1
|
Nagesh PKB, Monette S, Shamu T, Giralt S, Jean SCS, Zhang Z, Fuks Z, Kolesnick R. Anti-ceramide Single-Chain Variable Fragment Mitigates Gastrointestinal-Acute Radiation Syndrome and Improves Marrow Reconstitution, Rendering Near-Normal 90-Day Autopsies. Int J Radiat Oncol Biol Phys 2024; 120:558-569. [PMID: 37815783 PMCID: PMC10947531 DOI: 10.1016/j.ijrobp.2023.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 07/18/2023] [Accepted: 07/29/2023] [Indexed: 10/11/2023]
Abstract
PURPOSE After September 11, 2001, nuclear threat prompted government agencies to develop medical countermeasures to mitigate two syndromes, the hematopoietic-acute radiation syndrome (H-ARS) and the higher-dose gastrointestinal-acute radiation syndrome (GI-ARS), both lethal within weeks. While repurposing leukemia drugs that enhance bone marrow repopulation successfully treats H-ARS, no mitigator potentially deliverable under mass casualty conditions preserves the GI tract. We recently reported that anti-ceramide single-chain variable fragment (scFv) mitigates GI-ARS lethality, abrogating ongoing small intestinal endothelial apoptosis to rescue Lgr5+ stem cells. Here, we examine long-term consequences of prevention of acute GI-ARS lethality. METHODS AND MATERIALS For these studies, C57BL/6J male mice were treated with 15 Gy whole body irradiation, the 90% GI-ARS lethal dose for this mouse strain. RESULTS Mice irradiated with 15 Gy alone or with 15 Gy + bone marrow transplantation (BMT) or anti-ceramide scFv, succumb to an ARS within 8 to 10 days. Autopsies reveal only mice receiving anti-ceramide scFv at 24 hours post-whole body irradiation display small intestinal rescue. No marrow reconstitution occurs in any group with attendant undetectable circulating blood elements. Mice receiving 15 Gy + BMT + scFv, however, normalize blood counts by day 12, suggesting that scFv also improves marrow reconstitution, a concept for which we provide experimental support. We show that at 14 Gy, the upper limit dose for H-ARS lethality before transition to GI-ARS lethality, anti-ceramide scFv markedly improves marrow take, reducing the quantity of marrow-conferring survival by more than 3-fold. Consistent with these findings, mice receiving 15 Gy + BMT + scFv exhibit prolonged survival. At day 90, before sacrifice, they display normal appearance, behavior, and serum biochemistries, and surprisingly, at full autopsy, near-normal physiology in all 42 tissues examined. CONCLUSIONS Anti-ceramide scFv mitigates GI-ARS lethality and improves marrow reconstitution rendering prolonged survival with near normal autopsies.
Collapse
Affiliation(s)
- Prashanth K B Nagesh
- Laboratory of Signal Transduction, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sebastien Monette
- Laboratory of Comparative Pathology, Rockefeller University, Weill Cornell Medicine and Memorial Sloan Kettering Cancer Center, New York, New York
| | - Tambudzai Shamu
- Laboratory of Signal Transduction, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sergio Giralt
- Division of Hematologic Malignancies, Adult BMT Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samantha C St Jean
- Laboratory of Comparative Pathology, Rockefeller University, Weill Cornell Medicine and Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zhigang Zhang
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zvi Fuks
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York; Champalimaud Center, Lisbon, Portugal
| | - Richard Kolesnick
- Laboratory of Signal Transduction, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
2
|
Cheng J, Nagesh PKB, Feldman R, Shamu T, Zhang Z, Fuks Z, Kolesnick R. Anti-Ceramide ScFv Prophylaxis for First Responders to a Limited Nuclear Attack. Cell Physiol Biochem 2024; 58:418-430. [PMID: 39172137 PMCID: PMC11650686 DOI: 10.33594/000000721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND/AIMS After 9/11, multiple government agencies instituted programs aimed at developing medical radiation countermeasures (MRCs) for two syndromes lethal within weeks of a limited nuclear attack; the hematopoietic-acute radiation syndrome (H-ARS) and the higher-dose gastrointestinal-acute radiation syndrome (GI-ARS). While re-purposing drugs that enhance marrow repopulation treats H-ARS, no mitigator protects GI tract. METHODS We recently reported anti-ceramide 6B5 single-chain variable fragment (scFv) pre-treatment abrogates ongoing small intestinal endothelial apoptosis to rescue Lgr5+ stem cells, preventing GI-ARS lethality in C57B/L6J mice. Here, with US Department of Defense support, we provide evidence that humanized anti-ceramide scFv (CX-01) is a promising prophylactic MRC for first responders, who risk exposure upon entering a radiation-contaminated site. RESULTS CX-01, when delivered up to 90 min before irradiation, is highly-effective in preventing small intestinal endothelial apoptosis in mice and lethality in both sexes. Unexpectedly, females require an ~2-fold higher CX-01 dose than males for full protection. CX-01 is effective subcutaneously and intramuscularly, a property critical for battlefield use. Increasing the maximally-effective dose 5-fold does not extend duration of bioeffectiveness. CONCLUSION While CX-01 prevents GI-ARS lethality, structural modification to extend half-life may be necessary to optimize first responder prophylaxis.
Collapse
Affiliation(s)
- Jin Cheng
- Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Prashanth K B Nagesh
- Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Regina Feldman
- Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Tambudzai Shamu
- Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Zhigang Zhang
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Zvi Fuks
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
- The Champalimaud Center, Lisbon, Portugal
| | - Richard Kolesnick
- Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, New York, New York, USA,
| |
Collapse
|
3
|
Lojek NM, Williams VA, Rogers AM, Sajo E, Black BJ, Ghezzi CE. A 3D In Vitro Cortical Tissue Model Based on Dense Collagen to Study the Effects of Gamma Radiation on Neuronal Function. Adv Healthc Mater 2024; 13:e2301123. [PMID: 37921265 PMCID: PMC11468710 DOI: 10.1002/adhm.202301123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/14/2023] [Indexed: 11/04/2023]
Abstract
Studies on gamma radiation-induced injury have long been focused on hematopoietic, gastrointestinal, and cardiovascular systems, yet little is known about the effects of gamma radiation on the function of human cortical tissue. The challenge in studying radiation-induced cortical injury is, in part, due to a lack of human tissue models and physiologically relevant readouts. Here, a physiologically relevant 3D collagen-based cortical tissue model (CTM) is developed for studying the functional response of human iPSC-derived neurons and astrocytes to a sub-lethal radiation exposure (5 Gy). Cytotoxicity, DNA damage, morphology, and extracellular electrophysiology are quantified. It is reported that 5 Gy exposure significantly increases cytotoxicity, DNA damage, and astrocyte reactivity while significantly decreasing neurite length and neuronal network activity. Additionally, it is found that clinically deployed radioprotectant amifostine ameliorates the DNA damage, cytotoxicity, and astrocyte reactivity. The CTM provides a critical experimental platform to understand cell-level mechanisms by which gamma radiation (GR) affects human cortical tissue and to screen prospective radioprotectant compounds.
Collapse
Affiliation(s)
- Neal M. Lojek
- Department of Biomedical EngineeringUniversity of Massachusetts LowellLowellMA01854USA
| | - Victoria A. Williams
- Department of Biomedical EngineeringUniversity of Massachusetts LowellLowellMA01854USA
| | - Andrew M. Rogers
- Department of Physics and Applied PhysicsUniversity of Massachusetts LowellLowellMA01854USA
| | - Erno Sajo
- Department of Physics and Applied PhysicsUniversity of Massachusetts LowellLowellMA01854USA
| | - Bryan J. Black
- Department of Biomedical EngineeringUniversity of Massachusetts LowellLowellMA01854USA
| | - Chiara E. Ghezzi
- Department of Biomedical EngineeringUniversity of Massachusetts LowellLowellMA01854USA
| |
Collapse
|
4
|
Shuryak I, Ghandhi SA, Laiakis EC, Garty G, Wu X, Ponnaiya B, Kosowski E, Pannkuk E, Kaur SP, Harken AD, Deoli N, Fornace AJ, Brenner DJ, Amundson SA. Biomarker integration for improved biodosimetry of mixed neutron + photon exposures. Sci Rep 2023; 13:10936. [PMID: 37414809 PMCID: PMC10325958 DOI: 10.1038/s41598-023-37906-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023] Open
Abstract
There is a persistent risk of a large-scale malicious or accidental exposure to ionizing radiation that may affect a large number of people. Exposure will consist of both a photon and neutron component, which will vary in magnitude between individuals and is likely to have profound impacts on radiation-induced diseases. To mitigate these potential disasters, there exists a need for novel biodosimetry approaches that can estimate the radiation dose absorbed by each person based on biofluid samples, and predict delayed effects. Integration of several radiation-responsive biomarker types (transcripts, metabolites, blood cell counts) by machine learning (ML) can improve biodosimetry. Here we integrated data from mice exposed to various neutron + photon mixtures, total 3 Gy dose, using multiple ML algorithms to select the strongest biomarker combinations and reconstruct radiation exposure magnitude and composition. We obtained promising results, such as receiver operating characteristic curve area of 0.904 (95% CI: 0.821, 0.969) for classifying samples exposed to ≥ 10% neutrons vs. < 10% neutrons, and R2 of 0.964 for reconstructing photon-equivalent dose (weighted by neutron relative biological effectiveness) for neutron + photon mixtures. These findings demonstrate the potential of combining various -omic biomarkers for novel biodosimetry.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168Th Street, VC-11-234/5, New York, NY, 10032, USA.
| | - Shanaz A Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168Th Street, VC-11-234/5, New York, NY, 10032, USA
| | - Evagelia C Laiakis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| | - Guy Garty
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168Th Street, VC-11-234/5, New York, NY, 10032, USA
| | - Xuefeng Wu
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168Th Street, VC-11-234/5, New York, NY, 10032, USA
| | - Brian Ponnaiya
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168Th Street, VC-11-234/5, New York, NY, 10032, USA
| | - Emma Kosowski
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Evan Pannkuk
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| | - Salan P Kaur
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168Th Street, VC-11-234/5, New York, NY, 10032, USA
| | - Andrew D Harken
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168Th Street, VC-11-234/5, New York, NY, 10032, USA
| | - Naresh Deoli
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168Th Street, VC-11-234/5, New York, NY, 10032, USA
| | - Albert J Fornace
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168Th Street, VC-11-234/5, New York, NY, 10032, USA
| | - Sally A Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168Th Street, VC-11-234/5, New York, NY, 10032, USA
| |
Collapse
|
5
|
Long-Term Immunological Consequences of Radiation Exposure in a Diverse Cohort of Rhesus Macaques. Int J Radiat Oncol Biol Phys 2023; 115:945-956. [PMID: 36288757 PMCID: PMC9974872 DOI: 10.1016/j.ijrobp.2022.10.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE The aim of this study was to develop an improved understanding of the delayed immunologic effects of acute total body irradiation (TBI) using a diverse cohort of nonhuman primates as a model for an irradiated human population. METHODS AND MATERIALS Immune recovery was evaluated in 221 rhesus macaques either left unirradiated (n = 36) or previously irradiated (n = 185) at 1.1 to 8.5 Gy TBI (median, 6.5 Gy) when aged 2.1 to 15.5 years (median, 4.2 years). Blood was drawn annually for up to 5 years total between 0.5 and 14.3 years after exposure. Blood was analyzed by complete blood count, immunophenotyping of monocytes, dendritic cells (DC) and lymphocytes by flow cytometry, and signal joint T-cell receptor exclusion circle quantification in isolated peripheral blood CD4 and CD8 T cells. Animals were categorized by age, irradiation status, and time since irradiation. Sex-adjusted means of immune metrics were evaluated by generalized estimating equation models to identify cell populations altered by TBI. RESULTS Overall, the differences between irradiated and nonirradiated animals were subtle and largely restricted to younger animals and select cell populations. Subsets of monocytes, DC, T cells, and B cells showed significant interaction effects between radiation dose and age after adjustment for sex. Irradiation at a young age caused transient increases in the percentage of peripheral blood myeloid DC and dose-dependent changes in monocyte balance for at least 5 years after TBI. TBI also led to a sustained decrease in the percentage of circulating memory B cells. Young irradiated animals exhibited statistically significant and prolonged disruption of the naïve/effector memory/central memory CD4 and CD8 T-cell equilibrium and exhibited a dose-dependent increase in thymopoiesis for 2 to 3 years after exposure. CONCLUSIONS This study indicates TBI subtly but significantly alters the circulating proportions of cellular mediators of adaptive immune memory for several years after irradiation, especially in macaques under 5 years of age and those receiving a high dose of radiation.
Collapse
|
6
|
Shuryak I, Nemzow L, Bacon BA, Taveras M, Wu X, Deoli N, Ponnaiya B, Garty G, Brenner DJ, Turner HC. Machine learning approach for quantitative biodosimetry of partial-body or total-body radiation exposures by combining radiation-responsive biomarkers. Sci Rep 2023; 13:949. [PMID: 36653416 PMCID: PMC9849198 DOI: 10.1038/s41598-023-28130-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
During a large-scale radiological event such as an improvised nuclear device detonation, many survivors will be shielded from radiation by environmental objects, and experience only partial-body irradiation (PBI), which has different consequences, compared with total-body irradiation (TBI). In this study, we tested the hypothesis that applying machine learning to a combination of radiation-responsive biomarkers (ACTN1, DDB2, FDXR) and B and T cell counts will quantify and distinguish between PBI and TBI exposures. Adult C57BL/6 mice of both sexes were exposed to 0, 2.0-2.5 or 5.0 Gy of half-body PBI or TBI. The random forest (RF) algorithm trained on ½ of the data reconstructed the radiation dose on the remaining testing portion of the data with mean absolute error of 0.749 Gy and reconstructed the product of dose and exposure status (defined as 1.0 × Dose for TBI and 0.5 × Dose for PBI) with MAE of 0.472 Gy. Among irradiated samples, PBI could be distinguished from TBI: ROC curve AUC = 0.944 (95% CI: 0.844-1.0). Mouse sex did not significantly affect dose reconstruction. These results support the hypothesis that combinations of protein biomarkers and blood cell counts can complement existing methods for biodosimetry of PBI and TBI exposures.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th street, VC-11-234/5, New York, NY, 10032, USA.
| | - Leah Nemzow
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th street, VC-11-234/5, New York, NY, 10032, USA
| | - Bezalel A Bacon
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th street, VC-11-234/5, New York, NY, 10032, USA
| | - Maria Taveras
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th street, VC-11-234/5, New York, NY, 10032, USA
| | - Xuefeng Wu
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th street, VC-11-234/5, New York, NY, 10032, USA
| | - Naresh Deoli
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, Irvington, NY, USA
| | - Brian Ponnaiya
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, Irvington, NY, USA
| | - Guy Garty
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, Irvington, NY, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th street, VC-11-234/5, New York, NY, 10032, USA
| | - Helen C Turner
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th street, VC-11-234/5, New York, NY, 10032, USA
| |
Collapse
|
7
|
Shuryak I, Royba E, Repin M, Turner HC, Garty G, Deoli N, Brenner DJ. A machine learning method for improving the accuracy of radiation biodosimetry by combining data from the dicentric chromosomes and micronucleus assays. Sci Rep 2022; 12:21077. [PMID: 36473912 PMCID: PMC9726929 DOI: 10.1038/s41598-022-25453-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
A large-scale malicious or accidental radiological event can expose vast numbers of people to ionizing radiation. The dicentric chromosome (DCA) and cytokinesis-block micronucleus (CBMN) assays are well-established biodosimetry methods for estimating individual absorbed doses after radiation exposure. Here we used machine learning (ML) to test the hypothesis that combining automated DCA and CBMN assays will improve dose reconstruction accuracy, compared with using either cytogenetic assay alone. We analyzed 1349 blood sample aliquots from 155 donors of different ages (3-69 years) and sexes (49.1% males), ex vivo irradiated with 0-8 Gy at dose rates from 0.08 Gy/day to ≥ 600 Gy/s. We compared the performances of several state-of-the-art ensemble ML methods and found that random forest generated the best results, with R2 for actual vs. reconstructed doses on a testing data subset = 0.845, and mean absolute error = 0.628 Gy. The most important predictor variables were CBMN and DCA frequencies, and age. Removing CBMN or DCA data from the model significantly increased squared errors on testing data (p-values 3.4 × 10-8 and 1.1 × 10-6, respectively). These findings demonstrate the promising potential of combining CBMN and DCA assay data to reconstruct radiation doses in realistic scenarios of heterogeneous populations exposed to a mass-casualty radiological event.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, VC-11-234/5, New York, NY, 10032, USA.
| | - Ekaterina Royba
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, VC-11-234/5, New York, NY, 10032, USA
| | - Mikhail Repin
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, VC-11-234/5, New York, NY, 10032, USA
| | - Helen C Turner
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, VC-11-234/5, New York, NY, 10032, USA
| | - Guy Garty
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, Irvington, NY, USA
| | - Naresh Deoli
- Radiological Research Accelerator Facility, Columbia University Irving Medical Center, Irvington, NY, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th Street, VC-11-234/5, New York, NY, 10032, USA
| |
Collapse
|
8
|
Lazarus HM, McManus J, Gale RP. Sargramostim in acute radiation syndrome. Expert Opin Biol Ther 2022; 22:1345-1352. [DOI: 10.1080/14712598.2022.2143261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hillard M Lazarus
- Department of Medicine, Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH, USA
| | | | - Robert Peter Gale
- Haematology Centre, Department of Immunology and Inflammation, Imperial College London, London, UK
| |
Collapse
|
9
|
Obrador E, Salvador-Palmer R, Villaescusa JI, Gallego E, Pellicer B, Estrela JM, Montoro A. Nuclear and Radiological Emergencies: Biological Effects, Countermeasures and Biodosimetry. Antioxidants (Basel) 2022; 11:1098. [PMID: 35739995 PMCID: PMC9219873 DOI: 10.3390/antiox11061098] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Atomic and radiological crises can be caused by accidents, military activities, terrorist assaults involving atomic installations, the explosion of nuclear devices, or the utilization of concealed radiation exposure devices. Direct damage is caused when radiation interacts directly with cellular components. Indirect effects are mainly caused by the generation of reactive oxygen species due to radiolysis of water molecules. Acute and persistent oxidative stress associates to radiation-induced biological damages. Biological impacts of atomic radiation exposure can be deterministic (in a period range a posteriori of the event and because of destructive tissue/organ harm) or stochastic (irregular, for example cell mutation related pathologies and heritable infections). Potential countermeasures according to a specific scenario require considering basic issues, e.g., the type of radiation, people directly affected and first responders, range of doses received and whether the exposure or contamination has affected the total body or is partial. This review focuses on available medical countermeasures (radioprotectors, radiomitigators, radionuclide scavengers), biodosimetry (biological and biophysical techniques that can be quantitatively correlated with the magnitude of the radiation dose received), and strategies to implement the response to an accidental radiation exposure. In the case of large-scale atomic or radiological events, the most ideal choice for triage, dose assessment and victim classification, is the utilization of global biodosimetry networks, in combination with the automation of strategies based on modular platforms.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Rosario Salvador-Palmer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Juan I. Villaescusa
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain; (J.I.V.); (A.M.)
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| | - Eduardo Gallego
- Energy Engineering Department, School of Industrial Engineering, Polytechnic University of Madrid, 28040 Madrid, Spain;
| | - Blanca Pellicer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - José M. Estrela
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Alegría Montoro
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain; (J.I.V.); (A.M.)
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| |
Collapse
|