1
|
Fujimoto N, Mukhanbetzhanov N, Zhetkenev S, Chulenbayeva L, Fazylov T, Mukhortov M, Sato H, Zhumadilov K, Stepanenko V, Kaprin A, Ivanov S, Shegay P, Hoshi M, Kushugulova A. Gene Expression Changes in the Spleen, Lungs, and Liver of Wistar Rats Exposed to β-Emitted 31SiO 2 Particles. Int J Mol Sci 2025; 26:2693. [PMID: 40141336 PMCID: PMC11942150 DOI: 10.3390/ijms26062693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/12/2025] [Accepted: 03/15/2025] [Indexed: 03/28/2025] Open
Abstract
To understand the biological effects of residual radioactivity after the atomic bomb explosion in Hiroshima and Nagasaki, we previously investigated the effects of 56Mn, a major residual radioisotope. Our rat study demonstrated that inhalation exposure to 56MnO2 microparticles affected gene expression in the lungs, testes, and liver, despite the low radiation doses. Because 56Mn is a β- and γ-emitter, the differential effects between β- and γ-rays should be clarified. In this study, 31Si, a β-emitter with a radioactive half-life similar to that of 56Mn, was used to determine its effects. Male Wistar rats were exposed to sprayed neutron-activated 31SiO2 microparticles, stable SiO2 microparticles, or X-rays. The animals were examined on days 3 and 14 after irradiation. The expression of radiation-inducible marker genes, including Ccng1, Cdkn1a, and Phlda3, was measured in the spleen, lungs, and liver. Furthermore, the expressions of pathophysiological marker genes, including Aqp1, Aqp5, and Smad7 in the lungs and Cth, Ccl2, and Nfkb1 in the liver, were determined. Impacts of 31SiO2 exposure were observed mainly in the liver, where the expression of Cth markedly increased on post-exposure days 3 and 14. Our data suggest that internal exposure to β-emitted microparticles has significant biological effects and its possible roles as residual radiation after atomic bombing.
Collapse
Affiliation(s)
- Nariaki Fujimoto
- Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Nurislam Mukhanbetzhanov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana Z05H0P9, Kazakhstan; (N.M.); (S.Z.); (L.C.); (A.K.)
| | - Sanzhar Zhetkenev
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana Z05H0P9, Kazakhstan; (N.M.); (S.Z.); (L.C.); (A.K.)
| | - Laura Chulenbayeva
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana Z05H0P9, Kazakhstan; (N.M.); (S.Z.); (L.C.); (A.K.)
| | - Timur Fazylov
- B. Atchabarov Scientific Research Institute of Fundamental and Applied Medicine, Asfendiyarov Kazakh National Medical University, Tole Bi Street 94, Almaty 050012, Kazakhstan;
| | - Mikhail Mukhortov
- Institute of Nuclear Physics of the Ministry of Energy of the Republic of Kazakhstan, Almaty 050032, Kazakhstan;
| | - Hitoshi Sato
- Faculty of Health Sciences, Ibaraki Prefectural University of Health Sciences, Ami-machi, Inashiki-gun, Ibaraki 300-0394, Japan;
| | - Kassym Zhumadilov
- Department of Nuclear Physics, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan;
| | - Valeriy Stepanenko
- A. Tsyb Medical Radiological Research Center, Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 4 Koroleva St., Obninsk, Kaluga 249036, Russia; (V.S.); (S.I.)
| | - Andrey Kaprin
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva Str., 4., Obninsk, Kaluga 249036, Russia; (A.K.); (P.S.)
- Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow 117198, Russia
- P.A. Hertzen Moscow Oncology Research Institute-Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 2nd Botkinsky Drive 3, Moscow 125284, Russia
| | - Sergey Ivanov
- A. Tsyb Medical Radiological Research Center, Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 4 Koroleva St., Obninsk, Kaluga 249036, Russia; (V.S.); (S.I.)
- Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow 117198, Russia
| | - Peter Shegay
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva Str., 4., Obninsk, Kaluga 249036, Russia; (A.K.); (P.S.)
| | - Masaharu Hoshi
- The Center for Peace, Hiroshima University, Higashisenda-machi 1-1-89, Naka-ku, Hiroshima 730-0053, Japan;
| | - Almagul Kushugulova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana Z05H0P9, Kazakhstan; (N.M.); (S.Z.); (L.C.); (A.K.)
| |
Collapse
|
2
|
Shangzu Z, Qiyang L, Sichao D, Yutong W, Yangyang L, Yan C, Gengqiang Y, Ting Z, Zhiming M, Fuxian L, Liying Z, Yongqi L. The impact of X-rays on cardiac hydrometabolism and the regulatory role of AS-IV. Int Immunopharmacol 2024; 143:113533. [PMID: 39486184 DOI: 10.1016/j.intimp.2024.113533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/27/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Radiation-induced cardiac injury has emerged as a significant pathological entity, with many studies focusing on the fibrotic changes in myocardial tissue. However, these do not offer solutions for the clinical prevention and treatment of radiation-induced heart disease. Regulating hydrometabolism presents a potential therapeutic target for the management of cardiovascular diseases. This research seeks to explore the impacts of irradiation on cardiac hydrometabolism and its regulatory mechanisms. METHODS The impact of X-ray radiation on cardiac and cardiomyocyte hydrometabolism was studied through in vivo and in vitro experiments, examining the pharmacological effects and mechanisms of PX-478 and AS-IV interventions in cardiomyocytes. RESULTS 28 days after direct chest irradiation with 20 Gy X-rays, C57BL/6 mice exhibited an increased heart wet-to-dry weight ratio, significant enlargement of cardiomyocyte cross-sectional area, and elevated protein expression of HIF-1α, AQP1, AQP4, Cx43, Caspase3, and Bax, with decreased expression of Bcl-2. Irradiation with 6 Gy X-rays induced edema and damage in AC16 and HL-1 cardiomyocytes at 24, 48, and 72 h, with increased expression of HIF-1α, AQP1, AQP4, and Cx43 proteins post-radiation. Inhibition of HIF-1α ameliorated edema and apoptosis in AC16 and HL-1 cardiomyocytes, reducing the expression of HIF-1α, AQP1, AQP4, and Cx43 proteins. AS-IV demonstrated strong binding affinity with HIF-1α, and successfully attenuated the expression levels of HIF-1α, AQP1, AQP4, and Cx43 proteins, alleviating edema, mitochondrial swelling, and apoptosis in AC16 and HL-1 cardiomyocytes. Furthermore, AS-IV improved cardiomyocyte edema by restoring the activity of Na/K-ATPase. CONCLUSION Aberrant activation of the HIF-1α/AQPs/Cx43 axis is a key mechanism in X-ray-induced cardiomyocyte edema and damage. AS-IV can ameliorate X-ray induced cardiac damage by regulating hydrometabolism.
Collapse
Affiliation(s)
- Zhang Shangzu
- Gansu University of Chinese Medicine, LanZhou, China
| | - Li Qiyang
- Gansu University of Chinese Medicine, LanZhou, China
| | - Dai Sichao
- Gansu University of Chinese Medicine, LanZhou, China
| | - Wang Yutong
- Gansu University of Chinese Medicine, LanZhou, China
| | - Li Yangyang
- Gansu University of Chinese Medicine, LanZhou, China
| | - Chen Yan
- Gansu University of Chinese Medicine, LanZhou, China
| | | | - Zhou Ting
- Gansu University of Chinese Medicine, LanZhou, China
| | - Miao Zhiming
- Gansu University of Chinese Medicine, LanZhou, China
| | - Liu Fuxian
- Gansu University of Chinese Medicine, LanZhou, China
| | - Zhang Liying
- Gansu University of Chinese Medicine, LanZhou, China; Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China; Gansu Institute of Cardiovascular Diseases, LanZhou, China.
| | - Liu Yongqi
- Gansu University of Chinese Medicine, LanZhou, China; Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China; Key Laboratory of Dunhuang Medicine and Transformation at Provincial and Ministerial Level, Lanzhou, China.
| |
Collapse
|
3
|
Abishev Z, Ruslanova B, Apbassova S, Chaizhunussova N, Shabdarbayeva D, Azimkhanov A, Zhumadilov K, Stepanenko V, Ivanov S, Shegay P, Hoshi M, Fujimoto N. Effects of Internal Exposure of Radioactive 56MnO2 Particles on the Lung in C57BL Mice. Curr Issues Mol Biol 2023; 45:3208-3218. [PMID: 37185733 PMCID: PMC10137078 DOI: 10.3390/cimb45040209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
The investigation of the radiation effects of the atomic bombing in Hiroshima and Nagasaki has revealed concerns about the impact of the residual radioactive dust produced in the soil. Manganese-56 is one of the major radioisotopes produced by neutrons from the bomb; hence, we previously examined the biological effects of manganese dioxide-56 (56MnO2) in Wistar rats, in which significant changes were found in the lung. In the present study, ten-week-old male C57BL mice were exposed to three doses of radioactive 56MnO2, stable MnO2 particles, or external γ-rays (2 Gy) to further examine the effects of 56MnO2 in a different species. The estimated absorbed radiation doses from 56MnO2 were 26, 96, and 250 mGy in the lung. The animals were examined at 3, 14, and 70 days post exposure. Histologically, no exposure-related changes were found in the lungs of any group. However, pulmonary mRNA expression of aquaporin 1, which is a useful marker for lung pathophysiology, was significantly elevated at 14 and 70 days, although no such changes were found in the mice exposed to external γ-rays (2 Gy). These data indicated that the inhalation exposure to 56MnO2 particles, with <250 mGy of organ doses, produced significant biological responses in the lung.
Collapse
Affiliation(s)
- Zhaslan Abishev
- Department of Pathological Anatomy and Forensic Medicine, Semey Medical University, Semey 071400, Kazakhstan
| | - Bakhyt Ruslanova
- Department of Pathological Anatomy and Forensic Medicine, Semey Medical University, Semey 071400, Kazakhstan
| | - Saulesh Apbassova
- Department of Pathological Anatomy and Forensic Medicine, Semey Medical University, Semey 071400, Kazakhstan
| | | | - Dariya Shabdarbayeva
- Department of Pathological Anatomy and Forensic Medicine, Semey Medical University, Semey 071400, Kazakhstan
| | - Almas Azimkhanov
- National Nuclear Center of the Republic of Kazakhstan, Kurchatov 071100, Kazakhstan
| | - Kassym Zhumadilov
- Department of Nuclear Physics, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan
| | - Valeriy Stepanenko
- A. Tsyb Medical Radiological Research Center—National Medical Research Center of Radiology, Ministry of Health of Russian Federation, 249031 Obninsk, Russia
| | - Sergey Ivanov
- A. Tsyb Medical Radiological Research Center—National Medical Research Center of Radiology, Ministry of Health of Russian Federation, 249031 Obninsk, Russia
| | - Peter Shegay
- National Medical Research Center of Radiology, Ministry of Health of the Russian Federation, 249031 Obninsk, Russia
| | - Masaharu Hoshi
- The Center for Peace, Hiroshima University, Hiroshima 730-0053, Japan
| | - Nariaki Fujimoto
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-0037, Japan
| |
Collapse
|
4
|
Wang D, Deng B, Cheng L, Li J, Zhang J, Zhang X, Guo X, Yan T, Yue X, An Y, Zhang B, Yang W, Xie J, Wang R. A novel and low-toxic peptide DR3penA alleviates pulmonary fibrosis by regulating the MAPK/miR-23b-5p/AQP5 signaling axis. Acta Pharm Sin B 2023; 13:722-738. [PMID: 36873181 PMCID: PMC9979266 DOI: 10.1016/j.apsb.2022.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 11/01/2022] Open
Abstract
Pulmonary fibrosis (PF) is a pathological change caused by repeated injuries and repair dysfunction of the alveolar epithelium. Our previous study revealed that the residues Asn3 and Asn4 of peptide DR8 (DHNNPQIR-NH2) could be modified to improve stability and antifibrotic activity, and the unnatural hydrophobic amino acids α-(4-pentenyl)-Ala and d-Ala were considered in this study. DR3penA (DHα-(4-pentenyl)-ANPQIR-NH2) was verified to have a longer half-life in serum and to significantly inhibit oxidative damage, epithelial-mesenchymal transition (EMT) and fibrogenesis in vitro and in vivo. Moreover, DR3penA has a dosage advantage over pirfenidone through the conversion of drug bioavailability under different routes of administration. A mechanistic study revealed that DR3penA increased the expression of aquaporin 5 (AQP5) by inhibiting the upregulation of miR-23b-5p and the mitogen-activated protein kinase (MAPK) pathway, indicating that DR3penA may alleviate PF by regulating MAPK/miR-23b-5p/AQP5. Safety evaluation showed that DR3penA is a peptide drug without obvious toxicity or acute side effects and has significantly improved safety compared to DR8. Thus, our findings suggest that DR3penA, as a novel and low-toxic peptide, has the potential to be a leading compound for PF therapy, which provides a foundation for the development of peptide drugs for fibrosis-related diseases.
Collapse
Affiliation(s)
- Dan Wang
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Bochuan Deng
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lu Cheng
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jieru Li
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jiao Zhang
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiang Zhang
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaomin Guo
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tiantian Yan
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xin Yue
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yingying An
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Bangzhi Zhang
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wenle Yang
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Junqiu Xie
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Rui Wang
- Institute of Materia Medica and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Keskinidou C, Vassiliou AG, Dimopoulou I, Kotanidou A, Orfanos SE. Mechanistic Understanding of Lung Inflammation: Recent Advances and Emerging Techniques. J Inflamm Res 2022; 15:3501-3546. [PMID: 35734098 PMCID: PMC9207257 DOI: 10.2147/jir.s282695] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening lung injury characterized by an acute inflammatory response in the lung parenchyma. Hence, it is considered as the most appropriate clinical syndrome to study pathogenic mechanisms of lung inflammation. ARDS is associated with increased morbidity and mortality in the intensive care unit (ICU), while no effective pharmacological treatment exists. It is very important therefore to fully characterize the underlying pathobiology and the related mechanisms, in order to develop novel therapeutic approaches. In vivo and in vitro models are important pre-clinical tools in biological and medical research in the mechanistic and pathological understanding of the majority of diseases. In this review, we will present data from selected experimental models of lung injury/acute lung inflammation, which have been based on clinical disorders that can lead to the development of ARDS and related inflammatory lung processes in humans, including ventilation-induced lung injury (VILI), sepsis, ischemia/reperfusion, smoke, acid aspiration, radiation, transfusion-related acute lung injury (TRALI), influenza, Streptococcus (S.) pneumoniae and coronaviruses infection. Data from the corresponding clinical conditions will also be presented. The mechanisms related to lung inflammation that will be covered are oxidative stress, neutrophil extracellular traps, mitogen-activated protein kinase (MAPK) pathways, surfactant, and water and ion channels. Finally, we will present a brief overview of emerging techniques in the field of omics research that have been applied to ARDS research, encompassing genomics, transcriptomics, proteomics, and metabolomics, which may recognize factors to help stratify ICU patients at risk, predict their prognosis, and possibly, serve as more specific therapeutic targets.
Collapse
Affiliation(s)
- Chrysi Keskinidou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Alice G Vassiliou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Ioanna Dimopoulou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Anastasia Kotanidou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Stylianos E Orfanos
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| |
Collapse
|
6
|
Verma S, Dutta A, Dahiya A, Kalra N. Quercetin-3-Rutinoside alleviates radiation-induced lung inflammation and fibrosis via regulation of NF-κB/TGF-β1 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:154004. [PMID: 35219007 DOI: 10.1016/j.phymed.2022.154004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/31/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Radiation exposure to lungs during nuclear catastrophes or radiotherapy poses long-term side effects and can induce pulmonary injury sufficient for causing death. The strategies for preventing or reversing radiation-induced lung injuries have not been yet developed. Quercetin-3-Rutinoside (Q-3-R), a polyphenolic bioflavonoid, has shown multifaceted pharmacological applications due to its high antioxidant and anti-inflammatory properties. PURPOSE In the current study, the potential of Q-3-R against radiation-induced lung pneumonitis/fibrosis and the possible underlying mechanism was investigated. STUDY DESIGN To evaluate the effect of Q-3-R against lung damage, C57Bl/6 mice were administered with Q-3-R (10 mg/kg b.wt.) and irradiated with a single dose of gamma radiation (12 Gy) at thoracic region. METHODS 16 weeks after irradiation lung damage was seen by histopathological studies and staining for collagen deposition. Expression of Nuclear factor kappa-B (NF-κB), transforming growth factor-β1 (TGF-β1), Smad3, intercellular adhesion molecule 1 (ICAM-1), α-smooth muscle actin protein (α-SMA), Aquaporin 5 (AQP 5), Interleukins (IL-6, IL-18, IL-1β), tumor necrosis factor-α (TNF-α) and caspase-3 was evaluated by immunohistochemistry/western blot/Elisa. Reactive oxygen species (ROS)/ Nitric oxide (NO) scavenging potential of Q-3-R and inhibition of cell death in irradiated lungs were also assessed. RESULTS Mice showed signs of pneumonitis and fibrotic changes in lungs following radiation treatment. A dramatic increase in inflammatory cells and cytokines contributing to lung disease pathogenesis was observed. Furthermore, expression of NF-κB, TGF-β1, Smad3, ICAM-1, AQP5and α-SMA was found markedly up-regulated. However, pretreatment of Q-3-R significantly attenuated radiation-induced pneumonitis and fibrosis. Histological examination revealed less structural and fibrotic changes with down-regulation of AQP 5, ICAM-1, α-SMA and caspase-3 in Q-3-R pretreated irradiated groups. The formulation significantly relieved lung injury by suppressing inflammatory and pro-fibrotic cytokines such as IL-6, IL-18, IL-1β, TNF-α and TGF-β1 via inhibition of NF-κB. Q-3-R also curtailed radiation-induced ROS/NO generation and minimized DNA damage in the irradiated lungs. CONCLUSION The findings from the current study clearly demonstrate that Q-3-R provides radioprotection to the lungs by regulating NF-κB/TGF-β1 signaling, scavenging free radicals, preventing perivascular infiltration and prolonged inflammatory cascade which could otherwise lead to chronic radiation fibrosis. Q-3-R can be proved as a potential therapeutic agent for alleviating radiation-induced lung injury in case of planned or unplanned radiation exposure scenario.
Collapse
Affiliation(s)
- Savita Verma
- Division of Molecular and Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Brig. S.K. Mazumdar Marg, Delhi 110054, India.
| | - Ajaswrata Dutta
- Division of cBRN, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Brig. S.K. Mazumdar Marg, Delhi 110054, India
| | - Akshu Dahiya
- Division of cBRN, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Brig. S.K. Mazumdar Marg, Delhi 110054, India
| | - Namita Kalra
- Division of Molecular and Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Brig. S.K. Mazumdar Marg, Delhi 110054, India
| |
Collapse
|
7
|
Fujimoto N, Ruslanova B, Abishev Z, Chaizhunussova N, Shabdarbayeva D, Amantayeva G, Farida R, Sandybayev M, Nagano K, Zhumadilov K, Kaprin A, Ivanov S, Stepanenko V, Hoshi M. Biological impacts on the lungs in rats internally exposed to radioactive 56MnO 2 particle. Sci Rep 2021; 11:11055. [PMID: 34040066 PMCID: PMC8155131 DOI: 10.1038/s41598-021-90443-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/16/2021] [Indexed: 01/27/2023] Open
Abstract
To understand the radiation effects of the atomic bombing of Hiroshima and Nagasaki among the survivors, radiation from neutron-induced radioisotopes in soil should be considered in addition to the initial radiation directly received from the bombs. 56Mn, which emits both β particles and γ-rays, is one of the dominant radioisotopes created in soil by neutrons from the bomb. Thus we investigated the biological effects of internal exposure to 56MnO2 particle in the lung of male Wistar rats comparing to the effects of external 60Co-γ irradiation. Absorbed doses of internal irradiation of lungs were between 25 and 65 mGy in 56MnO2-exposed animals, while the whole body doses were between 41 and 100 mGy. Animals were examined on days 3 and 61 after the exposure. There were no remarkable pathological changes related to 56MnO2 particle exposure. However, mRNA and protein expressions of aquaporin 5 increased significantly in the lung tissue on day 3 postexposure in 56MnO2 groups (by 1.6 and 2.9 times, respectively, in the highest dose group). Smad7 mRNA expression was also significantly elevated by 30% in the highest dose group of 56MnO2. Our data demonstrated that internal exposure to 56MnO2 induced significant biological responses including gene expression changes in the lungs, while external 60Co-γ irradiation of 2 Gy did not show any changes.
Collapse
Affiliation(s)
- Nariaki Fujimoto
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.
| | | | | | | | | | | | | | - Marat Sandybayev
- Center of Nuclear Medicine and Oncology of Semey, Semey, Kazakhstan
| | - Kasuke Nagano
- Nagano Toxicologic-Pathology Consulting, Kanagawa, Japan
| | | | - Andrey Kaprin
- National Medical Research Center of Radiology, Ministry of Health of Russian Federation, Obninsk, Russia
| | - Sergey Ivanov
- National Medical Research Center of Radiology, Ministry of Health of Russian Federation, Obninsk, Russia
| | - Valeriy Stepanenko
- National Medical Research Center of Radiology, Ministry of Health of Russian Federation, Obninsk, Russia
| | - Masaharu Hoshi
- The Center for Peace, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
8
|
Wang J, Wang Y, Lou Y, Cui W, Zhang Y, Dong W, Sun J, Miao L. Effect of aquaporin 1 on mouse peritoneal mesothelial cells after a long-term peritoneal dialysis. Ther Apher Dial 2021; 25:88-96. [PMID: 32311233 DOI: 10.1111/1744-9987.13504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/03/2020] [Accepted: 04/16/2020] [Indexed: 12/01/2022]
Abstract
Aquaporin 1 (AQP1) is one member of the aquaporin family, also the deeply studied one. It is widely located on the endothelial cells, but the effect of AQP1 on the peritoneal mesothelial cells (PMCs) after long-term peritoneal dialysis (PD) has not been reported before. We divided normal mice into two groups, control group and dialysis group, to confirm the fibrotic changes and expression of APQ1 on peritoneal mesothelial cells. Then we assigned normal mice and AQP1 knockout mice into four groups: Control group, normal dialysis group, AQP1 knockout control group and AQP1 knockout dialysis group. The two dialysis groups received 4.25% glucose dialysis for 28 days. We found that mice in both dialysis groups showed peritoneal fibrotic changes, which were most severe in the AQP1 knockout dialysis group; the peritoneal thickness in the AQP1 knockout dialysis group was also thicker than that in the dialysis group (P < .05). We used electron microscopy to detect ultrastructural changes and observed changes in microvilli and vacuolar degeneration in mesothelial cells from all groups except the control group. The basement membranes were damaged in the AQP1 knockout dialysis group, and peritoneal mesothelial cells were disrupted and detached in this group. Together our findings indicate that AQP1 plays an important role in maintaining the physiological functions of peritoneal mesothelial cells, and AQP1 can protect mesothelial cells during dialysis.
Collapse
Affiliation(s)
- Ji Wang
- Department of Pediatrics, Second Hospital of Jilin University, Changchun, China
| | - Yangwei Wang
- Department of Nephrology, Second Hospital of Jilin University, Changchun, China
| | - Yan Lou
- Department of Nephrology, Second Hospital of Jilin University, Changchun, China
| | - Wenpeng Cui
- Department of Nephrology, Second Hospital of Jilin University, Changchun, China
| | - Yunfeng Zhang
- Department of Pediatrics, Second Hospital of Jilin University, Changchun, China
| | - Wenpeng Dong
- Department of Hemodialysis Center, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| | - Jing Sun
- Department of Nephrology, Second Hospital of Jilin University, Changchun, China
| | - Lining Miao
- Department of Nephrology, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Yadav E, Yadav N, Hus A, Yadav JS. Aquaporins in lung health and disease: Emerging roles, regulation, and clinical implications. Respir Med 2020; 174:106193. [PMID: 33096317 DOI: 10.1016/j.rmed.2020.106193] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/17/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022]
Abstract
Aquaporins (AQPs) aka water channels are a family of conserved transmembrane proteins (~30 kDa monomers) expressed in various organ systems. Of the 13 AQPs (AQP0 through AQP12) in the human body, four (AQPs 1, 3, 4, and 5) are expressed in the respiratory system. These channels are conventionally known for mediating transcellular fluid movements. Certain AQPs (aquaglyceroporins) have the capability to transport glycerol and potentially other solutes. There is an emerging body of literature unveiling the non-conventional roles of AQPs such as in cell proliferation and migration, gas permeation, signal potentiation, etc. Initial gene knock-out studies established a physiological role for lung AQPs, particularly AQP5, in maintaining homeostasis, by mediating fluid secretion from submucosal glands onto the airway surface liquid (ASL) lining. Subsequent studies have highlighted the functional significance of AQPs, particularly AQP1 and AQP5 in lung pathophysiology and diseases, including but not limited to chronic and acute lung injury, chronic obstructive pulmonary disease (COPD), other inflammatory lung conditions, and lung cancer. AQP1 has been suggested as a potential prognostic marker for malignant mesothelioma. Recent efforts are directed toward exploiting AQPs as targets for diagnosis, prevention, intervention, and/or treatment of various lung conditions. Emerging information on regulatory pathways and directed mechanistic research are posited to unravel novel strategies for these clinical implications. Future considerations should focus on development of AQP inhibitors, blockers, and modulators for therapeutic needs, and better understanding the role of lung-specific AQPs in inter-individual susceptibility to chronic lung diseases such as COPD and cancer.
Collapse
Affiliation(s)
- Ekta Yadav
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Niket Yadav
- Medical Scientist Training Program, University of Virginia School of Medicine, Charlottesville, VA, 22908-0738, USA
| | - Ariel Hus
- Department of Biology, University of Miami, Coral Gables, Florida, 33146, USA
| | - Jagjit S Yadav
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
10
|
Wang JJ, Kong H, Xu J, Wang YL, Wang H, Xie WP. Fasudil alleviates LPS-induced lung injury by restoring aquaporin 5 expression and inhibiting inflammation in lungs. J Biomed Res 2019; 33:156-163. [PMID: 28963443 PMCID: PMC6551422 DOI: 10.7555/jbr.31.20170024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fasudil, a selective rho kinase (ROCK) inhibitor, has been reported to play a beneficial role in systemic?inflammation?in acute?lung injury, but its mechanism for ameliorating pulmonary edema and inflammation remains unclear. Using hematoxylin-and-eosin (H&E) staining, immunohistochemistry, enzyme-linked immunosorbent assay, quantitative real time PCR and Western blotting, we found that fasudil attenuated LPS-induced lung injury, decreased lung edema, and suppressed inflammatory responses including leukocyte infiltration and IL-6 production. Further, fasudil upregulated LPS-induced aquaporin 5 reduction and inhibited NF-κB activation in the lungs of mice. Our results suggest that fasudil could restore the expression of aquaporin 5 to eliminate LPS-induced lung edema and prevent LPS-induced pulmonary inflammation by blocking the inflammatory pathway. Collectively, blockade of the ROCK pathway by fasudil may be a potential strategy for the treatment of acute lung injury.
Collapse
Affiliation(s)
- Jing-Jing Wang
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hui Kong
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jian Xu
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yan-Li Wang
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hong Wang
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wei-Ping Xie
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
11
|
Li Y, Lu H, Lv X, Tang Q, Li W, Zhu H, Long Y. Blockade of Aquaporin 4 Inhibits Irradiation-Induced Pulmonary Inflammation and Modulates Macrophage Polarization in Mice. Inflammation 2019; 41:2196-2205. [PMID: 30091034 DOI: 10.1007/s10753-018-0862-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To investigate the effects of aquaporin 4 (AQP4) inhibitor in irradiation-induced pulmonary inflammation in mice. A single dose of 75 Gy was delivered to the left lung of mice to induce radiation pneumonitis. For inhibition of AQP4, 200 mg/kg of TGN-020 was administered i.p. one time per 2 days post-irradiation. Blockade of AQP4 with TGN-020 resulted in the inhibition of inflammatory cell infiltration and the downregulation of inflammatory cytokines (IL-6, IL-17, and TGF-β), chemokines (MIP1a and MCP1), fibrosis-related (Col3al and Fn1), and M2 macrophage marker (Arg1) post-irradiation. Immunofluorescence staining indicated that there was significant fewer M2 macrophage infiltration in the irradiated lung tissues from mice treated with TGN-020. Additionally, depletion of macrophages with liposome clodronate resulted in alleviated lung injury induced by irradiation. Furthermore, adoptive transfer of M1 or M2 macrophages into clodronate-treated mice was performed. The results showed that the administration of M2 macrophages fully reversed the clodronate-induced beneficial effect on inflammation score, thickness, and fibrosis. However, transfer of M1 macrophages only impacted the inflammation score and thickness and did not affect lung fibrosis. AQP4 blockade alleviated the development and severity of irradiated lung damage. This was associated with attenuated infiltration of inflammatory cell, decreased production of pro-inflammatory cytokines, and inhibited activation of M2 macrophages.
Collapse
Affiliation(s)
- Yuhui Li
- Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongda Lu
- Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojuan Lv
- Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiu Tang
- Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wangxia Li
- HLA Typing Laboratory, Blood Center of Wuhan, Wuhan, China
| | - Hongfei Zhu
- Department of Anesthesiology, Hubei Provincial Hospital of Traditional Chinese Medical, Hubei Provincial Academy of Traditional Chinese Medicine, Wuhan, China
| | - Yuan Long
- Department of Cardiaovascular Medicine, Wuhan Women and Children Medical Care Center, Tongji Medical College, Huazhong University of Science and Technology, Xianggang Road 16#, Jianghan District, Wuhan, 430000, Hubei, China.
| |
Collapse
|
12
|
Yamashita T, Asano Y, Saigusa R, Taniguchi T, Nakamura K, Miura S, Toyama T, Takahashi T, Ichimura Y, Hirabayashi M, Yoshizaki A, Miyagaki T, Sugaya M, Sato S. Increased expression of aquaporin-1 in dermal fibroblasts and dermal microvascular endothelial cells possibly contributes to skin fibrosis and edema in patients with systemic sclerosis. J Dermatol Sci 2018; 93:24-32. [PMID: 30270117 DOI: 10.1016/j.jdermsci.2018.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/27/2018] [Accepted: 09/18/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Aquaporin-1 (AQP1), a water channel protein controlling the water contents of cells and tissues, exerts pleiotropic effects on various biological activities, including inflammation, angiogenesis, and extracellular matrix remodeling, by regulating cell behaviors and tissue water balance. OBJECTIVE To investigate AQP1 roles in systemic sclerosis (SSc) which is characterized by autoimmune inflammation, vasculopathy, and tissue fibrosis. METHODS AQP1 expression was evaluated by immunohistochemistry and quantitative reverse transcription PCR in skin samples from human and animal models and by immunoblotting in cultured cells. Fli1 binding to the AQP1 promoter was evaluated by chromatin immunoprecipitation. Cell migration was assessed by scratch assay. RESULTS Dermal fibroblasts and endothelial cells highly expressed AQP1 in SSc lesional skin, and AQP1 expression in dermal fibroblasts and endothelial cells positively correlated with the degrees of tissue fibrosis and edema, respectively. Consistently, SSc dermal fibroblasts up-regulated AQP1 compared with normal dermal fibroblasts in vitro. Furthermore, TGF-β stimulation induced AQP1 expression in normal dermal fibroblasts, while TGF-β1 antisense oligonucleotide suppressed AQP1 expression in SSc dermal fibroblasts. In endothelial cells, Fli1 deficiency resulted in AQP1 up-regulation in vivo and in vitro and Fli1 bound to the AQP1 promoter. Importantly, SSc dermal fibroblasts and FLI1 siRNA-treated endothelial cells had a pro-migratory property, which was remarkably diminished by gene silencing of AQP1. CONCLUSION AQP1 is up-regulated in SSc dermal fibroblasts and SSc endothelial cells at least partially due to autocrine TGF-β stimulation and Fli1 deficiency, respectively, possibly contributing to inflammation, vasculopathy, and tissue fibrosis by regulating tissue edema and cell migration.
Collapse
Affiliation(s)
- Takashi Yamashita
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan
| | - Yoshihide Asano
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan.
| | - Ryosuke Saigusa
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan
| | - Takashi Taniguchi
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan
| | - Kouki Nakamura
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan
| | - Shunsuke Miura
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan
| | - Tetsuo Toyama
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan
| | - Takehiro Takahashi
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan
| | - Yohei Ichimura
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan
| | - Megumi Hirabayashi
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan
| | - Ayumi Yoshizaki
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan
| | - Tomomitsu Miyagaki
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan
| | - Makoto Sugaya
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan
| | - Shinichi Sato
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan
| |
Collapse
|
13
|
Pires-Neto RC, Del Carlo Bernardi F, Alves de Araujo P, Mauad T, Dolhnikoff M. The Expression of Water and Ion Channels in Diffuse Alveolar Damage Is Not Dependent on DAD Etiology. PLoS One 2016; 11:e0166184. [PMID: 27835672 PMCID: PMC5106024 DOI: 10.1371/journal.pone.0166184] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/24/2016] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Aquaporins and ion channels are membrane proteins that facilitate the rapid movement of water and solutes across biological membranes. Experimental and in vitro studies reported that the function of these channels and pulmonary edema resolution are impaired in acute lung injury (ALI). Although current evidence indicates that alveolar fluid clearance is impaired in patients with ALI/diffuse alveolar damage (DAD), few human studies have addressed the alterations in pulmonary channels in this clinical condition. Additionally, it is not known whether the primary cause of DAD is a relevant variable for the channel dysfunction. METHODS Autopsied lungs of 43 patients with acute respiratory failure (ARF) due to DAD of three different etiologies, non-pulmonary sepsis, H1N1 viral infection and leptospirosis, were compared to 18 normal lungs. We quantified the expression of aquaporin (AQP) 1, AQP3, AQP5, epithelial Na+ channel (ENaC) and sodium potassium ATPase (Na-K-ATPase) in the alveolar septum using immunohistochemistry and image analysis. RESULTS The DAD group presented with increased expression of AQP3, AQP5 and Na-K-ATPase and decreased expression of ENaC compared to controls. However, there was no difference in protein expression within the DAD groups of different etiologies. CONCLUSION Water and ion channels are altered in patients with ARF due to DAD. The cause of DAD does not seem to influence the level of impairment of these channels.
Collapse
Affiliation(s)
- Ruy Camargo Pires-Neto
- Departamento de Patologia da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | | | - Priscila Alves de Araujo
- Departamento de Patologia da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Thais Mauad
- Departamento de Patologia da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Marisa Dolhnikoff
- Departamento de Patologia da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
14
|
Wang L, Shan Y, Ye Y, Jin L, Zhuo Q, Xiong X, Zhao X, Lin L, Miao J. COX-2 inhibition attenuates lung injury induced by skeletal muscle ischemia reperfusion in rats. Int Immunopharmacol 2015; 31:116-22. [PMID: 26724476 DOI: 10.1016/j.intimp.2015.12.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 11/30/2015] [Accepted: 12/16/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Skeletal muscle ischemia reperfusion accounts for high morbidity and mortality, and cyclooxygenase (COX)-2 is implicated in causing muscle damage. Downregulation of aquaporin-1 (AQP-1) transmembrane protein is implicated in skeletal muscle ischemia reperfusion induced remote lung injury. The expression of COX-2 in lung tissue and the effect of COX-2 inhibition on AQP-1 expression and lung injury during skeletal muscle ischemia reperfusion are not known. We investigated the role of COX-2 in lung injury induced by skeletal muscle ischemia reperfusion in rats and evaluated the effects of NS-398, a specific COX-2 inhibitor. METHODS Twenty-four Sprague Dawley rats were randomized into 4 groups: sham group (SM group), sham+NS-398 group (SN group), ischemia reperfusion group (IR group) and ischemia reperfusion+NS-398 group (IN group). Rats in the IR and IN groups were subjected to 3h of bilateral ischemia followed by 6h of reperfusion in hindlimbs, and intravenous NS-398 8 mg/kg was administered in the IN group. In the SM and SN groups, rubber bands were in place without inflation. At the end of reperfusion, myeloperoxidase (MPO) activity, COX-2 and AQP-1 protein expression in lung tissue, PGE2 metabolite (PGEM), tumor necrosis factor (TNF)-α and interleukin (IL)-1β levels in bronchoalveolar lavage (BAL) fluid were assessed. Histological changes in lung and muscle tissues and wet/dry (W/D) ratio were also evaluated. RESULTS MPO activity, COX-2 expression, W/D ratio in lung tissue, and PGEM, TNF-α and IL-1β levels in BAL fluid were significantly increased, while AQP-1 protein expression downregulated in the IR group as compared to that in the SM group (P<0.05). These changes were remarkably mitigated in the IN group (P<0.05). NS-398 treatment also alleviated histological signs of lung and skeletal muscle injury. CONCLUSION COX-2 protein expression was upregulated in lung tissue in response to skeletal muscle ischemia reperfusion. COX-2 inhibition may modulate pulmonary AQP-1 expression and attenuate lung injury.
Collapse
Affiliation(s)
- Liangrong Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, People's Republic of China.
| | - Yuanlu Shan
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, People's Republic of China.
| | - Yuzhu Ye
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, People's Republic of China.
| | - Lida Jin
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, People's Republic of China.
| | - Qian Zhuo
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, People's Republic of China.
| | - Xiangqing Xiong
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, People's Republic of China.
| | - Xiyue Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, People's Republic of China.
| | - Lina Lin
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, People's Republic of China.
| | - JianXia Miao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, People's Republic of China.
| |
Collapse
|
15
|
Regulatory T Cells Promote β-Catenin–Mediated Epithelium-to-Mesenchyme Transition During Radiation-Induced Pulmonary Fibrosis. Int J Radiat Oncol Biol Phys 2015; 93:425-35. [DOI: 10.1016/j.ijrobp.2015.05.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 05/19/2015] [Accepted: 05/26/2015] [Indexed: 11/17/2022]
|
16
|
Xiong S, Guo R, Yang Z, Xu L, Du L, Li R, Xiao F, Wang Q, Zhu M, Pan X. Treg depletion attenuates irradiation-induced pulmonary fibrosis by reducing fibrocyte accumulation, inducing Th17 response, and shifting IFN-γ, IL-12/IL-4, IL-5 balance. Immunobiology 2015. [PMID: 26224246 DOI: 10.1016/j.imbio.2015.07.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Irradiation-induced pulmonary fibrosis results from thoracic radiotherapy and severely limits radiotherapy approaches. CD4(+) CD25(+) FoxP3(+) regulatory T cells (Tregs) are involved in experimentally induced murine lung fibrosis. However, the precise contribution of Tregs to irradiation-induced pulmonary fibrosis still remains unclear. We have previously established the mouse model of irradiation-induced pulmonary fibrosis and observed an increased frequency of Tregs during the process. This study aimed to investigate the effects of Treg depletion on irradiation-induced pulmonary fibrosis and on fibrocyte, Th17 cell response and production of multiple cytokines in mice. Treg-depleted mice were generated by intraperitoneal injection with anti-CD25 mAb 2h after 20 Gy (60)CO γ-ray thoracic irradiation and every 7 days thereafter. Pulmonary fibrosis was semi-quantitatively assessed using Masson's trichrome staining. The proportions of Tregs, fibrocyte and Th17 cells were detected by flow cytometry. Th1/Th2 cytokines were assessed by Luminex assays. We found that Treg depletion decelerated the process of irradiation-induced pulmonary fibrosis and hindered fibrocyte recruitment to the lung. In response to Treg depletion, the number of CD4(+) T lymphocytes and Th17 cells increased. Moreover, Th1/Th2 cytokine balance was disturbed into Th1 dominance upon Treg depletion. Our study demonstrates that Tregs are involved in irradiation-induced pulmonary fibrosis by promoting fibrocyte accumulation, attenuating Th17 response and regulating Th1/Th2 cytokine balance in the lung tissues, which suggests that Tregs may be therapeutically manipulated to decelerate the progression of irradiation-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Shanshan Xiong
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Renfeng Guo
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109-0602,USA
| | - Zhihua Yang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Long Xu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Li Du
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ruoxi Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Fengjun Xiao
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Qianjun Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Maoxiang Zhu
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Xiujie Pan
- Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
17
|
Fang XM, Hu CH, Hu XY, Yao XJ, Qian PY, Zhou JY, Guo J, Lerner A. An Appreciation for the Rabbit Ladderlike Modeling of Radiation-induced Lung Injury with High-energy X-Ray. Chin Med J (Engl) 2015; 128:1636-42. [PMID: 26063366 PMCID: PMC4733745 DOI: 10.4103/0366-6999.158323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND To evaluate the utility of rabbit ladderlike model of radiation-induced lung injury (RILI) for the future investigation of computed tomography perfusion. METHODS A total of 72 New Zealand rabbits were randomly divided into two groups: 36 rabbits in the test group were administered 25 Gy of single fractionated radiation to the whole lung of unilateral lung; 36 rabbits in the control group were sham-radiated. All rabbits were subsequently sacrificed at 1, 6, 12, 24, 48, 72 h, and 1, 2, 4, 8,1 6, 24 weeks after radiation, and then six specimens were extracted from the upper, middle and lower fields of the bilateral lungs. The pathological changes in these specimens were observed with light and electron microscopy; the expression of tumor necrosis factor-α (TNF-a) and transforming growth factor-β₁ (TGF-β₁) in local lung tissue was detected by immunohistochemistry. RESULTS (1) Radiation-induced lung injury occurred in all rabbits in the test group. (2) Expression of TNF-a and TGF-β₁ at 1 h and 48 h after radiation, demonstrated a statistically significant difference between the test and control groups (each P < 0.05). (3) Evaluation by light microscopy demonstrated statistically significant differences between the two groups in the following parameters (each P < 0.05): thickness of alveolar wall, density of pulmonary interstitium area (1 h after radiation), number of fibroblasts and fibrocytes in interstitium (24 h after radiation). The test group metrics also correlated well with the time of postradiation. (4) Evaluation by electron microscopy demonstrated statistically significant differences in the relative amounts of collagen fibers at various time points postradiation in the test group (P < 0.005), with no significant differences in the control group (P > 0.05). At greater than 48 h postradiation the relative amount of collagen fibers in the test groups significantly differ from the control groups (each P < 0.05), correlating well with the time postradiation (r = 0.99318). CONCLUSIONS A consistent and reliable rabbit model of RILI can be generated in gradient using 25 Gy of high-energy X-ray, which can simulate the development and evolution of RILI.
Collapse
Affiliation(s)
| | - Chun-Hong Hu
- Imaging Center, The First Affiliated Hospital of Soochow University, Jiangsu 215006; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu 215123, China
| | | | | | | | | | | | | |
Collapse
|