1
|
Zhdanova DY, Bobkova NV, Chaplygina AV, Svirshchevskaya EV, Poltavtseva RA, Vodennikova AA, Chernyshev VS, Sukhikh GT. Effect of Small Extracellular Vesicles Produced by Mesenchymal Stem Cells on 5xFAD Mice Hippocampal Cultures. Int J Mol Sci 2025; 26:4026. [PMID: 40362265 PMCID: PMC12071690 DOI: 10.3390/ijms26094026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025] Open
Abstract
Alzheimer's disease (AD) is one of the most common progressive neurodegenerative diseases leading to impairments in memory, orientation, and behavior. However, significant work is still needed to fully understand the progression of such disease and develop novel therapeutic agents for AD prevention and treatment. Small extracellular vesicles (sEVs) have received attention in recent years due to their potential therapeutic effects on AD. The aim of this study was to determine the potential effect of sEVs in an in vitro model of AD. sEVs were isolated from human Wharton's jelly mesenchymal stem cells (MSCs) by asymmetric depth filtration, a method developed recently by us. AD was modeled in vitro using cells obtained from the hippocampi of newborn 5xFAD transgenic mice carrying mutations involved in familial AD. After isolation, sEVs underwent detailed characterization that included scanning electron microscopy, nanoparticle tracking analysis, confocal microscopy, Western blotting, and Luminex assay. When added to 5xFAD hippocampal cells, sEVs were nontoxic, colocalized with neurons and astrocytes, decreased the level of Aβ peptide, and increased the synaptic density. These results support the possibility that sEVs can improve brain cell function during aging, decrease the risk of AD, and potentially be used for AD therapeutics.
Collapse
Affiliation(s)
- Daria Y. Zhdanova
- Institute of Cell Biophysics, Federal Research Center Pushchino Research Center for Biological Studies, Russian Academy of Sciences, Institutskaya 3, Pushchino, 142290 Moscow, Russia (A.V.C.)
| | - Natalia V. Bobkova
- Institute of Cell Biophysics, Federal Research Center Pushchino Research Center for Biological Studies, Russian Academy of Sciences, Institutskaya 3, Pushchino, 142290 Moscow, Russia (A.V.C.)
| | - Alina V. Chaplygina
- Institute of Cell Biophysics, Federal Research Center Pushchino Research Center for Biological Studies, Russian Academy of Sciences, Institutskaya 3, Pushchino, 142290 Moscow, Russia (A.V.C.)
| | - Elena V. Svirshchevskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ulitsa M0iklukho-Maklaya 16/10, 117997 Moscow, Russia;
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V. I. Kulakov, Ministry of Healthcare of the Russian Federation, Oparina St. 4, 117997 Moscow, Russia; (R.A.P.); (V.S.C.); (G.T.S.)
| | - Rimma A. Poltavtseva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V. I. Kulakov, Ministry of Healthcare of the Russian Federation, Oparina St. 4, 117997 Moscow, Russia; (R.A.P.); (V.S.C.); (G.T.S.)
| | - Anastasia A. Vodennikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ulitsa M0iklukho-Maklaya 16/10, 117997 Moscow, Russia;
- Institute of Bioorganic Chemistry, National Research Nuclear University “MEPhI”, Kashirskoe Shosse 31, 115409 Moscow, Russia
| | - Vasiliy S. Chernyshev
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V. I. Kulakov, Ministry of Healthcare of the Russian Federation, Oparina St. 4, 117997 Moscow, Russia; (R.A.P.); (V.S.C.); (G.T.S.)
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Bld. 1, 121205 Moscow, Russia
| | - Gennadiy T. Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V. I. Kulakov, Ministry of Healthcare of the Russian Federation, Oparina St. 4, 117997 Moscow, Russia; (R.A.P.); (V.S.C.); (G.T.S.)
| |
Collapse
|
2
|
Stein-O'Brien GL, Palaganas R, Meyer EM, Redding-Ochoa J, Pletnikova O, Guo H, Bell WR, Troncoso JC, Huganir RL, Morris M. Transcriptional signatures of hippocampal tau pathology in primary age-related tauopathy and Alzheimer's disease. Cell Rep 2025; 44:115422. [PMID: 40085647 PMCID: PMC12019863 DOI: 10.1016/j.celrep.2025.115422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 12/17/2024] [Accepted: 02/20/2025] [Indexed: 03/16/2025] Open
Abstract
In primary age-related tauopathy (PART) and Alzheimer's disease (AD), tau aggregates share a similar structure and anatomic distribution, which is distinct from tau pathology in other diseases. However, transcriptional similarities between PART and AD and gene expression changes within tau-pathology-bearing neurons are largely unknown. Using GeoMx spatial transcriptomics, mRNA was quantified in hippocampal neurons with and without tau pathology in PART and AD. Synaptic genes were down-regulated in disease overall but up-regulated in tau-pathology-positive neurons. Two transcriptional signatures were associated with intraneuronal tau, both validated in a cortical AD dataset. Genes in the up-regulated signature were enriched in calcium regulation and synaptic function. Notably, transcriptional changes associated with intraneuronal tau in PART and AD were similar, suggesting a possible mechanistic relationship. These findings highlight the power of molecular analysis stratified by pathology and provide insight into common pathways associated with tau pathology in PART and AD.
Collapse
Affiliation(s)
- Genevieve L Stein-O'Brien
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Baltimore, MD 21218, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ryan Palaganas
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ernest M Meyer
- UPMC Hillman Cancer Center Cytometry Facility, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Javier Redding-Ochoa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Olga Pletnikova
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Haidan Guo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - William R Bell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard L Huganir
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Baltimore, MD 21218, USA
| | - Meaghan Morris
- Kavli Neuroscience Discovery Institute, Baltimore, MD 21218, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
3
|
Zhuang S, Chakraborty P, Zweckstetter M. Regulation of tau by peptidyl-prolyl isomerases. Curr Opin Struct Biol 2024; 84:102739. [PMID: 38061261 DOI: 10.1016/j.sbi.2023.102739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 02/09/2024]
Abstract
Tau is an intrinsically disordered protein found abundantly in axons, where it binds to microtubules. Since tau is a central player in the dynamic microtubule network, it is highly regulated by post-translational modifications. Abnormal hyperphosphorylation and aggregation of tau characterize a group of diseases called tauopathies. A specific protein family of cis/trans peptidyl-prolyl isomerases (PPIases) can interact with tau to regulate its aggregation and neuronal resilience. Structural interactions between tau and specific PPIases have been determined, establishing possible mechanisms for tau regulation and modification. While there have been numerous in vivo studies evaluating the impact of PPIase expression on tau biology/pathology, the direct roles of PPIases have yet to be fully characterized. Different PPIases correlate to either increased or decreased levels of tau-associated degeneration. Therefore, the ability of PPIases to structurally modify and regulate tau should be further investigated due to its potential therapeutic implications for Alzheimer's disease and other tauopathies.
Collapse
Affiliation(s)
- Shannon Zhuang
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany
| | - Pijush Chakraborty
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany; Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
4
|
Youssef H, Gatto RG, Pham NTT, Petersen RC, Machulda MM, Reichard RR, Dickson DW, Jack CR, Whitwell JL, Josephs KA. TDP-43 Is Associated with Subiculum and Cornu Ammonis 1 Hippocampal Subfield Atrophy in Primary Age-Related Tauopathy. J Alzheimers Dis 2024; 99:1023-1032. [PMID: 38728190 PMCID: PMC11265226 DOI: 10.3233/jad-240136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Background TAR DNA binding protein 43 (TDP-43) has been shown to be associated with whole hippocampal atrophy in primary age-related tauopathy (PART). It is currently unknown which subregions of the hippocampus are contributing to TDP-43 associated whole hippocampal atrophy in PART. Objective To identify which specific hippocampal subfield regions are contributing to TDP-43-associated whole hippocampal atrophy in PART. Methods A total of 115 autopsied cases from the Mayo Clinic Alzheimer Disease Research Center, Neurodegenerative Research Group, and the Mayo Clinic Study of Aging were analyzed. All cases underwent antemortem brain volumetric MRI, neuropathological assessment of the distribution of Aβ (Thal phase), and neurofibrillary tangle (Braak stage) to diagnose PART, as well as assessment of TDP-43 presence/absence in the amygdala, hippocampus and beyond. Hippocampal subfield segmentation was performed using FreeSurfer version 7.4.1. Statistical analyses using logistic regression were performed to assess for associations between TDP-43 and hippocampal subfield volumes, accounting for potential confounders. Results TDP-43 positive patients (n = 37, 32%), of which 15/15 were type-α, had significantly smaller whole hippocampal volumes, and smaller volumes of the body and tail of the hippocampus compared to TDP-43 negative patients. Subfield analyses revealed an association between TDP-43 and the molecular layer of hippocampal body and the body of cornu ammonis 1 (CA1), subiculum, and presubiculum regions. There was no association between TDP-43 stage and subfield volumes. Conclusions Whole hippocampal volume loss linked to TDP-43 in PART is mainly due to volume loss occurring in the molecular layer, CA1, subiculum and presubiculum of the hippocampal body.
Collapse
Affiliation(s)
- Hossam Youssef
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Mary M. Machulda
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | - R. Ross Reichard
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Dennis W. Dickson
- Department of Neuroscience (Neuropathology), Mayo Clinic, Jacksonville, FL, USA
| | | | | | | |
Collapse
|
5
|
Hiya S, Maldonado-Díaz C, Walker JM, Richardson TE. Cognitive symptoms progress with limbic-predominant age-related TDP-43 encephalopathy stage and co-occurrence with Alzheimer disease. J Neuropathol Exp Neurol 2023; 83:2-10. [PMID: 37966908 PMCID: PMC10746699 DOI: 10.1093/jnen/nlad098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023] Open
Abstract
Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is a neuropathologic entity characterized by transactive response DNA-binding protein of 43-kDa (TDP-43)-immunoreactive inclusions that originate in the amygdala and then progress to the hippocampi and middle frontal gyrus. LATE-NC may mimic Alzheimer disease clinically and often co-occurs with Alzheimer disease neuropathologic change (ADNC). This report focuses on the cognitive effects of isolated and concomitant LATE-NC and ADNC. Cognitive/neuropsychological, neuropathologic, genetic, and demographic variables were analyzed in 28 control, 31 isolated LATE-NC, 244 isolated ADNC, and 172 concurrent LATE-NC/ADNC subjects from the National Alzheimer's Coordinating Center. Cases with LATE-NC and ADNC were significantly older than controls; cases with ADNC had a significantly higher proportion of cases with at least one APOE ε4 allele. Both LATE-NC and ADNC exhibited deleterious effects on overall cognition proportional to their neuropathological stages; concurrent LATE-NC/ADNC exhibited the worst overall cognitive effect. Multivariate logistic regression analysis determined an independent risk of cognitive impairment for progressive LATE-NC stages (OR 1.66; p = 0.0256) and ADNC levels (OR 3.41; p < 0.0001). These data add to the existing knowledge on the clinical consequences of LATE-NC pathology and the growing literature on the effects of multiple concurrent neurodegenerative pathologies.
Collapse
Affiliation(s)
- Satomi Hiya
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carolina Maldonado-Díaz
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jamie M Walker
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Timothy E Richardson
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|