1
|
Yimgang VL, Pangrazzi E, Djeujo FM, Melogmo YKD, Tchinda Taghu FL, Kouipou RMT, Boyom FF, Froldi G. In vitro antidiabetic activity of Treculia africana leaf extracts: identification of chlorogenic acid and α-mangostin. J Pharm Pharmacol 2025; 77:501-510. [PMID: 39951123 DOI: 10.1093/jpp/rgaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/07/2025] [Indexed: 04/04/2025]
Abstract
OBJECTIVE This research studied two extracts from Treculia africana leaves for their potential against hyperglycaemia-related disorders. METHODS The influence of the extracts on α-glucosidase activity and albumin glycation was investigated, and cell viability was estimated in HT-29 human colorectal cells. Phenolic and flavonoid contents and antiradical activity were also detected. The extracts were examined using HPLC-DAD analysis. KEY FINDINGS The methanol and dichloromethane leaf extracts showed a significant concentration-dependent inhibition of α-glucosidase activity (IC50= 3.73 and 21.28 µg/ml, respectively). Both extracts also inhibited ribose-induced glycation of bovine serum albumin from 250 µg/ml. Phytochemical analysis revealed the presence of chlorogenic acid and α-mangostin in the extracts. The extracts did not change HT-29 cell viability up to 250 µg/ml, thus showing very low cytotoxicity. CONCLUSIONS The methanol leaf extract of T. africana inhibited α-glucosidase activity in a concentration-dependent manner, supporting the use of the leaves in traditional medicine to control hyperglycaemia. Chlorogenic acid and α-mangostin, the latter identified for the first time in this species, were found in the T. africana leaves. Further, in vivo studies and pilot clinical trials should be conducted using standardized T. africana leaf extracts to evaluate their potential effectiveness in diabetes mellitus.
Collapse
Affiliation(s)
- Victorine Lorette Yimgang
- Antimicrobial & Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon
| | - Elisa Pangrazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | | | - Yanick Kevin Dongmo Melogmo
- Antimicrobial & Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon
| | - Franklin Loïc Tchinda Taghu
- Antimicrobial & Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon
| | - Rufin Marie Toghueo Kouipou
- Antimicrobial & Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon
| | - Fabrice Fekam Boyom
- Antimicrobial & Biocontrol Agents Unit (AmBcAU), Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon
| | - Guglielmina Froldi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
2
|
Bauer I, Rimbach G, Cordeiro S, Bosy-Westphal A, Weghuber J, Ipharraguerre IR, Lüersen K. A comprehensive in-vitro/ in-vivo screening toolbox for the elucidation of glucose homeostasis modulating properties of plant extracts (from roots) and its bioactives. Front Pharmacol 2024; 15:1396292. [PMID: 38989154 PMCID: PMC11233739 DOI: 10.3389/fphar.2024.1396292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Plant extracts are increasingly recognized for their potential in modulating (postprandial) blood glucose levels. In this context, root extracts are of particular interest due to their high concentrations and often unique spectrum of plant bioactives. To identify new plant species with potential glucose-lowering activity, simple and robust methodologies are often required. For this narrative review, literature was sourced from scientific databases (primarily PubMed) in the period from June 2022 to January 2024. The regulatory targets of glucose homeostasis that could be modulated by bioactive plant compounds were used as search terms, either alone or in combination with the keyword "root extract". As a result, we present a comprehensive methodological toolbox for studying the glucose homeostasis modulating properties of plant extracts and its constituents. The described assays encompass in-vitro investigations involving enzyme inhibition (α-amylase, α-glucosidase, dipeptidyl peptidase 4), assessment of sodium-dependent glucose transporter 1 activity, and evaluation of glucose transporter 4 translocation. Furthermore, we describe a patch-clamp technique to assess the impact of extracts on KATP channels. While validating in-vitro findings in living organisms is imperative, we introduce two screenable in-vivo models (the hen's egg test and Drosophila melanogaster). Given that evaluation of the bioactivity of plant extracts in rodents and humans represents the current gold standard, we include approaches addressing this aspect. In summary, this review offers a systematic guide for screening plant extracts regarding their influence on key regulatory elements of glucose homeostasis, culminating in the assessment of their potential efficacy in-vivo. Moreover, application of the presented toolbox might contribute to further close the knowledge gap on the precise mechanisms of action of plant-derived compounds.
Collapse
Affiliation(s)
- Ilka Bauer
- Division of Food Sciences, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Gerald Rimbach
- Division of Food Sciences, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Sönke Cordeiro
- Institute of Physiology, University of Kiel, Kiel, Germany
| | - Anja Bosy-Westphal
- Division of Human Nutrition, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Julian Weghuber
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Wels, Austria
- FFoQSI—Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, Tulln, Austria
| | - Ignacio R. Ipharraguerre
- Division of Food Sciences, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Kai Lüersen
- Division of Food Sciences, Institute of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| |
Collapse
|
3
|
Asante DB, Wiafe GA. Therapeutic Benefit of Vernonia amygdalina in the Treatment of Diabetes and Its Associated Complications in Preclinical Studies. J Diabetes Res 2023; 2023:3159352. [PMID: 38033739 PMCID: PMC10686711 DOI: 10.1155/2023/3159352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Diabetes mellitus (DM), a complex heterogeneous metabolic disorder characterized by a defect in the function of insulin, is on the rapid rise globally. Sustained hyperglycemia which is a major sign of DM is linked to the generation of reactive oxygen species which promotes adverse complications of the disorder. Traditional herbal treatment of DM is a common practice in Africa and other tropical parts of the world. Vernonia amygdalina (VA), one of the highly researched species in the Asteraceae family, has proven to possess potent antidiabetic properties. Several phytochemicals identified in multiple extracts from VA are purported to be responsible for the antidiabetic potential of the plant. In this review, we discuss the therapeutic potential of VA in diabetes and its associated complications. We appraise the current evidence and further suggest potential areas that could be effectively exploited in future VA research on diabetes.
Collapse
Affiliation(s)
- Du-Bois Asante
- Department of Biomedical Sciences, University of Cape Coast, Ghana
- Department of Forensic Science, University of Cape Coast, Ghana
| | | |
Collapse
|
4
|
Froldi G, Benetti F, Mondin A, Roverso M, Pangrazzi E, Djeujo FM, Pastore P. Pterodon emarginatus Seed Preparations: Antiradical Activity, Chemical Characterization, and In Silico ADMET Parameters of β-caryophyllene and Farnesol. Molecules 2023; 28:7494. [PMID: 38005216 PMCID: PMC10673522 DOI: 10.3390/molecules28227494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The study of medicinal plants and their active compounds is relevant to maintaining knowledge of traditional medicine and to the development of new drugs of natural origin with lower environmental impact. From the seeds of the Brazilian plant Pterodon emarginatus, six different preparations were obtained: essential oil (EO), ethanol extract (EthE) prepared using the traditional method, and four extracts using solvents at different polarities, such as n-hexane, chloroform, ethyl acetate, and methanol (HexE, ChlE, EtAE, and MetE). Chemical characterization was carried out with gas chromatography, allowing the identification of several terpenoids as characteristic components. The two sesquiterpenes β-caryophyllene and farnesol were identified in all preparations of Pterodon emarginatus, and their amounts were also evaluated. Furthermore, the total flavonoid and phenolic contents of the extracts were assessed. Successively, the antiradical activity with DPPH and ORAC assays and the influence on cell proliferation by the MTT test on the human colorectal adenocarcinoma (HT-29) cell line of the preparations and the two compounds were evaluated. Lastly, an in silico study of adsorption, distribution, metabolism, excretion, and toxicity (ADMET) showed that β-caryophyllene and farnesol could be suitable candidates for development as drugs. The set of data obtained highlights the potential medicinal use of Pterodon emarginatus seeds and supports further studies of both plant preparations and isolated compounds, β-caryophyllene and farnesol, for their potential use in disease with free radical involvement as age-related chronic disorders.
Collapse
Affiliation(s)
- Guglielmina Froldi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (F.B.); (E.P.); (F.M.D.)
| | - Francesco Benetti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (F.B.); (E.P.); (F.M.D.)
| | - Andrea Mondin
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; (A.M.); (M.R.); (P.P.)
| | - Marco Roverso
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; (A.M.); (M.R.); (P.P.)
| | - Elisa Pangrazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (F.B.); (E.P.); (F.M.D.)
| | - Francine Medjiofack Djeujo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (F.B.); (E.P.); (F.M.D.)
| | - Paolo Pastore
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; (A.M.); (M.R.); (P.P.)
| |
Collapse
|
5
|
Djeujo FM, Stablum V, Pangrazzi E, Ragazzi E, Froldi G. Luteolin and Vernodalol as Bioactive Compounds of Leaf and Root Vernonia amygdalina Extracts: Effects on α-Glucosidase, Glycation, ROS, Cell Viability, and In Silico ADMET Parameters. Pharmaceutics 2023; 15:pharmaceutics15051541. [PMID: 37242783 DOI: 10.3390/pharmaceutics15051541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The aqueous decoctions of Vernonia amygdalina (VA) leaves and roots are widely used in traditional African medicine as an antidiabetic remedy. The amount of luteolin and vernodalol in leaf and root extracts was detected, and their role was studied regarding α-glucosidase activity, bovine serum albumin glycation (BSA), reactive oxygen species (ROS) formation, and cell viability, together with in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. Vernodalol did not affect α-glucosidase activity, whereas luteolin did. Furthermore, luteolin inhibited the formation of advanced glycation end products (AGEs) in a concentration-dependent manner, whereas vernodalol did not reduce it. Additionally, luteolin exhibited high antiradical activity, while vernodalol demonstrated a lower scavenger effect, although similar to that of ascorbic acid. Both luteolin and vernodalol inhibited HT-29 cell viability, showing a half-maximum inhibitory concentration (IC50) of 22.2 µM (-Log IC50 = 4.65 ± 0.05) and 5.7 µM (-Log IC50 = 5.24 ± 0.16), respectively. Finally, an in silico ADMET study showed that both compounds are suitable candidates as drugs, with appropriate pharmacokinetics. This research underlines for the first time the greater presence of vernodalol in VA roots compared to leaves, while luteolin is prevalent in the latter, suggesting that the former could be used as a natural source of vernodalol. Consequently, root extracts could be proposed for vernodalol-dependent antiproliferative activity, while leaf extracts could be suggested for luteolin-dependent effects, such as antioxidant and antidiabetic effects.
Collapse
Affiliation(s)
| | - Valentina Stablum
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Elisa Pangrazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Guglielmina Froldi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
6
|
Advanced Glycation End-Products and Diabetic Neuropathy of the Retina. Int J Mol Sci 2023; 24:ijms24032927. [PMID: 36769249 PMCID: PMC9917392 DOI: 10.3390/ijms24032927] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Diabetic retinopathy is a tissue-specific neurovascular impairment of the retina in patients with both type 1 and type 2 diabetes. Several pathological factors are involved in the progressive impairment of the interdependence between cells that consist of the neurovascular units (NVUs). The advanced glycation end-products (AGEs) are one of the major pathological factors that cause the impairments of neurovascular coupling in diabetic retinopathy. Although the exact mechanisms for the toxicities of the AGEs in diabetic retinopathy have not been definitively determined, the AGE-receptor of the AGE (RAGE) axis, production of reactive oxygen species, inflammatory reactions, and the activation of the cell death pathways are associated with the impairment of the NVUs in diabetic retinopathy. More specifically, neuronal cell death is an irreversible change that is directly associated with vision reduction in diabetic patients. Thus, neuroprotective therapies must be established for diabetic retinopathy. The AGEs are one of the therapeutic targets to examine to ameliorate the pathological changes in the NVUs in diabetic retinopathy. This review focuses on the basic and pathological findings of AGE-induced neurovascular abnormalities and the potential therapeutic approaches, including the use of anti-glycated drugs to protect the AGE-induced impairments of the NVUs in diabetic retinopathy.
Collapse
|
7
|
Anti-α-Glucosidase and Antiglycation Activities of α-Mangostin and New Xanthenone Derivatives: Enzymatic Kinetics and Mechanistic Insights through In Vitro Studies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020547. [PMID: 35056861 PMCID: PMC8777799 DOI: 10.3390/molecules27020547] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/26/2022]
Abstract
Diabetes mellitus is characterized by chronic hyperglycemia that promotes ROS formation, causing severe oxidative stress. Furthermore, prolonged hyperglycemia leads to glycation reactions with formation of AGEs that contribute to a chronic inflammatory state. This research aims to evaluate the inhibitory activity of α-mangostin and four synthetic xanthenone derivatives against glycation and oxidative processes and on α-glucosidase, an intestinal hydrolase that catalyzes the cleavage of oligosaccharides into glucose molecules, promoting the postprandial glycemic peak. Antiglycation activity was evaluated using the BSA assay, while antioxidant capacity was detected with the ORAC assay. The inhibition of α-glucosidase activity was studied with multispectroscopic methods along with inhibitory kinetic analysis. α-Mangostin and synthetic compounds at 25 µM reduced the production of AGEs, whereas the α-glucosidase activity was inhibited only by the natural compound. α-Mangostin decreased enzymatic activity in a concentration-dependent manner in the micromolar range by a reversible mixed-type antagonism. Circular dichroism revealed a rearrangement of the secondary structure of α-glucosidase with an increase in the contents of α-helix and random coils and a decrease in β-sheet and β-turn components. The data highlighted the anti-α-glucosidase activity of α-mangostin together with its protective effects on protein glycation and oxidation damage.
Collapse
|