1
|
Villeneuve PJ, Frangione B, Talarico R, Prendergast T, Yu C, Gill G, Zablotska L. Occupational Exposure to Low Dose Ionizing Radiation and the Incidence of Surgically Removed Cataracts and Glaucoma in a Cohort of Ontario Nuclear Power Plant Workers. Radiat Res 2025; 203:271-283. [PMID: 39967394 DOI: 10.1667/rade-24-00050.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/02/2025] [Indexed: 02/20/2025]
Abstract
Ionizing radiation is a human carcinogen and has been shown to increase the risk of non-cancerous ocular disorders. Specifically, findings from epidemiological studies suggest that ionizing radiation leads to the development of cataracts and to a lesser extent glaucoma, however, there are uncertainties of these risks at lower exposures. We analyzed data from a cohort of 60,874 Ontario Nuclear Power Plant (NPP) workers within the Canadian National Dose Registry (NDR). These workers were monitored for whole-body exposure to ionizing radiation using dosimeters, with exposure estimates derived for each year of employment. Incident cases of surgically removed cataracts and glaucoma were identified through the record linkage of occupational histories to administrative health data for Ontario between 1991 and 2022. We compared the incidence of surgically removed cataracts and glaucoma in the cohort to Ontario's general population using indirect age- and sex-standardization with matching by place of residence. We evaluated exposure-response relationships with internal cohort comparisons using age-, sex-, and calendar-period-adjusted Poisson regression. The relative risks of cataract and glaucoma were estimated across categorical measures of whole-body dose [Hp(10)] from exposure to radiation (lagged 5 years). In total, 32,855 of the 60,874 workers (58%) had a positive cumulative dose exceeding the minimum reportable threshold. Among these workers, the mean cumulative whole-body lifetime dose at end of follow-up was 23.7 mSv (interquartile range: 1.1-26.4 mSv, maximum = 959.3 mSv). Overall, 4,401 (7.2%) of workers developed glaucoma, while 2,939 (4.8%) underwent cataract-removal surgery. There was no evidence of a dose-response relationship between cumulative whole-body dose ionizing radiation (lagged 5 years) and glaucoma, but some for surgically removed cataracts. Specifically, among workers with a cumulative exposure of greater than 50 mSv relative to those with an exposure of less than 0.25 mSv, the relative risks of incident glaucoma and cataract removal surgery were 0.91 (95% CI: 0.81-1.05) and 1.13 (95% CI: 0.97-1.33), respectively. The linear excess risks per 100 mSv (lagged 5 years) for cataract removal surgery was 0.055 (95% CI: -0.042 to 0.163). Our findings provide some evidence that ionizing radiation increases the risk of cataracts but not glaucoma in an occupational cohort whose lifetime cumulative dose rarely exceeded 30 mSv.
Collapse
Affiliation(s)
| | | | - Robert Talarico
- ICES uOttawa (Formerly Known as Institute for Clinical Evaluative Sciences), Ottawa, ON, Canada
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
| | | | - Chenchung Yu
- ICES uOttawa (Formerly Known as Institute for Clinical Evaluative Sciences), Ottawa, ON, Canada
| | - Gagan Gill
- Department of Neuroscience, Carleton University, Ottawa, Canada
| | | |
Collapse
|
2
|
Hamada N, Matsuya Y, Zablotska LB, Little MP. Inverse dose protraction effects of low-LET radiation: Evidence and significance. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2025; 795:108531. [PMID: 39814314 PMCID: PMC12124966 DOI: 10.1016/j.mrrev.2025.108531] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
Biological effects of ionizing radiation vary not merely with total dose but also with temporal dose distribution. Sparing dose protraction effects, in which dose protraction reduces effects of radiation have widely been accepted and generally assumed in radiation protection, particularly for stochastic effects (e.g., solid cancer). In contrast, inverse dose protraction effects (IDPEs) in which dose protraction enhances radiation effects have not been well recognized, nor comprehensively reviewed. Here, we review the current knowledge on IDPEs of low linear energy transfer (LET) radiation. To the best of our knowledge, since 1952, 157 biology, epidemiology or clinical papers have reported IDPEs following external or internal low-LET irradiation with photons (X-rays, γ-rays), β-rays, electrons, protons or helium ions. IDPEs of low-LET radiation have been described for biochemical changes in cell-free macromolecules (DNA, proteins or lipids), DNA damage responses in bacteria and yeasts, DNA damage, cytogenetic changes, neoplastic transformation and cell death in mammalian cell cultures of human, rodent or bovine origin, mutagenesis in silkworms, cytogenetic changes, induction of cancer (solid tumors and leukemia) and non-cancer effects (male sterility, cataracts and diseases of the circulatory system), tumor inactivation and survival in non-human mammals (rodents, rabbits, dogs and pigs), and induction of cancer and non-cancer effects (skin changes and diseases of the circulatory system) in humans. In contrast to a growing body of phenomenological evidence for manifestations of IDPEs, there is limited knowledge on mechanistic underpinnings, but proposed mechanisms involve cell cycle-dependent resensitization and low dose hyper-radiosensitivity. These necessitate continued studies for further mechanistic developments and assessment of implications of scientific evidence for radiation protection (e.g., in terms of a dose rate effectiveness factor).
Collapse
Affiliation(s)
- Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba 270-1194, Japan.
| | - Yusuke Matsuya
- Faculty of Health Sciences, Hokkaido University, Hokkaido 060-0812, Japan; Research Group for Radiation Transport Analysis, Nuclear Science and Engineering Center, Japan Atomic Energy Agency (JAEA), Ibaraki 319-1195, Japan
| | - Lydia B Zablotska
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, CA 94143, USA
| | - Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, MD 20892-9778, USA; Faculty of Health, Science and Technology, Oxford Brookes University, Headington Campus, OX3 0BP, UK
| |
Collapse
|
3
|
Kranrod C, Kudo H, Tokonami S. What can we learn from high background radiation area (HBRA) studies in three Asian countries: India, China and Indonesia? Radiological aspects in various HBRAs. JOURNAL OF RADIATION RESEARCH 2024; 65:i32-i41. [PMID: 39679880 DOI: 10.1093/jrr/rrae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/09/2024] [Indexed: 12/17/2024]
Abstract
Radiation is a pervasive natural phenomenon that has been present on earth since its inception. However, exposure to high background radiation levels can pose significant health risks to individuals living in affected areas. In recent years, several studies have been conducted in high background radiation areas (HBRAs), including high radon concentration areas, to understand the radiological aspects and the lessons learned of radiation exposure. The purpose of this article is to provide a comprehensive review of radiological hazards and lessons learned from studies in high-background radiation areas in some countries of Asia (India, China and Indonesia). In this article, we will explore the hazards associated with radiation exposure from terrestrial radiation and additionally radon inhalation, the different studies conducted in HBRA and the lessons learned from these studies. Ultimately, this article aims to provide a better understanding of the radiological aspects of HBRAs and to identify the key lessons learned from previous studies to prevent future health risks. Likewise, research conducted in different high-background radiation areas in some countries of Asia has provided valuable insights into the radiological aspects of these areas and their potential impact on human health.
Collapse
Affiliation(s)
- Chutima Kranrod
- Institute of Radiation Emergency Medicine, Department of International Cooperation and Collaborative Research, Hirosaki University, 66-1 Hon-Cho, Hirosaki, Aomori 036-8564, Japan
| | - Hiromi Kudo
- Graduate School of Health Sciences, Department of Nursing Science, Hirosaki University, 66-1 Hon-Cho, Hirosaki, Aomori 036-8564, Japan
| | - Shinji Tokonami
- Institute of Radiation Emergency Medicine, Department of International Cooperation and Collaborative Research, Hirosaki University, 66-1 Hon-Cho, Hirosaki, Aomori 036-8564, Japan
- Institute of Radiation Emergency Medicine, Department of Radiation Measurement and Physical Dosimetry, Hirosaki University, 66-1 Hon-Cho, Hirosaki, Aomori 036-8564, Japan
| |
Collapse
|
4
|
Little MP, Bazyka D, de Gonzalez AB, Brenner AV, Chumak VV, Cullings HM, Daniels RD, French B, Grant E, Hamada N, Hauptmann M, Kendall GM, Laurier D, Lee C, Lee WJ, Linet MS, Mabuchi K, Morton LM, Muirhead CR, Preston DL, Rajaraman P, Richardson DB, Sakata R, Samet JM, Simon SL, Sugiyama H, Wakeford R, Zablotska LB. A Historical Survey of Key Epidemiological Studies of Ionizing Radiation Exposure. Radiat Res 2024; 202:432-487. [PMID: 39021204 PMCID: PMC11316622 DOI: 10.1667/rade-24-00021.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/23/2024] [Indexed: 07/20/2024]
Abstract
In this article we review the history of key epidemiological studies of populations exposed to ionizing radiation. We highlight historical and recent findings regarding radiation-associated risks for incidence and mortality of cancer and non-cancer outcomes with emphasis on study design and methods of exposure assessment and dose estimation along with brief consideration of sources of bias for a few of the more important studies. We examine the findings from the epidemiological studies of the Japanese atomic bomb survivors, persons exposed to radiation for diagnostic or therapeutic purposes, those exposed to environmental sources including Chornobyl and other reactor accidents, and occupationally exposed cohorts. We also summarize results of pooled studies. These summaries are necessarily brief, but we provide references to more detailed information. We discuss possible future directions of study, to include assessment of susceptible populations, and possible new populations, data sources, study designs and methods of analysis.
Collapse
Affiliation(s)
- Mark P. Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
- Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0BP, UK
| | - Dimitry Bazyka
- National Research Center for Radiation Medicine, Hematology and Oncology, 53 Melnikov Street, Kyiv 04050, Ukraine
| | | | - Alina V. Brenner
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Vadim V. Chumak
- National Research Center for Radiation Medicine, Hematology and Oncology, 53 Melnikov Street, Kyiv 04050, Ukraine
| | - Harry M. Cullings
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Robert D. Daniels
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Benjamin French
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Eric Grant
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 1646 Abiko, Chiba 270-1194, Japan
| | - Michael Hauptmann
- Institute of Biostatistics and Registry Research, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany
| | - Gerald M. Kendall
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Headington, Oxford, OX3 7LF, UK
| | - Dominique Laurier
- Institute for Radiological Protection and Nuclear Safety, Fontenay aux Roses France
| | - Choonsik Lee
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Won Jin Lee
- Department of Preventive Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Martha S. Linet
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Kiyohiko Mabuchi
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Lindsay M. Morton
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | | | | | - Preetha Rajaraman
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - David B. Richardson
- Environmental and Occupational Health, 653 East Peltason, University California, Irvine, Irvine, CA 92697-3957 USA
| | - Ritsu Sakata
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Jonathan M. Samet
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
| | - Steven L. Simon
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Hiromi Sugiyama
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Ellen Wilkinson Building, Oxford Road, Manchester, M13 9PL, UK
| | - Lydia B. Zablotska
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, 550 16 Street, 2 floor, San Francisco, CA 94143, USA
| |
Collapse
|
5
|
Wilson C, Adams GG, Patel P, Windham K, Ennis C, Caffrey E. A Review of Recent Low-dose Research and Recommendations for Moving Forward. HEALTH PHYSICS 2024; 126:386-396. [PMID: 38568156 DOI: 10.1097/hp.0000000000001808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
ABSTRACT The linear no-threshold (LNT) model has been the regulatory "law of the land" for decades. Despite the long-standing use of LNT, there is significant ongoing scientific disagreement on the applicability of LNT to low-dose radiation risk. A review of the low-dose risk literature of the last 10 y does not provide a clear answer, but rather the body of literature seems to be split between LNT, non-linear risk functions (e.g., supra- or sub-linear), and hormetic models. Furthermore, recent studies have started to explore whether radiation can play a role in the development of several non-cancer effects, such as heart disease, Parkinson's disease, and diabetes, the mechanisms of which are still being explored. Based on this review, there is insufficient evidence to replace LNT as the regulatory model despite the fact that it contributes to public radiophobia, unpreparedness in radiation emergency response, and extreme cleanup costs both following radiological or nuclear incidents and for routine decommissioning of nuclear power plants. Rather, additional research is needed to further understand the implications of low doses of radiation. The authors present an approach to meaningfully contribute to the science of low-dose research that incorporates machine learning and Edisonian approaches to data analysis.
Collapse
Affiliation(s)
- Charles Wilson
- University of Alabama at Birmingham, School of Health Professions, Clinical and Diagnostic Sciences, Health Physics Program
| | - Grace G Adams
- Gryphon Scientific, LLC, 6930 Carrol Ave., Suite 810, Takoma Park, MD 20912
| | - Pooja Patel
- University of Alabama at Birmingham, School of Health Professions, Clinical and Diagnostic Sciences, Health Physics Program
| | - Kiran Windham
- University of Alabama at Birmingham, School of Health Professions, Clinical and Diagnostic Sciences, Health Physics Program
| | - Colby Ennis
- University of Alabama at Birmingham, School of Health Professions, Clinical and Diagnostic Sciences, Health Physics Program
| | - Emily Caffrey
- University of Alabama at Birmingham, School of Health Professions, Clinical and Diagnostic Sciences, Health Physics Program
| |
Collapse
|
6
|
Lerebours A, Regini J, Quinlan RA, Wada T, Pierscionek B, Devonshire M, Kalligeraki AA, Uwineza A, Young L, Girkin JM, Warwick P, Smith K, Hoshino M, Uesugi K, Yagi N, Terrill N, Shebanova O, Snow T, Smith JT. Evaluation of cataract formation in fish exposed to environmental radiation at Chernobyl and Fukushima. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165957. [PMID: 37543314 DOI: 10.1016/j.scitotenv.2023.165957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/05/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
Recent studies apparently finding deleterious effects of radiation exposure on cataract formation in birds and voles living near Chernobyl represent a major challenge to current radiation protection regulations. This study conducted an integrated assessment of radiation exposure on cataractogenesis using the most advanced technologies available to assess the cataract status of lenses extracted from fish caught at both Chernobyl in Ukraine and Fukushima in Japan. It was hypothesised that these novel data would reveal positive correlations between radiation dose and early indicators of cataract formation. The structure, function and optical properties of lenses were analysed from atomic to millimetre length scales. We measured the short-range order of the lens crystallin proteins using Small Angle X-Ray Scattering (SAXS) at both the SPring-8 and DIAMOND synchrotrons, the profile of the graded refractive index generated by these proteins, the epithelial cell density and organisation and finally the focal length of each lens. The results showed no evidence of a difference between the focal length, the epithelial cell densities, the refractive indices, the interference functions and the short-range order of crystallin proteins (X-ray diffraction patterns) in lens from fish exposed to different radiation doses. It could be argued that animals in the natural environment which developed cataract would be more likely, for example, to suffer predation leading to survivor bias. But the cross-length scale study presented here, by evaluating small scale molecular and cellular changes in the lens (pre-cataract formation) significantly mitigates against this issue.
Collapse
Affiliation(s)
- Adélaïde Lerebours
- School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth PO1 3QL, United Kingdom; School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom
| | - Justyn Regini
- School of Optometry and Vision Sciences, University of Cardiff, Cardiff CA10 3AT, United Kingdom
| | - Roy A Quinlan
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, United Kingdom
| | - Toshihiro Wada
- Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima City, Japan
| | - Barbara Pierscionek
- Medical Technology Research Centre, Anglia Ruskin University, Bishop Hall Lane, Chelmsford CM1 1SQ, United Kingdom
| | - Martin Devonshire
- School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom
| | - Alexia A Kalligeraki
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, United Kingdom
| | - Alice Uwineza
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, United Kingdom
| | - Laura Young
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, United Kingdom
| | - John M Girkin
- Department of Physics, University of Durham, South Road, Durham DH1 3LE, United Kingdom
| | - Phil Warwick
- GAU-Radioanalytical, University of Southampton, NOCS, European way, SO14 6HT Southampton,United Kingdom
| | - Kurt Smith
- Centre for Radiochemistry Research, School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Masato Hoshino
- Japan Synchrotron Radiation Research Institute (Spring-8), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Kentaro Uesugi
- Japan Synchrotron Radiation Research Institute (Spring-8), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Naoto Yagi
- Japan Synchrotron Radiation Research Institute (Spring-8), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Nick Terrill
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot OX11 0DE, UK
| | - Olga Shebanova
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot OX11 0DE, UK
| | - Tim Snow
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot OX11 0DE, UK
| | - Jim T Smith
- School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth PO1 3QL, United Kingdom.
| |
Collapse
|
7
|
Hamada N. Noncancer Effects of Ionizing Radiation Exposure on the Eye, the Circulatory System and beyond: Developments made since the 2011 ICRP Statement on Tissue Reactions. Radiat Res 2023; 200:188-216. [PMID: 37410098 DOI: 10.1667/rade-23-00030.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/13/2023] [Indexed: 07/07/2023]
Abstract
For radiation protection purposes, noncancer effects with a threshold-type dose-response relationship have been classified as tissue reactions (formerly called nonstochastic or deterministic effects), and equivalent dose limits aim to prevent occurrence of such tissue reactions. Accumulating evidence demonstrates increased risks for several late occurring noncancer effects at doses and dose rates much lower than previously considered. In 2011, the International Commission on Radiological Protection (ICRP) issued a statement on tissue reactions to recommend a threshold of 0.5 Gy to the lens of the eye for cataracts and to the heart and brain for diseases of the circulatory system (DCS), independent of dose rate. Literature published thereafter continues to provide updated knowledge. Increased risks for cataracts below 0.5 Gy have been reported in several cohorts (e.g., including in those receiving protracted or chronic exposures). A dose threshold for cataracts is less evident with longer follow-up, with limited evidence available for risk of cataract removal surgery. There is emerging evidence for risk of normal-tension glaucoma and diabetic retinopathy, but the long-held tenet that the lens represents among the most radiosensitive tissues in the eye and in the body seems to remain unchanged. For DCS, increased risks have been reported in various cohorts, but the existence or otherwise of a dose threshold is unclear. The level of risk is less uncertain at lower dose and lower dose rate, with the possibility that risk per unit dose is greater at lower doses and dose rates. Target organs and tissues for DCS are also unknown, but may include heart, large blood vessels and kidneys. Identification of potential factors (e.g., sex, age, lifestyle factors, coexposures, comorbidities, genetics and epigenetics) that may modify radiation risk of cataracts and DCS would be important. Other noncancer effects on the radar include neurological effects (e.g., Parkinson's disease, Alzheimer's disease and dementia) of which elevated risk has increasingly been reported. These late occurring noncancer effects tend to deviate from the definition of tissue reactions, necessitating more scientific developments to reconsider the radiation effect classification system and risk management. This paper gives an overview of historical developments made in ICRP prior to the 2011 statement and an update on relevant developments made since the 2011 ICRP statement.
Collapse
Affiliation(s)
- Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| |
Collapse
|
8
|
Wang P, Li YW, Lu X, Liu Y, Tian XL, Gao L, Liu QJ, Fan L, Tian M. Low-dose ionizing radiation: Effects on the proliferation and migration of lens epithelial cells via activation of the Wnt/β-catenin pathway. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 888:503637. [PMID: 37188435 DOI: 10.1016/j.mrgentox.2023.503637] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023]
Abstract
Eye lens opacification (cataract) induced by ionizing radiation is an important concern for radiation protection. Human lens epithelial cells (HLE-B3) were irradiated with γ-rays and radiation effects, including cell proliferation, cell migration, cell cycle distribution, and other changes related to the β-catenin pathway, were determined after 8-72 h and 7 d. In an in vivo model, mice were irradiated; DNA damage (γH2AX foci) in the cell nucleus of the anterior capsule of the lens was detected within 1 h, and radiation effects on the anterior and posterior lens capsules were observed after 3 months. Low-dose ionizing radiation promoted cell proliferation and migration. The expression levels of β-catenin, cyclin D1, and c-Myc were significantly increased in HLE-B3 cells after irradiation and β-catenin was translocated into the cell nucleus (activation of the Wnt/β-catenin pathway). In C57BL/6 J mouse lens, even a very low irradiation dose (0.05 Gy) induced the formation of γH2AX foci, 1 h after irradiation. At 3 months, migratory cells were found in the posterior capsule; expression of β-catenin was increased and it was clustered at the nucleus in the epithelial cells of the lens anterior capsule. The Wnt/β-catenin signaling pathway may an important role in promoting abnormal proliferation and migration of lens epithelial cells after low-dose irradiation.
Collapse
Affiliation(s)
- Ping Wang
- China CDC Key Laboratory of Radiation Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, PR China
| | - Yu-Wen Li
- National Center for Occupational Safety and Health, NHC, Beijing 102308, PR China
| | - Xue Lu
- China CDC Key Laboratory of Radiation Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, PR China
| | - Ya Liu
- China CDC Key Laboratory of Radiation Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, PR China
| | - Xue-Lei Tian
- China CDC Key Laboratory of Radiation Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, PR China
| | - Ling Gao
- China CDC Key Laboratory of Radiation Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, PR China
| | - Qing-Jie Liu
- China CDC Key Laboratory of Radiation Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, PR China
| | - Li Fan
- China CDC Key Laboratory of Radiation Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, PR China.
| | - Mei Tian
- China CDC Key Laboratory of Radiation Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, PR China.
| |
Collapse
|
9
|
Abstract
PURPOSE Cataract (opacification of the ocular lens) is a typical tissue reaction (deterministic effect) following ionizing radiation exposure, for which prevention dose limits have been recommended in the radiation protection system. Manifestations of radiation cataracts can vary among individuals, but such potential individual responses remain uncharacterized. Here we review relevant literature and discuss implications for radiation protection. This review assesses evidence for significant modification of radiation-induced cataractogenesis by age at exposure, sex and genetic factors based on current scientific literature. CONCLUSIONS In addition to obvious physical factors (e.g. dose, dose rate, radiation quality, irradiation volume), potential factors modifying individual responses for radiation cataracts include sex, age and genetics, with comorbidity and coexposures also having important roles. There are indications and preliminary data identifying such potential modifiers of radiation cataract incidence or risk, although no firm conclusions can yet be drawn. Further studies and a consensus on the evidence are needed to gain deeper insights into factors determining individual responses regarding radiation cataracts and the implications for radiation protection.
Collapse
Affiliation(s)
- Stephen G R Barnard
- UK Health Security Agency (UKHSA), Radiation, Chemical and Environmental Hazards Division (RCEHD), Didcot, UK
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan
| |
Collapse
|
10
|
Yokoyama S, Hamada N, Tsujimura N, Kunugita N, Nishida K, Ezaki I, Kato M, Okubo H. Regulatory implementation of the occupational equivalent dose limit for the lens of the eye and underlying relevant efforts in Japan. Int J Radiat Biol 2023; 99:604-619. [PMID: 35980737 DOI: 10.1080/09553002.2022.2115160] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
In April 2011, the International Commission on Radiological Protection recommended reducing the occupational equivalent dose limit for the lens. Such a new occupational lens dose limit has thus far been implemented in many countries, and there are extensive discussions toward its regulatory implementation in other countries. In Japan, discussions in the Japan Health Physics Society (JHPS) began in April 2013 and in Radiation Council in July 2017, and the new occupational lens dose limit was implemented into regulation in April 2021. To share our experience, we have published a series of papers summarizing situations in Japan: the first paper based on information available by early 2017, and the second paper by early 2019. This paper (our third paper of this series) aims to review updated information available by mid-2022, such as regarding regulatory implementation of the new occupational lens dose limit, recent discussions by relevant ministries based on the opinion from the council, establishment process of safety and health management systems, the JHPS guidelines on lens dose monitoring and radiation safety, voluntary countermeasures of the licensees, development of lens dose calibration method, and recent studies on exposure of the lens in nuclear workers and biological effect on the lens.
Collapse
Affiliation(s)
- Sumi Yokoyama
- Research Promotion Headquarters, Fujita Health University, Aichi, Japan
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan
| | - Norio Tsujimura
- Radiation Protection Department, Japan Atomic Energy Agency, Ibaraki, Japan
| | - Naoki Kunugita
- School of Health Sciences, University of Occupational and Environmental Health, Fukuoka, Japan
| | - Kazutaka Nishida
- Radiological Management Group, Kansai Electric Power Co., Inc, Fukui, Japan
| | - Iwao Ezaki
- Technical Group, Nuclear Power Plant Business Headquarters, Chiyoda Technol Corporation, Tokyo, Japan
| | - Masahiro Kato
- Ionizing Radiation Standards Group, National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Hideki Okubo
- Radiological Health and Safety Center Nuclear Safe Management Department, Tokyo Electric Power Company Holdings, Inc, Tokyo, Japan
| |
Collapse
|
11
|
Simon S, Kendall G, Bouffler S, Little M. The Evidence for Excess Risk of Cancer and Non-Cancer Disease at Low Doses and Dose Rates. Radiat Res 2022; 198:615-624. [PMID: 36136740 PMCID: PMC9797580 DOI: 10.1667/rade-22-00132.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/06/2022] [Indexed: 12/31/2022]
Abstract
The question of whether there are excess radiation-associated health risks at low dose is controversial. We present evidence of excess cancer risks in a number of (largely pediatrically or in utero exposed) groups exposed to low doses of radiation (<0.1 Gy). Moreover, the available data on biological mechanisms do not provide support for the idea of a low-dose threshold or hormesis for any of these endpoints. There are emerging data suggesting risks of cardiovascular disease and cataract at low doses, but this is less well established. This large body of evidence does not suggest and, indeed, is not statistically compatible with any very large threshold in dose (>10 mGy), or with possible beneficial effects from exposures. The presented data suggest that exposure to low-dose radiation causes excess cancer risks and quite possibly also excess risks of various non-cancer endpoints.
Collapse
Affiliation(s)
- S.L. Simon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (retired)
| | - G.M. Kendall
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Headington, Oxford, OX3 7LF, United Kingdom
| | - S.D. Bouffler
- Radiation Effects Department, UK Health Security Agency (UKHSA), Chilton, Didcot OX11 0RQ, United Kingdom
| | - M.P. Little
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892-9778
| |
Collapse
|
12
|
Shimizu H, Sasaki K, Aoyama T, Iwata T, Kitagawa T, Kodaira T. Evaluation of a new acrylic-lead shielding device for peripheral dose reduction during cone-beam computed tomography. BJR Open 2022; 4:20220043. [PMID: 38525166 PMCID: PMC10958996 DOI: 10.1259/bjro.20220043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Objective To clarify the peripheral dose changes, especially in the eye lens and thyroid gland regions, using an acrylic-lead shield in cone-beam computed tomography (CBCT). Methods The acrylic-lead shield consists of system walls and a system mat. The radiophotoluminescence glass dosemeter was set on the eye lens and thyroid gland regions on the RANDO phantom. The system mat was laid under the RANDO phantom ranging from the top of the head to the shoulders, and then, the system walls shielded the phantom's head. Additionally, the phantom was covered anteriorly with a band that had the same shielding ability as the system mat to cover the thyroid gland region. Protocols for CBCT imaging of the thoracic or pelvic region in clinical practice were used. The measurement was performed with and without the acrylic-lead shield. Results The dose to the eye lens region was reduced by 45% using the system wall. Conversely, the dose to the thyroid gland was unchanged. The use of the system mat reduced the dose to the thyroid gland region by 47%, and the dose to the eye lens was reduced by 22%. The dose to the eye lens region decreased to the background level using the system walls and mat. Conclusion The newly proposed device using an acrylic-lead shield reduced the peripheral dose in CBCT imaging. Advances in knowledge Attention is focused on managing peripheral dose in image-guided radiation therapy. The peripheral dose reduction using the acrylic-lead shield is a new proposal in radiotherapy that has never been studied.
Collapse
Affiliation(s)
- Hidetoshi Shimizu
- Department of Radiation Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, Japan
| | - Koji Sasaki
- Graduate School of Radiological Technology, Gunma Prefectural College of Health Sciences, 323-1 Kamioki, Maebashi, Gunma, Japan
| | | | - Tohru Iwata
- Department of Radiation Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, Japan
| | - Tomoki Kitagawa
- Department of Radiation Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, Japan
| | - Takeshi Kodaira
- Department of Radiation Oncology, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi, Japan
| |
Collapse
|
13
|
Ghosh A. Biological and cellular responses of humans to high-level natural radiation: A clarion call for a fresh perspective on the linear no-threshold paradigm. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 878:503478. [PMID: 35649671 DOI: 10.1016/j.mrgentox.2022.503478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 06/15/2023]
Abstract
There remains considerable uncertainty in obtaining risk estimates of adverse health outcomes of chronic low-dose radiation. In the absence of reliable direct data, extrapolation through the linear no-threshold (LNT) hypothesis forms the cardinal tenet of all risk assessments for low doses (≤ 100 mGy) and for the radiation protection principle of As Low As Reasonably Achievable (ALARA). However, as recent evidences demonstrate, LNT assumptions do not appropriately reflect the biology of the cell at the low-dose end of the dose-response curve. In this regard, human populations living in high-level natural radiation areas (HLNRA) of the world can provide valuable insights into the biological and cellular effects of chronic radiation to facilitate improved precision of the dose-response relationship at low doses. Here, data obtained over decades of epidemiological and radiobiological studies on HLNRA populations is summarized. These studies do not show any evidence of unfavourable health effects or adverse cellular effects that can be correlated with high-level natural radiation. Contrary to the assumptions of LNT, no excess cancer risks or untoward pregnancy outcomes have been found to be associated with cumulative radiation dose or in-utero exposures. Molecular biology-driven studies demonstrate that chronic low-dose activates several cellular defence mechanisms that help cells to sense, recover, survive, and adapt to radiation stress. These mechanisms include stress-response signaling, DNA repair, immune alterations and most importantly, the radiation-induced adaptive response. The HLNRA data is consistent with the new evolving paradigms of low-dose radiobiology and can help develop the theoretical framework of an alternate dose-response model. A rational integration of radiobiology with epidemiology data is imperative to reduce uncertainties in predicting the potential health risks of chronic low doses of radiation.
Collapse
Affiliation(s)
- Anu Ghosh
- Animal House Facility & Radiation Signaling Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai 400 085, India; Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai 400 094, India.
| |
Collapse
|
14
|
Sun L, Inaba Y, Sogo Y, Kunugita N, Chida K, Moritake T. Ionizing radiation reduces glutathione levels in the eye: A pilot study. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Gao Y, Su YP, Li XL, Lei SJ, Chen HF, Cui SY, Zhang SF, Zou JM, Liu QJ, Sun QF. ATM and TP53 Polymorphisms Modified Susceptibility to Radiation-Induced Lens Opacity in Natural High Background Radiation Area, China. Int J Radiat Biol 2022; 98:1235-1242. [PMID: 34995174 DOI: 10.1080/09553002.2022.2024294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Purpose: A population-based case-control study was conducted in Yangjiang and Enping areas in South China to assess whether the risk of lens opacity induced by natural high background radiation exposure is modulated by polymorphisms of ATM and TP53.Materials and methods: A total of 133 cases who were diagnosed with cortical and posterior subcapsular (PSC) opacity were recruited, and 419 healthy controls were selected through counter-matching in terms of radiation status. Genomic DNA from all the participants was genotyped with the Illumina platform for four single nucleotide polymorphisms of ATM (rs189037, rs373759, and rs4585) and TP53 (rs1042522). The cumulative lens dose received during the entire life was estimated based on annual indoor and outdoor radiation doses and gender- and age-specific occupancy factors. Non-conditional logistic regression was performed to calculate odds ratio (OR) and 95% confidence intervals (95% CI).Results: ATM rs189037 and TP53 rs1042522 were significantly related to cortical and PSC opacity. The risk of opacity was higher when individuals carried the A allele of ATM rs189037 and C allele of TP53 rs1042522, compared with GG genotype. ATM rs189037 A allele carriers (AG/AA) and TP53 rs1042522 C allele carriers (CG/CC) combined with a cumulative lens dose of 100 mGy or higher showed statistically significant opacity risks (OR =5.51, 95% CI: 1.47-20.66; OR =2.69, 95% CI: 1.10-6.60).Conclusion: The A allele of ATM rs189037 and C allele of TP53 rs1042522 increase the risk of lens opacity induced by radiation. These polymorphisms in ATM and TP53 might modify the risk of cortical and PSC opacity induced by chronic and prolonged low-dose radiation.
Collapse
Affiliation(s)
- Yu Gao
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Yin-Ping Su
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Xiao-Liang Li
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Shu-Jie Lei
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Hui-Feng Chen
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Shi-Yue Cui
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Su-Fen Zhang
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Jian-Ming Zou
- Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Qing-Jie Liu
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Quan-Fu Sun
- Key Laboratory of Radiological Protection and Nuclear Emergency, China CDC, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| |
Collapse
|
16
|
Little MP, Azizova TV, Hamada N. Low- and moderate-dose non-cancer effects of ionizing radiation in directly exposed individuals, especially circulatory and ocular diseases: a review of the epidemiology. Int J Radiat Biol 2021; 97:782-803. [PMID: 33471563 PMCID: PMC10656152 DOI: 10.1080/09553002.2021.1876955] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/24/2020] [Accepted: 01/09/2021] [Indexed: 01/29/2023]
Abstract
PURPOSE There are well-known correlations between high and moderate doses (>0.5 Gy) of ionizing radiation exposure and circulatory system damage, also between radiation and posterior subcapsular cataract. At lower dose correlations with circulatory disease are emerging in the Japanese atomic bomb survivors and in some occupationally exposed groups, and are still to some extent controversial. Heterogeneity in excess relative risks per unit dose in epidemiological studies at low (<0.1 Gy) and at low-moderate (>0.1 Gy, <0.5 Gy) doses may result from confounding and other types of bias, and effect modification by established risk factors. There is also accumulating evidence of excess cataract risks at lower dose and low dose rate in various cohorts. Other ocular endpoints, specifically glaucoma and macular degeneration have been little studied. In this paper, we review recent epidemiological findings, and also discuss some of the underlying radiobiology of these conditions. We briefly review some other types of mainly neurological nonmalignant disease in relation to radiation exposure. CONCLUSIONS We document statistically significant excess risk of the major types of circulatory disease, specifically ischemic heart disease and stroke, in moderate- or low-dose exposed groups, with some not altogether consistent evidence suggesting dose-response non-linearity, particularly for stroke. However, the patterns of risk reported are not straightforward. We also document evidence of excess risks at lower doses/dose-rates of posterior subcapsular and cortical cataract in the Chernobyl liquidators, US Radiologic Technologists and Russian Mayak nuclear workers, with fundamentally linear dose-response. Nuclear cataracts are less radiogenic. For other ocular endpoints, specifically glaucoma and macular degeneration there is very little evidence of effects at low doses; radiation-associated glaucoma has been documented only for doses >5 Gy, and so has the characteristics of a tissue reaction. There is some evidence of neurological detriment following low-moderate dose (∼0.1-0.2 Gy) radiation exposure in utero or in early childhood.
Collapse
Affiliation(s)
- Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Tamara V Azizova
- Clinical Department, Southern Urals Biophysics Institute, Ozyorsk, Ozyorsk Chelyabinsk Region, Russia
| | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Komae, Tokyo, Japan
| |
Collapse
|