1
|
Yoshida K, Misumi M, Hamasaki K, Kyoizumi S, Satoh Y, Tsuruyama T, Uchimura A, Kusunoki Y. High-dose radiation preferentially induces the clonal expansion of hematopoietic progenitor cells over mature T and B cells in mouse bone marrow. Stem Cell Reports 2025; 20:102423. [PMID: 40020684 PMCID: PMC11960520 DOI: 10.1016/j.stemcr.2025.102423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 03/03/2025] Open
Abstract
Radiation induces clonal hematopoiesis (CH) involving high-frequency somatic mutations in hematopoietic cells. However, the effects of radiation on clonal expansion of hematopoietic progenitor cells and lymphocytes remain elusive. Here, we investigate CH mutations and T cell receptor (TCR) and B cell receptor (BCR) sequences within the bone marrow cells of mice 18 months after irradiation (3 Gy) and age-matched controls. Two to six CH mutations were identified in the irradiated mice (N = 5), while only one of the four control mice carried a CH mutation. These CH mutations detected in the bone marrow were also identified in the splenic CD11b+ myeloid cell population. Meanwhile, the cumulative size of the ten largest TCR and BCR clones, as well as their clonality, did not differ significantly between irradiated and control mice. Our findings suggest that radiation preferentially induces clonal expansion of hematopoietic progenitor cells over mature lymphocytes in the bone marrow.
Collapse
Affiliation(s)
- Kengo Yoshida
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan.
| | - Munechika Misumi
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Kanya Hamasaki
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Seishi Kyoizumi
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Yasunari Satoh
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Tatsuaki Tsuruyama
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Arikuni Uchimura
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Yoichiro Kusunoki
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan.
| |
Collapse
|
2
|
Yamada Y, Imaoka T, Iwasaki T, Kobayashi J, Misumi M, Sakai K, Sugihara T, Suzuki K, Tauchi H, Yasuda H, Yoshinaga S, Sasatani M, Tanaka S, Doi K, Tomita M, Iizuka D, Kakinuma S, Sasaki M, Kai M. Establishment and activity of the planning and acting network for low dose radiation research in Japan (PLANET): 2016-2023. JOURNAL OF RADIATION RESEARCH 2024; 65:561-574. [PMID: 39007844 PMCID: PMC11420843 DOI: 10.1093/jrr/rrae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/28/2024] [Indexed: 07/16/2024]
Abstract
The Planning and Acting Network for Low Dose Radiation Research in Japan (PLANET) was established in 2017 in response to the need for an all-Japan network of experts. It serves as an academic platform to propose strategies and facilitate collaboration to improve quantitative estimation of health risks from ionizing radiation at low-doses and low-dose-rates. PLANET established Working Group 1 (Dose-Rate Effects in Animal Experiments) to consolidate findings from animal experiments on dose-rate effects in carcinogenesis. Considering international trends in this field as well as the situation in Japan, PLANET updated its priority research areas for Japanese low-dose radiation research in 2023 to include (i) characterization of low-dose and low-dose-rate radiation risk, (ii) factors to be considered for individualization of radiation risk, (iii) biological mechanisms of low-dose and low-dose-rate radiation effects and (iv) integration of epidemiology and biology. In this context, PLANET established Working Group 2 (Dose and Dose-Rate Mapping for Radiation Risk Studies) to identify the range of doses and dose rates at which observable effects on different endpoints have been reported; Working Group 3 (Species- and Organ-Specific Dose-Rate Effects) to consider the relevance of stem cell dynamics in radiation carcinogenesis of different species and organs; and Working Group 4 (Research Mapping for Radiation-Related Carcinogenesis) to sort out relevant studies, including those on non-mutagenic effects, and to identify priority research areas. These PLANET activities will be used to improve the risk assessment and to contribute to the revision of the next main recommendations of the International Commission on Radiological Protection.
Collapse
Affiliation(s)
- Yutaka Yamada
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tatsuhiko Imaoka
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Toshiyasu Iwasaki
- Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko, Chiba 270-1194, Japan
| | - Junya Kobayashi
- Department of Radiological Sciences, School of Health Sciences at Narita, International University of Health and Welfare, 4-3, Kozunomori, Narita, Chiba 286-8686, Japan
| | - Munechika Misumi
- Department of Statistics, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Kazuo Sakai
- Tokyo Healthcare University, 2-5-1 Higashiaoka, Meguro-ku, Tokyo 152-8558, Japan
| | - Takashi Sugihara
- Department of Radiobiology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Hiroshi Tauchi
- Department of Biological Sciences, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan
| | - Hiroshi Yasuda
- Department of Radiation Biophysics, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Shinji Yoshinaga
- Department of Environmetrics and Biometrics, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Megumi Sasatani
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Satoshi Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Kazutaka Doi
- Department of Radiation Regulatory Science Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masanori Tomita
- Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko, Chiba 270-1194, Japan
| | - Daisuke Iizuka
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Michiya Sasaki
- Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko, Chiba 270-1194, Japan
| | - Michiaki Kai
- Nippon Bunri University, 1727-162 Ichiki, Oita, Oita 870-0397, Japan
| |
Collapse
|
3
|
Shu X, Wang J, Zeng H, Shao L. Progression of Notch signaling regulation of B cells under radiation exposure. Front Immunol 2024; 15:1339977. [PMID: 38524139 PMCID: PMC10957566 DOI: 10.3389/fimmu.2024.1339977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/14/2024] [Indexed: 03/26/2024] Open
Abstract
With the continuous development of nuclear technology, the radiation exposure caused by radiation therapy is a serious health hazard. It is of great significance to further develop effective radiation countermeasures. B cells easily succumb to irradiation exposure along with immunosuppressive response. The approach to ameliorate radiation-induced B cell damage is rarely studied, implying that the underlying mechanisms of B cell damage after exposure are eager to be revealed. Recent studies suggest that Notch signaling plays an important role in B cell-mediated immune response. Notch signaling is a critical regulator for B cells to maintain immune function. Although accumulating studies reported that Notch signaling contributes to the functionality of hematopoietic stem cells and T cells, its role in B cells is scarcely appreciated. Presently, we discussed the regulation of Notch signaling on B cells under radiation exposure to provide a scientific basis to prevent radiation-induced B cell damage.
Collapse
Affiliation(s)
- Xin Shu
- Department of Occupational Health and Toxicology, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, School of Public Health, Nanchang University, Nanchang, China
| | - Jie Wang
- Department of Histology and Embryology, School of Basic Medicine Sciences, Nanchang University, Nanchang, China
| | - Huihong Zeng
- Department of Histology and Embryology, School of Basic Medicine Sciences, Nanchang University, Nanchang, China
| | - Lijian Shao
- Department of Occupational Health and Toxicology, School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Tachibana H, Daino K, Ishikawa A, Morioka T, Shang Y, Ogawa M, Matsuura A, Shimada Y, Kakinuma S. Genomic profile of radiation-induced early-onset mouse B-cell lymphoma recapitulates features of Philadelphia chromosome-like acute lymphoblastic leukemia in humans. Carcinogenesis 2022; 43:693-703. [PMID: 35395675 DOI: 10.1093/carcin/bgac034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/22/2022] [Accepted: 04/04/2022] [Indexed: 11/12/2022] Open
Abstract
Epidemiological studies have revealed a radiation-related increase in the risk of developing acute lymphoblastic leukemia (ALL). Our recent study revealed early induction and increased risk of precursor B-cell (pB) lymphomas in mice after radiation exposure. However, the genomic landscape of radiation-induced B-cell lymphomas remains unclear. To identify the relevant genetic alterations in mice, whole-exome sequencing was performed on both early-onset and late-onset B-cell lymphomas that developed spontaneously or after gamma-irradiation. In addition to multiple driver mutations, the data revealed that interstitial deletion of chromosome 4, including Pax5, and missense mutations in Jak3 are unique genomic alterations in radiation-induced, early-onset B-cell lymphomas. RNA sequencing revealed a pB-cell-type gene-expression profile with no involvement of known fusion genes for human ALLs in the early-onset B-cell lymphomas. Activation of Jak3/Stat5 signaling in early-onset B-cell lymphomas was validated using western capillary electrophoresis. Those features were similar to those of Philadelphia chromosome-like ALL. Our data suggest a critical role for Pax5 loss-of-function mutations in initiating B-cell leukemogenesis coupled with activation of Jak3/Stat5 signaling as a basis for the rapid development of radiation-induced pB-ALL. These molecular signatures for radiation-induced cancers will inform both risk assessment and potential targeted therapies for pB-ALL.
Collapse
Affiliation(s)
- Hirotaka Tachibana
- Department of Radiation Effects Research, Quantum Medical Science Directorate, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology (QST); Chiba, Japan.,Department of Biology, Graduate School of Science, Chiba University; Chiba, Japan
| | - Kazuhiro Daino
- Department of Radiation Effects Research, Quantum Medical Science Directorate, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology (QST); Chiba, Japan
| | - Atsuko Ishikawa
- Department of Radiation Effects Research, Quantum Medical Science Directorate, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology (QST); Chiba, Japan
| | - Takamitsu Morioka
- Department of Radiation Effects Research, Quantum Medical Science Directorate, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology (QST); Chiba, Japan
| | - Yi Shang
- Department of Radiation Effects Research, Quantum Medical Science Directorate, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology (QST); Chiba, Japan
| | - Mari Ogawa
- Department of Radiation Effects Research, Quantum Medical Science Directorate, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology (QST); Chiba, Japan
| | - Akira Matsuura
- Department of Biology, Graduate School of Science, Chiba University; Chiba, Japan
| | - Yoshiya Shimada
- Department of Radiation Effects Research, Quantum Medical Science Directorate, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology (QST); Chiba, Japan.,Chief director, Institute for Environmental Sciences; Aomori, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, Quantum Medical Science Directorate, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology (QST); Chiba, Japan
| |
Collapse
|
5
|
Evaluation of Global DNA Methylation and Gene Expression of Izumo1 and Izumo1r in Gonads after High- and Low-Dose Radiation in Neonatal Mice. BIOLOGY 2021; 10:biology10121270. [PMID: 34943185 PMCID: PMC8698457 DOI: 10.3390/biology10121270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/11/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022]
Abstract
The intergenerational effects from chronic low-dose exposure are matters of concern. It is thus important to elucidate the radiation-induced effects of germ cell maturation, fertilization and embryonic development. It is well known that DNA methylation levels in CpG sites in gametes are reprogrammed in stages during their maturity. Furthermore, the binding of Izumo on the surface of sperm and Juno on the surface of oocytes is essential for fertilization. Thus, there is a possibility that these genes are useful indicators to evaluate fertility in mice after irradiation exposure. Therefore, in this study, we analyzed global DNA methylation patterns in the testes and gene expression of Izumo1 and Izumo1r (Juno) in the gonads of mice after neonatal acute high-dose ionizing radiation (HDR) and chronic low-dose ionizing radiation (LDR). One-week-old male and female mice were irradiated with a total dose of 4 Gy, with acute HDR at 7 days at a dose rate of 30 Gy/h and LDR continuously at a dose rate of 6 mGy/h from 7 to 35 days. Their gonads were subsequently analyzed. The results of global DNA methylation patterns in the testes showed that methylation level increased with age in the control group, the LDR group maintained its DNA methylation level, and the HDR group showed decreased DNA methylation levels with age. In the control group, the gene expression level of Izumo1 in the testis did not show age-related changes, although there was high expression at 100 days of age. However, in the LDR group, the expression level recovered after the end of irradiation, while it remained low regardless of age in the HDR group. Conversely, gene expression of Izumo1r (Izumo1 receptor) in the ovary decreased with age in the control group. Although the gene expression of Izumo1r decreased with age in the LDR group, it remained low in the HDR group. Our results indicate that LDR can induce different DNA methylation patterns, and both high- and low-dose radiation before sexual maturity might affect gametogenesis and fertility.
Collapse
|