle group. Collectively, it seems that TM-MSCs and induced TM-MSCs cell transplantation have positive effects on some aspects of the animal model of PD. Other studies may reveal the potentially positive aspects of these cells in the laboratory and clinical studies.
Collapse
|
21
|
Abstract
Cell therapy for Parkinson's disease has a history of being applied clinically with aborted embryos as donor source. Efficacy of the therapy under the appropriate condition has been reported. Based on this experience and the advancement of stem cell technology, clinical trials of cell therapy with embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) are going to start soon in several countries. In Japan a physician-initiated clinical trial of iPSC-based therapy for Parkinson's disease has launched since 2018. This trial adopts allogeneic transplantation with a cell line from iPSC stock. This article discusses patient selection, procedure, and risk of the therapy. It also introduces the world's current situation of the cell therapy for Parkinson's disease.
Collapse
Affiliation(s)
- Asuka Morizane
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University
| |
Collapse
|
22
|
Crane AT, Voth JP, Shen FX, Low WC. Concise Review: Human-Animal Neurological Chimeras: Humanized Animals or Human Cells in an Animal? Stem Cells 2019; 37:444-452. [PMID: 30629789 DOI: 10.1002/stem.2971] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/16/2018] [Accepted: 12/03/2018] [Indexed: 12/24/2022]
Abstract
Blastocyst complementation is an emerging methodology in which human stem cells are transferred into genetically engineered preimplantation animal embryos eventually giving rise to fully developed human tissues and organs within the animal host for use in regenerative medicine. The ethical issues surrounding this method have caused the National Institutes of Health to issue a moratorium on funding for blastocyst complementation citing the potential for human cells to substantially contribute to the brain of the chimeric animal. To address this concern, we performed an in-depth review of the neural transplantation literature to determine how the integration of human cells into the nonhuman neural circuitry has altered the behavior of the host. Despite reports of widespread integration of human cell transplants, our review of 150 transplantation studies found no evidence suggestive of humanization of the animal host, and we thus conclude that, at present, concerns over humanization should not prevent research on blastocyst complementation to continue. We suggest proceeding in a controlled and transparent manner, however, and include recommendations for future research with careful consideration for how human cells may contribute to the animal host nervous system. Stem Cells 2019;37:444-452.
Collapse
Affiliation(s)
- Andrew T Crane
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.,Minnesota Craniofacial Research Training Program, University of Minnesota, Minneapolis, Minnesota, USA
| | - Joseph P Voth
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Francis X Shen
- University of Minnesota Law School, Minneapolis, Minnesota, USA.,Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Walter C Low
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA.,Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
23
|
Elabi OF, Duskova K, Davies JS, Lane EL. The Impact of Ghrelin on the Survival and Efficacy of Dopaminergic Fetal Grafts in the 6-OHDA-Lesioned Rat. Neuroscience 2018; 395:13-21. [PMID: 30414880 DOI: 10.1016/j.neuroscience.2018.10.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 12/21/2022]
Abstract
Ghrelin is a peptide produced in the gut with a wide range of physiological functions. Recent studies have suggested it may have potential as a neuroprotective agent in models of Parkinson's disease, reducing the impact of toxic challenges on the survival of nigral dopaminergic neurons. The presence of the ghrelin receptor (GHSR1a) on the dopaminergic neurons of the substantia nigra raises the possibility that a potential application for this property of ghrelin may be as an adjunctive neuroprotective agent to enhance and support the survival and integration of dopaminergic cells transplanted into the striatum. Thus far, inconsistent outcomes in clinical trials for fetal cell transplantation have been linked to low rates of cell survival which we hypothesize could be ameliorated by the presence of ghrelin. To explore this, we confirmed the expression of the GHSR1a and related enzymes on e14 ventral mesencephalon. To determine a functional effect, five groups of female Sprague-Dawley rats received a unilateral 6-OHDA lesion to the medial forebrain bundle and four received an intrastriatal graft of e14 ventral mesencephalic cells. Grafted rats received saline; acyl-ghrelin (10 µg/kg); acyl-ghrelin (50 µg/kg) or the ghrelin agonist JMV-2894 (160 µg/kg) i.p. for 8 weeks. An effect of ghrelin at low dose on hippocampal neurogenesis indicated blood-brain barrier penetrance and attainment of biologically relevant levels but neither acyl-ghrelin nor JMV-2894 improved graft survival or efficacy.
Collapse
Affiliation(s)
- O F Elabi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, CF10 3NB, UK.
| | - K Duskova
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, CF10 3NB, UK
| | - J S Davies
- Insitute of Life Sciences, School of Medicine, Swansea University, SA2 8PP, UK
| | - E L Lane
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, CF10 3NB, UK.
| |
Collapse
|
24
|
de Natale ER, Wilson H, Pagano G, Politis M. Imaging Transplantation in Movement Disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 143:213-263. [PMID: 30473196 DOI: 10.1016/bs.irn.2018.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell replacement therapy with graft transplantation has been tested as a disease-modifying treatment in neurodegenerative diseases characterized by the damage of a predominant cell type, such as substantia nigra dopaminergic neurons in Parkinson's disease (PD) or striatal medium spiny projection neurons in Huntington's disease (HD). The results of these trials are mixed with success in preclinical and pilot open-label trials, which were not consistently reproduced in randomized controlled trials. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) molecular imaging and functional magnetic resonance imaging allow the graft survival, and its relationship with the host tissues to be studied in vivo. In PD, PET with [18F]DOPA showed that graft survival does not necessarily correlate with the clinical improvement and PD patients with worse outcome had lower binding in the ventral striatum and a high serotonin ([11C]DASB PET) to dopamine ([18F]DOPA PET) ratio in the grafted neurons. In HD, PET with [11C]PK11195 showed the graft survival and the clinical responses may be related to the reactive activation of the host inflammatory/immune system. Findings from these studies have been used to refine study protocols and patient selection in current clinical trials, which includes identifying suitable candidates for transplantation using imaging markers and employing multiple and/or novel PET tracers to better assess graft functions and inflammatory responses to grafts.
Collapse
Affiliation(s)
- Edoardo Rosario de Natale
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Heather Wilson
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Gennaro Pagano
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Marios Politis
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom.
| |
Collapse
|
25
|
Lane EL. L-DOPA for Parkinson's disease-a bittersweet pill. Eur J Neurosci 2018; 49:384-398. [PMID: 30118169 DOI: 10.1111/ejn.14119] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 01/02/2023]
Abstract
3,4-dihydroxy-L-phenylalanine (L-DOPA) is the gold standard treatment for Parkinson's disease. It has earned that title through its highly effective treatment of some of the motor symptoms in the early stages of the disease but it is a far from perfect drug. The inevitable long-term treatment that comes with this chronic neurodegenerative condition raises the risk significantly of the development of motor fluctuations including disabling L-DOPA-induced dyskinesia. Being unsurpassed as a therapy means that understanding the mechanisms of dyskinesia priming and induction is vital to the search for therapies to treat these side effects and allow optimal use of L-DOPA. However, L-DOPA use may also have consequences (positive or negative) for the development of other interventions, such as cell transplantation, which are designed to treat or repair the ailing brain. This review looks at the issues around the use of L-DOPA with a focus on its potential impact on advanced reparative interventions.
Collapse
Affiliation(s)
- Emma L Lane
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
26
|
Yu NH, Chun SY, Ha YS, Kim HT, Kim DH, Kim J, Chung JW, Lee JN, Song PH, Yoo ES, Kim BS, Kwon TG. Optimal Stem Cell Transporting Conditions to Maintain Cell Viability and Characteristics. Tissue Eng Regen Med 2018; 15:639-647. [PMID: 30603585 DOI: 10.1007/s13770-018-0133-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 06/11/2018] [Accepted: 06/13/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The preservation of stem cell viability and characteristics during cell transport from the bench to patients can significantly affect the success of cell therapy. Factors such as suspending medium, time, temperature, cell density, and container type could be considered for transport conditions. METHODS To establish optimal conditions, human amniotic fluid stem cells' (AFSCs) viabilities were analyzed under different media {DMEM(H), DMEM/F-12, K-SFM, RPMI 1640, α-MEM, DMEM(L), PBS or saline}, temperature (4, 22 or 37 °C), cell density (1 × 107 cells were suspended in 0.1, 0.5, 1.0 or 2.0 mL of medium) and container type (plastic syringe or glass bottle). After establishing the transport conditions, stem cell characteristics of AFSCs were compared to freshly prepared cells. RESULTS Cells transported in DMEM(H) showed relatively higher viability than other media. The optimized transport temperature was 4 °C, and available transport time was within 12 h. A lower cell density was associated with a better survival rate, and a syringe was selected as a transport container because of its clinical convenience. In compare of stem cell characteristics, the transported cells with established conditions showed similar potency as the freshly prepared cells. CONCLUSION Our findings can provide a foundation to optimization of conditions for stem cell transport.
Collapse
Affiliation(s)
- Na-Hee Yu
- 1Biomedical Research Institute, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 Korea
| | - So Young Chun
- 1Biomedical Research Institute, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 Korea
| | - Yun-Sok Ha
- 2Department of Urology, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 Korea.,3Department of Urology, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 Korea
| | - Hyun Tae Kim
- 2Department of Urology, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 Korea.,4Department of Urology, Kyungpook National University Chilgok Hospital, 807 Hogukro, Buk-gu, Daegu, 41404 Korea
| | - Dae Hwan Kim
- 5Department of Laboratory Animal Research Support Team, Yeungnam University Medical Center, 170 Hyunchung-ro, Nam-gu, Daegu, 42415 Korea
| | - Jeongshik Kim
- Department of Pathology, Central Hospital, 480 Munsu-ro, Nam-gu, Ulsan, 44667 Korea
| | - Jae-Wook Chung
- 2Department of Urology, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 Korea.,4Department of Urology, Kyungpook National University Chilgok Hospital, 807 Hogukro, Buk-gu, Daegu, 41404 Korea
| | - Jun Nyung Lee
- 2Department of Urology, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 Korea.,4Department of Urology, Kyungpook National University Chilgok Hospital, 807 Hogukro, Buk-gu, Daegu, 41404 Korea
| | - Phil Hyun Song
- 7Department of Urology, College of Medicine, Yeungnam University, 170 Hyunchung-ro, Nam-gu, Daegu, 42415 Korea
| | - Eun Sang Yoo
- 2Department of Urology, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 Korea.,3Department of Urology, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 Korea
| | - Bum Soo Kim
- 2Department of Urology, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 Korea.,3Department of Urology, Kyungpook National University Hospital, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 Korea
| | - Tae Gyun Kwon
- 2Department of Urology, School of Medicine, Kyungpook National University, 130 Dongdeok-ro, Jung-gu, Daegu, 41944 Korea.,4Department of Urology, Kyungpook National University Chilgok Hospital, 807 Hogukro, Buk-gu, Daegu, 41404 Korea
| |
Collapse
|
27
|
Zhang B, Yan W, Zhu Y, Yang W, Le W, Chen B, Zhu R, Cheng L. Nanomaterials in Neural-Stem-Cell-Mediated Regenerative Medicine: Imaging and Treatment of Neurological Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705694. [PMID: 29543350 DOI: 10.1002/adma.201705694] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/17/2017] [Indexed: 05/24/2023]
Abstract
Patients are increasingly being diagnosed with neuropathic diseases, but are rarely cured because of the loss of neurons in damaged tissues. This situation creates an urgent clinical need to develop alternative treatment strategies for effective repair and regeneration of injured or diseased tissues. Neural stem cells (NSCs), highly pluripotent cells with the ability of self-renewal and potential for multidirectional differentiation, provide a promising solution to meet this demand. However, some serious challenges remaining to be addressed are the regulation of implanted NSCs, tracking their fate, monitoring their interaction with and responsiveness to the tissue environment, and evaluating their treatment efficacy. Nanomaterials have been envisioned as innovative components to further empower the field of NSC-based regenerative medicine, because their unique physicochemical characteristics provide unparalleled solutions to the imaging and treatment of diseases. By building on the advantages of nanomaterials, tremendous efforts have been devoted to facilitate research into the clinical translation of NSC-based therapy. Here, recent work on emerging nanomaterials is highlighted and their performance in the imaging and treatment of neurological diseases is evaluated, comparing the strengths and weaknesses of various imaging modalities currently used. The underlying mechanisms of therapeutic efficacy are discussed, and future research directions are suggested.
Collapse
Affiliation(s)
- Bingbo Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200443, China
- Department of Spine Surgery, Tongji Hospital, Institute of Spine and Spinal Cord Injury, Tongji University School of Medicine, Tongji University, Shanghai, 200065, China
| | - Wei Yan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China
| | - Yanjing Zhu
- Department of Spine Surgery, Tongji Hospital, Institute of Spine and Spinal Cord Injury, Tongji University School of Medicine, Tongji University, Shanghai, 200065, China
| | - Weitao Yang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200443, China
| | - Wenjun Le
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200443, China
| | - Bingdi Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200443, China
| | - Rongrong Zhu
- Department of Spine Surgery, Tongji Hospital, Institute of Spine and Spinal Cord Injury, Tongji University School of Medicine, Tongji University, Shanghai, 200065, China
| | - Liming Cheng
- Department of Spine Surgery, Tongji Hospital, Institute of Spine and Spinal Cord Injury, Tongji University School of Medicine, Tongji University, Shanghai, 200065, China
| |
Collapse
|
28
|
Torres N, Molet J, Moro C, Mitrofanis J, Benabid AL. Neuroprotective Surgical Strategies in Parkinson's Disease: Role of Preclinical Data. Int J Mol Sci 2017; 18:ijms18102190. [PMID: 29053638 PMCID: PMC5666871 DOI: 10.3390/ijms18102190] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/10/2017] [Accepted: 10/13/2017] [Indexed: 12/18/2022] Open
Abstract
Although there have been many pharmacological agents considered to be neuroprotective therapy in Parkinson's disease (PD) patients, neurosurgical approaches aimed to neuroprotect or restore the degenerative nigrostriatal system have rarely been the focus of in depth reviews. Here, we explore the neuroprotective strategies involving invasive surgical approaches (NSI) using neurotoxic models 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA), which have led to clinical trials. We focus on several NSI approaches, namely deep brain stimulation of the subthalamic nucleus, glial neurotrophic derived factor (GDNF) administration and cell grafting methods. Although most of these interventions have produced positive results in preclinical animal models, either from behavioral or histological studies, they have generally failed to pass randomized clinical trials to validate each approach. We argue that NSI are promising approaches for neurorestoration in PD, but preclinical studies should be planned carefully in order not only to detect benefits but also to detect potential adverse effects. Further, clinical trials should be designed to be able to detect and disentangle neuroprotection from symptomatic effects. In summary, our review study evaluates the pertinence of preclinical models to study NSI for PD and how this affects their efficacy when translated into clinical trials.
Collapse
Affiliation(s)
- Napoleon Torres
- University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, 38000 Grenoble, France.
| | - Jenny Molet
- University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, 38000 Grenoble, France.
| | - Cecile Moro
- University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, 38000 Grenoble, France.
| | - John Mitrofanis
- Department of Anatomy, University of Sydney; Sydney Medical School, Sydney NSW 2006, Australia.
| | - Alim Louis Benabid
- University Grenoble Alpes, CEA, LETI, CLINATEC, MINATEC Campus, 38000 Grenoble, France.
| |
Collapse
|
29
|
Anodal Transcranial Direct Current Stimulation Enhances Survival and Integration of Dopaminergic Cell Transplants in a Rat Parkinson Model. eNeuro 2017; 4:eN-NWR-0063-17. [PMID: 28966974 PMCID: PMC5617080 DOI: 10.1523/eneuro.0063-17.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/17/2017] [Accepted: 08/07/2017] [Indexed: 11/21/2022] Open
Abstract
Restorative therapy concepts, such as cell based therapies aim to restitute impaired neurotransmission in neurodegenerative diseases. New strategies to enhance grafted cell survival and integration are still needed to improve functional recovery. Anodal direct current stimulation (DCS) promotes neuronal activity and secretion of the trophic factor BDNF in the motor cortex. Transcranial DCS applied to the motor cortex transiently improves motor symptoms in Parkinson’s disease (PD) patients. In this proof-of-concept study, we combine cell based therapy and noninvasive neuromodulation to assess whether neurotrophic support via transcranial DCS would enhance the restitution of striatal neurotransmission by fetal dopaminergic transplants in a rat Parkinson model. Transcranial DCS was applied daily for 20 min on 14 consecutive days following striatal transplantation of fetal ventral mesencephalic (fVM) cells derived from transgenic rat embryos ubiquitously expressing GFP. Anodal but not cathodal transcranial DCS significantly enhanced graft survival and dopaminergic reinnervation of the surrounding striatal tissue relative to sham stimulation. Behavioral recovery was more pronounced following anodal transcranial DCS, and behavioral effects correlated with the degree of striatal innervation. Our results suggest anodal transcranial DCS may help advance cell-based restorative therapies in neurodegenerative diseases. In particular, such an assistive approach may be beneficial for the already established cell transplantation therapy in PD.
Collapse
|
30
|
Niclis JC, Gantner CW, Hunt CPJ, Kauhausen JA, Durnall JC, Haynes JM, Pouton CW, Parish CL, Thompson LH. A PITX3-EGFP Reporter Line Reveals Connectivity of Dopamine and Non-dopamine Neuronal Subtypes in Grafts Generated from Human Embryonic Stem Cells. Stem Cell Reports 2017; 9:868-882. [PMID: 28867345 PMCID: PMC5599268 DOI: 10.1016/j.stemcr.2017.08.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 12/24/2022] Open
Abstract
Development of safe and effective stem cell-based therapies for brain repair requires an in-depth understanding of the in vivo properties of neural grafts generated from human stem cells. Replacing dopamine neurons in Parkinson's disease remains one of the most anticipated applications. Here, we have used a human PITX3-EGFP embryonic stem cell line to characterize the connectivity of stem cell-derived midbrain dopamine neurons in the dopamine-depleted host brain with an unprecedented level of specificity. The results show that the major A9 and A10 subclasses of implanted dopamine neurons innervate multiple, developmentally appropriate host targets but also that the majority of graft-derived connectivity is non-dopaminergic. These findings highlight the promise of stem cell-based procedures for anatomically correct reconstruction of specific neuronal pathways but also emphasize the scope for further refinement in order to limit the inclusion of uncharacterized and potentially unwanted cell types.
Collapse
Affiliation(s)
- Jonathan C Niclis
- Florey Institute of Neuroscience and Mental Health, Royal Parade, Parkville, VIC 3010, Australia
| | - Carlos W Gantner
- Florey Institute of Neuroscience and Mental Health, Royal Parade, Parkville, VIC 3010, Australia
| | - Cameron P J Hunt
- Florey Institute of Neuroscience and Mental Health, Royal Parade, Parkville, VIC 3010, Australia; Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Jessica A Kauhausen
- Florey Institute of Neuroscience and Mental Health, Royal Parade, Parkville, VIC 3010, Australia
| | - Jennifer C Durnall
- Florey Institute of Neuroscience and Mental Health, Royal Parade, Parkville, VIC 3010, Australia
| | - John M Haynes
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Colin W Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Clare L Parish
- Florey Institute of Neuroscience and Mental Health, Royal Parade, Parkville, VIC 3010, Australia.
| | - Lachlan H Thompson
- Florey Institute of Neuroscience and Mental Health, Royal Parade, Parkville, VIC 3010, Australia.
| |
Collapse
|
31
|
Karlsson J, Petersén A, Gidö G, Wieloch T, Brundin P. Combining Neuroprotective Treatment of Embryonic Nigral Donor Tissue with Mild Hypothermia of the Graft Recipient. Cell Transplant 2017; 14:301-9. [PMID: 16052911 DOI: 10.3727/000000005783983089] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Around 80–95% of the immature dopaminergic neurons die when embryonic ventral mesencephalic tissue is transplanted. Cell death occurs both during the preparation of donor tissue and after graft implantation, but the effect of combining successful neuroprotective treatments before and after transplantation has not been extensively investigated. We therefore treated embryonic rat mesencephalic tissue with a combination of the lipid peroxidation inhibitor tirilazad mesylate (3 μM) and the caspase inhibitor Ac.YVAD.cmk (500 μM) and transplanted the tissue into hemiparkinsonian rats kept hypothermic (32–33°C) or normothermic (37°C) during, and 90 min following, graft surgery. Suspension cell number did not differ between untreated or tirilazad/YVAD-treated preparations prior to transplantation. When graft survival was evaluated 6 weeks after implantation, both tirilazad/YVAD pretreatment and mild hypothermia increased the survival of transplanted dopaminergic neurons. Approximately 50–57% of the embryonic dopaminergic neurons survived the dissociation and grafting procedure in rats rendered hypothermic, but there was no significant additive effect on graft survival with a combined treatment. All groups of rats exhibited behavioral recovery in the amphetamine-induced rotation test. There was a significantly enhanced functional capacity of grafts placed in hypothermic as compared to normothermic rats. However, tirilazad/YVAD pretreated implants did not afford greater behavioral improvement than control-treated grafts. Our results suggest that neuroprotective treatments administered prior to and immediately after neural graft implantation may under certain conditions rescue, at least in part, the same subset of dopaminergic neurons. The study also emphasizes the importance of the immediate time after grafting for transplant survival, with relevance both for primary mesencephalic implants and stem cell grafts.
Collapse
Affiliation(s)
- Jenny Karlsson
- Neuronal Survival Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| | | | | | | | | |
Collapse
|
32
|
Tatard VM, Venier-Julienne MC, Benoit JP, Menei P, Montero-Menei CN. In Vivo Evaluation of Pharmacologically Active Microcarriers Releasing Nerve Growth Factor and Conveying PC12 Cells. Cell Transplant 2017; 13:573-83. [PMID: 15565869 DOI: 10.3727/000000004783983675] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cell therapy will probably become a major therapeutic strategy in the coming years. Nevertheless, few cells survive transplantation when employed as a treatment for neuronal disorders. To address this problem, we have developed a new tool, the pharmacologically active microcarriers (PAM). PAM are biocompatible and biodegradable microparticles coated with cell adhesion molecules, conveying cells on their surface and presenting a controlled delivery of growth factor. Thus, the combined effect of growth factor and coating influences the transported cells by promoting their survival and differentiation and favoring their integration in the host tissue after their complete degradation. Furthermore, the released factor may also influence the microenvironment. In this study, we evaluated their efficacy using nerve growth factor (NGF)-releasing PAM and PC12 cells, in a Parkinson's disease paradigm. After implantation of NGF-releasing or unloaded PAM conveying PC12 cells, or PC12 cells alone, we studied cell survival, differentiation, and apoptosis, as well as behavior of the treated rats. We observed that the NGF-releasing PAM coated with two synthetic peptides (poly-D-lysine and fibronectin-like) induced PC12 cell differentiation and reduced cell death and proliferation. Moreover, the animals receiving this implant presented an improved amphetamine-induced rotational behavior. These findings indicate that PAM could be a promising strategy for cell therapy of neurological diseases and could be employed in other situations with fetal cell transplants or with stem cells.
Collapse
Affiliation(s)
- V M Tatard
- INSERM U 646, Laboratoire d'Ingénierie de la vectorisation particulaire, 10 rue André Boquel, 49100 Angers, France
| | | | | | | | | |
Collapse
|
33
|
Castro AJ, Meyer M, Møller-Dall A, Zimmer J. Transplantation of Embryonic Porcine Neocortical Tissue into Newborn Rats. Cell Transplant 2017; 12:733-41. [PMID: 14653620 DOI: 10.3727/000000003108747343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Several previous studies, suggesting the potential use of embryonic xenografts in the treatment of neurological disorders, indicate that neural growth and axonal guidance factors may function across species. In this light, blocks of fetal porcine neocortex were grafted into small cortical lesion cavities made in newborn rats. Sacrifice at 3–12.5 weeks posttransplantation revealed healthy looking grafts in several animals. Apparent graft rejection evidenced by areas of necrosis and OX1 reactivity was observed in some of the older transplants. Treatment of nursing mothers or of postweaning newborns with cyclosporin A did not appear to promote graft survival. Some transplants grew to extremely large proportions and were characterized by bands of cells and bundles of axons as observed using immunohistochemical staining for pig neurofilament. Neurofilament-positive axons projected from several of the grafts to course through the corpus callosum to the contralateral cortex or to course ipsilaterally within the subcortical white matter, where labeled fibers could be traced to the midbrain crus cerebri in older transplants. Bundles of axons were also observed coursing within the ipsilateral caudate putamen where terminal branching was apparent. The normal course of transplant efferents within the host brain indicates that growing pig axons can respond to rodent axonal guidance factors.
Collapse
Affiliation(s)
- Anthony J Castro
- Department of Cell Biology, Neurobiology and Anatomy, Loyola University School of Medicine, Maywood, IL 60153, USA.
| | | | | | | |
Collapse
|
34
|
Alemdar AY, Sadi D, McAlister VC, Mendez I. Liposomal Formulations of Tacrolimus and Rapamycin Increase Graft Survival and Fiber Outgrowth of Dopaminergic Grafts. Cell Transplant 2017; 13:263-71. [PMID: 15191164 DOI: 10.3727/000000004783983936] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The immunosuppressive drugs tacrolimus (TAC) and rapamycin (RAPA) have both been found to have neuroprotective effects on dopaminergic neurons. The purpose of the present study was to investigate whether liposomal formulations of these drugs administered directly into the brain improve cell survival and fiber outgrowth. Rats with unilateral 6-hydroxydopamine lesions were transplanted with 800,000 fetal rat ventral mesencephalic cells and randomly divided to one of four groups. Group 1 received a transplant containing cells only; group 2 received a cell suspension containing 0.68 μM liposomal RAPA (LRAPA); group 3 received a cell suspension containing 2.0 μM liposomal TAC (LTAC); and group 4 received a cell suspension containing a liposomal formulation of both 0.68 μM RAPA and 2.0 μM TAC (LRAPATAC). Rats were sacrificed after 6 weeks, and cell survival and fiber outgrowth were assessed using tyrosine hydroxylase (TH) immunohistochemistry. The animals receiving a cell suspension containing either LTAC or LRAPATAC were found to have significantly more surviving TH-immunoreactive (TH-ir) cells than the control group receiving cells only. The group receiving LTAC had significantly longer fibers, the group receiving LRAPA had significantly more fibers close to the graft, and the group receiving LRAPATAC had significantly more fibers at all distances. This study shows the feasibility of using liposomal formulations of neuroimmunophilins directly in the brain at the time of implantation to improve graft survival and fiber outgrowth. Furthermore, we have shown that the combination of LTAC and LRAPA has a synergistic effect. These compounds may play an important role in optimizing graft survival and host reinnervation in cellmediated brain repair strategies for the treatment of neurological conditions.
Collapse
Affiliation(s)
- Aylin Y Alemdar
- Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | | | | | | |
Collapse
|
35
|
Hurtado F, Cardenas MAN, Cardenas F, León LA. La Enfermedad de Parkinson: Etiología, Tratamientos y Factores Preventivos. UNIVERSITAS PSYCHOLOGICA 2017. [DOI: 10.11144/javeriana.upsy15-5.epet] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
La enfermedad de Parkinson (EP) es la patología neurodegenerativa motora con mayor incidencia a nivel mundial. Esta afecta a aproximadamente 2-3% de la población mayor a 60 años de edad y sus causas aún no han sido bien determinadas. Actualmente no existe cura para esta patología; sin embargo, es posible contar con diferentes tratamientos que permiten aliviar algunos de sus síntomas y enlentecer su curso. Estos tratamientos tienen como premisa contrarrestar los efectos ocasionados por la pérdida de la función dopaminérgica de la sustancia nigra (SN) sobre estructuras como el núcleo subtálamico (NST) o globo pálido interno (GPi) ya sea por medio de tratamientos farmacológicos, estimulación cerebral profunda (ECP) o con el implante celular. Existen también investigaciones que están dirigiendo su interés al desarrollo de fármacos con potencial terapéutico, que presenten alta especificidad a receptores colinérgicos de nicotina (nAChRs) y antagonistas de receptores de adenosina, específicamente del subtipo A2A. Estos últimos, juegan un papel importante en el control de liberación dopaminérgica y en los procesos de neuroprotección. En esta revisión se pretende ofrecer una panorámica actual sobre algunos de los factores de riesgo asociados a EP, algunos de los tratamientos actuales más utilizados y acerca del rol de sustancias potencialmente útiles en la prevención de esta enfermedad.
Collapse
|
36
|
Adil MM, Vazin T, Ananthanarayanan B, Rodrigues GMC, Rao AT, Kulkarni RU, Miller EW, Kumar S, Schaffer DV. Engineered hydrogels increase the post-transplantation survival of encapsulated hESC-derived midbrain dopaminergic neurons. Biomaterials 2017; 136:1-11. [PMID: 28505596 DOI: 10.1016/j.biomaterials.2017.05.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/26/2017] [Accepted: 05/04/2017] [Indexed: 01/21/2023]
Abstract
Cell replacement therapies have broad biomedical potential; however, low cell survival and poor functional integration post-transplantation are major hurdles that hamper clinical benefit. For example, following striatal transplantation of midbrain dopaminergic (mDA) neurons for the treatment of Parkinson's disease (PD), only 1-5% of the neurons typically survive in preclinical models and in clinical trials. In general, resource-intensive generation and implantation of larger numbers of cells are used to compensate for the low post-transplantation cell-survival. Poor graft survival is often attributed to adverse biochemical, mechanical, and/or immunological stress that cells experience during and after implantation. To address these challenges, we developed a functionalized hyaluronic acid (HA)-based hydrogel for in vitro maturation and central nervous system (CNS) transplantation of human pluripotent stem cell (hPSC)-derived neural progenitors. Specifically, we functionalized the HA hydrogel with RGD and heparin (hep) via click-chemistry and tailored its stiffness to encourage neuronal maturation, survival, and long-term maintenance of the desired mDA phenotype. Importantly, ∼5 times more hydrogel-encapsulated mDA neurons survived after transplantation in the rat striatum, compared to unencapsulated neurons harvested from commonly used 2D surfaces. This engineered biomaterial may therefore increase the therapeutic potential and reduce the manufacturing burden for successful neuronal implantation.
Collapse
Affiliation(s)
- Maroof M Adil
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Tandis Vazin
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | | | - Gonçalo M C Rodrigues
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA; Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Antara T Rao
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Evan W Miller
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Sanjay Kumar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
37
|
Breger LS, Kienle K, Smith GA, Dunnett SB, Lane EL. Influence of chronic L-DOPA treatment on immune response following allogeneic and xenogeneic graft in a rat model of Parkinson's disease. Brain Behav Immun 2017; 61:155-164. [PMID: 27864045 PMCID: PMC5325122 DOI: 10.1016/j.bbi.2016.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/07/2016] [Accepted: 11/14/2016] [Indexed: 12/19/2022] Open
Abstract
Although intrastriatal transplantation of fetal cells for the treatment of Parkinson's disease had shown encouraging results in initial open-label clinical trials, subsequent double-blind studies reported more debatable outcomes. These studies highlighted the need for greater preclinical analysis of the parameters that may influence the success of cell therapy. While much of this has focused on the cells and location of the transplants, few have attempted to replicate potentially critical patient centered factors. Of particular relevance is that patients will be under continued L-DOPA treatment prior to and following transplantation, and that typically the grafts will not be immunologically compatible with the host. The aim of this study was therefore to determine the effect of chronic L-DOPA administered during different phases of the transplantation process on the survival and function of grafts with differing degrees of immunological compatibility. To that end, unilaterally 6-OHDA lesioned rats received sham surgery, allogeneic or xenogeneic transplants, while being treated with L-DOPA before and/or after transplantation. Irrespective of the L-DOPA treatment, dopaminergic grafts improved function and reduced the onset of L-DOPA induced dyskinesia. Importantly, although L-DOPA administered post transplantation was found to have no detrimental effect on graft survival, it did significantly promote the immune response around xenogeneic transplants, despite the administration of immunosuppressive treatment (cyclosporine). This study is the first to systematically examine the effect of L-DOPA on graft tolerance, which is dependent on the donor-host compatibility. These findings emphasize the importance of using animal models that adequately represent the patient paradigm.
Collapse
Affiliation(s)
- Ludivine S. Breger
- School of Pharmacy & Pharmaceutical Sciences, Redwood Building, King Edward VII Avenue, CF10 3NB Cardiff, UK,Brain Repair Group, Cardiff School of Biosciences, Museum Avenue, CF10 3AX Cardiff, UK,Corresponding author at: Dept of Experimental Medical Science, Wallenberg Neuroscience Centre, Lund University, BMC A11, 221 84 Lund, Sweden.Dept of Experimental Medical ScienceWallenberg Neuroscience CentreLund UniversityBMC A11221 84 LundSweden
| | - Korbinian Kienle
- School of Pharmacy & Pharmaceutical Sciences, Redwood Building, King Edward VII Avenue, CF10 3NB Cardiff, UK.
| | - Gaynor A. Smith
- Brain Repair Group, Cardiff School of Biosciences, Museum Avenue, CF10 3AX Cardiff, UK
| | - Stephen B. Dunnett
- Brain Repair Group, Cardiff School of Biosciences, Museum Avenue, CF10 3AX Cardiff, UK
| | - Emma L. Lane
- School of Pharmacy & Pharmaceutical Sciences, Redwood Building, King Edward VII Avenue, CF10 3NB Cardiff, UK
| |
Collapse
|
38
|
Torper O, Götz M. Brain repair from intrinsic cell sources: Turning reactive glia into neurons. PROGRESS IN BRAIN RESEARCH 2017; 230:69-97. [PMID: 28552236 DOI: 10.1016/bs.pbr.2016.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The replacement of lost neurons in the brain due to injury or disease holds great promise for the treatment of neurological disorders. However, logistical and ethical hurdles in obtaining and maintaining viable cells for transplantation have proven difficult to overcome. In vivo reprogramming offers an alternative, to bypass many of the restrictions associated with an exogenous cell source as it relies on a source of cells already present in the brain. Recent studies have demonstrated the possibility to target and reprogram glial cells into functional neurons with high efficiency in the murine brain, using virally delivered transcription factors. In this chapter, we explore the different populations of glial cells, how they react to injury and how they can be exploited for reprogramming purposes. Further, we review the most significant publications and how they have contributed to the understanding of key aspects in direct reprogramming needed to take into consideration, like timing, cell type targeted, and regional differences. Finally, we discuss future challenges and what remains to be explored in order to determine the potential of in vivo reprogramming for future brain repair.
Collapse
Affiliation(s)
- Olof Torper
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, Planegg, Germany; Institute of Stem Cell Research, Helmholtz Center Munich, Munich, Germany; SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilians University Munich, Planegg, Germany
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians University Munich, Planegg, Germany; Institute of Stem Cell Research, Helmholtz Center Munich, Munich, Germany; SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilians University Munich, Planegg, Germany.
| |
Collapse
|
39
|
Malloy KE, Li J, Choudhury GR, Torres A, Gupta S, Kantorak C, Goble T, Fox PT, Clarke GD, Daadi MM. Magnetic Resonance Imaging-Guided Delivery of Neural Stem Cells into the Basal Ganglia of Nonhuman Primates Reveals a Pulsatile Mode of Cell Dispersion. Stem Cells Transl Med 2016; 6:877-885. [PMID: 28297573 PMCID: PMC5442780 DOI: 10.5966/sctm.2016-0269] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/29/2016] [Indexed: 02/03/2023] Open
Abstract
Optimal stem cell delivery procedures are critical to the success of the cell therapy approach. Variables such as flow rate, suspension solution, needle diameter, cell density, and tissue mechanics affect tissue penetration, backflow along the needle, and the dispersion and survival of injected cells during delivery. Most cell transplantation centers engaged in human clinical trials use custom‐designed cannula needles, syringes, or catheters, sometimes precluding the use of magnetic resonance imaging (MRI)‐guided delivery to target tissue. As a result, stem cell therapies may be hampered because more than 80% of grafted cells do not survive the delivery—for example, to the heart, liver/pancreas, and brain—which translates to poor patient outcomes. We developed a minimally invasive interventional MRI (iMRI) approach for intraoperatively imaging neural stem cell (NSC) delivery procedures. We used NSCs prelabeled with a contrast agent and real‐time magnetic resonance imaging to guide the injection cannula to the target and to track the delivery of the cells into the putamen of baboons. We provide evidence that cell injection into the brain parenchyma follows a novel pulsatile mode of cellular discharge from the delivery catheter despite a constant infusion flow rate. The rate of cell infusion significantly affects the dispersion and viability of grafted cells. We report on our investigational use of a frameless navigation system for image‐guided NSC transplantation using a straight cannula. Through submillimeter accuracy and real‐time imaging, iMRI approaches may improve the safety and efficacy of neural cell transplantation therapies. Stem Cells Translational Medicine2017;6:877–885
Collapse
Affiliation(s)
- Kristen E. Malloy
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
- Research Imaging Institute, Radiology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Jinqi Li
- Research Imaging Institute, Radiology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Gourav R. Choudhury
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - April Torres
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Shruti Gupta
- MRI Interventions, Inc., Irvine, California, USA
| | | | - Tim Goble
- MRI Interventions, Inc., Irvine, California, USA
| | - Peter T. Fox
- Research Imaging Institute, Radiology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Geoffrey D. Clarke
- Research Imaging Institute, Radiology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Marcel M. Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
- Research Imaging Institute, Radiology, University of Texas Health Science Center, San Antonio, Texas, USA
| |
Collapse
|
40
|
Abstract
In Parkinson’s disease (PD), dopamine neurons in the substantia nigra are degenerated and lost. Cell therapy for PD replaces the lost dopamine neurons by transplanting donor dopamine neural progenitor cells. Cell therapy for PD has been performed in the clinic since the 1980s and uses donor cells from the mesencephalon of aborted embryos. Regenerative medicine for PD using induced pluripotent stem (iPS) cell technology is drawing attention, because it offers a limitless and more advantageous source of donor cells than aborted embryos.
Collapse
Affiliation(s)
- Asuka Morizane
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University
| | | |
Collapse
|
41
|
TAKAGI Y. History of Neural Stem Cell Research and Its Clinical Application. Neurol Med Chir (Tokyo) 2016; 56:110-24. [PMID: 26888043 PMCID: PMC4791305 DOI: 10.2176/nmc.ra.2015-0340] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/15/2016] [Indexed: 12/11/2022] Open
Abstract
"Once development was ended…in the adult centers, the nerve paths are something fixed and immutable. Everything may die, nothing may be regenerated," wrote Santiago Ramón y Cajal, a Spanish neuroanatomist and Nobel Prize winner and the father of modern neuroscience. This statement was the central dogma in neuroscience for a long time. However, in the 1960s, neural stem cells (NSCs) were discovered. Since then, our knowledge about NSCs has continued to grow. This review focuses on our current knowledge about NSCs and their surrounding microenvironment. In addition, the clinical application of NSCs for the treatment of various central nervous system diseases is also summarized.
Collapse
Affiliation(s)
- Yasushi TAKAGI
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto
| |
Collapse
|
42
|
Differentiated Cells Derived from Fetal Neural Stem Cells Improve Motor Deficits in a Rat Model of Parkinson's Disease. ACTA ACUST UNITED AC 2015. [DOI: 10.18679/cn11-6030_r.2015.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Objective Parkinson's disease (PD), which is one of the most common neurodegenerative disorders, is characterized by the loss of dopamine (DA) neurons in the substantia nigra in the midbrain. Experimental and clinical studies have shown that fetal neural stem cells (NSCs) have therapeutic effects in neurological disorders. The aim of this study was to examine whether cells that were differentiated from NSCs had therapeutic effects in a rat model of PD. Methods NSCs were isolated from 14-week-old embryos and induced to differentiate into neurons, DA neurons, and glial cells, and these cells were characterized by their expression of the following markers: βIII-tubulin and microtubule-associated protein 2 (neurons), tyrosine hydroxylase (DA neurons), and glial fibrillary acidic protein (glial cells). After a 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD was generated, the differentiated cells were transplanted into the striata of the 6-OHDA-lesioned PD rats. Results The motor behaviors of the PD rats were assessed by the number of apomorphine-induced rotation turns. The results showed that the NSCs differentiated in vitro into neurons and DA neurons with high efficiencies. After transplantation into the striata of the PD rats, the differentiated cells significantly improved the motor deficits of the transplanted PD rats compared to those of the control nontransplanted PD rats by decreasing the apomorphine-induced turn cycles as early as 4 weeks after transplantation. Immunofluorescence analyses showed that the differentiated DA neurons survived more than 16 weeks. Conclusions Our results showed that cells that were differentiated from NSCs had therapeutic effects in a rat PD model, which suggests that differentiated cells may be an effective treatment for patients with PD.
Collapse
|
43
|
Han F, Baremberg D, Gao J, Duan J, Lu X, Zhang N, Chen Q. Development of stem cell-based therapy for Parkinson's disease. Transl Neurodegener 2015; 4:16. [PMID: 26339485 PMCID: PMC4559356 DOI: 10.1186/s40035-015-0039-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/24/2015] [Indexed: 12/31/2022] Open
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative disorders of aging, characterized by the degeneration of dopamine neurons (DA neurons) in the substantial nigra, leading to the advent of both motor symptoms and non-motor symptoms. Current treatments include electrical stimulation of the affected brain areas and dopamine replacement therapy. Even though both categories are effective in treating PD patients, the disease progression cannot be stopped. The research advance into cell therapies provides exciting potential for the treatment of PD. Current cell sources include neural stem cells (NSCs) from fetal brain tissues, human embryonic stem cells (hESCs), induced pluripotent stem cells (iPSCs) and directly induced dopamine neurons (iDA neurons). Here, we evaluate the research progress in different cell sources with a focus on using iPSCs as a valuable source and propose key challenges for developing cells suitable for large-scale clinical applications in the treatment of PD.
Collapse
Affiliation(s)
- Fabin Han
- Centre for Stem Cells and Regenerative Medicine, The Liaocheng People's Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, 252000 China
| | - Deborah Baremberg
- Centre for Stem Cells and Regenerative Medicine, The Liaocheng People's Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, 252000 China
| | - Junyu Gao
- Centre for Stem Cells and Regenerative Medicine, The Liaocheng People's Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, 252000 China
| | - Jing Duan
- Centre for Stem Cells and Regenerative Medicine, The Liaocheng People's Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, 252000 China
| | - Xianjie Lu
- Centre for Stem Cells and Regenerative Medicine, The Liaocheng People's Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, 252000 China
| | - Nan Zhang
- Centre for Stem Cells and Regenerative Medicine, The Liaocheng People's Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, 252000 China
| | - Qingfa Chen
- Centre for Stem Cells and Regenerative Medicine, The Liaocheng People's Hospital/Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, 252000 China
| |
Collapse
|
44
|
Hill J, Cave J. Targeting the vasculature to improve neural progenitor transplant survival. Transl Neurosci 2015; 6:162-167. [PMID: 28123800 PMCID: PMC4936624 DOI: 10.1515/tnsci-2015-0016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/05/2015] [Indexed: 12/18/2022] Open
Abstract
Neural progenitor transplantation is a promising therapeutic option for several neurological diseases and injuries. In nearly all human clinical trials and animal models that have tested this strategy, the low survival rate of progenitors after engraftment remains a significant challenge to overcome. Developing methods to improve the survival rate will reduce the number of cells required for transplant and will likely enhance functional improvements produced by the procedure. Here we briefly review the close relationship between the blood vasculature and neural progenitors in both the embryo and adult nervous system. We also discuss previous studies that have explored the role of the vasculature and hypoxic pre-conditioning in neural transplants. From these studies, we suggest that hypoxic pre-conditioning of a progenitor pool containing both neural and endothelial cells will improve engrafted transplanted neuronal survival rates.
Collapse
Affiliation(s)
- Justin Hill
- Burke Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Burke Rehabilitation Hospital, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Ave, New York, NY 10605, USA
| | - John Cave
- Burke Medical Research Institute, 785 Mamaroneck Ave, White Plains, NY 10605, USA; Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Ave, New York, NY 10605, USA
| |
Collapse
|
45
|
Hoban DB, Howard L, Dowd E. GDNF-secreting mesenchymal stem cells provide localized neuroprotection in an inflammation-driven rat model of Parkinson's disease. Neuroscience 2015; 303:402-11. [PMID: 26166730 DOI: 10.1016/j.neuroscience.2015.07.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/02/2015] [Accepted: 07/02/2015] [Indexed: 12/27/2022]
Abstract
Constraints involving the delivery method of glial cell line-derived neurotrophic factor (GDNF) have hampered its efficacy as a neuroprotectant in Parkinson's disease. Ex vivo gene therapy, in which suitable cells, such as bone marrow-derived mesenchymal stem cells (MSCs), are genetically engineered to overexpress GDNF (GDNF-MSCs) prior to transplantation may be more beneficial than direct brain infusion of the neurotrophin. Previously, GDNF-MSCs have been assessed in the commonly employed 6-hydroxydopamine neurotoxic model of Parkinson's disease. In this study however, we used an emerging inflammatory model of Parkinson's disease (the lipopolysaccharide (LPS) model) to assess the ability of transplanted GDNF-MSCs to protect against LPS-induced neuroinflammation, neurodegeneration and behavioral impairment. Thirty male Sprague-Dawley rats were used in this experiment. Rats were performance matched based on baseline motor function tests into three groups (LPS lesion only, LPS lesion+GFP-MSCs, LPS lesion+GDNF-MSCs; n=10/group). Both cell groups received a unilateral intra-striatal transplant of either 200,000 GDNF-MSCs or 200,000 GFP-MSCs (as a control). One day post-transplantation, all rats received a unilateral intra-nigral infusion of LPS (10 μg in 2 μl sterile saline). Rats were sacrificed by transcardial perfusion-fixation and their brains were used for post mortem quantitative immunohistochemistry. Injection of LPS into the substantia nigra induced a pronounced local inflammatory response which resulted in 20% loss of nigrostriatal dopaminergic neurons and impaired contralateral motor function. Following transplantation of GDNF-MSCs to the striatum, dense areas of TH-positive staining directly proximal to the transplant site were observed. Most importantly, this effect was observed only in the GDNF-MSC transplanted group and not the GFP-MSC transplanted group demonstrating protection and/or sprouting of the dopaminergic terminals induced by the secreted GDNF. This study is the first to highlight the neurotrophic capability of GDNF in the inflammation-driven LPS model and, while future studies will endeavor to improve this approach by increasing cell survival, this work highlights the potential of GDNF delivery by ex vivo gene therapy using MSCs.
Collapse
Affiliation(s)
- D B Hoban
- Pharmacology & Therapeutics, National University of Ireland, Galway, Ireland; NCBES Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - L Howard
- The Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - E Dowd
- Pharmacology & Therapeutics, National University of Ireland, Galway, Ireland; NCBES Galway Neuroscience Centre, National University of Ireland, Galway, Ireland.
| |
Collapse
|
46
|
Menstrual Blood Transplantation Therapy for Stroke and Other Neurological Disorders. Regen Med 2015. [DOI: 10.1007/978-1-4471-6542-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
47
|
Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson's disease. Cell Stem Cell 2014; 15:653-65. [PMID: 25517469 PMCID: PMC4232736 DOI: 10.1016/j.stem.2014.09.017] [Citation(s) in RCA: 327] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/19/2014] [Accepted: 09/24/2014] [Indexed: 12/12/2022]
Abstract
Considerable progress has been made in generating fully functional and transplantable dopamine neurons from human embryonic stem cells (hESCs). Before these cells can be used for cell replacement therapy in Parkinson’s disease (PD), it is important to verify their functional properties and efficacy in animal models. Here we provide a comprehensive preclinical assessment of hESC-derived midbrain dopamine neurons in a rat model of PD. We show long-term survival and functionality using clinically relevant MRI and PET imaging techniques and demonstrate efficacy in restoration of motor function with a potency comparable to that seen with human fetal dopamine neurons. Furthermore, we show that hESC-derived dopamine neurons can project sufficiently long distances for use in humans, fully regenerate midbrain-to-forebrain projections, and innervate correct target structures. This provides strong preclinical support for clinical translation of hESC-derived dopamine neurons using approaches similar to those established with fetal cells for the treatment of Parkinson’s disease. Transplants of hESC-DA survive long term and restore DA neurotransmission in vivo The functional potency of hESC-DA is similar to human fetal midbrain DA neurons hESC-DA are capable of long-distance, target-specific innervation of the host brain The axonal outgrowth capacity of hESC-DA meets the requirements for use in humans
Collapse
|
48
|
Anisimov SV, Paul G. Transplantation of mesenchymal stem cells: a future therapy for Parkinson’s disease? FUTURE NEUROLOGY 2014. [DOI: 10.2217/fnl.14.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT: Parkinson’s disease (PD) is a common, progressive neurodegenerative disorder associated with a loss of dopaminergic cells in the substantia nigra pars compacta and a lack of dopamine in the striatum. To halt or reverse this disease, neurorestorative approaches or neuroprotective treatments are urgently needed. Recently, the first clinical trials transplanting mesenchymal stem cells (MSCs) have been performed in PD. MSCs are adult stem cells abundant in several tissues, such as the umbilical cord, the bone marrow, the adipose tissue and other tissues. These cells are multipotent, and able to synthesize and secrete a wide spectrum of biologically active factors. MSCs of various origins have been explored as possible substrates for cell therapy in PD animal models. In this review, we summarize MSC-based experimental transplantation studies in PD, and discuss biological mechanisms that may explain the effects of MSC seen in PD models. Furthermore, we critically evaluate the recent clinical transplantation trials using MSCs in patients with PD.
Collapse
Affiliation(s)
- Sergey V Anisimov
- Research Unit of Cellular & Genetic Engineering, Federal V.A. Almazov Medical Research Center, Saint-Petersburg, Russia
- Department of Intracellular Signaling & Transport, Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Gesine Paul
- Division of Neurology, Department of Clinical Sciences, Translational Neurology Group, Lund University, Lund, Sweden
- Department of Neurology, Scania University Hospital, Lund, Sweden
| |
Collapse
|
49
|
Kim SU, Lee HJ, Park IH, Chu K, Lee ST, Kim M, Roh JK, Kim SK, Wang KC. Human nerual stem cells for brain repair. Int J Stem Cells 2014; 1:27-35. [PMID: 24855505 DOI: 10.15283/ijsc.2008.1.1.27] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2008] [Indexed: 01/17/2023] Open
Abstract
Cell replacement therapy and gene transfer to the diseased or injured brain have provided the basis for the development of potentially powerful new therapeutic strategies for a broad spectrum of human neurological diseases including Parkinson disease, Huntington disease, amyotrophic lateral sclerosis (ALS), Alzheimer disease, multiple sclerosis (MS), stroke, spinal cord injury and brain cancer. In recent years, neurons and glial cells have successfully been generated from neural stem cells, and extensive efforts by investigators to develop neural stem cell-based transplantation therapies have been carried out. We review here notable experimental and pre-clinical studies we have previously conducted involving human neural stem cell-based cell- and gene-therapies for Parkinson disease, Huntington disease, ALS, stroke and brain cancer.
Collapse
Affiliation(s)
- Seung U Kim
- Institute for Regenerative Medicine, Gachon Medical University Gil Hospital, Incheon, Korea ; Division of Neurology, Department of Medicine, UBC Hospital, University of British Columbia, Vancouver, Canada
| | - Hong J Lee
- Institute for Regenerative Medicine, Gachon Medical University Gil Hospital, Incheon, Korea
| | - In H Park
- Institute for Regenerative Medicine, Gachon Medical University Gil Hospital, Incheon, Korea
| | - Kon Chu
- Department of Neurology Seoul National University Hospital, Seoul, Korea
| | - Soon T Lee
- Department of Neurology Seoul National University Hospital, Seoul, Korea
| | - Manho Kim
- Department of Neurology Seoul National University Hospital, Seoul, Korea
| | - Jae K Roh
- Department of Neurology Seoul National University Hospital, Seoul, Korea
| | - Seung K Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | - Kyu C Wang
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
50
|
Ambasudhan R, Dolatabadi N, Nutter A, Masliah E, Mckercher SR, Lipton SA. Potential for cell therapy in Parkinson's disease using genetically programmed human embryonic stem cell-derived neural progenitor cells. J Comp Neurol 2014; 522:2845-56. [PMID: 24756727 DOI: 10.1002/cne.23617] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 04/18/2014] [Accepted: 04/21/2014] [Indexed: 12/20/2022]
Abstract
Neural transplantation is a promising strategy for restoring dopaminergic dysfunction and modifying disease progression in Parkinson's disease (PD). Human embryonic stem cells (hESCs) are a potential resource in this regard because of their ability to provide a virtually limitless supply of homogenous dopaminergic progenitors and neurons of appropriate lineage. The recent advances in developing robust cell culture protocols for directed differentiation of hESCs to near pure populations of ventral mesencephalic (A9-type) dopaminergic neurons has heightened the prospects for PD cell therapy. Here, we focus our review on current state-of-the-art techniques for harnessing hESC-based strategies toward development of a stem cell therapeutic for PD. Importantly, we also briefly describe a novel genetic-programming approach that may address many of the key challenges that remain in the field and that may hasten clinical translation.
Collapse
Affiliation(s)
- Rajesh Ambasudhan
- Del E. Webb Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, California, 92037
| | | | | | | | | | | |
Collapse
|