1
|
Overgaard CB, Reaz F, Ankjærgaard C, Andersen CE, Sitarz M, Poulsen P, Spejlborg H, Johansen JG, Overgaard J, Grau C, Bassler N, Sørensen BS. The proton RBE and the distal edge effect for acute and late normal tissue damage in vivo. Radiother Oncol 2025; 203:110668. [PMID: 39675573 DOI: 10.1016/j.radonc.2024.110668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND AND PURPOSE In proton therapy, a relative biological effectiveness (RBE) of 1.1 is used toreach an isoeffective biological response between photon and proton doses. However, the RBE varies with biological endpoints and linear energy transfer (LET), two key parameters in radiotherapy. Few in vivo studies have investigated the increasing RBE with increasing LET. This study aims to test the hypothesis that the RBE varies between endpoints and has a distal edge effect in vivo. MATERIALS AND METHODS Unanesthetized micewere restrainedin jigs where their right hind legs were irradiated with a single dose of protons at the center (LET, all = 5.3 keV/μm) and distal edge (LET, all = 7.6 keV/μm) of a spread-out Bragg peak (SOBP). 6 MV photons were used as reference. The acute damage and skin toxicity were scored daily until day 30, and the late damage was evaluated using a joint contracture assay for one year after treatment. RESULTS An acute damage RBE of 1.06 ± 0.02(1.02-1.10) and late damage RBE of 1.16 ± 0.08(1.00-1.32) were found, displaying an enhanced RBE for late damage in the center SOBP. The distal edge RBE for acute and late damage was 1.15 ± 0.02(1.10-1.19) and 1.26 ± 0.09(1.07-1.43), showing a similar center-to-distal edge RBE enhancement of 8 % and 9 % for acute and late damage. CONCLUSION The findings demonstrate an increased RBE for late damage than acute damage and the distal edge effect is evident with increased RBE at the distal end of the proton SOBP in vivo.
Collapse
Affiliation(s)
| | - Fardous Reaz
- Danish Center for Particle Therapy, Aarhus University Hospital, Denmark
| | | | | | - Mateusz Sitarz
- Danish Center for Particle Therapy, Aarhus University Hospital, Denmark
| | - Per Poulsen
- Danish Center for Particle Therapy, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Denmark
| | - Harald Spejlborg
- Department of Clinical Medicine, Aarhus University Hospital, Denmark
| | - Jacob G Johansen
- Danish Center for Particle Therapy, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Denmark
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Denmark
| | - Cai Grau
- Danish Center for Particle Therapy, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Denmark
| | - Niels Bassler
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark; Danish Center for Particle Therapy, Aarhus University Hospital, Denmark
| | - Brita Singers Sørensen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Denmark; Danish Center for Particle Therapy, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University Hospital, Denmark
| |
Collapse
|
2
|
Lyngholm E, Stokkevåg CH, Lühr A, Tian L, Meric I, Tjelta J, Henjum H, Handeland AH, Ytre-Hauge KS. An updated variable RBE model for proton therapy. Phys Med Biol 2024; 69:125025. [PMID: 38527373 DOI: 10.1088/1361-6560/ad3796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Objective.While a constant relative biological effectiveness (RBE) of 1.1 forms the basis for clinical proton therapy, variable RBE models are increasingly being used in plan evaluation. However, there is substantial variation across RBE models, and several newin vitrodatasets have not yet been included in the existing models. In this study, an updatedin vitroproton RBE database was collected and used to examine current RBE model assumptions, and to propose an up-to-date RBE model as a tool for evaluating RBE effects in clinical settings.Approach.A proton database (471 data points) was collected from the literature, almost twice the size of the previously largest model database. Each data point included linear-quadratic model parameters and linear energy transfer (LET). Statistical analyses were performed to test the validity of commonly applied assumptions of phenomenological RBE models, and new model functions were proposed forRBEmaxandRBEmin(RBE at the lower and upper dose limits). Previously published models were refitted to the database and compared to the new model in terms of model performance and RBE estimates.Main results.The statistical analysis indicated that the intercept of theRBEmaxfunction should be a free fitting parameter and RBE estimates were clearly higher for models with free intercept.RBEminincreased with increasing LET, while a dependency ofRBEminon the reference radiation fractionation sensitivity (α/βx) did not significantly improve model performance. Evaluating the models, the new model gave overall lowest RMSE and highest R2 score. RBE estimates in the distal part of a spread-out-Bragg-peak in water (α/βx= 2.1 Gy) were 1.24-1.51 for original models, 1.25-1.49 for refits and 1.42 for the new model.Significance.An updated RBE model based on the currently largest database among published phenomenological models was proposed. Overall, the new model showed better performance compared to refitted published RBE models.
Collapse
Affiliation(s)
- Erlend Lyngholm
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - Camilla Hanquist Stokkevåg
- Department of Physics and Technology, University of Bergen, Bergen, Norway
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Armin Lühr
- Department of Physics, TU Dortmund University, Dortmund, Germany
| | - Liheng Tian
- Department of Physics, TU Dortmund University, Dortmund, Germany
| | - Ilker Meric
- Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Johannes Tjelta
- Department of Physics and Technology, University of Bergen, Bergen, Norway
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Helge Henjum
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - Andreas Havsgård Handeland
- Department of Physics and Technology, University of Bergen, Bergen, Norway
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | | |
Collapse
|
3
|
Dok R, Vanderwaeren L, Verstrepen KJ, Nuyts S. Radiobiology of Proton Therapy in Human Papillomavirus-Negative and Human Papillomavirus-Positive Head and Neck Cancer Cells. Cancers (Basel) 2024; 16:1959. [PMID: 38893080 PMCID: PMC11171379 DOI: 10.3390/cancers16111959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Photon-based radiotherapy (XRT) is one of the most frequently used treatment modalities for HPV-negative and HPV-positive locally advanced head and neck squamous cell carcinoma (HNSCC). However, locoregional recurrences and normal RT-associated toxicity remain major problems for these patients. Proton therapy (PT), with its dosimetric advantages, can present a solution to the normal toxicity problem. However, issues concerning physical delivery and the lack of insights into the underlying biology of PT hamper the full exploitation of PT. Here, we assessed the radiobiological processes involved in PT in HPV-negative and HPV-positive HNSCC cells. We show that PT and XRT activate the DNA damage-repair and stress response in both HPV-negative and HPV-positive cells to a similar extent. The activation of these major radiobiological mechanisms resulted in equal levels of clonogenic survival and mitotic cell death. Altogether, PT resulted in similar biological effectiveness when compared to XRT. These results emphasize the importance of dosimetric parameters when exploiting the potential of increased clinical effectiveness and reduced normal tissue toxicity in PT treatment.
Collapse
Affiliation(s)
- Rüveyda Dok
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, University of Leuven, 3000 Leuven, Belgium
| | - Laura Vanderwaeren
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, University of Leuven, 3000 Leuven, Belgium
| | - Kevin J. Verstrepen
- Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, 3000 Leuven, Belgium
- Laboratory of Genetics and Genomics, Centre for Microbial and Plant Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Sandra Nuyts
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, University of Leuven, 3000 Leuven, Belgium
- Department of Radiation Oncology, Leuven Cancer Institute, UZ Leuven, 3000 Leuven, Belgium
| |
Collapse
|
4
|
Dalmasso C, Alapetite C, Bolle S, Goudjil F, Lusque A, Desrousseaux J, Claude L, Doyen J, Bernier-Chastagner V, Ducassou A, Sevely A, Roques M, Tensaouti F, Laprie A. Brainstem toxicity after proton or photon therapy in children and young adults with localized intracranial ependymoma: A French retrospective study. Radiother Oncol 2024; 194:110157. [PMID: 38367939 DOI: 10.1016/j.radonc.2024.110157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND AND PURPOSE Ependymoma is the third most frequent childhood braintumor. Standard treatment is surgery followed by radiation therapy including proton therapy (PBT). Retrospective studies have reported higher rates of brainstem injury after PBT than after photon therapy (XRT). We report a national multicenter study of the incidence of brainstem injury after XRT versus PBT, and their correlations with dosimetric data. MATERIAL AND METHODS We included all patients aged < 25 years who were treated with PBT or XRT for intracranial ependymoma at five French pediatric oncology reference centers between 2007 and 2020. We reviewed pre-irradiation MRI, follow-up MRIs over the 12 months post-treatment and clinical data. RESULTS Of the 83 patients, 42 were treated with PBT, 37 with XRT, and 4 with both (median dose: 59.4 Gy, range: 53‑60). No new or progressive symptomatic brainstem injury was found. Four patients presented asymptomatic radiographic changes (punctiform brainstem enhancement and FLAIR hypersignal), with median onset at 3.5 months (range: 3.0‑9.4) after radiation therapy, and median offset at 7.6 months (range: 3.7‑7.9). Two had been treated with PBT, one with XRT, and one with mixed XRT-PBT. Prescribed doses were 59.4, 55.8, 59.4 and 54 Gy. CONCLUSION Asymptomatic radiographic changes occurred in 4.8% of patients with ependymoma in a large national series. There was no correlation with dose or technique. No symptomatic brainstem injury was identified.
Collapse
Affiliation(s)
- Céline Dalmasso
- Department of Radiation Therapy, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse- Oncopole, Toulouse, France
| | - Claire Alapetite
- Department of Radiation Therapy, Institut Curie, Paris, France; Institut Curie - Centre de Protontherapie d', Orsay, Orsay, France
| | - Stéphanie Bolle
- Institut Curie - Centre de Protontherapie d', Orsay, Orsay, France; Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Farid Goudjil
- Institut Curie - Centre de Protontherapie d', Orsay, Orsay, France
| | - Amélie Lusque
- Department of Biostatistics, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse- Oncopole, Toulouse, France
| | - Jacques Desrousseaux
- Department of Radiation Therapy, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse- Oncopole, Toulouse, France
| | - Line Claude
- Department of Radiation Therapy, Centre Léon Bérard, Lyon, France
| | - Jérome Doyen
- Department of Radiation Therapy, Centre Antoine Lacassagne, Nice, France
| | | | - Anne Ducassou
- Department of Radiation Therapy, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse- Oncopole, Toulouse, France
| | - Annick Sevely
- Department of Radiology, CHU de Toulouse, Toulouse, France
| | - Margaux Roques
- Department of Radiology, CHU de Toulouse, Toulouse, France
| | - Fatima Tensaouti
- Department of Radiation Therapy, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse- Oncopole, Toulouse, France; ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Toulouse, France
| | - Anne Laprie
- Department of Radiation Therapy, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse- Oncopole, Toulouse, France; ToNIC, Toulouse NeuroImaging Center, INSERM, UPS, Toulouse, France.
| |
Collapse
|
5
|
Sakae T, Takada K, Kamizawa S, Terunuma T, Ando K. Formulation of Time-Dependent Cell Survival with Saturable Repairability of Radiation Damage. Radiat Res 2023; 200:139-150. [PMID: 37303133 DOI: 10.1667/rade-21-00066.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/10/2023] [Indexed: 06/13/2023]
Abstract
This study aims to provide a model that compounds historically proposed ideas regarding cell survival irradiated with X rays or particles. The parameters used in this model have simple meanings and are closely related to cell death-related phenomena. The model is adaptable to a wide range of doses and dose rates and thus can consistently explain previously published cell survival data. The formulas of the model were derived by using five basic ideas: 1. "Poisson's law"; 2. "DNA affected damage"; 3. "repair"; 4. "clustered affected damage"; and 5. "saturation of reparability". The concept of affected damage is close to but not the same as the effect caused by the double-strand break (DSB). The parameters used in the formula are related to seven phenomena: 1. "linear coefficient of radiation dose"; 2. "probability of making affected damage"; 3. "cell-specific repairability", 4. "irreparable damage by adjacent affected damage"; 5. "recovery of temporally changed repairability"; 6. "recovery of simple damage which will make the affected damage"; 7. "cell division". By using the second parameter, this model includes cases where a single hit results in repairable-lethal and double-hit results in repairable-lethal. The fitting performance of the model for the experimental data was evaluated based on the Akaike information criterion, and practical results were obtained for the published experiments irradiated with a wide range of doses (up to several 10 Gy) and dose rates (0.17 Gy/h to 55.8 Gy/h). The direct association of parameters with cell death-related phenomena has made it possible to systematically fit survival data of different cell types and different radiation types by using crossover parameters.
Collapse
Affiliation(s)
- Takeji Sakae
- Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
- University of Tsukuba Hospital, Proton Medical Research Center, 2-1-1, Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Kenta Takada
- Graduate School of Radiology, Gunma Prefectural College of Health Sciences, 323-1 Kamiokimachi, Maebashi, Gunma 371-0052, Japan
| | - Satoshi Kamizawa
- University of Tsukuba Hospital, Proton Medical Research Center, 2-1-1, Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Toshiyuki Terunuma
- Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
- University of Tsukuba Hospital, Proton Medical Research Center, 2-1-1, Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Koichi Ando
- Gunma University Heavy Ion Medical Center, 3-39, Showamachi, Maebashi, Gunma 371-0034, Japan
| |
Collapse
|
6
|
Frame CM, Chen Y, Gagnon J, Yuan Y, Ma T, Dritschilo A, Pang D. Proton induced DNA double strand breaks at the Bragg peak: Evidence of enhanced LET effect. Front Oncol 2022; 12:930393. [PMID: 35992825 PMCID: PMC9388940 DOI: 10.3389/fonc.2022.930393] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeTo investigate DNA double strand breaks (DSBs) induced by therapeutic proton beams in plateau and Bragg peak to demonstrate DSB induction due to the higher LET in the Bragg peak.Materials and MethodspUC19 plasmid DNA samples were irradiated to doses of 1000 and 3000 Gy on a Mevion S250i proton system with a monoenergetic, 110 MeV, proton beam at depths of 2 and 9.4 cm, corresponding to a position on the plateau and distal Bragg peak of the beam, respectively. The irradiated DNA samples were imaged by atomic force microscopy for visualization of individual DNA molecules, either broken or intact, and quantification of the DNA fragment length distributions for each of the irradiated samples. Percentage of the broken DNA and average number of DSBs per DNA molecule were obtained.ResultsCompared to irradiation effects in the plateau region, DNA irradiated at the Bragg peak sustained more breakage at the same dose, yielding more short DNA fragments and higher numbers of DSB per DNA molecule.ConclusionThe higher LET of proton beams at the Bragg peak results in more densely distributed DNA DSBs, which supports an underlying mechanism for the increased cell killing by protons at the Bragg peak.
Collapse
|
7
|
A Consistent Protocol Reveals a Large Heterogeneity in the Biological Effectiveness of Proton and Carbon-Ion Beams for Various Sarcoma and Normal-Tissue-Derived Cell Lines. Cancers (Basel) 2022; 14:cancers14082009. [PMID: 35454915 PMCID: PMC9029457 DOI: 10.3390/cancers14082009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/03/2022] [Accepted: 04/07/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Using a consistent experimental protocol, we found a large heterogeneity in the relative biological effectiveness (RBE) values of both proton and carbon-ion beams in various sarcomas and normal-tissue-derived cell lines. Our data suggest that proton beam therapy may be more beneficial for some types of tumors. In carbon-ion therapy, for some types of tumors, large heterogeneity in RBE should prompt consideration of dose reduction or an increased dose per fraction. In particular, a higher RBE value in normal tissues requires caution. Specific dose evaluations for tumor and normal tissues are needed for both proton and carbon-ion therapies. Abstract This study investigated variations in the relative biological effectiveness (RBE) values among various sarcoma and normal-tissue-derived cell lines (normal cell line) in proton beam and carbon-ion irradiations. We used a consistent protocol that specified the timing of irradiation after plating cells and detailed the colony formation assay. We examined the cell type dependence of RBE for proton beam and carbon-ion irradiations using four human sarcoma cell lines (MG63 osteosarcoma, HT1080 fibrosarcoma, SW872 liposarcoma, and SW1353 chondrosarcoma) and three normal cell lines (HDF human dermal fibroblast, hTERT-HME1 mammary gland, and NuLi-1 bronchus epithelium). The cells were irradiated with gamma rays, proton beams at the center of the spread-out Bragg peak, or carbon-ion beams at 54.4 keV/μm linear energy transfer. In all sarcoma and normal cell lines, the average RBE values in proton beam and carbon-ion irradiations were 1.08 ± 0.11 and 2.08 ± 0.36, which were consistent with the values of 1.1 and 2.13 used in current treatment planning systems, respectively. Up to 34% difference in the RBE of the proton beam was observed between MG63 and HT1080. Similarly, a 32% difference in the RBE of the carbon-ion beam was observed between SW872 and the other sarcoma cell lines. In proton beam irradiation, normal cell lines had less variation in RBE values (within 10%), whereas in carbon-ion irradiation, RBE values differed by up to 48% between hTERT-HME1 and NuLi-1. Our results suggest that specific dose evaluations for tumor and normal tissues are necessary for treatment planning in both proton and carbon-ion therapies.
Collapse
|
8
|
Ding L, Sishc BJ, Polsdofer E, Yordy JS, Facoetti A, Ciocca M, Saha D, Pompos A, Davis AJ, Story MD. Evaluation of the Response of HNSCC Cell Lines to γ-Rays and 12C Ions: Can Radioresistant Tumors Be Identified and Selected for 12C Ion Radiotherapy? Front Oncol 2022; 12:812961. [PMID: 35280731 PMCID: PMC8914432 DOI: 10.3389/fonc.2022.812961] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide. Thirty percent of patients will experience locoregional recurrence for which median survival is less than 1 year. Factors contributing to treatment failure include inherent resistance to X-rays and chemotherapy, hypoxia, epithelial to mesenchymal transition, and immune suppression. The unique properties of 12C radiotherapy including enhanced cell killing, a decreased oxygen enhancement ratio, generation of complex DNA damage, and the potential to overcome immune suppression make its application well suited to the treatment of HNSCC. We examined the 12C radioresponse of five HNSCC cell lines, whose surviving fraction at 3.5 Gy ranged from average to resistant when compared with a larger panel of 38 cell lines to determine if 12C irradiation can overcome X-ray radioresistance and to identify biomarkers predictive of 12C radioresponse. Cells were irradiated with 12C using a SOBP with an average LET of 80 keV/μm (CNAO: Pavia, Italy). RBE values varied depending upon endpoint used. A 37 gene signature was able to place cells in their respective radiosensitivity cohort with an accuracy of 86%. Radioresistant cells were characterized by an enrichment of genes associated with radioresistance and survival mechanisms including but not limited to G2/M Checkpoint MTORC1, HIF1α, and PI3K/AKT/MTOR signaling. These data were used in conjunction with an in silico-based modeling approach to evaluate tumor control probability after 12C irradiation that compared clinically used treatment schedules with fixed RBE values vs. the RBEs determined for each cell line. Based on the above analysis, we present the framework of a strategy to utilize biological markers to predict which HNSCC patients would benefit the most from 12C radiotherapy.
Collapse
Affiliation(s)
- Lianghao Ding
- Univeristy of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - Brock J Sishc
- Univeristy of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - Elizabeth Polsdofer
- Univeristy of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - John S Yordy
- Univeristy of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - Angelica Facoetti
- Medical Physics Unit & Research Department, Foundazione Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, Italy
| | - Mario Ciocca
- Medical Physics Unit & Research Department, Foundazione Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, Italy
| | - Debabrata Saha
- Univeristy of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - Arnold Pompos
- Univeristy of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - Anthony J Davis
- Univeristy of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| | - Michael D Story
- Univeristy of Texas Southwestern Medical Center, Department of Radiation Oncology, Dallas, TX, United States
| |
Collapse
|
9
|
Koh WYC, Tan HQ, Ng YY, Lin YH, Ang KW, Lew WS, Lee JCL, Park SY. Quantifying Systematic RBE-Weighted Dose Uncertainty Arising from Multiple Variable RBE Models in Organ at Risk. Adv Radiat Oncol 2022; 7:100844. [PMID: 35036633 PMCID: PMC8749202 DOI: 10.1016/j.adro.2021.100844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/27/2021] [Accepted: 10/29/2021] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Relative biological effectiveness (RBE) uncertainties have been a concern for treatment planning in proton therapy, particularly for treatment sites that are near organs at risk (OARs). In such a clinical situation, the utilization of variable RBE models is preferred over constant RBE model of 1.1. The problem, however, lies in the exact choice of RBE model, especially when current RBE models are plagued with a host of uncertainties. This paper aims to determine the influence of RBE models on treatment planning, specifically to improve the understanding of the influence of the RBE models with regard to the passing and failing of treatment plans. This can be achieved by studying the RBE-weighted dose uncertainties across RBE models for OARs in cases where the target volume overlaps the OARs. Multi-field optimization (MFO) and single-field optimization (SFO) plans were compared in order to recommend which technique was more effective in eliminating the variations between RBE models. METHODS Fifteen brain tumor patients were selected based on their profile where their target volume overlaps with both the brain stem and the optic chiasm. In this study, 6 RBE models were analyzed to determine the RBE-weighted dose uncertainties. Both MFO and SFO planning techniques were adopted for the treatment planning of each patient. RBE-weighted dose uncertainties in the OARs are calculated assuming( α β ) x of 3 Gy and 8 Gy. Statistical analysis was used to ascertain the differences in RBE-weighted dose uncertainties between MFO and SFO planning. Additionally, further investigation of the linear energy transfer (LET) distribution was conducted to determine the relationship between LET distribution and RBE-weighted dose uncertainties. RESULTS The results showed no strong indication on which planning technique would be the best for achieving treatment planning constraints. MFO and SFO showed significant differences (P <.05) in the RBE-weighted dose uncertainties in the OAR. In both clinical target volume (CTV)-brain stem and CTV-chiasm overlap region, 10 of 15 patients showed a lower median RBE-weighted dose uncertainty in MFO planning compared with SFO planning. In the LET analysis, 8 patients (optic chiasm) and 13 patients (brain stem) showed a lower mean LET in MFO planning compared with SFO planning. It was also observed that lesser RBE-weighted dose uncertainties were present with MFO planning compared with SFO planning technique. CONCLUSIONS Calculations of the RBE-weighted dose uncertainties based on 6 RBE models and 2 different( α β ) x revealed that MFO planning is a better option as opposed to SFO planning for cases of overlapping brain tumor with OARs in eliminating RBE-weighted dose uncertainties. Incorporation of RBE models failed to dictate the passing or failing of a treatment plan. To eliminate RBE-weighted dose uncertainties in OARs, the MFO planning technique is recommended for brain tumor when CTV and OARs overlap.
Collapse
Affiliation(s)
- Wei Yang Calvin Koh
- Division of Physics and Applied Physics, Nanyang Technological University, Singapore
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - Hong Qi Tan
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - Yan Yee Ng
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - Yen Hwa Lin
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - Khong Wei Ang
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - Wen Siang Lew
- Division of Physics and Applied Physics, Nanyang Technological University, Singapore
| | - James Cheow Lei Lee
- Division of Physics and Applied Physics, Nanyang Technological University, Singapore
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - Sung Yong Park
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
- Oncology Academic Clinical Programme, Duke-NUS Medical School, National University of Singapore, Singapore
| |
Collapse
|
10
|
Hedrick SG, Walker B, Morris B, Petro S, Blakey M. Scripted spot removal in PBS proton therapy planning. J Appl Clin Med Phys 2021; 23:e13491. [PMID: 34890101 PMCID: PMC8833280 DOI: 10.1002/acm2.13491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/19/2021] [Accepted: 11/14/2021] [Indexed: 11/23/2022] Open
Abstract
Background It is well known in proton therapy that the relative biological effectiveness (RBE) is not constant across the entire Bragg peak, with higher RBE at the distal end of the Bragg peak due to higher linear energy transfer (LET). Treatment planning systems are moving toward LET optimization to mitigate this potentially higher biological impact at a track end. However, using a simple script, proton users can begin to simulate this process by deleting spots from critical structures during optimization. In most cases, nominal target coverage and plan robustness remain satisfactory. Methods In our clinic, we developed a script that allows the user to delete spots in all organs at risk (OARs) of interest for one or more treatment beams. The purpose of this script is to potentially reduce side effects by eliminating Bragg peaks within OARs. The script was first used for prostate patients where spots in the rectum and sigmoid, outside of the overlap with the target, were deleted. We then began to use the script for head and neck (H&N) and breast/chestwall patients to reduce acute side effects of the skin by removing spots in a 0.5‐cm skin rind. Conclusions By utilizing a simple script for deleting spots in critical structures, we have seen excellent clinical results thus far. We have noted reduced skin reactions for nearly all H&N and breast patients.
Collapse
Affiliation(s)
| | - Bryant Walker
- Provision CARES Proton Therapy Center, Knoxville, Tennessee, USA
| | - Bart Morris
- Provision CARES Proton Therapy Center, Knoxville, Tennessee, USA
| | - Scott Petro
- Provision CARES Proton Therapy Center, Knoxville, Tennessee, USA
| | - Marc Blakey
- Provision CARES Proton Therapy Center, Knoxville, Tennessee, USA
| |
Collapse
|
11
|
Yoo GS, Yu JI, Park HC. Current role of proton beam therapy in patients with hepatocellular carcinoma. INTERNATIONAL JOURNAL OF GASTROINTESTINAL INTERVENTION 2021; 10:175-182. [DOI: 10.18528/ijgii210043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/09/2021] [Accepted: 10/09/2021] [Indexed: 04/24/2025] Open
Affiliation(s)
- Gyu Sang Yoo
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeong Il Yu
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Chul Park
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Narita Y, Kato T, Takemasa K, Sato H, Ikeda T, Harada T, Oyama S, Murakami M. Dosimetric impact of simulated changes in large bowel content during proton therapy with simultaneous integrated boost for locally advanced pancreatic cancer. J Appl Clin Med Phys 2021; 22:90-98. [PMID: 34599856 PMCID: PMC8598140 DOI: 10.1002/acm2.13429] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/31/2021] [Accepted: 09/07/2021] [Indexed: 12/11/2022] Open
Abstract
Purpose To investigate the dosimetric impact of changes in the large bowel content during proton therapy (PT) with simultaneous integrated boost (SIB) for locally advanced pancreatic cancer (LAPC). Materials and methods Fifteen patients with LAPC were included in this study. The SIB method was performed using five fields according to our standard protocol. A total dose of 67.5 Gy(relative biological effectiveness [RBE]) was prescribed in 25 fractions using the SIB method. A dose of 45 Gy(RBE) was prescribed for the entire planning target volume (PTV) by using four main fields. The remaining 22.5 Gy(RBE) was prescribed to the PTV excluding for the gastrointestinal tract using one subfield. Five simulated doses were obtained by the forward dose calculations with the Hounsfield units (HU) override to the large bowel to 50, 0, −100, −500, and −1000, respectively. The dose‐volume indices in each plan were compared using the 50 HU plan as a reference. Results At D98 of the clinical target volume (CTV) and spinal cord‐D2cc, when the density of the large bowel was close to that of gas, there were significant differences compared to the reference plan (p < 0.05). By contrast, no significant difference was observed in stomach‐D2cc duodenum‐D2cc, small bowel‐D2cc, kidneys‐V18, and liver‐Dmean under any of the conditions. There were no cases in which the dose constraint of organs at risk, specified by our institution, was exceeded. Conclusion Density change in the large bowel was revealed to significantly affect the doses of the CTV and spinal cord during PT with SIB for LAPC. For beam arrangement, it is important to select a gantry angle that prevents the large bowel from passing as much as possible. If this is unavoidable, it is important to carefully observe the gas image on the beam path during daily image guidance and to provide adaptive re‐planning as needed.
Collapse
Affiliation(s)
- Yuki Narita
- Department of Radiation Physics and Technology, Southern Tohoku Proton Therapy Center, Fukushima, Japan
| | - Takahiro Kato
- Department of Radiation Physics and Technology, Southern Tohoku Proton Therapy Center, Fukushima, Japan.,School of Health Sciences, Fukushima Medical University, Fukushima, Japan
| | - Kimihiro Takemasa
- Department of Radiation Physics and Technology, Southern Tohoku Proton Therapy Center, Fukushima, Japan
| | - Hiroki Sato
- Department of Radiation Physics and Technology, Southern Tohoku Proton Therapy Center, Fukushima, Japan
| | - Tomohiro Ikeda
- Department of Radiation Physics and Technology, Southern Tohoku Proton Therapy Center, Fukushima, Japan
| | - Takaomi Harada
- Department of Radiation Physics and Technology, Southern Tohoku Proton Therapy Center, Fukushima, Japan
| | - Sho Oyama
- Department of Radiation Physics and Technology, Southern Tohoku Proton Therapy Center, Fukushima, Japan
| | - Masao Murakami
- Department of Radiation Oncology, Southern Tohoku Proton Therapy Center, Fukushima, Japan
| |
Collapse
|
13
|
Sato H, Mizumoto M, Okumura T, Sakurai H, Sakamoto N, Akutsu H, Ishikawa E, Tsuboi K. Long-term outcomes of patients with unresectable benign meningioma treated with proton beam therapy. JOURNAL OF RADIATION RESEARCH 2021; 62:427-437. [PMID: 33855438 PMCID: PMC8127652 DOI: 10.1093/jrr/rrab017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/01/2021] [Indexed: 05/07/2023]
Abstract
This study aimed to evaluate the long-term efficacy of proton beam therapy (PBT) for unresectable benign meningiomas at the University of Tsukuba, Japan. From 1986-1998, 10 patients were treated at the Particle Radiation Medical Science Center (PRMSC) with a relative biological effectiveness (RBE) value of 1.0 using an accelerator built for physics experiments. The total dose was compensated with an X-ray in three patients. Following that, from 2002-2017, 17 patients were treated with a RBE value of 1.1 at the Proton Medical Research Center (PMRC) which was built for medical use. At the PRMSC, the total dose ranged from 50.4-66 Gy (median: 54 Gy). During the follow-up, which lasted between 3.8 and 31.6 years (median: 25.1 years), the 5-, 10-, 15-, 20- and 30-year local control rates were 100%, and the 5-, 10-, 15-, 20- and 30-year survival rates were 90, 80, 70, 70 and 36%, respectively. One patient died of brainstem radiation necrosis 5.1 years after PBT. At PMRC, the total dose ranged from 45.0-61.2 GyE, with a median of 50.4 GyE. During the follow-up, which lasted between 3 and 17 years with a median of 10.5 years, the 5-, 10- and 15-year local control rates were 94.1%, and the 5-, 10- and 15-year survival rates were 100, 100 and 88.9%, respectively. Neither malignant transformation nor secondary malignancy was observed, indicating that fractionated PBT may be effective and safely control benign unresectable meningioma even for the lifelong period of time.
Collapse
Affiliation(s)
- Hiroshige Sato
- Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8575, Japan
| | - Masashi Mizumoto
- Department of Radiation Oncology, Proton Beam Therapy Center, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki 305-8576, Japan
| | - Toshiyuki Okumura
- Department of Radiation Oncology, Proton Beam Therapy Center, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki 305-8576, Japan
| | - Hideyuki Sakurai
- Department of Radiation Oncology, Proton Beam Therapy Center, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki 305-8576, Japan
| | - Noriaki Sakamoto
- Department of Diagnostic Pathology, Faculty of Medicine, University of Tsukuba, 2-1-1 Amakubo, Tsukuba, Ibaraki 305-8576, Japan
| | - Hiroyoshi Akutsu
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 2-1-1 Amakubo, Tsukuba, Ibaraki 305-8576, Japan
| | - Eiichi Ishikawa
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 2-1-1 Amakubo, Tsukuba, Ibaraki 305-8576, Japan
| | - Koji Tsuboi
- Tumor Therapy Center, Tsukuba Central Hospital, 1589-3 Kashiwada, Ushiku, Ibaraki 300-1211, Japan
| |
Collapse
|
14
|
Clinical Progress in Proton Radiotherapy: Biological Unknowns. Cancers (Basel) 2021; 13:cancers13040604. [PMID: 33546432 PMCID: PMC7913745 DOI: 10.3390/cancers13040604] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Proton radiation therapy is a more recent type of radiotherapy that uses proton beams instead of classical photon or X-rays beams. The clinical benefit of proton therapy is that it allows to treat tumors more precisely. As a result, proton radiotherapy induces less toxicity to healthy tissue near the tumor site. Despite the experience in the clinical use of protons, the response of cells to proton radiation, the radiobiology, is less understood. In this review, we describe the current knowledge about proton radiobiology. Abstract Clinical use of proton radiation has massively increased over the past years. The main reason for this is the beneficial depth-dose distribution of protons that allows to reduce toxicity to normal tissues surrounding the tumor. Despite the experience in the clinical use of protons, the radiobiology after proton irradiation compared to photon irradiation remains to be completely elucidated. Proton radiation may lead to differential damages and activation of biological processes. Here, we will review the current knowledge of proton radiobiology in terms of induction of reactive oxygen species, hypoxia, DNA damage response, as well as cell death after proton irradiation and radioresistance.
Collapse
|
15
|
Conte V, Agosteo S, Bianchi A, Bolst D, Bortot D, Catalano R, Cirrone GAP, Colautti P, Cuttone G, Guatelli S, James B, Mazzucconi D, Rosenfeld AB, Selva A, Tran L, Petringa G. Microdosimetry of a therapeutic proton beam with a mini-TEPC and a MicroPlus-Bridge detector for RBE assessment. Phys Med Biol 2020; 65:245018. [PMID: 33086208 DOI: 10.1088/1361-6560/abc368] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proton beams are widely used worldwide to treat localized tumours, the lower entrance dose and no exit dose, thus sparing surrounding normal tissues, being the main advantage of this treatment modality compared to conventional photon techniques. Clinical proton beam therapy treatment planning is based on the use of a general relative biological effectiveness (RBE) of 1.1 along the whole beam penetration depth, without taking into account the documented increase in RBE at the end of the depth dose profile, in the Bragg peak and beyond. However, an inaccurate estimation of the RBE can cause both underdose or overdose, in particular it can cause the unfavourable situation of underdosing the tumour and overdosing the normal tissue just beyond the tumour, which limits the treatment success and increases the risk of complications. In view of a more precise dose delivery that takes into account the variation of RBE, experimental microdosimetry offers valuable tools for the quality assurance of LET or RBE-based treatment planning systems. The purpose of this work is to compare the response of two different microdosimetry systems: the mini-TEPC and the MicroPlus-Bridge detector. Microdosimetric spectra were measured across the 62 MeV spread out Bragg peak of CATANA with the mini-TEPC and with the Bridge microdosimeter. The frequency and dose distributions of lineal energy were compared and the different contributions to the spectra were analysed, discussing the effects of different site sizes and chord length distributions. The shape of the lineal energy distributions measured with the two detectors are markedly different, due to the different water-equivalent sizes of the sensitive volumes: 0.85 μm for the TEPC and 17.3 μm for the silicon detector. When the Loncol's biological weighting function is applied to calculate the microdosimetric assessment of the RBE, both detectors lead to results that are consistent with biological survival data for glioma U87 cells. Both the mini-TEPC and the MicroPlus-Bridge detector can be used to assess the RBE variation of a 62 MeV modulated proton beam along its penetration depth. The microdosimetric assessment of the RBE based on the Loncol's weighting function is in good agreement with radiobiological results when the 10% biological uncertainty is taken into account.
Collapse
Affiliation(s)
- V Conte
- INFN Laboratori Nazionali di Legnaro, viale dell'Università 2 35020 Legnaro, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Howard ME, Denbeigh JM, Debrot EK, Remmes NB, Herman MG, Beltran CJ. A High-Precision Method for In Vitro Proton Irradiation. Int J Part Ther 2020; 7:62-69. [PMID: 33274258 PMCID: PMC7707323 DOI: 10.14338/ijpt-20-00007.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/02/2020] [Indexed: 01/06/2023] Open
Abstract
Purpose Although proton therapy has become a well-established radiation modality, continued efforts are needed to improve our understanding of the molecular and cellular mechanisms occurring during treatment. Such studies are challenging, requiring many resources. The purpose of this study was to create a phantom that would allow multiple in vitro experiments to be irradiated simultaneously with a spot-scanning proton beam. Materials and Methods The setup included a modified patient-couch top coupled with a high-precision robotic arm for positioning. An acrylic phantom was created to hold 4 6-well cell-culture plates at 2 different positions along the Bragg curve in a reproducible manner. The proton treatment plan consisted of 1 large field encompassing all 4 plates with a monoenergetic 76.8-MeV posterior beam. For robust delivery, a mini pyramid filter was used to broaden the Bragg peak (BP) in the depth direction. Both a Markus ionization chamber and EBT3 radiochromic film measurements were used to verify absolute dose. Results A treatment plan for the simultaneous irradiation of 2 plates irradiated with high linear energy transfer protons (BP, 7 keV/μm) and 2 plates irradiated with low linear energy transfer protons (entrance, 2.2 keV/μm) was created. Dose uncertainty was larger across the setup for cell plates positioned at the BP because of beam divergence and, subsequently, variable proton-path lengths. Markus chamber measurements resulted in uncertainty values of ±1.8% from the mean dose. Negligible differences were seen in the entrance region (<0.3%). Conclusion The proposed proton irradiation setup allows 4 plates to be simultaneously irradiated with 2 different portions (entrance and BP) of a 76.8-MeV beam. Dosimetric uncertainties across the setup are within ±1.8% of the mean dose.
Collapse
Affiliation(s)
| | - Janet M Denbeigh
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Michael G Herman
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
17
|
Iwata H, Shuto T, Kamei S, Omachi K, Moriuchi M, Omachi C, Toshito T, Hashimoto S, Nakajima K, Sugie C, Ogino H, Kai H, Shibamoto Y. Combined effects of cisplatin and photon or proton irradiation in cultured cells: radiosensitization, patterns of cell death and cell cycle distribution. JOURNAL OF RADIATION RESEARCH 2020; 61:832-841. [PMID: 32880637 PMCID: PMC7674701 DOI: 10.1093/jrr/rraa065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/22/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
The purpose of the current study was to investigate the biological effects of protons and photons in combination with cisplatin in cultured cells and elucidate the mechanisms responsible for their combined effects. To evaluate the sensitizing effects of cisplatin against X-rays and proton beams in HSG, EMT6 and V79 cells, the combination index, a simple measure for quantifying synergism, was estimated from cell survival curves using software capable of performing the Monte Carlo calculation. Cell death and apoptosis were assessed using live cell fluorescence imaging. HeLa and HSG cells expressing the fluorescent ubiquitination-based cell cycle indicator system (Fucci) were irradiated with X-rays and protons with cisplatin. Red and green fluorescence in the G1 and S/G2/M phases, respectively, were evaluated and changes in the cell cycle were assessed. The sensitizing effects of ≥1.5 μM cisplatin were observed for both X-ray and proton irradiation (P < 0.05). In the three cell lines, the average combination index was 0.82-1.00 for X-rays and 0.73-0.89 for protons, indicating stronger effects for protons. In time-lapse imaging, apoptosis markedly increased in the groups receiving ≥1.5 μM cisplatin + protons. The percentage of green S/G2/M phase cells at that time was higher when cisplatin was combined with proton beams than with X-rays (P < 0.05), suggesting more significant G2 arrest. Proton therapy plus ≥1.5 μM cisplatin is considered to be very effective. When combined with cisplatin, proton therapy appeared to induce greater apoptotic cell death and G2 arrest, which may partly account for the difference observed in the combined effects.
Collapse
Affiliation(s)
- Hiromitsu Iwata
- Corresponding author. Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya, Japan, 1-1-1 Hirate-cho, Kita-ku, Nagoya 462-8508, Japan. Tel.: (+81) 52-991-8577; Fax: (+81) 52-991-8599;
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Shunsuke Kamei
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Kohei Omachi
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Masataka Moriuchi
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Chihiro Omachi
- Department of Proton Therapy Physics, Nagoya Proton Therapy Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya 462-8508, Japan
| | - Toshiyuki Toshito
- Department of Proton Therapy Physics, Nagoya Proton Therapy Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya 462-8508, Japan
| | - Shingo Hashimoto
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Koichiro Nakajima
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya 462-8508, Japan
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Chikao Sugie
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Hiroyuki Ogino
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, 1-1-1 Hirate-cho, Kita-ku, Nagoya 462-8508, Japan
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Yuta Shibamoto
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| |
Collapse
|
18
|
|
19
|
Kasamatsu K, Matsuura T, Tanaka S, Takao S, Miyamoto N, Nam JM, Shirato H, Shimizu S, Umegaki K. The impact of dose delivery time on biological effectiveness in proton irradiation with various biological parameters. Med Phys 2020; 47:4644-4655. [PMID: 32652574 DOI: 10.1002/mp.14381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/31/2020] [Accepted: 06/19/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The purpose of this study is to evaluate the sublethal damage (SLD) repair effect in prolonged proton irradiation using the biophysical model with various cell-specific parameters of (α/β)x and T1/2 (repair half time). At present, most of the model-based studies on protons have focused on acute radiation, neglecting the reduction in biological effectiveness due to SLD repair during the delivery of radiation. Nevertheless, the dose-rate dependency of biological effectiveness may become more important as advanced treatment techniques, such as hypofractionation and respiratory gating, come into clinical practice, as these techniques sometimes require long treatment times. Also, while previous research using the biophysical model revealed a large repair effect with a high physical dose, the dependence of the repair effect on cell-specific parameters has not been evaluated systematically. METHODS Biological dose [relative biological effectiveness (RBE) × physical dose] calculation with repair included was carried out using the linear energy transfer (LET)-dependent linear-quadratic (LQ) model combined with the theory of dual radiation action (TDRA). First, we extended the dose protraction factor in the LQ model for the arbitrary number of different LET proton irradiations delivered sequentially with arbitrary time lags, referring to the TDRA. Using the LQ model, the decrease in biological dose due to SLD repair was systematically evaluated for spread-out Bragg peak (SOBP) irradiation in a water phantom with the possible ranges of both (α/β)x and repair parameters ((α/β)x = 1-15 Gy, T1/2 = 0-90 min). Then, to consider more realistic irradiation conditions, clinical cases of prostate, liver, and lung tumors were examined with the cell-specific parameters for each tumor obtained from the literature. Biological D99% and biological dose homogeneity coefficient (HC) were calculated for the clinical target volumes (CTVs), assuming dose-rate structures with a total irradiation time of 0-60 min. RESULTS The differences in the cell-specific parameters resulted in considerable variation in the repair effect. The biological dose reduction found at the center of the SOBP with 30 min of continuous irradiation varied from 1.13% to 14.4% with a T1/2 range of 1-90 min when (α/β)x is fixed as 10 Gy. It varied from 2.3% to 6.8% with an (α/β)x range of 1-15 Gy for a fixed value of T1/2 = 30 min. The decrease in biological D99% per 10 min was 2.6, 1.2, and 3.0% for the prostate, liver, and lung tumor cases, respectively. The value of the biological D99% reduction was neither in the order of (α/β)x nor prescribed dose, but both comparably contributed to the repair effect. The variation of HC was within the range of 0.5% for all cases; therefore, the dose distribution was not distorted. CONCLUSION The reduction in biological dose caused by the SLD repair largely depends on the cell-specific parameters in addition to the physical dose. The parameters should be considered carefully in the evaluation of the repair effect in prolonged proton irradiation.
Collapse
Affiliation(s)
- Koki Kasamatsu
- Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo, Hokkaido, 0608638, Japan
| | - Taeko Matsuura
- Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 0608628, Japan.,Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido, 0608638, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, 0608648, Japan
| | - Sodai Tanaka
- Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 0608628, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, 0608648, Japan
| | - Seishin Takao
- Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido, 0608638, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, 0608648, Japan
| | - Naoki Miyamoto
- Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 0608628, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, 0608648, Japan
| | - Jin-Min Nam
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, 0608648, Japan
| | - Hiroki Shirato
- Department of Proton Beam Therapy, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, 0608648, Japan
| | - Shinichi Shimizu
- Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido, 0608638, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, 0608648, Japan.,Department of Radiation Medical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, 0608648, Japan
| | - Kikuo Umegaki
- Division of Quantum Science and Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 0608628, Japan.,Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido, 0608638, Japan.,Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido, 0608648, Japan
| |
Collapse
|
20
|
Beltran C, Schultz HL, Anand A, Merrell K. Radiation biology considerations of proton therapy for gastrointestinal cancers. J Gastrointest Oncol 2020; 11:225-230. [PMID: 32175125 DOI: 10.21037/jgo.2019.06.08] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Clinical enthusiasm for proton therapy (PT) is high, with an exponential increase in the number of centers offering treatment. Attraction for this charged particle therapy modality stems from the favorable proton dose distribution, with low radiation dose absorption on entry and maximum radiation deposition at the Bragg peak. The current clinical convention is to use a fixed relative biological effectiveness (RBE) value of 1.1 in order to correct the physical dose relative to photon therapy (i.e., proton radiation is 10% more biologically effective then photon radiation). In recent years, concerns about the potential side effects of PT have emerged. Various studies and review articles have sought to better quantify the RBE of PT and shine some light on the complexity of this problem. Reduction in biologic hot spots of non-target tissue is paramount in proton radiation therapy (RT) planning as the primary benefit of proton RT is a reduction in organ at risk (OAR) irradiation. New and emerging clinical data is in support of variable proton biological effectiveness and demonstrate late toxicity, presumably associated with high biological dose, to OAR. Overall, PT has promise to treat many cancer sites with similar efficacy as conventional RT but with fewer acute and late toxicities. However, further knowledge of biologic effective dose and its impact on both cancer and adjacent OAR is paramount for effective and safe treatment of patients with PT.
Collapse
Affiliation(s)
- Chris Beltran
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | | | - Aman Anand
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Kenneth Merrell
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
21
|
Rabus H, Ngcezu SA, Braunroth T, Nettelbeck H. “Broadscale” nanodosimetry: Nanodosimetric track structure quantities increase at distal edge of spread-out proton Bragg peaks. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2019.108515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
22
|
Mavragani IV, Nikitaki Z, Kalospyros SA, Georgakilas AG. Ionizing Radiation and Complex DNA Damage: From Prediction to Detection Challenges and Biological Significance. Cancers (Basel) 2019; 11:E1789. [PMID: 31739493 PMCID: PMC6895987 DOI: 10.3390/cancers11111789] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Biological responses to ionizing radiation (IR) have been studied for many years, generally showing the dependence of these responses on the quality of radiation, i.e., the radiation particle type and energy, types of DNA damage, dose and dose rate, type of cells, etc. There is accumulating evidence on the pivotal role of complex (clustered) DNA damage towards the determination of the final biological or even clinical outcome after exposure to IR. In this review, we provide literature evidence about the significant role of damage clustering and advancements that have been made through the years in its detection and prediction using Monte Carlo (MC) simulations. We conclude that in the future, emphasis should be given to a better understanding of the mechanistic links between the induction of complex DNA damage, its processing, and systemic effects at the organism level, like genomic instability and immune responses.
Collapse
Affiliation(s)
| | | | | | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), 15780 Athens, Greece
| |
Collapse
|
23
|
Clausen M, Khachonkham S, Gruber S, Kuess P, Seemann R, Knäusl B, Mara E, Palmans H, Dörr W, Georg D. Phantom design and dosimetric characterization for multiple simultaneous cell irradiations with active pencil beam scanning. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2019; 58:563-573. [PMID: 31541343 PMCID: PMC6768893 DOI: 10.1007/s00411-019-00813-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 09/09/2019] [Indexed: 05/04/2023]
Abstract
A new phantom was designed for in vitro studies on cell lines in horizontal particle beams. The phantom enables simultaneous irradiation at multiple positions along the beam path. The main purpose of this study was the detailed dosimetric characterization of the phantom which consists of various heterogeneous structures. The dosimetric measurements described here were performed under non-reference conditions. The experiment involved a CT scan of the phantom, dose calculations performed with the treatment planning system (TPS) RayStation employing both the Pencil Beam (PB) and Monte Carlo (MC) algorithms, and proton beam delivery. Two treatment plans reflecting the typical target location for head and neck cancer and prostate cancer treatment were created. Absorbed dose to water and dose homogeneity were experimentally assessed within the phantom along the Bragg curve with ionization chambers (ICs) and EBT3 films. LETd distributions were obtained from the TPS. Measured depth dose distributions were in good agreement with the Monte Carlo-based TPS data. Absorbed dose calculated with the PB algorithm was 4% higher than the absorbed dose measured with ICs at the deepest measurement point along the spread-out Bragg peak. Results of experiments using melanoma (SKMel) cell line are also presented. The study suggested a pronounced correlation between the relative biological effectiveness (RBE) and LETd, where higher LETd leads to elevated cell death and cell inactivation. Obtained RBE values ranged from 1.4 to 1.8 at the survival level of 10% (RBE10). It is concluded that dosimetric characterization of a phantom before its use for RBE experiments is essential, since a high dosimetric accuracy contributes to reliable RBE data and allows for a clearer differentiation between physical and biological uncertainties.
Collapse
Affiliation(s)
- Monika Clausen
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria.
| | - Suphalak Khachonkham
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Division of Radiation Therapy, Department of Diagnostic and Therapeutic Radiology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sylvia Gruber
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Peter Kuess
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- EBG MedAustron GmbH, Wiener Neustadt, Austria
| | | | - Barbara Knäusl
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- EBG MedAustron GmbH, Wiener Neustadt, Austria
| | - Elisabeth Mara
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- University of Applied Science, Wiener Neustadt, Austria
| | - Hugo Palmans
- EBG MedAustron GmbH, Wiener Neustadt, Austria
- National Physical Laboratory, Teddington, UK
| | - Wolfgang Dörr
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Dietmar Georg
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- EBG MedAustron GmbH, Wiener Neustadt, Austria
| |
Collapse
|
24
|
Yasui H, Iizuka D, Hiraoka W, Kuwabara M, Matsuda A, Inanami O. Nucleoside analogs as a radiosensitizer modulating DNA repair, cell cycle checkpoints, and apoptosis. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 39:439-452. [PMID: 31560250 DOI: 10.1080/15257770.2019.1670839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The combination of low dose of radiation and an anticancer drug is a potent strategy for cancer therapy. Nucleoside analogs are known to have a radiosensitizing effects via the inhibition of DNA damage repair after irradiation. Certain types of nucleoside analogs have the inhibitory effects on RNA synthesis, but not DNA synthesis, with multiple functions in cell cycle modulation and apoptosis. In this review, the most up-to-date findings regarding radiosensitizing nucleoside analogs will be discussed, focusing especially on the mechanisms of action.
Collapse
Affiliation(s)
- Hironobu Yasui
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Daisuke Iizuka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Wakako Hiraoka
- Laboratory of Biophysics, School of Science and Technology, Meiji University, Kawasaki, Japan
| | - Mikinori Kuwabara
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Akira Matsuda
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Osamu Inanami
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
25
|
Qi Tan H, Yang Calvin Koh W, Kuan Rui Tan L, Hao Phua J, Wei Ang K, Yong Park S, Siang Lew W, Cheow Lei Lee J. Dependence of LET on material and its impact on current RBE model. ACTA ACUST UNITED AC 2019; 64:135022. [DOI: 10.1088/1361-6560/ab1c90] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
26
|
Vitti ET, Parsons JL. The Radiobiological Effects of Proton Beam Therapy: Impact on DNA Damage and Repair. Cancers (Basel) 2019; 11:cancers11070946. [PMID: 31284432 PMCID: PMC6679138 DOI: 10.3390/cancers11070946] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/11/2019] [Accepted: 07/02/2019] [Indexed: 01/31/2023] Open
Abstract
Proton beam therapy (PBT) offers significant benefit over conventional (photon) radiotherapy for the treatment of a number of different human cancers, largely due to the physical characteristics. In particular, the low entrance dose and maximum energy deposition in depth at a well-defined region, the Bragg peak, can spare irradiation of proximal healthy tissues and organs at risk when compared to conventional radiotherapy using high-energy photons. However, there are still biological uncertainties reflected in the relative biological effectiveness that varies along the track of the proton beam as a consequence of the increases in linear energy transfer (LET). Furthermore, the spectrum of DNA damage induced by protons, particularly the generation of complex DNA damage (CDD) at high-LET regions of the distal edge of the Bragg peak, and the specific DNA repair pathways dependent on their repair are not entirely understood. This knowledge is essential in understanding the biological impact of protons on tumor cells, and ultimately in devising optimal therapeutic strategies employing PBT for greater clinical impact and patient benefit. Here, we provide an up-to-date review on the radiobiological effects of PBT versus photon radiotherapy in cells, particularly in the context of DNA damage. We also review the DNA repair pathways that are essential in the cellular response to PBT, with a specific focus on the signaling and processing of CDD induced by high-LET protons.
Collapse
Affiliation(s)
- Eirini Terpsi Vitti
- Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L3 9TA, UK
| | - Jason L Parsons
- Cancer Research Centre, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L3 9TA, UK.
| |
Collapse
|
27
|
Ueno K, Matsuura T, Hirayama S, Takao S, Ueda H, Matsuo Y, Yoshimura T, Umegaki K. Physical and biological impacts of collimator-scattered protons in spot-scanning proton therapy. J Appl Clin Med Phys 2019; 20:48-57. [PMID: 31237090 PMCID: PMC6612695 DOI: 10.1002/acm2.12653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/01/2019] [Accepted: 05/04/2019] [Indexed: 11/29/2022] Open
Abstract
To improve the penumbra of low‐energy beams used in spot‐scanning proton therapy, various collimation systems have been proposed and used in clinics. In this paper, focused on patient‐specific brass collimators, the collimator‐scattered protons' physical and biological effects were investigated. The Geant4 Monte Carlo code was used to model the collimators mounted on the scanning nozzle of the Hokkaido University Hospital. A systematic survey was performed in water phantom with various‐sized rectangular targets; range (5–20 cm), spread‐out Bragg peak (SOBP) (5–10 cm), and field size (2 × 2–16 × 16 cm2). It revealed that both the range and SOBP dependences of the physical dose increase had similar trends to passive scattering methods, that is, it increased largely with the range and slightly with the SOBP. The physical impact was maximized at the surface (3%–22% for the tested geometries) and decreased with depth. In contrast, the field size (FS) dependence differed from that observed in passive scattering: the increase was high for both small and large FSs. This may be attributed to the different phase‐space shapes at the target boundary between the two dose delivery methods. Next, the biological impact was estimated based on the increase in dose‐averaged linear energy transfer (LETd) and relative biological effectiveness (RBE). The LETd of the collimator‐scattered protons were several keV/μm higher than that of unscattered ones; however, since this large increase was observed only at the positions receiving a small scattered dose, the overall LETd increase was negligible. As a consequence, the RBE increase did not exceed 0.05. Finally, the effects on patient geometries were estimated by testing two patient plans, and a negligible RBE increase (0.9% at most in the critical organs at surface) was observed in both cases. Therefore, the impact of collimator‐scattered protons is almost entirely attributed to the physical dose increase, while the RBE increase is negligible.
Collapse
Affiliation(s)
- Koki Ueno
- Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Taeko Matsuura
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan.,Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido, Japan.,Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Shusuke Hirayama
- Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo, Hokkaido, Japan.,Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Seishin Takao
- Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Hideaki Ueda
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuto Matsuo
- Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Takaaki Yoshimura
- Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Kikuo Umegaki
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan.,Proton Beam Therapy Center, Hokkaido University Hospital, Sapporo, Hokkaido, Japan.,Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| |
Collapse
|
28
|
Choi C, Son A, Lee GH, Shin SW, Park S, Ahn SH, Chung Y, Yu JI, Park HC. Targeting DNA-dependent protein kinase sensitizes hepatocellular carcinoma cells to proton beam irradiation through apoptosis induction. PLoS One 2019; 14:e0218049. [PMID: 31194786 PMCID: PMC6563991 DOI: 10.1371/journal.pone.0218049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022] Open
Abstract
Recent studies have highlighted the implications of genetic variations in the relative biological effectiveness (RBE) of proton beam irradiation over conventional X-ray irradiation. Proton beam radiotherapy is a reasonable radiotherapy option for hepatocellular carcinoma (HCC), but the impact of genetic difference on the HCC RBE remains unknown. Here, we determined proton RBE in human HCC cells by exposing them to various doses of either 6-MV X-rays or 230-MeV proton beams. Clonogenic survival assay revealed variable radiosensitivity of human HCC cell lines with survival fraction at 2 Gy ranging from 0.38 to 0.83 and variable proton RBEs with 37% survival fraction ranging from 1.00 to 1.48. HCC cells appeared more sensitive to proton irradiation than X-rays, with more persistent activation of DNA damage repair proteins over time. Depletion of a DNA damage repair gene, DNA-PKcs, by siRNA dramatically increased the sensitivity of HCC cells to proton beams with a decrease in colony survival and an increase in apoptosis. Our findings suggest that there are large variations in proton RBE in HCC cells despite the use of a constant RBE of 1.1 in the clinic and targeting DNA-PKcs in combination with proton beam therapy may be a promising regimen for treating HCC.
Collapse
Affiliation(s)
- Changhoon Choi
- Department of Radiation Oncology, Samsung Medical Center, Seoul, South Korea
| | - Arang Son
- Department of Radiation Oncology, Samsung Medical Center, Seoul, South Korea
| | - Ga-Haeng Lee
- Department of Radiation Oncology, Samsung Medical Center, Seoul, South Korea
| | - Sung-Won Shin
- Department of Radiation Oncology, Samsung Medical Center, Seoul, South Korea
- Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sohee Park
- Department of Radiation Oncology, Samsung Medical Center, Seoul, South Korea
| | - Sang Hee Ahn
- Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yoonsun Chung
- Department of Nuclear Engineering, Hanyang University, Seoul, South Korea
| | - Jeong Il Yu
- Department of Radiation Oncology, Samsung Medical Center, Seoul, South Korea
| | - Hee Chul Park
- Department of Radiation Oncology, Samsung Medical Center, Seoul, South Korea
- Sungkyunkwan University School of Medicine, Seoul, South Korea
- * E-mail:
| |
Collapse
|
29
|
Иванов А, Ivanov A, Бычкова Т, Bichkova T, Никитенко О, Nikitenko O, Ушаков И, Ushakov I. Radiobiological Proton Effects. ACTA ACUST UNITED AC 2019. [DOI: 10.12737/article_5cf2306a3b26d6.36140627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The article contains an analysis of literature data and the author’s own results on the radiobiological effects of protons at the cellular, systemic (intercellular) and organismic levels, as applied to the practical tasks of radiation therapy of oncological diseases and the protons effects on the astronauts’ organism.
It is established that the proton RBE is a variable value, depending on the LET of the particles, the amount and dose rate, the presence or absence of oxygen. Proton RBE varies depending on the object of study, the type of tissue, proton energy and particle penetration depth, as well as the method for evaluating the biological efficiency of protons. which corresponds to general radiobiology.
In particular, it has been shown that the RBE of protons adopted in radiation therapy at the level of 1.1 is conditional. A firmly established and repeatedly confirmed is an increase in RBE with a decrease in proton energy and, accordingly, an increase in LET.
The use of elements of the physical protection of a spacecraft during exposure to protons with an energy of 170 MeV leads to an increase in LET and RBE of protons in terms of the cellularity of the bone marrow.
Pharmacological agents effective in photon irradiation are also effective when exposed to a proton beam. It has been shown that natural melanin pigment and recombinant manganese superoxide dismutase helps to preserve and accelerate the resumption of blood formation in animals irradiated by protons. The Grippol vaccine increases radioresistance during proton irradiation. Neuropeptide Semax has a positive effect on the central nervous system and the strength of the forepaws of animals irradiated with protons at Bragg’s peak.
Collapse
Affiliation(s)
- А. Иванов
- Объединенный институт ядерных исследований
- Институт медико-биологических проблем РАН
- Федеральный медицинский биофизический центр им. А.И.Бурназяна ФМБА России
| | - A. Ivanov
- Joint Institute for Nuclear Research
- Institute for Biomedical Problems
- A.I. Burnasyan Federal Medical Biophysical Center (FMBC) FMBA
| | - Т. Бычкова
- Федеральный медицинский биофизический центр им. А.И. Бурназяна ФМБА России
- Институт медико-биологических проблем РАН
| | - T. Bichkova
- A.I. Burnasyan Federal Medical Biophysical Center of FMBA
- Institute of Biomedical Problems, Russian Academy of Sciences
| | - О. Никитенко
- Федеральный медицинский биофизический центр им. А.И. Бурназяна ФМБА России
- Институт медико-биологических проблем РАН
| | - O. Nikitenko
- A.I. Burnasyan Federal Medical Biophysical Center of FMBA
- Institute of Biomedical Problems, Russian Academy of Sciences
| | - И. Ушаков
- Федеральный медицинский биофизический центр им. А.И. Бурназяна ФМБА России
| | - I. Ushakov
- A.I. Burnasyan Federal Medical Biophysical Center of FMBA
| |
Collapse
|
30
|
Wang Z, Sugie C, Nakashima M, Kondo T, Iwata H, Tsuchiya T, Shibamoto Y. Changes in the Proliferation Rate, Clonogenicity, and Radiosensitivity of Cultured Cells During and After Continuous Low-Dose-Rate Irradiation. Dose Response 2019; 17:1559325819842733. [PMID: 31040760 PMCID: PMC6477768 DOI: 10.1177/1559325819842733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/04/2019] [Accepted: 03/17/2019] [Indexed: 01/28/2023] Open
Abstract
We investigated the effects of continuous low-dose radiation on proliferation,
clonogenicity, radiosensitivity, and repair of DNA double-strand breaks (DSBs)
in human salivary gland (HSG) tumor cells. Human salivary gland cells were
cultured on acrylic boards above very-low-dose (4.3 μSv/h) or low-dose (27
μSv/h) radiation-emitting sheets or without sheets. Total cell numbers and
plating efficiencies were compared among the 3 groups every 1 or 2 weeks until 6
weeks after starting culture. At 2, 4, and 6 weeks, surviving fractions of HSG
cells after irradiation at 2 to 8 Gy cultured on the very-low-dose or low-dose
sheets were compared to those of the control. At 4 weeks, HSG cells irradiated
at 2 Gy were assessed for phosphorylated histone (γH2AX) foci formation, and
DSBs were evaluated. No significant differences were observed in total cell
number or plating efficiencies with or without low-dose-emitting sheets. The
surviving fractions after irradiation of the very-low-dose group at 2 to 6 weeks
and those of the low-dose group at 2 to 4 weeks were higher than those of the
control (P < .01). Thus, a radioadaptive response was
clearly demonstrated. From the γH2AX foci quantification, the adaptive responses
were considered to be associated with the efficient repair of DSB, especially
slow repair, in this cell line.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Chikao Sugie
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masahiro Nakashima
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takuhito Kondo
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiromitsu Iwata
- Department of Radiation Oncology, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Nagoya, Japan
| | | | - Yuta Shibamoto
- Department of Radiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
31
|
Comparison of Proton and Photon Beam Irradiation in Radiation-Induced Intestinal Injury Using a Mouse Model. Int J Mol Sci 2019; 20:ijms20081894. [PMID: 30999572 PMCID: PMC6514697 DOI: 10.3390/ijms20081894] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/12/2022] Open
Abstract
When radiotherapy is applied to the abdomen or pelvis, normal tissue toxicity in the gastrointestinal (GI) tract is considered a major dose-limiting factor. Proton beam therapy has a specific advantage in terms of reduced doses to normal tissues. This study investigated the fundamental differences between proton- and X-ray-induced intestinal injuries in mouse models. C57BL/6J mice were irradiated with 6-MV X-rays or 230-MeV protons and were sacrificed after 84 h. The number of surviving crypts per circumference of the jejunum was identified using Hematoxylin and Eosin staining. Diverse intestinal stem cell (ISC) populations and apoptotic cells were analyzed using immunohistochemistry (IHC) and a terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) assay, respectively. The crypt microcolony assay revealed a radiation-dose-dependent decrease in the number of regenerative crypts in the mouse jejunum; proton irradiation was more effective than X-ray irradiation with a relative biological effectiveness of 1.14. The jejunum is the most sensitive to radiations, followed by the ileum and the colon. Both types of radiation therapy decreased the number of radiosensitive, active cycling ISC populations. However, a higher number of radioresistant, reserve ISC populations and Paneth cells were eradicated by proton irradiation than X-ray irradiation, as shown in the IHC analyses. The TUNEL assay revealed that proton irradiation was more effective in enhancing apoptotic cell death than X-ray irradiation. This study conducted a detailed analysis on the effects of proton irradiation versus X-ray irradiation on intestinal crypt regeneration in mouse models. Our findings revealed that proton irradiation has a direct effect on ISC populations, which may result in an increase in the risk of GI toxicity during proton beam therapy.
Collapse
|
32
|
Lasalvia M, Perna G, Manti L, Rasero J, Stramaglia S, Capozzi V. Raman spectroscopy monitoring of MCF10A cells irradiated by protons at clinical doses. Int J Radiat Biol 2019; 95:207-214. [DOI: 10.1080/09553002.2019.1547849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Maria Lasalvia
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- National Institute of Nuclear Physics - INFN, Bari Section, Bari, Italy
| | - Giuseppe Perna
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- National Institute of Nuclear Physics - INFN, Bari Section, Bari, Italy
| | - Lorenzo Manti
- Physics Department, University of Napoli “Federico II”, Napoli, Italy
- National Institute of Nuclear Physics - INFN, Napoli Section, Napoli, Italy
| | - Javier Rasero
- Biocruces Health Research Institute, Barakaldo, Spain
| | - Sebastiano Stramaglia
- National Institute of Nuclear Physics - INFN, Bari Section, Bari, Italy
- Department of Physics, University of Bari “Aldo Moro”, Bari, Italy
| | - Vito Capozzi
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- National Institute of Nuclear Physics - INFN, Bari Section, Bari, Italy
| |
Collapse
|
33
|
Lasalvia M, Perna G, Pisciotta P, Cammarata FP, Manti L, Capozzi V. Raman spectroscopy for the evaluation of the radiobiological sensitivity of normal human breast cells at different time points after irradiation by a clinical proton beam. Analyst 2019; 144:2097-2108. [DOI: 10.1039/c8an02155d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Radiobiological effects occurring in normal human breast cells exposed to a low dose of a clinical proton beam are detectable by means of Raman spectra and the ratiometric analysis of Raman peak intensities.
Collapse
Affiliation(s)
- M. Lasalvia
- Dipartimento di Medicina Clinica e Sperimentale
- Università di Foggia
- 71122 Foggia
- Italy
- Istituto Nazionale di Fisica Nucleare – Sezione di Bari
| | - G. Perna
- Dipartimento di Medicina Clinica e Sperimentale
- Università di Foggia
- 71122 Foggia
- Italy
- Istituto Nazionale di Fisica Nucleare – Sezione di Bari
| | - P. Pisciotta
- Istituto Nazionale di Fisica Nucleare
- Laboratori Nazionali del Sud
- INFN-LNS
- Catania
- Italy
| | - F. P. Cammarata
- Institute of Molecular Bioimaging and Physiology
- National Research Council
- 90015 Cefalù
- Italy
| | - L. Manti
- Dipartimento di Fisica
- Università di Napoli “Federico II”
- 80126 Napoli
- Italy
- Istituto Nazionale di Fisica Nucleare – Sezione di Napoli
| | - V. Capozzi
- Dipartimento di Medicina Clinica e Sperimentale
- Università di Foggia
- 71122 Foggia
- Italy
- Istituto Nazionale di Fisica Nucleare – Sezione di Bari
| |
Collapse
|
34
|
Paganetti H. Proton Relative Biological Effectiveness - Uncertainties and Opportunities. Int J Part Ther 2018; 5:2-14. [PMID: 30370315 DOI: 10.14338/ijpt-18-00011.1] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Proton therapy treatments are prescribed using a biological effectiveness relative to photon therapy of 1.1, that is, proton beams are considered to be 10% more biologically effective. Debate is ongoing as to whether this practice needs to be revised. This short review summarizes current knowledge on relative biological effectiveness variations and uncertainties in vitro and in vivo. Clinical relevance is discussed and strategies toward biologically guided treatment planning are presented.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
35
|
Yoo GS, Yu JI, Park HC. Proton therapy for hepatocellular carcinoma: Current knowledges and future perspectives. World J Gastroenterol 2018; 24:3090-3100. [PMID: 30065555 PMCID: PMC6064962 DOI: 10.3748/wjg.v24.i28.3090] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/28/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death, as few patients can be treated with currently available curative local modalities. In patients with HCC where curative modalities are not feasible, radiation therapy (RT) has emerged as an alternative or combination therapy. With the development of various technologies, RT has been increasingly used for the management of HCC. Among these advances, proton beam therapy (PBT) has several unique physical properties that give it a finite range in a distal direction, and thus no exit dose along the beam path. Therefore, PBT has dosimetric advantages compared with X-ray therapy for the treatment of HCC. Indeed, various reports in the literature have described the favorable clinical outcomes and improved safety of PBT for HCC patients compared with X-ray therapy. However, there are some technical issues regarding the use of PBT in HCC, including uncertainty of organ motion and inaccuracy during calculation of tissue density and beam range, all of which may reduce the robustness of a PBT treatment plan. In this review, we discuss the physical properties, current clinical data, technical issues, and future perspectives on PBT for the treatment of HCC.
Collapse
Affiliation(s)
- Gyu Sang Yoo
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Jeong Il Yu
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Hee Chul Park
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, South Korea
| |
Collapse
|
36
|
Howard ME, Beltran C, Anderson S, Tseung WC, Sarkaria JN, Herman MG. Investigating Dependencies of Relative Biological Effectiveness for Proton Therapy in Cancer Cells. Int J Part Ther 2018; 4:12-22. [PMID: 30159358 DOI: 10.14338/ijpt-17-00031.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Purpose Relative biological effectiveness (RBE) accounts for the differences in biological effect from different radiation types. The RBE for proton therapy remains uncertain, as it has been shown to vary from the clinically used value of 1.1. In this work we investigated the RBE of protons and correlated the biological differences with the underlying physical quantities. Materials and Methods Three cell lines were irradiated (CHO, Chinese hamster ovary; A549, human lung adenocarcinoma; and T98, human glioma) and assessed for cell survival by using clonogenic assay. Cells were irradiated with 71- and 160-MeV protons at depths along the Bragg curve and 6-MV photons to various doses. The dose-averaged lineal energy ( y‒D ) was measured under similar conditions as the cells by using a microdosimeter. Dose-averaged linear energy transfer (LETd) was also calculated by using Monte Carlo (MC) simulations. Survival data were fit by using the linear quadratic model. The RBE values were calculated by comparing the physical dose (D6MV/Dp) that results in 50% (RBE0.5) and 10% (RBE0.1) cell survival, and survival after 2 Gy (RBE2Gy). Results Proton RBE values ranged from 0.89 to 2.40. The RBE for all 3 cell lines increased with decreasing proton energy and was higher at 50% survival than at 10% survival. Additionally, both A549 and T98 cells generally had higher RBE values relative to the CHO cells, indicating a greater biological response to protons. An increase in RBE corresponded with an increase in y‒D and LETd. Conclusion Proton RBE was found to depend on mean proton energy, survival end point, and cell type. Changes in both y‒D and LETd were also found to impact proton RBE values, but consideration of the energy spectrum may provide additional information. The RBE values in this study vary greatly, indicating the clinical value of 1.1 may not be suitable in all cases.
Collapse
Affiliation(s)
| | - Chris Beltran
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Sarah Anderson
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Wan Chan Tseung
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Michael G Herman
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
37
|
Gao M, Mohiuddin MM, Hartsell WF, Pankuch M. Spatially fractionated (GRID) radiation therapy using proton pencil beam scanning (PBS): Feasibility study and clinical implementation. Med Phys 2018; 45:1645-1653. [PMID: 29431867 DOI: 10.1002/mp.12807] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/10/2018] [Accepted: 01/25/2018] [Indexed: 11/09/2022] Open
Abstract
PURPOSE GRID therapy is an effective treatment for bulky tumors. Linear accelerator (Linac)-produced photon beams collimated through blocks or multileaf collimators (MLCs) are the most common methods used to deliver this therapy. Utilizing the newest proton delivery method of pencil beam scanning (PBS) can further improve the efficacy of GRID therapy. In this study, we developed a method of delivering GRID therapy using proton PBS, evaluated the dosimetry of this novel technique and applied this method in two clinical cases. MATERIALS/METHODS In the feasibility study phase, a single PBS proton beam was optimized to heterogeneously irradiate a shallow 20 × 20 × 12 cm3 target volume centered at a 6 cm depth in a water phantom. The beam was constrained to have an identical spot pattern in all layers, creating a "beamlet" at each spot position. Another GRID treatment using PBS was also performed on a deep 15 × 15 × 8 cm3 target volume centered at a 14 cm depth in a water phantom. Dosimetric parameters of both PBS dose distributions were compared with typical photon GRID dose distributions. In the next phase, four patients have been treated at our center with this proton GRID technique. The planning, dosimetry, and measurements for two representative patients are reported. RESULTS For the shallow phantom target, the depth-dose curve of the PBS plan was uniform within the target (variation < 5%) and dropped quickly beyond the target (50% at 12.9 cm and 0.5% at 14 cm). The lateral profiles of the PBS plan were comparable to those of photon GRID in terms of valley-to-peak ratios. For the deep phantom target, the PBS plan provided smaller valley-to-peak ratios than the photon GRID technique. Pretreatment dose verification QA showed close agreement between the measurements and the plan (pass rate > 95% with a gamma index criterion of 3%/3 mm). Patients tolerated the treatment well without significant skin toxicity (radiation dermatitis grade ≤ 1). CONCLUSIONS Proton GRID therapy using a PBS delivery method was successfully developed and implemented clinically. Proton GRID therapy offers many advantages over photon GRID techniques. The use of protons provides a more uniform beamlet dose within the tumor and spares normal tissues located beyond the tumor. This new PBS method will also reduce the dose to proximal organs when treating a deep-seated tumor.
Collapse
Affiliation(s)
- M Gao
- Northwestern Medicine Chicago Proton Center, Warrenville, IL, 60555, USA
| | - M M Mohiuddin
- Advocate Lutheran General Hospital, Park Ridge, IL, 60068, USA.,Radiation Oncology Consultants, Ltd., Oak Brook, IL, 60523, USA
| | - W F Hartsell
- Northwestern Medicine Chicago Proton Center, Warrenville, IL, 60555, USA.,Radiation Oncology Consultants, Ltd., Oak Brook, IL, 60523, USA
| | - M Pankuch
- Northwestern Medicine Chicago Proton Center, Warrenville, IL, 60555, USA
| |
Collapse
|
38
|
Ilicic K, Combs SE, Schmid TE. New insights in the relative radiobiological effectiveness of proton irradiation. Radiat Oncol 2018; 13:6. [PMID: 29338744 PMCID: PMC5771069 DOI: 10.1186/s13014-018-0954-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/05/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Proton radiotherapy is a form of charged particle therapy that is preferentially applied for the treatment of tumors positioned near to critical structures due to their physical characteristics, showing an inverted depth-dose profile. The sparing of normal tissue has additional advantages in the treatment of pediatric patients, in whom the risk of secondary cancers and late morbidity is significantly higher. Up to date, a fixed relative biological effectiveness (RBE) of 1.1 is commonly implemented in treatment planning systems with protons in order to correct the physical dose. This value of 1.1 comes from averaging the results of numerous in vitro experiments, mostly conducted in the middle of the spread-out Bragg peak, where RBE is relatively constant. However, the use of a constant RBE value disregards the experimental evidence which clearly demonstrates complex RBE dependency on dose, cell- or tissue type, linear energy transfer and biological endpoints. In recent years, several in vitro studies indicate variations in RBE of protons which translate to an uncertainty in the biological effective dose delivery to the patient. Particularly for regions surrounding the Bragg peak, the more localized pattern of energy deposition leads to more complex DNA lesions. These RBE variations of protons bring the validity of using a constant RBE into question. MAIN BODY This review analyzes how RBE depends on the dose, different biological endpoints and physical properties. Further, this review gives an overview of the new insights based on findings made during the last years investigating the variation of RBE with depth in the spread out Bragg peak and the underlying differences in radiation response on the molecular and cellular levels between proton and photon irradiation. Research groups such as the Klinische Forschergruppe Schwerionentherapie funded by the German Research Foundation (DFG, KFO 214) have included work on this topic and the present manuscript highlights parts of the preclinical work and summarizes the research activities in this context. SHORT CONCLUSION In summary, there is an urgent need for more coordinated in vitro and in vivo experiments that concentrate on a realistic dose range of in clinically relevant tissues like lung or spinal cord.
Collapse
Affiliation(s)
- K Ilicic
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, 81675, München, Germany.,Institute of Innovative Radiotherapy, Helmholtz Zentrum München, Neuherberg, Germany
| | - S E Combs
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, 81675, München, Germany.,Institute of Innovative Radiotherapy, Helmholtz Zentrum München, Neuherberg, Germany.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, Munich, Germany
| | - T E Schmid
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, 81675, München, Germany. .,Institute of Innovative Radiotherapy, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
39
|
Howard ME, Beltran C, Anderson S, Tseung WC, Sarkaria JN, Herman MG. Investigating Dependencies of Relative Biological Effectiveness for Proton Therapy in Cancer Cells. Int J Part Ther 2018. [PMID: 30159358 DOI: 10.14338/ijpt-17-0031.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
PURPOSE Relative biological effectiveness (RBE) accounts for the differences in biological effect from different radiation types. The RBE for proton therapy remains uncertain, as it has been shown to vary from the clinically used value of 1.1. In this work we investigated the RBE of protons and correlated the biological differences with the underlying physical quantities. MATERIALS AND METHODS Three cell lines were irradiated (CHO, Chinese hamster ovary; A549, human lung adenocarcinoma; and T98, human glioma) and assessed for cell survival by using clonogenic assay. Cells were irradiated with 71- and 160-MeV protons at depths along the Bragg curve and 6-MV photons to various doses. The dose-averaged lineal energy ( y‒D ) was measured under similar conditions as the cells by using a microdosimeter. Dose-averaged linear energy transfer (LETd) was also calculated by using Monte Carlo (MC) simulations. Survival data were fit by using the linear quadratic model. The RBE values were calculated by comparing the physical dose (D6MV/Dp) that results in 50% (RBE0.5) and 10% (RBE0.1) cell survival, and survival after 2 Gy (RBE2Gy). RESULTS Proton RBE values ranged from 0.89 to 2.40. The RBE for all 3 cell lines increased with decreasing proton energy and was higher at 50% survival than at 10% survival. Additionally, both A549 and T98 cells generally had higher RBE values relative to the CHO cells, indicating a greater biological response to protons. An increase in RBE corresponded with an increase in y‒D and LETd. CONCLUSION Proton RBE was found to depend on mean proton energy, survival end point, and cell type. Changes in both y‒D and LETd were also found to impact proton RBE values, but consideration of the energy spectrum may provide additional information. The RBE values in this study vary greatly, indicating the clinical value of 1.1 may not be suitable in all cases.
Collapse
Affiliation(s)
| | - Chris Beltran
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Sarah Anderson
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Wan Chan Tseung
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Michael G Herman
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
40
|
Niedzielski JS, Yang J, Mohan R, Titt U, Mirkovic D, Stingo F, Liao Z, Gomez DR, Martel MK, Briere TM, Court LE. Differences in Normal Tissue Response in the Esophagus Between Proton and Photon Radiation Therapy for Non-Small Cell Lung Cancer Using In Vivo Imaging Biomarkers. Int J Radiat Oncol Biol Phys 2017; 99:1013-1020. [PMID: 29063837 DOI: 10.1016/j.ijrobp.2017.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 06/26/2017] [Accepted: 07/01/2017] [Indexed: 01/21/2023]
Abstract
PURPOSE To determine whether there exists any significant difference in normal tissue toxicity between intensity modulated radiation therapy (IMRT) or proton therapy for the treatment of non-small cell lung cancer. METHODS AND MATERIALS A total of 134 study patients (n=49 treated with proton therapy, n=85 with IMRT) treated in a randomized trial had a previously validated esophageal toxicity imaging biomarker, esophageal expansion, quantified during radiation therapy, as well as esophagitis grade (Common Terminology Criteria for Adverse Events version 3.0), on a weekly basis during treatment. Differences between the 2 modalities were statically analyzed using the imaging biomarker metric value (Kruskal-Wallis analysis of variance), as well as the incidence and severity of esophagitis grade (χ2 and Fisher exact tests, respectively). The dose-response of the imaging biomarker was also compared between modalities using esophageal equivalent uniform dose, as well as delivered dose to an isotropic esophageal subvolume. RESULTS No statistically significant difference in the distribution of esophagitis grade, the incidence of grade ≥3 esophagitis (15 and 11 patients treated with IMRT and proton therapy, respectively), or the esophageal expansion imaging biomarker between cohorts (P>.05) was found. The distribution of imaging biomarker metric values had similar distributions between treatment arms, despite a slightly higher dose volume in the proton arm (P>.05). Imaging biomarker dose-response was similar between modalities for dose quantified as esophageal equivalent uniform dose and delivered esophageal subvolume dose. Regardless of treatment modality, there was high variability in imaging biomarker response, as well as esophagitis grade, for similar esophageal doses between patients. CONCLUSIONS There was no significant difference in esophageal toxicity from either proton- or photon-based radiation therapy as quantified by esophagitis grade or the esophageal expansion imaging biomarker.
Collapse
Affiliation(s)
- Joshua S Niedzielski
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas; University of Texas-Houston Health Science Center, Graduate School of Biomedical Science, Houston, Texas.
| | - Jinzhong Yang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas; University of Texas-Houston Health Science Center, Graduate School of Biomedical Science, Houston, Texas
| | - Radhe Mohan
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas; University of Texas-Houston Health Science Center, Graduate School of Biomedical Science, Houston, Texas
| | - Uwe Titt
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas; University of Texas-Houston Health Science Center, Graduate School of Biomedical Science, Houston, Texas
| | - Dragan Mirkovic
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas; University of Texas-Houston Health Science Center, Graduate School of Biomedical Science, Houston, Texas
| | - Francesco Stingo
- Department of Statistics, Computer Science, Applications "G. Parenti," University of Florence, Florence, Italy
| | - Zhongxing Liao
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Daniel R Gomez
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Mary K Martel
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas; University of Texas-Houston Health Science Center, Graduate School of Biomedical Science, Houston, Texas
| | - Tina M Briere
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas; University of Texas-Houston Health Science Center, Graduate School of Biomedical Science, Houston, Texas
| | - Laurence E Court
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas; University of Texas-Houston Health Science Center, Graduate School of Biomedical Science, Houston, Texas
| |
Collapse
|
41
|
Sørensen BS, Bassler N, Nielsen S, Horsman MR, Grzanka L, Spejlborg H, Swakoń J, Olko P, Overgaard J. Relative biological effectiveness (RBE) and distal edge effects of proton radiation on early damage in vivo. Acta Oncol 2017; 56:1387-1391. [PMID: 28830292 DOI: 10.1080/0284186x.2017.1351621] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION The aim of the present study was to examine the RBE for early damage in an in vivo mouse model, and the effect of the increased linear energy transfer (LET) towards the distal edge of the spread-out Bragg peak (SOBP). METHOD The lower part of the right hind limb of CDF1 mice was irradiated with single fractions of either 6 MV photons, 240 kV photons or scanning beam protons and graded doses were applied. For the proton irradiation, the leg was either placed in the middle of a 30-mm SOBP, or to assess the effect in different positions, irradiated in 4 mm intervals from the middle of the SOBP to behind the distal dose fall-off. Irradiations were performed with the same dose plan at all positions, corresponding to a dose of 31.25 Gy in the middle of the SOBP. Endpoint of the study was early skin damage of the foot, assessed by a mouse foot skin scoring system. RESULTS The MDD50 values with 95% confidence intervals were 36.1 (34.2-38.1) Gy for protons in the middle of the SOBP for score 3.5. For 6 MV photons, it was 35.9 (34.5-37.5) Gy and 32.6 (30.7-34.7) Gy for 240 kV photons for score 3.5. The corresponding RBE was 1.00 (0.94-1.05), relative to 6 MV photons and 0.9 (0.85-0.97) relative to 240 kV photons. In the mice group positioned at the SOBP distal dose fall-off, 25% of the mice developed early skin damage compared with 0-8% in other groups. LETd,z = 1 was 8.4 keV/μm at the distal dose fall-off and the physical dose delivered was 7% lower than in the central SOBP position, where LETd,z =1 was 3.3 keV/μm. CONCLUSIONS Although there is a need to expand the current study to be able to calculate an exact enhancement ratio, an enhanced biological effect in vivo for early skin damage in the distal edge was demonstrated.
Collapse
Affiliation(s)
- Brita Singers Sørensen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Bassler
- Medical Radiation Physics, Department of Physics, Stockholm University, Stockholm, Sweden
| | - Steffen Nielsen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Michael R. Horsman
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Leszek Grzanka
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | - Harald Spejlborg
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jan Swakoń
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | - Paweł Olko
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
42
|
Howard M, Beltran C, Sarkaria J, Herman MG. Characterization of relative biological effectiveness for conventional radiation therapy: a comparison of clinical 6 MV X-rays and 137Cs. JOURNAL OF RADIATION RESEARCH 2017; 58:608-613. [PMID: 28444207 PMCID: PMC5737853 DOI: 10.1093/jrr/rrx018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/23/2016] [Indexed: 05/28/2023]
Abstract
Various types of radiation are utilized in the treatment of cancer. Equal physical doses of different radiation types do not always result in the same amount of biological damage. In order to account for these differences, a scaling factor known as the relative biological effectiveness (RBE) can be used. 137Cesium (137Cs) has been used as a source of radiation in a significant body of radiation therapy research. However, high-energy X-rays, such as 6 MV X-rays, are currently used clinically to treat patients. To date, there is a gap in the literature regarding the RBE comparison of these two types of radiation. Therefore, the purpose of this study was to investigate the RBE of 137Cs relative to that of 6 MV X-rays. To determine the RBE, five cell lines were irradiated [Chinese hamster ovary (CHO); human lung adenocarcinoma (A549); human glioma (U251); human glioma (T98); and human osteosarcoma (U2OS)] by both types of radiation and assessed for cell survival using a clonogenic assay. Three of the five cell lines resulted in RBE values of ~1.00 to within 11% for all survival fractions, showing the physical and biological dose for these two types of radiation were equivalent. The other two cell lines gave RBE values differing from 1.00 by up to 36%. In conclusion, the results show the range in biological effect seen between cell lines, and therefore cell type must be considered when characterizing RBE.
Collapse
Affiliation(s)
- Michelle Howard
- Corresponding author. Department of Radiation Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA. Tel.: 1-507-293-2841; Fax: 1-507-293-2870;
| | - Chris Beltran
- Department of Radiation Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Jann Sarkaria
- Department of Radiation Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Michael G Herman
- Department of Radiation Oncology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
43
|
Hojo H, Dohmae T, Hotta K, Kohno R, Motegi A, Yagishita A, Makinoshima H, Tsuchihara K, Akimoto T. Difference in the relative biological effectiveness and DNA damage repair processes in response to proton beam therapy according to the positions of the spread out Bragg peak. Radiat Oncol 2017; 12:111. [PMID: 28673358 PMCID: PMC5494883 DOI: 10.1186/s13014-017-0849-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/28/2017] [Indexed: 12/25/2022] Open
Abstract
Background Cellular responses to proton beam irradiation are not yet clearly understood, especially differences in the relative biological effectiveness (RBE) of high-energy proton beams depending on the position on the Spread-Out Bragg Peak (SOBP). Towards this end, we investigated the differences in the biological effect of a high-energy proton beam on the target cells placed at different positions on the SOBP, using two human esophageal cancer cell lines with differing radiosensitivities. Methods Two human esophageal cancer cell lines (OE21, KYSE450) with different radiosensitivities were irradiated with a 235-MeV proton beam at 4 different positions on the SOBP (position #1: At entry; position #2: At the proximal end of the SOBP; position #3: Center of the SOBP; position #4: At the distal end of the SOBP), and the cell survivals were assessed by the clonogenic assay. The RBE10 for each position of the target cell lines on the SOBP was determined based on the results of the cell survival assay conducted after photon beam irradiation. In addition, the number of DNA double-strand breaks was estimated by quantitating the number of phospho-histone H2AX (γH2AX) foci formed in the nuclei by immunofluorescence analysis. Results In regard to differences in the RBE of a proton beam according to the position on the SOBP, the RBE value tended to increase as the position on the SOBP moved distally. Comparison of the residual number of γH2AX foci at the end 24 h after the irradiation revealed, for both cell lines, a higher number of foci in the cells irradiated at the distal end of the SOPB than in those irradiated at the proximal end or center of the SOBP. Conclusions The results of this study demonstrate that the RBE of a high-energy proton beam and the cellular responses, including the DNA damage repair processes, to high-energy proton beam irradiation, differ according to the position on the SOBP, irrespective of the radiosensitivity levels of the cell lines. Electronic supplementary material The online version of this article (doi:10.1186/s13014-017-0849-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hidehiro Hojo
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan.
| | - Takeshi Dohmae
- High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Kenji Hotta
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Ryosuke Kohno
- Department of Radiation Physics, The University of Texas M.D. Anderson Cancer Center, 1840 Old Spanish Trail, Houston, TX, 77054, USA
| | - Atsushi Motegi
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Atsushi Yagishita
- Division of Translational Research, EPOC, National Cancer Center, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Hideki Makinoshima
- Division of Translational Research, EPOC, National Cancer Center, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Katsuya Tsuchihara
- Division of Translational Research, EPOC, National Cancer Center, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Tetsuo Akimoto
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| |
Collapse
|
44
|
Relative biological effectiveness in a proton spread-out Bragg peak formed by pencil beam scanning mode. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2017; 40:359-368. [PMID: 28321635 DOI: 10.1007/s13246-017-0540-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/09/2017] [Indexed: 10/19/2022]
Abstract
In recent years, there is an increased interest in using scanning modes in proton therapy, due to the more conformal dose distributions, thanks to the spot-weighted dose delivery. The dose rate in each spot is however much higher than the dose rate when using passive irradiation modes, which could affect the cell response. The purpose of this work was to investigate how the relative biological effectiveness changes along the spread-out Bragg peak created by protons delivered by the pencil beam scanning mode. Cell survival and micronuclei formation were investigated in four positions along the spread-out Bragg peak for various doses. Monte Carlo simulations were used to estimate the dose-averaged linear energy transfer values in the irradiation positions. The cell survival was found to decrease the deeper the sample was placed in the spread-out Bragg peak, which corresponds to the higher linear energy transfer values found using Monte Carlo simulations. The micronuclei frequencies indicate more complex cell injuries at that distal position compared to the proximal part of the spread-out Bragg peak. The relative biological effectiveness determined in this study varies significantly and systematically from 1.1, which is recommended value by the International Commission on Radiation Units, in all the studied positions. In the distal position of spread-out Bragg peak the relative biological effectiveness values were found to be 2.05 ± 0.44, 1.85 ± 0.42, 1.53 ± 0.38 for survival levels 90, 50 and 10%, respectively.
Collapse
|
45
|
Cuaron JJ, MacDonald SM, Cahlon O. Novel applications of proton therapy in breast carcinoma. Chin Clin Oncol 2017; 5:52. [PMID: 27558253 DOI: 10.21037/cco.2016.06.04] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/28/2016] [Indexed: 12/18/2022]
Abstract
This review will focus on the indications, clinical experience, and technical considerations of proton beam radiation therapy in the treatment of patients with breast cancer. For patients with early stage disease, proton therapy delivers less dose to non-target breast tissue for patients receiving partial breast irradiation (PBI) therapy, which may result in improved cosmesis but requires further investigation. For patients with locally advanced breast cancer requiring treatment to the regional lymph nodes, proton therapy allows for an improved dosimetric profile compared with conventional photon and electron techniques. Early clinical results demonstrate acceptable toxicity. The possible reduction in cardiopulmonary events as a result of reduced dose to organs at risk will be tested in a randomized control trial of protons vs. photons.
Collapse
Affiliation(s)
- John J Cuaron
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Shannon M MacDonald
- Massachusetts General Hospital, Francis H. Burr Proton Therapy Center, Boston, MA 02114-7250, USA
| | - Oren Cahlon
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
46
|
Grün R, Friedrich T, Krämer M, Scholz M. Systematics of relative biological effectiveness measurements for proton radiation along the spread out Bragg peak: experimental validation of the local effect model. Phys Med Biol 2017; 62:890-908. [PMID: 28072575 DOI: 10.1088/1361-6560/62/3/890] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The purpose of this study is to compare the predictions of the local effect model (LEM) in an extensive analysis to proton relative biological effectiveness (RBE) experiments found in the literature, and demonstrate the capabilities of the model as well as to discuss potential limitations. 19 publications with in vitro experiments and 10 publications with in vivo experiments focusing on proton RBE along the spread out Bragg peak (SOBP) were considered. In total the RBE values of over 100 depth positions were compared to LEM predictions. The treatment planning software TRiP98 was used to reconstruct the proton depth dose profile, and, together with the physical dose distribution, the RBE prediction was conducted based on the LEM. Only parameters from photon dose response curves are used as input for the LEM, and no free parameters are introduced, thus allowing us to demonstrate the predictive power of the LEM for protons. The LEM describes the RBE adequately well within the SOBP region with a relative deviation of typically less than 10% up to 10 keV µm-1. In accordance with previous publications a clear dependence of RBE on the dose-averaged linear energy transfer (LETD) was observed. The RBE in the experiments tends to increase above 1.1 for LETD values above 2 keV µm-1 and above 1.5 for LETD values higher than 10 keV µm-1 (distal part of the SOBP). The dose dependence is most pronounced for doses lower than 3 Gy (RBE). However, both the LEM predictions and experimental data show only a weak dependence of RBE on the tissue type, as characterized by the α/β ratio, which is considered insignificant with regard to the general uncertainties of RBE. The RBE predicted by the LEM shows overall very good agreement with the experimental data within the SOBP region and is in better agreement with the experimental data than the constant RBE of 1.1 that is currently applied in the clinics. All RBE trends deduced from the experiments were also reflected by the LEM predictions, which are purely based on input parameters derived from low-LET photon radiation.
Collapse
Affiliation(s)
- Rebecca Grün
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | | | | |
Collapse
|
47
|
Datta NR, Schneider R, Puric E, Ahlhelm FJ, Marder D, Bodis S, Weber DC. Proton Irradiation with Hyperthermia in Unresectable Soft Tissue Sarcoma. Int J Part Ther 2016; 3:327-336. [PMID: 31772984 PMCID: PMC6871610 DOI: 10.14338/ijpt-16-00016.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/14/2016] [Indexed: 01/16/2023] Open
Abstract
PURPOSE Unresectable soft tissue sarcomas (STSs) do not usually exhibit significant tumor downstaging with preoperative radiotherapy and/or chemotherapy due to their limited radiosensitivity/chemosensitivity. Limb amputations for tumors of the extremities inevitably lead to considerable loss of function and impairment in quality of life. Local hyperthermia at 39°C to 43°C and proton irradiation combine thermoradiobiological and physical dose distribution advantages, possibly mimicking those of a 12C ion therapy. We report the first 2 patients treated with this unique approach of proton thermoradiotherapy. MATERIALS AND METHODS Both patients had an unresectable STS of the left lower leg (1 grade 2 myxoid fibrosarcoma, 1 grade 3 undifferentiated pleomorphic sarcoma). Both patients had declined the above-knee amputation that had been advised due to their involvement of the neurovascular bundles. They were, therefore recruited to the Hyperthermia and Proton Therapy in Unresectable Soft Tissue Sarcoma (HYPROSAR) study protocol (ClinicalTrials.gov NCT01904565). Local hyperthermia was delivered using radiofrequency waves at 100 Mhz once a week after proton therapy. Proton irradiation was undertaken to a dose of 70 to 72 Gy (relative biological effectiveness) delivered at 2.0 Gy (relative biological effectiveness)/ fraction daily for 7 weeks. RESULTS Patients tolerated the treatment well with no significant acute or late morbidity. Both primary tumors showed a near complete response on serial magnetic resonance imaging. At a follow-up of 5 and 14 months, the patients were able to carry out indoor and outdoor activities with normal limb function. CONCLUSION This is the first report of proton beam irradiation combined with hyperthermia for cancer therapy. Our first experience in 2 consecutive patients with unresectable STSs shows that the approach is safe, feasible, and effective, achieving functional limb preservation with near total tumor control.
Collapse
Affiliation(s)
- Niloy R Datta
- Radio-Onkologie-Zentrum, KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland
| | - Ralf Schneider
- Centre for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Emsad Puric
- Radio-Onkologie-Zentrum, KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland
| | - Frank J Ahlhelm
- Institut für Radiologie, Kantonsspital Baden, Baden, Switzerland
| | - Dietmar Marder
- Radio-Onkologie-Zentrum, KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland
| | - Stephan Bodis
- Radio-Onkologie-Zentrum, KSA-KSB, Kantonsspital Aarau, Aarau, Switzerland
- Department of Radiation Oncology, University Hospital Zürich, Zurich, Switzerland
| | - Damien C Weber
- Centre for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
- Department of Radio-Oncology, Inselspital, University of Bern, Bern, Switzerland
| |
Collapse
|
48
|
A Nucleoside Anticancer Drug, 1-(3-C-Ethynyl-β-D-Ribo-Pentofuranosyl)Cytosine, Induces Depth-Dependent Enhancement of Tumor Cell Death in Spread-Out Bragg Peak (SOBP) of Proton Beam. PLoS One 2016; 11:e0166848. [PMID: 27875573 PMCID: PMC5119790 DOI: 10.1371/journal.pone.0166848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 11/05/2016] [Indexed: 11/19/2022] Open
Abstract
The effect of 1-(3-C-ethynyl-β-D-ribo-pentofuranosyl)cytosine (ECyd) on proton-induced cell death was evaluated in human lung carcinoma cell line A549 and Chinese hamster fibroblast cell line V79 to enhance relative biological effectiveness (RBE) within the spread-out Bragg peak (SOBP) of proton beams. Treatment with ECyd significantly enhanced the proton-induced loss of clonogenicity and increased senescence at the center, but not at the distal edge of SOBP. The p53-binding protein 1 foci formation assay showed that ECyd decelerated the rate of DNA double-strand break (DSB) repair at the center, but not the distal region of SOBP, suggesting that the ECyd-induced enhancement of proton-induced cell death is partially associated with the inhibition of DSB repair. This study demonstrated that ECyd enhances proton-induced cell killing at all positions of SOBP, except for the distal region and minimizes the site-dependent differences in RBE within SOBP. Thus, ECyd is a unique radiosensitizer for proton therapy that may be useful because it levels the biological dose within SOBP, which improves tumor control and reduces the risk of adverse effects at the distal edge of SOBP.
Collapse
|
49
|
Maeda K, Yasui H, Matsuura T, Yamamori T, Suzuki M, Nagane M, Nam JM, Inanami O, Shirato H. Evaluation of the relative biological effectiveness of spot-scanning proton irradiation in vitro. JOURNAL OF RADIATION RESEARCH 2016; 57:307-11. [PMID: 26838131 PMCID: PMC4915538 DOI: 10.1093/jrr/rrv101] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/02/2015] [Accepted: 12/07/2015] [Indexed: 05/22/2023]
Abstract
Variations in relative biological effectiveness (RBE) from a fixed value of 1.1 are critical in proton beam therapy. To date, studies estimating RBE at multiple positions relative to the spread-out Bragg peak (SOBP) have been predominantly performed using passive scattering methods, and limited data are available for spot-scanning beams. Thus, to investigate the RBE of spot-scanning beams, Chinese hamster fibroblast V79 cells were irradiated using the beam line at the Hokkaido University Hospital Proton Therapy Center. Cells were placed at six different depths, including the entrance of the proton beam and the proximal and distal part of the SOBP. Surviving cell fractions were analyzed using colony formation assay, and cell survival curves were obtained by the curve fitted using a linear-quadratic model. RBE10 and RBE37 were 1.15 and 1.21 at the center of the SOBP, respectively. In contrast, the distal region showed higher RBE values (1.50 for RBE10 and 1.85 for RBE37). These results are in line with those of previous studies conducted using passive scattering proton beams. Taken together, these data strongly suggest that variations in RBE should be considered during treatment planning for spot-scanning beams as well as for passive scattering proton beams.
Collapse
Affiliation(s)
- Kenichiro Maeda
- Department of Radiation Medicine, Graduate School of Medicine, Hokkaido University
| | - Hironobu Yasui
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University
| | - Taeko Matsuura
- Department of Medical Physics, Proton Beam Therapy Center, Hokkaido University Hospital
| | - Tohru Yamamori
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University
| | - Motofumi Suzuki
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University
| | - Masaki Nagane
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University
| | - Jin-Min Nam
- Department of Radiation Medicine, Graduate School of Medicine, Hokkaido University Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University
| | - Osamu Inanami
- Laboratory of Radiation Biology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University
| | - Hiroki Shirato
- Department of Radiation Medicine, Graduate School of Medicine, Hokkaido University Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University
| |
Collapse
|
50
|
Vernimmen F. Intracranial Stereotactic Radiation Therapy With Charged Particle Beams: An Opportunity to Regain the Momentum. Int J Radiat Oncol Biol Phys 2016; 95:52-55. [DOI: 10.1016/j.ijrobp.2015.10.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/03/2015] [Accepted: 10/06/2015] [Indexed: 11/16/2022]
|