1
|
Dahl H, Olsen AK, Berg E, Duale N, Hofer T, Graupner A, Brede DA, Eide DM. Dose rate-driven responses to ionizing radiation in CBA/Ca and C57BL/6N evaluated using benchmark dose (BMD) modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 982:179589. [PMID: 40382965 DOI: 10.1016/j.scitotenv.2025.179589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/20/2025]
Abstract
Dose rate is an important factor influencing the biological outcomes of environmental ionizing radiation exposure. This study aimed to investigate genotoxic and phenotypic effects of dose rate while keeping the total dose constant (3 Gy). Using the Figaro facility, CBA/CaOla and C57BL/6N mice were exposed to gamma radiation (60Co) at low (2.5 mGy/h for 54d) and higher dose rates (10 mGy/h for 14d and 100 mGy/h for 30h). Cellular stress was assessed through micronuclei in reticulocytes, DNA damage (comet assay), mitochondrial DNA copy number variation and common deletions (digital droplet PCR), and protein carbonylation in plasma. Micronucleus formation in reticulocytes proved to be a highly sensitive and specific dose rate predictor, shown by a log-linear dose rate response (R2 = 0.98). Mitochondrial DNA copy number increased in a strain- and dose rate-dependent manner, while no significant effects on common deletions or protein carbonylation were detected. Chronic low dose rate exposure led to an approximate 60 % reduction in testis weights, other phenotypic results were not evident. Benchmark dose analysis of liver transcriptomic data revealed shared radiation responses across functional categories and transcriptional points of departure for DNA damage-related pathways. The BMD analysis of MN-RETs demonstrated a BMDL far below the lowest dose, indicating that the MN-RET-assay is suitable for lower dose rates and total doses. Integrating adverse effect analysis with BMDL estimations improves dose rate-response characterization and contributes to more refined risk assessment, reducing reliance on high dose rate extrapolation.
Collapse
Affiliation(s)
- Hildegunn Dahl
- Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo NO-0213, Norway; Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås NO-1432, Norway
| | - Ann-K Olsen
- Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo NO-0213, Norway; Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås NO-1432, Norway
| | - Einar Berg
- Department of Bacteriology, Norwegian Institute of Public Health, Oslo NO-0213, Norway
| | - Nur Duale
- Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo NO-0213, Norway; Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås NO-1432, Norway
| | - Tim Hofer
- Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo NO-0213, Norway; Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås NO-1432, Norway
| | - Anne Graupner
- Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo NO-0213, Norway; Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås NO-1432, Norway
| | - Dag A Brede
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås NO-1432, Norway; Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), Ås NO-1432, Norway.
| | - Dag M Eide
- Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo NO-0213, Norway; Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås NO-1432, Norway
| |
Collapse
|
2
|
Jiang C, Freedman RA, Punglia RS, Jemal A, Sung H. Associations of radiotherapy receipt with lung cancer risk by histological subtype among breast cancer survivors in the United States. Int J Cancer 2025; 156:1114-1120. [PMID: 39533883 DOI: 10.1002/ijc.35257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/13/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Radiotherapy for breast cancer has been associated with an increased risk of secondary malignancies, including primary lung cancer. Whether this association varies by histological subtype of lung cancer remains unknown. Based on the data from 12 Surveillance, Epidemiology, and End Results registries, we examined the association between radiotherapy receipt and the risk of subtype-specific subsequent primary lung cancer (SPLC) among female first primary breast cancer cases diagnosed between ages 20 and 84 from 1992 to 2020. More than half (53%) of the 550,007 breast cancer survivors identified had undergone radiotherapy as part of their initial breast cancer treatment. Over an average follow-up of 9.7 years, 8014 survivors developed SPLCs. For small-cell carcinoma, the standardized incidence ratio (SIR) compared with the general population was higher for survivors who received radiotherapy (SIR = 1.15, 95% confidence interval [CI] = 1.06-1.25) but similar for those who did not receive radiotherapy (SIR = 1.00, 95% CI = 0.91-1.09), with the difference in SIRs being statistically significant (p = .003). Similar associations were found for squamous cell carcinoma (SIRyes = 1.16, 95% CI = 1.08-1.24 vs. SIRno/unknown = 1.06, 95% CI = 0.98-1.15; p = .07). The increased risks were confined to ipsilateral SPLC, with the greatest SIRs for small-cell carcinoma occurring 5-10 years since breast cancer diagnosis (SIR = 1.83, 95% CI = 1.53-2.19) and for squamous cell carcinoma with a latency of 10 years or more (SIR = 1.64, 95% CI = 1.42-1.88). In contrast, the risk of developing adenocarcinoma did not vary by radiotherapy receipt (SIRyes = 1.23, 95% CI = 1.18-1.28 vs. SIRno/unknown = 1.17, 95% CI = 1.12-1.22; p = .18), indicating additional risk factors in play. The findings suggest a distinct carcinogenic pathway of radiation-induced lung cancer across histological subtypes and may inform risk-stratified surveillance guidelines for SPLC.
Collapse
Affiliation(s)
- Chenxi Jiang
- Surveillance & Health Equity Science, American Cancer Society, Atlanta, Georgia, USA
| | | | - Rinaa S Punglia
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Ahmedin Jemal
- Surveillance & Health Equity Science, American Cancer Society, Atlanta, Georgia, USA
| | - Hyuna Sung
- Surveillance & Health Equity Science, American Cancer Society, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Lu Z, Chen D, Zhang N, Zheng Z, Zhou Z, Liu G, An J, Wang Y, Su Y, Chen W, Wang F. Transient HR enhancement by RAD51-stimulatory compound confers protection on intestinal rather than hematopoietic tissue against irradiation in mice. DNA Repair (Amst) 2024; 144:103781. [PMID: 39520854 DOI: 10.1016/j.dnarep.2024.103781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/13/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
DNA double-strand breaks (DSBs) are cytotoxic lesions that compromise genomic integrity and trigger cell death. Homologous recombination (HR) is a major pathway for repairing DSBs in cycling cells. However, it remains unclear whether transient modulation of HR could confer protection to adult stem cells against lethal irradiation exposure. In this study, we investigated the radio-protective effect of the RAD51-stimulatory compound RS-1 on adult stem cells and progenitor cells with varying cycling rates in intestinal and hematopoietic tissues. Treatment with RS-1 even at high doses did not induce noticeable cell death or proliferation of intestinal crypt cells in vivo. Pretreatment with RS-1 before irradiation significantly decreased mitotic death, promoted DNA repair and enhanced the survival of intestinal stem cells and progenitor cells and increased the number of regenerative crypt colonies thereby mitigating IR-induced gastrointestinal syndrome. Moreover, RS-1 pretreatment could increase the survival and regeneration of irradiated intestinal organoids in vitro, which can be rescued by RAD51 inhibitor. However, pretreatment with RS-1 in vivo did not elevate nucleated cell count or HSPCs in bone marrow after 6 Gy irradiation. Additionally, there was no impact on mouse survival due to drug treatment observed. Thus, our data suggest that targeting HR as a strategy to prevent tissue damage from acute irradiation exposure may depend on cell cycling rates and intrinsic DNA repair mechanisms.
Collapse
Affiliation(s)
- Zhiyu Lu
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital) to Army Medical University (Third Military Medical University), Chongqing, 400038, China; State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Dong Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Ning Zhang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhiyuan Zheng
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zimo Zhou
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Guochen Liu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jiawei An
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yong Wang
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yongping Su
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Wensheng Chen
- Department of Gastroenterology, the First Affiliated Hospital (Southwest Hospital) to Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Fengchao Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| |
Collapse
|
4
|
Yamada Y, Imaoka T, Iwasaki T, Kobayashi J, Misumi M, Sakai K, Sugihara T, Suzuki K, Tauchi H, Yasuda H, Yoshinaga S, Sasatani M, Tanaka S, Doi K, Tomita M, Iizuka D, Kakinuma S, Sasaki M, Kai M. Establishment and activity of the planning and acting network for low dose radiation research in Japan (PLANET): 2016-2023. JOURNAL OF RADIATION RESEARCH 2024; 65:561-574. [PMID: 39007844 PMCID: PMC11420843 DOI: 10.1093/jrr/rrae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/28/2024] [Indexed: 07/16/2024]
Abstract
The Planning and Acting Network for Low Dose Radiation Research in Japan (PLANET) was established in 2017 in response to the need for an all-Japan network of experts. It serves as an academic platform to propose strategies and facilitate collaboration to improve quantitative estimation of health risks from ionizing radiation at low-doses and low-dose-rates. PLANET established Working Group 1 (Dose-Rate Effects in Animal Experiments) to consolidate findings from animal experiments on dose-rate effects in carcinogenesis. Considering international trends in this field as well as the situation in Japan, PLANET updated its priority research areas for Japanese low-dose radiation research in 2023 to include (i) characterization of low-dose and low-dose-rate radiation risk, (ii) factors to be considered for individualization of radiation risk, (iii) biological mechanisms of low-dose and low-dose-rate radiation effects and (iv) integration of epidemiology and biology. In this context, PLANET established Working Group 2 (Dose and Dose-Rate Mapping for Radiation Risk Studies) to identify the range of doses and dose rates at which observable effects on different endpoints have been reported; Working Group 3 (Species- and Organ-Specific Dose-Rate Effects) to consider the relevance of stem cell dynamics in radiation carcinogenesis of different species and organs; and Working Group 4 (Research Mapping for Radiation-Related Carcinogenesis) to sort out relevant studies, including those on non-mutagenic effects, and to identify priority research areas. These PLANET activities will be used to improve the risk assessment and to contribute to the revision of the next main recommendations of the International Commission on Radiological Protection.
Collapse
Affiliation(s)
- Yutaka Yamada
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tatsuhiko Imaoka
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Toshiyasu Iwasaki
- Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko, Chiba 270-1194, Japan
| | - Junya Kobayashi
- Department of Radiological Sciences, School of Health Sciences at Narita, International University of Health and Welfare, 4-3, Kozunomori, Narita, Chiba 286-8686, Japan
| | - Munechika Misumi
- Department of Statistics, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Kazuo Sakai
- Tokyo Healthcare University, 2-5-1 Higashiaoka, Meguro-ku, Tokyo 152-8558, Japan
| | - Takashi Sugihara
- Department of Radiobiology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Hiroshi Tauchi
- Department of Biological Sciences, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan
| | - Hiroshi Yasuda
- Department of Radiation Biophysics, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Shinji Yoshinaga
- Department of Environmetrics and Biometrics, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Megumi Sasatani
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Satoshi Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Kazutaka Doi
- Department of Radiation Regulatory Science Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masanori Tomita
- Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko, Chiba 270-1194, Japan
| | - Daisuke Iizuka
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Michiya Sasaki
- Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko, Chiba 270-1194, Japan
| | - Michiaki Kai
- Nippon Bunri University, 1727-162 Ichiki, Oita, Oita 870-0397, Japan
| |
Collapse
|
5
|
Nagata K, Nishimura M, Daino K, Nishimura Y, Hattori Y, Watanabe R, Iizuka D, Yokoya A, Suzuki K, Kakinuma S, Imaoka T. Luminal progenitor and mature cells are more susceptible than basal cells to radiation-induced DNA double-strand breaks in rat mammary tissue. JOURNAL OF RADIATION RESEARCH 2024; 65:640-650. [PMID: 39238338 PMCID: PMC11420845 DOI: 10.1093/jrr/rrae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/07/2024] [Indexed: 09/07/2024]
Abstract
Ionizing radiation promotes mammary carcinogenesis. Induction of DNA double-strand breaks (DSBs) is the initial event after radiation exposure, which can potentially lead to carcinogenesis, but the dynamics of DSB induction and repair are not well understood at the tissue level. In this study, we used female rats, which have been recognized as a useful experimental model for studying radiation effects on the mammary gland. We focused on differences in DSB kinetics among basal cells, luminal progenitor and mature cells in different parts of the mammary duct. 53BP1 foci were used as surrogate markers of DSBs, and 53BP1 foci in each mammary epithelial cell in immunostained tissue sections were counted 1-24 h after irradiation and fitted to an exponential function of time. Basal cells were identified as cytokeratin (CK) 14+ cells, luminal progenitor cells as CK8 + 18low cells and luminal mature cells as CK8 + 18high cells. The number of DSBs per nucleus tended to be higher in luminal cells than basal cells at 1 h post-irradiation. A model analysis indicated that basal cells in terminal end buds (TEBs), which constitute the leading edge of the mammary duct, had significantly fewer initial DSBs than the two types of luminal cells, and there was no significant difference in initial amount among the cell types in the subtending duct. The repair rate did not differ among mammary epithelial cell types or their locations. Thus, luminal progenitor and mature cells are more susceptible to radiation-induced DSBs than are basal cells in TEBs.
Collapse
Affiliation(s)
- Kento Nagata
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4–9–1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Mayumi Nishimura
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4–9–1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Kazuhiro Daino
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4–9–1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yukiko Nishimura
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4–9–1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yuya Hattori
- Department of Electrical Engineering and Information Science, Faculty of Electrical Engineering and Information Science, National Institute of Technology Kure College, 2–2–11 Aga-minami, Kure, Hiroshima 737-8506, Japan
| | - Ritsuko Watanabe
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4–9–1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Daisuke Iizuka
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4–9–1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Akinari Yokoya
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, 4–9–1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, 1–12–4 Sakamoto, Nagasaki 852-8523, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4–9–1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tatsuhiko Imaoka
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4–9–1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
6
|
Imaoka T, Tanaka S, Tomita M, Doi K, Sasatani M, Suzuki K, Yamada Y, Kakinuma S, Kai M. Human-mouse comparison of the multistage nature of radiation carcinogenesis in a mathematical model. Int J Cancer 2024; 155:1101-1111. [PMID: 38688826 DOI: 10.1002/ijc.34987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/19/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
Mouse models are vital for assessing risk from environmental carcinogens, including ionizing radiation, yet the interspecies difference in the dose response precludes direct application of experimental evidence to humans. Herein, we take a mathematical approach to delineate the mechanism underlying the human-mouse difference in radiation-related cancer risk. We used a multistage carcinogenesis model assuming a mutational action of radiation to analyze previous data on cancer mortality in the Japanese atomic bomb survivors and in lifespan mouse experiments. Theoretically, the model predicted that exposure will chronologically shift the age-related increase in cancer risk forward by a period corresponding to the time in which the spontaneous mutational process generates the same mutational burden as that the exposure generates. This model appropriately fitted both human and mouse data and suggested a linear dose response for the time shift. The effect per dose decreased with increasing age at exposure similarly between humans and mice on a per-lifespan basis (0.72- and 0.71-fold, respectively, for every tenth lifetime). The time shift per dose was larger by two orders of magnitude in humans (7.8 and 0.046 years per Gy for humans and mice, respectively, when exposed at ~35% of their lifetime). The difference was mostly explained by the two orders of magnitude difference in spontaneous somatic mutation rates between the species plus the species-independent radiation-induced mutation rate. Thus, the findings delineate the mechanism underlying the interspecies difference in radiation-associated cancer mortality and may lead to the use of experimental evidence for risk prediction in humans.
Collapse
Affiliation(s)
- Tatsuhiko Imaoka
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Satoshi Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, Rokkasho, Japan
| | - Masanori Tomita
- Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry, Chiba, Japan
| | - Kazutaka Doi
- Department of Radiation Regulatory Science Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Megumi Sasatani
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima, Japan
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Yutaka Yamada
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Michiaki Kai
- Department of Health Sciences, Nippon Bunri University, Oita, Japan
| |
Collapse
|
7
|
Tsuruoka C, Shinagawa M, Shang Y, Amasaki Y, Sunaoshi M, Imaoka T, Morioka T, Shimada Y, Kakinuma S. Relative Biological Effectiveness of Carbon Ion Beams for Induction of Medulloblastoma with Radiation-specific Chromosome 13 Deletion in Ptch1+/- Mice. Radiat Res 2024; 202:503-509. [PMID: 39048112 DOI: 10.1667/rade-23-00229.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 06/11/2024] [Indexed: 07/27/2024]
Abstract
Carbon ion radiotherapy (CIRT) for pediatric cancer is currently limited because of the unknown risk of induction of secondary cancers. Medulloblastoma of Ptch1+/- mice offers a unique experimental system for radiation-induced carcinogenesis, in which tumors are classified into spontaneous and radiation-induced subtypes based on their features of loss of heterozygosity (LOH) that affect the wild-type Ptch1 allele. The present study aims to investigate in young Ptch1+/- mice the carcinogenic effect, and its age dependence, of the low-linear energy transfer (LET, ∼13 keV/µm) carbon ions, to which normal tissues in front of the tumor are exposed during therapy. We irradiated Ptch1+/- mice at postnatal day (P) 1, 4, or 10 with 290 MeV/u carbon ions (0.05-0.5 Gy; LET, 13 keV/µm) and monitored them for medulloblastoma development. Loss of heterozygosity of seven genetic markers on chromosome 13 (where Ptch1 resides) was studied to classify the tumors. Carbon ion exposure induced medulloblastoma most effectively at P1. The LOH patterns of tumors were either telomeric or interstitial, the latter occurring almost exclusively in the irradiated groups, allowing the use of interstitial LOH as a biomarker of radiation-induced tumors. Radiation-induced tumors developed during a narrow age window (most strongly at P1 and only moderately at P4, with suppressed tumorigenesis at P10). Calculated using previous results using 137Cs gamma rays, the values for relative biological effectiveness (RBE) regarding radiation-induced tumors were 4.1 (3.4, 4.8) and 4.3 (3.3, 5.2) (mean and 95% confidence interval) for exposure at P1 and 4, respectively. Thus, the RBE of carbon ions for medulloblastoma induction in Ptch1+/- mice was higher than the generally recognized RBE of 1-2 for cell killing, chromosome aberrations, and skin reactions.
Collapse
Affiliation(s)
- Chizuru Tsuruoka
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Mayumi Shinagawa
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yi Shang
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yoshiko Amasaki
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Masaaki Sunaoshi
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Tatsuhiko Imaoka
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takamitsu Morioka
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yoshiya Shimada
- Institute for Environmental Sciences, Kamikita-gun, Aomori, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
8
|
Vens C, van Luijk P, Vogelius RI, El Naqa I, Humbert-Vidan L, von Neubeck C, Gomez-Roman N, Bahn E, Brualla L, Böhlen TT, Ecker S, Koch R, Handeland A, Pereira S, Possenti L, Rancati T, Todor D, Vanderstraeten B, Van Heerden M, Ullrich W, Jackson M, Alber M, Marignol L. A joint physics and radiobiology DREAM team vision - Towards better response prediction models to advance radiotherapy. Radiother Oncol 2024; 196:110277. [PMID: 38670264 DOI: 10.1016/j.radonc.2024.110277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/21/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Radiotherapy developed empirically through experience balancing tumour control and normal tissue toxicities. Early simple mathematical models formalized this practical knowledge and enabled effective cancer treatment to date. Remarkable advances in technology, computing, and experimental biology now create opportunities to incorporate this knowledge into enhanced computational models. The ESTRO DREAM (Dose Response, Experiment, Analysis, Modelling) workshop brought together experts across disciplines to pursue the vision of personalized radiotherapy for optimal outcomes through advanced modelling. The ultimate vision is leveraging quantitative models dynamically during therapy to ultimately achieve truly adaptive and biologically guided radiotherapy at the population as well as individual patient-based levels. This requires the generation of models that inform response-based adaptations, individually optimized delivery and enable biological monitoring to provide decision support to clinicians. The goal is expanding to models that can drive the realization of personalized therapy for optimal outcomes. This position paper provides their propositions that describe how innovations in biology, physics, mathematics, and data science including AI could inform models and improve predictions. It consolidates the DREAM team's consensus on scientific priorities and organizational requirements. Scientifically, it stresses the need for rigorous, multifaceted model development, comprehensive validation and clinical applicability and significance. Organizationally, it reinforces the prerequisites of interdisciplinary research and collaboration between physicians, medical physicists, radiobiologists, and computational scientists throughout model development. Solely by a shared understanding of clinical needs, biological mechanisms, and computational methods, more informed models can be created. Future research environment and support must facilitate this integrative method of operation across multiple disciplines.
Collapse
Affiliation(s)
- C Vens
- School of Cancer Science, University of Glasgow, Glasgow, UK; Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.
| | - P van Luijk
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - R I Vogelius
- Department of Oncology, Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - I El Naqa
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48103, United States.
| | - L Humbert-Vidan
- University of Texas MD Anderson Cancer Centre, Houston, TX, United States; Department of MedicalPhysics, Guy's and St Thomas' NHS Foundation Trust, London, UK; School of Cancer and Pharmaceutical Sciences, Comprehensive Cancer Centre, King's College London, London, UK
| | - C von Neubeck
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - N Gomez-Roman
- Strathclyde Institute of Phrmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - E Bahn
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - L Brualla
- West German Proton Therapy Centre Essen (WPE), Essen, Germany; Faculty of Medicine, University of Duisburg-Essen, Germany
| | - T T Böhlen
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - S Ecker
- Department of Radiation Oncology, Medical University of Wien, Austria
| | - R Koch
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - A Handeland
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway; Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - S Pereira
- Neolys Diagnostics, 7 Allée de l'Europe, 67960 Entzheim, France
| | - L Possenti
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - T Rancati
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - D Todor
- Department of Radiation Oncology, Virginia Commonwealth University, United States
| | - B Vanderstraeten
- Department of Radiotherapy-Oncology, Ghent University Hospital, Gent, Belgium; Department of Human Structure and Repair, Ghent University, Gent, Belgium
| | - M Van Heerden
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | | | - M Jackson
- School of Cancer Science, University of Glasgow, Glasgow, UK
| | - M Alber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - L Marignol
- Applied Radiation Therapy Trinity (ARTT), Discipline of Radiation Therapy, School of Medicine, Trinity St. James's Cancer Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| |
Collapse
|
9
|
Suzuki K, Tsuruoka C, Morioka T, Seo H, Ogawa M, Kambe R, Imaoka T, Kakinuma S, Takahashi A. Combined effects of radiation and simulated microgravity on intestinal tumorigenesis in C3B6F1 Apc Min/+ mice. LIFE SCIENCES IN SPACE RESEARCH 2024; 41:202-209. [PMID: 38670648 DOI: 10.1016/j.lssr.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Explorations of the Moon and Mars are planned as future manned space missions, during which humans will be exposed to both radiation and microgravity. We do not, however, know the health effects for such combined exposures. In a ground-based experiment, we evaluated the combined effects of radiation and simulated microgravity on tumorigenesis by performing X-irradiation and tail suspension in C3B6F1 ApcMin/+ mice, a well-established model for intestinal tumorigenesis. Mice were irradiated at 2 weeks of age and underwent tail suspension for 3 or 11 weeks using a special device that avoids damage to the tail. The tail suspension treatment significantly reduced the thymus weight after 3 weeks but not 11 weeks, suggesting a transient stress response. The combination of irradiation and tail suspension significantly increased the number of small intestinal tumors less than 2 mm in diameter as compared with either treatment alone. The combined treatment also increased the fraction of malignant tumors among all small intestinal tumors as compared with the radiation-only treatment. Thus, the C3B6F1 ApcMin/+ mouse is a useful model for assessing cancer risk in a simulated space environment, in which simulated microgravity accelerates tumor progression when combined with radiation exposure.
Collapse
Affiliation(s)
- Kenshi Suzuki
- Department of Radiation Effects Research, Institute for Radiological Science (NIRS), National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Chizuru Tsuruoka
- Department of Radiation Effects Research, Institute for Radiological Science (NIRS), National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Takamitsu Morioka
- Department of Radiation Effects Research, Institute for Radiological Science (NIRS), National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Hitomi Seo
- Department of Radiation Effects Research, Institute for Radiological Science (NIRS), National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Mari Ogawa
- Department of Radiation Effects Research, Institute for Radiological Science (NIRS), National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Ryosuke Kambe
- Gunma University Heavy Ion Medical Center, Gunma, Japan
| | - Tatsuhiko Imaoka
- Department of Radiation Effects Research, Institute for Radiological Science (NIRS), National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, Institute for Radiological Science (NIRS), National Institutes for Quantum Science and Technology (QST), Chiba, Japan.
| | | |
Collapse
|
10
|
Averbeck D. Low-Dose Non-Targeted Effects and Mitochondrial Control. Int J Mol Sci 2023; 24:11460. [PMID: 37511215 PMCID: PMC10380638 DOI: 10.3390/ijms241411460] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Non-targeted effects (NTE) have been generally regarded as a low-dose ionizing radiation (IR) phenomenon. Recently, regarding long distant abscopal effects have also been observed at high doses of IR) relevant to antitumor radiation therapy. IR is inducing NTE involving intracellular and extracellular signaling, which may lead to short-ranging bystander effects and distant long-ranging extracellular signaling abscopal effects. Internal and "spontaneous" cellular stress is mostly due to metabolic oxidative stress involving mitochondrial energy production (ATP) through oxidative phosphorylation and/or anaerobic pathways accompanied by the leakage of O2- and other radicals from mitochondria during normal or increased cellular energy requirements or to mitochondrial dysfunction. Among external stressors, ionizing radiation (IR) has been shown to very rapidly perturb mitochondrial functions, leading to increased energy supply demands and to ROS/NOS production. Depending on the dose, this affects all types of cell constituents, including DNA, RNA, amino acids, proteins, and membranes, perturbing normal inner cell organization and function, and forcing cells to reorganize the intracellular metabolism and the network of organelles. The reorganization implies intracellular cytoplasmic-nuclear shuttling of important proteins, activation of autophagy, and mitophagy, as well as induction of cell cycle arrest, DNA repair, apoptosis, and senescence. It also includes reprogramming of mitochondrial metabolism as well as genetic and epigenetic control of the expression of genes and proteins in order to ensure cell and tissue survival. At low doses of IR, directly irradiated cells may already exert non-targeted effects (NTE) involving the release of molecular mediators, such as radicals, cytokines, DNA fragments, small RNAs, and proteins (sometimes in the form of extracellular vehicles or exosomes), which can induce damage of unirradiated neighboring bystander or distant (abscopal) cells as well as immune responses. Such non-targeted effects (NTE) are contributing to low-dose phenomena, such as hormesis, adaptive responses, low-dose hypersensitivity, and genomic instability, and they are also promoting suppression and/or activation of immune cells. All of these are parts of the main defense systems of cells and tissues, including IR-induced innate and adaptive immune responses. The present review is focused on the prominent role of mitochondria in these processes, which are determinants of cell survival and anti-tumor RT.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France
| |
Collapse
|