1
|
He B, Xu HM, Li SW, Zhang YF, Tian JW. Emerging regulatory roles of noncoding RNAs induced by bisphenol a (BPA) and its alternatives in human diseases. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124447. [PMID: 38942269 DOI: 10.1016/j.envpol.2024.124447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Bisphenols (BPs), including BPA, BPF, BPS, and BPAF, are synthetic phenolic organic compounds and endocrine-disrupting chemicals. These organics have been broadly utilized to produce epoxy resins, polycarbonate plastics, and other products. Mounting evidence has shown that BPs, especially BPA, may enter into the human body and participate in the development of human diseases mediated by nuclear hormone receptors. Moreover, BPA may negatively affect human health at the epigenetic level through processes such as DNA methylation and histone acetylation. Recent studies have demonstrated that, as part of epigenetics, noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and small nucleolar RNAs (snoRNAs), have vital impacts on BP-related diseases, such as reproductive system diseases, nervous system diseases, digestive system diseases, endocrine system diseases, and other diseases. Moreover, based on the bioinformatic analysis, changes in ncRNAs may be relevant to normal activities and functions and BP-induced diseases. Thus, we conducted a meta-analysis to identify more promising ncRNAs as biomarkers and therapeutic targets for BP exposure and relevant human diseases. In this review, we summarize the regulatory functions of ncRNAs induced by BPs in human diseases and latent molecular mechanisms, as well as identify prospective biomarkers and therapeutic targets for BP exposure and upper diseases.
Collapse
Affiliation(s)
- Bo He
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Hai-Ming Xu
- Department of Occupational and Environmental Medicine, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Shu-Wei Li
- Department of Neurology, Qingdao Huangdao District Central Hospital, Qingdao 266555, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China.
| | - Jia-Wei Tian
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
2
|
Bi G, Zhang L. Hsa_circ_0001480 affects osteosarcoma progression by regulating the miR-363-3p/IBSP pathway. Biotechnol Appl Biochem 2024; 71:721-732. [PMID: 38409882 DOI: 10.1002/bab.2571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/10/2024] [Indexed: 02/28/2024]
Abstract
Osteosarcoma (OS) is a malignant bone tumor that commonly affects young individuals. Circular RNAs (circRNAs) are associated with OS progression. In this study, we aimed to determine the role of hsa_circ_0001480 (circ_0001480) in OS development. OS cell invasion, viability, and colony numbers were assessed via transwell, cell counting kit-8, and colony formation assays, respectively. Tumor growth in vivo was also assessed using an OS mouse model. Additionally, targeted associations among the integrin-binding sialoprotein (IBSP), microRNA (miR)-363-3p, and circ_0001480 were evaluated via RNA immunoprecipitation and dual luciferase reporter assays, whereas their expression levels in OS cells and tissues were determined via quantitative reverse transcription-polymerase chain reaction and western blotting. Loss of circ_0001480 or IBSP significantly inhibited the proliferation and invasion of OS cells, but this effect was reversed by miR-363-3p downregulation. Moreover, circ_0001480 knockdown inhibited neoplasm growth in vivo. circ_0001480 directly bound to miR-363-3p, which further modulated IBSP. Both circ_0001480 and IBSP levels were high, whereas miR-363-3p levels were low in OS cells. Furthermore, low miR-363-3p levels attenuated the suppressive effects of circ_0001480 silencing on the proliferation and invasion of OS cells; however, loss of IBSP partially reversed these effects. Overall, our findings revealed circ_0001480 an oncogenic circRNA stimulating OS progression by modulating the miR-363-3p/IBSP pathway, suggesting its potential for OS treatment.
Collapse
Affiliation(s)
- Guijuan Bi
- Department of Rehabilitation Medicine, Wuhan Fourth Hospital, Wuhan, Hubei, China
| | - Li Zhang
- Department of Rehabilitation Medicine, Wuhan Fourth Hospital, Wuhan, Hubei, China
| |
Collapse
|
3
|
Nasimi Shad A, Fanoodi A, Maharati A, Akhlaghipour I, Bina AR, Saburi E, Forouzanfar F, Moghbeli M. Role of microRNAs in tumor progression by regulation of kinesin motor proteins. Int J Biol Macromol 2024; 270:132347. [PMID: 38754673 DOI: 10.1016/j.ijbiomac.2024.132347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Aberrant cell proliferation is one of the main characteristics of tumor cells that can be affected by many cellular processes and signaling pathways. Kinesin superfamily proteins (KIFs) are motor proteins that are involved in cytoplasmic transportations and chromosomal segregation during cell proliferation. Therefore, regulation of the KIF functions as vital factors in chromosomal stability is necessary to maintain normal cellular homeostasis and proliferation. KIF deregulations have been reported in various cancers. MicroRNAs (miRNAs) and signaling pathways are important regulators of KIF proteins. MiRNAs have key roles in regulation of the cell proliferation, migration, and apoptosis. In the present review, we discussed the role of miRNAs in tumor biology through the regulation of KIF proteins. It has been shown that miRNAs have mainly a tumor suppressor function via the KIF targeting. This review can be an effective step to introduce the miRNAs/KIFs axis as a probable therapeutic target in tumor cells.
Collapse
Affiliation(s)
- Arya Nasimi Shad
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Fanoodi
- Student Research Committee, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Reza Bina
- Student Research Committee, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Ehsan Saburi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Forouzanfar
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Kashefi S, Mohammadi-Yeganeh S, Ghorbani-Bidkorpeh F, Shabani M, Koochaki A, Safarzadeh M, Hoseini MHM. Anti-cancer Effects of a Chitosan Based Nanoformulation Expressing miR-340 on 4T1 Breast Cancer Cells. J Pharm Sci 2024; 113:445-454. [PMID: 37806438 DOI: 10.1016/j.xphs.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
MicroRNAs (miRNAs) have a crucial role in the regulation of gene expression in tumor development, invasion, and metastasis. Herein, miRNA-340 (miR-340) has been shown to play tumor suppressor activity in breast cancer (BC). However, the clinical applications of miRNAs request the development of safe and effective delivery systems capable of protecting nucleic acids from degradation. In this study, biodegradable chitosan nanoparticles incorporating miR-340 plasmid DNA (pDNA) (miR-340 CNPs) were synthesized and characterized. Then, the anti-tumor effects of miR-340 CNPs were investigated using 4T1 BCE cells. The spherical nanoparticles (NPs) with an appropriate mean diameter of around 266 ± 9.3 nm and zeta potential of +17 ± 1.8 mV were successfully prepared. The NPs showed good stability, high entrapment efficiency and a reasonable release behavior, meanwhile their high resistance against enzymatic degradation was verified. Furthermore, NPs demonstrated appropriate transfection efficiency and could induce apoptosis, so had toxicity in 4T1 BCE cells. Also, CD47 expression on the surface of cancer cells was significantly reduced after treatment with miR-340 CNPs. The results showed that miR-340 CNPs augmented the expression of P-27 in BC cells. Furthermore, miR-340 CNPs caused down-regulation of BRP-39 (breast regression protein-39) increasingly suggested as a prognostic biomarker for neoplastic diseases like BC. In conclusion, our data show that miR-340 CNPs can be considered as a promising new platform for BC gene therapy.
Collapse
Affiliation(s)
- Sarvenaz Kashefi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ghorbani-Bidkorpeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ameneh Koochaki
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mostafa Haji Molla Hoseini
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Saha S, Rebouh NY. Anti-Osteoarthritis Mechanism of the Nrf2 Signaling Pathway. Biomedicines 2023; 11:3176. [PMID: 38137397 PMCID: PMC10741080 DOI: 10.3390/biomedicines11123176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative disease and the primary pathogenic consequence of OA is inflammation, which can affect a variety of tissues including the synovial membrane, articular cartilage, and subchondral bone. The development of the intra-articular microenvironment can be significantly influenced by the shift of synovial macrophages between pro-inflammatory and anti-inflammatory phenotypes. By regulating macrophage inflammatory responses, the NF-κB signaling route is essential in the therapy of OA; whereas, the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway appears to manage the relationship between oxidative stress and inflammation. Additionally, it has been demonstrated that under oxidative stress and inflammation, there is a significant interaction between transcriptional pathways involving Nrf2 and NF-κB. Studying how Nrf2 signaling affects inflammation and cellular metabolism may help us understand how to treat OA by reprogramming macrophage behavior because Nrf2 signaling is thought to affect cellular metabolism. The candidates for treating OA by promoting an anti-inflammatory mechanism by activating Nrf2 are also reviewed in this paper.
Collapse
Affiliation(s)
- Sarmistha Saha
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Nazih Y. Rebouh
- Department of Environmental Management, Institute of Environmental Engineering, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| |
Collapse
|
6
|
Dioguardi M, Spirito F, Iacovelli G, Sovereto D, Laneve E, Laino L, Caloro GA, Nabi AQ, Ballini A, Lo Muzio L, Troiano G. The Potential microRNA Prognostic Signature in HNSCCs: A Systematic Review. Noncoding RNA 2023; 9:54. [PMID: 37736900 PMCID: PMC10514860 DOI: 10.3390/ncrna9050054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are often diagnosed at advanced stages, incurring significant high mortality and morbidity. Several microRNAs (miRs) have been identified as pivotal players in the onset and advancement of HNSCCs, operating as either oncogenes or tumor suppressors. Distinctive miR patterns identified in tumor samples, as well as in serum, plasma, or saliva, from patients have significant clinical potential for use in the diagnosis and prognosis of HNSCCs and as potential therapeutic targets. The aim of this study was to identify previous systematic reviews with meta-analysis data and clinical trials that showed the most promising miRs in HNSCCs, enclosing them into a biomolecular signature to test the prognostic value on a cohort of HNSCC patients according to The Cancer Genome Atlas (TCGA). Three electronic databases (PubMed, Scopus, and Science Direct) and one registry (the Cochrane Library) were investigated, and a combination of keywords such as "signature microRNA OR miR" AND "HNSCC OR LSCC OR OSCC OR oral cancer" were searched. In total, 15 systematic literature reviews and 76 prognostic clinical reports were identified for the study design and inclusion process. All survival index data were extracted, and the three miRs (miR-21, miR-155, and miR-375) most investigated and presenting the largest number of patients included in the studies were selected in a molecular biosignature. The difference between high and low tissue expression levels of miR-21, miR-155, and miR-375 for OS had an HR = 1.28, with 95% CI: [0.95, 1.72]. In conclusion, the current evidence suggests that miRNAs have potential prognostic value to serve as screening tools for clinical practice in HNSCC follow-up and treatment. Further large-scale cohort studies focusing on these miRNAs are recommended to verify the clinical utility of these markers individually and/or in combination.
Collapse
Affiliation(s)
- Mario Dioguardi
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (G.I.); (D.S.); (E.L.); (A.B.); (L.L.M.); (G.T.)
| | - Francesca Spirito
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (G.I.); (D.S.); (E.L.); (A.B.); (L.L.M.); (G.T.)
| | - Giovanna Iacovelli
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (G.I.); (D.S.); (E.L.); (A.B.); (L.L.M.); (G.T.)
| | - Diego Sovereto
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (G.I.); (D.S.); (E.L.); (A.B.); (L.L.M.); (G.T.)
| | - Enrica Laneve
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (G.I.); (D.S.); (E.L.); (A.B.); (L.L.M.); (G.T.)
| | - Luigi Laino
- Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, University of Campania “Luigi Vanvitelli”, 80121 Naples, Italy;
| | - Giorgia Apollonia Caloro
- Unità Operativa Nefrologia e Dialisi, Presidio Ospedaliero Scorrano, ASL (Azienda Sanitaria Locale) Lecce, Via Giuseppina Delli Ponti, 73020 Scorrano, Italy;
| | - Ari Qadir Nabi
- Biology Department, Salahaddin University-Erbil, Erbil 44001, Kurdistan, Iraq;
| | - Andrea Ballini
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (G.I.); (D.S.); (E.L.); (A.B.); (L.L.M.); (G.T.)
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (G.I.); (D.S.); (E.L.); (A.B.); (L.L.M.); (G.T.)
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, Via Rovelli 50, 71122 Foggia, Italy; (F.S.); (G.I.); (D.S.); (E.L.); (A.B.); (L.L.M.); (G.T.)
| |
Collapse
|
7
|
Yue W, Ye Y, Chen B, Wu D, Wang H, Hui G. CircRNA PDE3B regulates tumorigenicity via the miR-136-5p/MAP3K2 axis of esophageal squamous cell carcinoma. Histol Histopathol 2023; 38:1029-1041. [PMID: 36533720 DOI: 10.14670/hh-18-567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
BACKGROUND CircRNA has a covalently closed circular conformation and a stable structure. However, the exact role of circRNA in esophageal squamous cell carcinoma (ESCC) remains uncertain. The purpose of this study was to explore the role of hsa_circ_0000277 (circ_PDE3B) in ESCC. METHODS The expression levels of circ_PDE3B, miR-136-5p and mitogen-activated protein kinase kinase kinase 2 (MAP3K2) in ESCC tissues and cells were detected by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. The proliferation ability of EC9706 and KYSE30 cells was detected by clonal formation, 5-ethynyl-2'-deoxyuridine (EdU) and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assays. Flow cytometry was used to detect the apoptosis rate of cells. Transwell assay was used to detect the invasion ability of EC9706 and KYSE3 cells. The relationship between miR-136-5p and circ_PDE3B or MAP3K2 was verified by dual-luciferase reporter assay and RNA pull-down, and the effect of circ_PDE3B on tumor growth in vivo was explored through tumor transplantation experiment. Immunohistochemistry (IHC) assay was used to detect MAP3K2 and Ki67 expression in mice tumor tissues. RESULTS The results showed that circ_PDE3B was highly expressed in ESCC tissues and cells. Downregulated circ_PDE3B expression in ESCC cells significantly reduced cell proliferation, migration and invasion. Circ_PDE3B served as a sponge for miR-136-5p, and miR-136-5p inhibition reversed the roles of circ_PDE3B knockdown in ESCC cells. MAP3K2 was a direct target of miR-136-5p, and miR-136-5p targeted MAP3K2 to inhibit the malignant behaviors of ESCC cells. Furthermore, circ_PDE3B regulated MAP3K2 expression by sponging miR-136-5p. Importantly, circ_PDE3B knockdown inhibited tumor growth in vivo. CONCLUSIONS In conclusion, circ_PDE3B acted as oncogenic circRNA in ESCC and accelerated ESCC progression by adsorption of miR-136-5p and activation of MAP3K2, supporting circ_PDE3B as a potential therapeutic target for ESCC.
Collapse
Affiliation(s)
- Wei Yue
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen City, Guangdong, China
| | - Yiwang Ye
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen City, Guangdong, China
| | - Baokun Chen
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen City, Guangdong, China
| | - Da Wu
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen City, Guangdong, China
| | - He Wang
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen City, Guangdong, China
| | - Gang Hui
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen City, Guangdong, China.
| |
Collapse
|
8
|
Ren LJ, Zhu XH, Tan JT, Lv XY, Liu Y. MiR-210 improves postmenopausal osteoporosis in ovariectomized rats through activating VEGF/Notch signaling pathway. BMC Musculoskelet Disord 2023; 24:393. [PMID: 37198572 DOI: 10.1186/s12891-023-06473-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/27/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND To explore the effect and mechanism of action of miR-210 on postmenopausal osteoporosis (PMPO) in ovariectomized rats in vivo. METHODS An ovariectomized (OVX) rat model was established by ovariectomy. Tail vein injection was performed to overexpress and knock down miR-210 in OVX rats, followed by the collection of blood and femoral tissues from each group of rats. And quantitative real-time polymerase chain reaction (qRT-PCR) was applied to assess the expression level of miR-210 in femoral tissues of each group. Micro computed tomography (Micro CT) was adopted to scan the microstructure of the femoral trabecula in each group to obtain relevant data like bone mineral density (BMD), bone mineral content (BMC), trabecular bone volume fraction (BV/TV), trabecular thickness (Tb.Th), bone surface-to-volume ratio (BS/BV), and trabecular separation (Tb.Sp). ELISA was used for determining the level of bone alkaline phosphatase (BALP), amino-terminal propeptide of type I procollagen (PINP), osteocalcin (OCN), and C-terminal telopeptide of type I collagen (CTX-1) in serum; and Western blot for the protein level of Runt-related transcription factor 2 (Runx2), osteopontin (OPN), and collagen type I alpha 1 (COL1A1) in femoral tissues. RESULTS MiR-210 expression was significantly decreased in femoral tissues of OVX rats. Overexpression of miR-210 could obviously increase BMD, BMC, BV/TV and Tb.Th, whereas significantly decrease BS/BV and Tb.Sp in femurs of OVX rats. Moreover, miR-210 also downregulated BALP and CTX-1 level, upregulated PINP and OCN level in the serum of OVX rats promoted the expression of osteogenesis-related markers (Runx2, OPN and COL1A1) in the femur of OVX rats. Additionally, further pathway analysis revealed that high expression of miR-210 activated the vascular endothelial growth factor (VEGF)/Notch1 signaling pathway in the femur of OVX rats. CONCLUSION High expression of miR-210 may improve the micromorphology of bone tissue and modulate bone formation and resorption in OVX rats by activating the VEGF/Notch1 signaling pathway, thereby alleviating osteoporosis. Consequently, miR-210 can serve as a biomarker for the diagnosis and treatment of osteoporosis in postmenopausal rats.
Collapse
Affiliation(s)
- Li-Jue Ren
- Department of Endocrinology, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China.
| | - Xiao-Hui Zhu
- Soochow University, Gusu District, Suzhou City, Jiangsu Province, China
| | - Jiu-Ting Tan
- Soochow University, Gusu District, Suzhou City, Jiangsu Province, China
| | - Xiang-Yu Lv
- Department of Endocrinology, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Yan Liu
- Department of Endocrinology, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| |
Collapse
|
9
|
Gao Y, Wang Y, Xu L, Xie X, Zhu L, Wang F. CircRTN1 acts as a miR-431-5p sponge to promote thyroid cancer progression by upregulating TGFA. Hormones (Athens) 2022; 21:611-623. [PMID: 35804263 DOI: 10.1007/s42000-022-00378-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 05/27/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE This study aimed to explore the role and underlying mechanism of circular RNA (circRNA) reticulon 1 (circRTN1) in thyroid cancer (TC). METHODS The expression levels of circRTN1, microRNA-431-5p (miR-431-5p), and transforming growth factor-alpha (TGFA) mRNA were measured by quantitative real-time PCR (qRT-PCR). Cell proliferation was evaluated using colony formation and 5-ethynyl-2'-deoxyuridine (EdU) assays. Cell apoptosis was analyzed using flow cytometry. Cell migration and invasion were measured using the transwell assay. The protein levels of ki-67, Bax, matrix metalloproteinase 2 (MMP-2), and TGFA were detected using Western blot assay. The interaction between miR-431-5p and circRTN1 or TGFA was verified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. The effect of circRTN1on TC in vivo was explored via xenograft tumor assay. RESULTS The expression of circRTN1 was increased in TC tissues and cells. Knockdown of circRTN1 suppressed TC cell proliferation, migration, and invasion, and increased cell apoptosis. MiR-431-5p was a target of circRTN1, and miR-431-5p downregulation reversed the role of circRTN1 knockdown in TC cells. TGFA was identified as a direct target of miR-431-5p, and miR-431-5p exerted the anti-tumor role in TC cells by downregulating TGFA. Moreover, circRTN1 sponged miR-431-5p to regulate TGFA expression. Furthermore, circRTN1 knockdown inhibited tumor growth in vivo. CONCLUSION CircRTN1 acted as a cancer-promoting circRNA in TC by regulating the miR-431-5p/TGFA axis, providing a potential therapeutic strategy for TC treatment.
Collapse
Affiliation(s)
- Yu Gao
- Department of Radiation Oncology, the First Affiliated Hospital of Anhui Medical University, No.218, Jixi Road, Hefei, 230022, Anhui, China
| | - Yichun Wang
- Department of Radiation Oncology, the First Affiliated Hospital of Anhui Medical University, No.218, Jixi Road, Hefei, 230022, Anhui, China
| | - Lei Xu
- Department of Radiation Oncology, the First Affiliated Hospital of Anhui Medical University, No.218, Jixi Road, Hefei, 230022, Anhui, China
| | - Xiaoque Xie
- Department of Radiation Oncology, the First Affiliated Hospital of Anhui Medical University, No.218, Jixi Road, Hefei, 230022, Anhui, China
| | - Liyang Zhu
- Department of Radiation Oncology, the First Affiliated Hospital of Anhui Medical University, No.218, Jixi Road, Hefei, 230022, Anhui, China
| | - Fan Wang
- Department of Radiation Oncology, the First Affiliated Hospital of Anhui Medical University, No.218, Jixi Road, Hefei, 230022, Anhui, China.
| |
Collapse
|
10
|
Liu D, Liu Y, Hu Y, Ming Y, Meng X, Tan H, Zheng L. MiR-134-5p/Stat3 Axis Modulates Proliferation and Migration of MSCs Co-Cultured with Glioma C6 Cells by Regulating Pvt1 Expression. Life (Basel) 2022; 12:life12101648. [PMID: 36295083 PMCID: PMC9604557 DOI: 10.3390/life12101648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/02/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are critical in regenerating tissues because they can differentiate into various tissue cells. MSCs interact closely with cells in the tissue microenvironment during the repair of damaged tissue. Although regarded as non-healing wounds, tumors can be treated by MSCs, which showed satisfactory treatment outcomes in previous reports. However, it is largely unknown whether the biological behaviors of MSCs would be affected by the tumor microenvironment. Exploring the truth of tumor microenvironmental cues driving MSCs tumor “wound” regeneration would provide a deeper understanding of the biological behavior of MSCs. Therefore, we mimicked the tumor microenvironment using co-cultured glioma C6 cells and rat MSCs, aiming to assess the proliferation and migration of MSCs and the associated effects of Stat3 in this process. The results showed that co-cultured MSCs significantly exhibited enhanced tumorigenic, migratory, and proliferative abilities. Both up-regulation of Stat3 and down-regulation of miR-134-5p were detected in co-cultured MSCs. Furthermore, miR-134-5p directly regulated Stat3 by binding to the sequence complementary to microRNA response elements in the 3′-UTR of its mRNA. Functional studies showed that both the migration and proliferation abilities of co-cultured MSCs were inhibited by miR-134-5p, whereas Stat3 gain-of-function treatment reversed these effects. In addition, Pvt1 was confirmed to be regulated by miR-134-5p through Stat3 and the suppression of Pvt1 reduced the migration and proliferation abilities of co-cultured MSCs. To sum up, these results demonstrate a suppressive role of miR-134-5p in tumor-environment-driven malignant transformation of rat MSCs through directly targeting Stat3, highlighting a crucial role of loss-of-function of miR-134-5p/Stat3 axis in the malignant transformation, providing a reference to the potential clinic use of MSCs.
Collapse
Affiliation(s)
- Dongrong Liu
- The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing 401147, China
- Department of Stomatology, The Second People’s Hospital of Yibin, Yibin 644000, China
| | - Yan Liu
- The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing 401147, China
- Department of Stomatology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - Yun Hu
- The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Ye Ming
- The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Xuehuan Meng
- The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Hao Tan
- The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Leilei Zheng
- The Affiliated Stomatology Hospital, Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
- Correspondence:
| |
Collapse
|
11
|
Gao X, Fan S, Zhang X. MiR-1306-5p promotes cell proliferation and inhibits cell apoptosis in acute myeloid leukemia by downregulating PHF6 expression. Leuk Res 2022; 120:106906. [DOI: 10.1016/j.leukres.2022.106906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 06/01/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022]
|
12
|
Wang Y, Tang Z, Guo W. XIST sponges miR-320d to promote chordoma progression by regulating ARF6. J Bone Oncol 2022; 35:100447. [PMID: 35899235 PMCID: PMC9309415 DOI: 10.1016/j.jbo.2022.100447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/06/2022] [Accepted: 07/13/2022] [Indexed: 11/30/2022] Open
Abstract
XIST was highly expressed in chordoma tissues. XIST knockdown inhibited chordoma progression by downregulating ARF6. MiR-320d inhibited the malignant behaviors of chordoma cells. XIST positively upregulated ARF6 expression via sponging miR-320d in chordoma cells.
Background Long non-coding RNAs (lncRNAs) have been demonstrated to play important roles in various tumors, including chordoma. The purpose of this study was to investigate the role and mechanism of lncRNA X-inactive specific transcript (XIST) in chordoma. Methods RNA levels and protein levels were measured by real-time quantitative polymerase chain reaction (RT‑qPCR) and western blot assay, respectively. Cell proliferation was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, 5-ethynyl-2′-deoxyuridine (EdU) assay and colony formation assay. Tanswell assay was used to examine cell migration and invasion. Cellular glycolysis was examined via the measurement of extracellular acidification rate (ECAR) and lactate production. The interaction between microRNA-320d (miR-320d) and XIST or ADP-ribosylation factor 6 (ARF6) was predicted by bioinformatics analysis and verified by a dual-luciferase reporter and RNA-pull down assays. The xenograft tumor model was used to explore the biological function of XIST in vivo. Results XIST was overexpressed in chordoma tissues. XIST knockdown suppressed chordoma cell proliferation, migration, invasion, and glycolysis. XIST acted as a sponge of miR-320d. Moreover, miR-320d overexpression inhibited the proliferation, migration, invasion, and glycolysis of chordoma cells. ARF6 was a direct target of miR-320d, and XIST upregulated ARF6 expression via sponging miR-320d. Furthermore, overexpression of ARF6 reversed the inhibitory effects of XIST knockdown on chordoma cell proliferation, migration, invasion, and glycolysis. Importantly, XIST silencing blocked xenograft tumor growth in vivo. Conclusion XIST knockdown inhibited chordoma progression via regulating the miR-320d/ARF6 axis, providing a novel insight into chordoma pathogenesis.
Collapse
Affiliation(s)
- Yonggang Wang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Zhouzhou Tang
- Department of Orthopedics, Jingzhou Central Hospital, Jingzhou 434020, Hubei Province, China
| | - Weichun Guo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
- Corresponding author at: Department of Orthopedics, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuchang District, Wuhan City, Hubei Province, China.
| |
Collapse
|
13
|
Sun Z, Zhang S, Zhang N, Wang J, Wang J, Liu J. Circ_0005231 promotes the progression of esophageal squamous cell carcinoma via sponging miR-383-5p and regulating KIAA0101. Thorac Cancer 2022; 13:1751-1762. [PMID: 35524161 PMCID: PMC9200875 DOI: 10.1111/1759-7714.14450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 12/24/2022] Open
Abstract
Background Circular RNAs (circRNAs) can act as key regulators in human cancers, including esophageal squamous cell carcinoma (ESCC). However, the role and mechanism of circ_0005231 in ESCC have not previously been reported. Methods RNA levels and protein levels were detected by real‐time quantitative polymerase chain reaction (RT‐qPCR) and Western blot assay, respectively. Cell proliferation was assessed by colony formation assay and 5‐ethynyl‐2'‐deoxyuridine (EdU) assay. Wound healing and transwell assays were used to assess cell migration and invasion, respectively. The intermolecular interaction was predicted by bioinformatic analysis and verified by RNA immunoprecipitation (RIP), RNA pulldown and dual‐luciferase reporter assays. Xenograft tumor model was used for exploring the biological function of circ_0005231 in vivo. Results Circ_0005231 was upregulated in ESCC plasma, tissues and cells. Cell proliferation, migration and invasion were significantly restrained by knockdown of circ_0005231 in ESCC cells. Circ_0005231 acted as a sponge of miR‐383‐5p, and circ_0005231 regulated ESCC cellular behavior by sponging miR‐383‐5p. Moreover, miR‐383‐5p directly targeted KIAA0101, and circ_0005231 positively regulated KIAA0101 expression by sponging miR‐383‐5p. Furthermore, circ_0005231 knockdown suppressed the malignant behavior of ESCC cells by downregulating KIAA0101. Importantly, knockdown of circ_0005231 blocked xenograft tumor growth in vivo. Conclusion Circ_0005231 acted as a sponge of miR‐383‐5p to promote ESCC progression by upregulating KIAA0101, which provided a potential therapeutic strategy for ESCC treatment.
Collapse
Affiliation(s)
- Zhiguang Sun
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.,Department of Thoracic Surgery, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Hebei, China
| | - Shaowei Zhang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Nan Zhang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jianxin Wang
- Department of Thoracic Surgery, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Hebei, China
| | - Jindong Wang
- Department of Thoracic Surgery, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Hebei, China
| | - Junfeng Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
14
|
Gao S, Zhang Z, Wang X, Ma Y, Li C, Liu H, Jing C, Li L, Guo X. hsa-miR-875-5p inhibits tumorigenesis and suppresses TGF-β signalling by targeting USF2 in gastric cancer. J Transl Med 2022; 20:115. [PMID: 35255935 PMCID: PMC8900418 DOI: 10.1186/s12967-022-03253-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/15/2022] [Indexed: 12/19/2022] Open
Abstract
Abstract
Background
Gastric cancer (GC) is one of the most common malignancies, and an increasing number of studies have shown that its pathogenesis is regulated by various miRNAs. In this study, we investigated the role of miR-875-5p in GC.
Methods
The expression of miR-875-5p was detected in human GC specimens and cell lines by miRNA qRT–PCR. The effect of miR-875-5p on GC proliferation was determined by Cell Counting Kit-8 (CCK-8) proliferation and 5-ethynyl-2′-deoxyuridine (EdU) assays. Migration and invasion were examined by transwell migration and invasion assays as well as wound healing assays. The interaction between miR-875-5p and its target gene upstream stimulatory factor 2(USF2) was verified by dual luciferase reporter assays. The effects of miR-875-5p in vivo were studied in xenograft nude mouse models. Related proteins were detected by western blot.
Results
The results showed that miR-875-5p inhibited the proliferation, migration and invasion of GC cells in vitro and inhibited tumorigenesis in vivo. USF2 was proved to be a direct target of miR-875-5p. Knockdown of USF2 partially counteracted the effects of miR-875-5p inhibitor. Overexpression of miR-875-5p could inhibit proliferation, migration and invasion and suppress the TGF-β signalling pathway by downregulating USF2.
Conclusions
MiR-875-5p can inhibit the progression of GC by directly targeting USF2. And in the future, miR-875-5p is expected to be a potential target for GC diagnosis and treatment.
Collapse
|
15
|
Che Y, He J, Li X, Wu D, Zhang Y, Yuan G. Overexpression of microRNA-381-3p ameliorates hypoxia/ischemia-induced neuronal damage and microglial inflammation via regulating the C-C chemokine receptor type 2 /nuclear transcription factor-kappa B axis. Bioengineered 2022; 13:6839-6855. [PMID: 35246016 PMCID: PMC8973660 DOI: 10.1080/21655979.2022.2038448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
microRNAs, as small endogenous RNAs, influence umpteen sophisticated cellular biological functions regarding neurodegenerative and cerebrovascular diseases. Here, we interrogated miR-381-3p’s influence on BV2 activation and neurotoxicity in ischemic and hypoxic environment. Oxygen-glucose deprivation (OGD) was adopted to induce microglial activation and HT-22 neuron damage. Quantitative polymerase chain reaction (qRT-PCR) was taken to check miR-381-3p expression in OGD-elicited BV2 cells and HT-22 neurons. It transpired that miR-381-3p expression was lowered in BV2 cells and HT-22 cells elicited by OGD. miR-381-3p up-regulation remarkably hampered inflammatory mediator expression in BV2 cells induced by OGD and weakened HT22 neuron apoptosis. In vivo, miR-381-3p expression was abated in HI rats’ ischemic lesions, and miR-381-3p up-regulation could ameliorate inflammation and neuron apoptosis in their brain. C-C chemokine receptor type 2 (CCR2) was identified as the downstream target of miR-381-3p, and miR-381-3p suppressed the CCR2/NF-κB pathway to mitigate microglial activation and neurotoxicity. Therefore, we believed that miR-381-3p overexpression exerts anti-inflammation and anti-apoptosis in ischemic brain injury by targeting CCR2
Collapse
Affiliation(s)
- Yuanmei Che
- Department of Infection, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianglong He
- Department of Infection, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaopeng Li
- Department of Infection, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Daxian Wu
- Department of Infection, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi Zhang
- Department of Infection, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guicai Yuan
- Department of Infection, The Second Affiliated Hospital of Yichun University, Yichun, China
| |
Collapse
|
16
|
Wang D, Song X, Zhang N, Guo Y. MiR-1179 represses cell proliferation, migration and invasion of hepatocellular carcinoma through suppression of NUAK2. Am J Transl Res 2022; 14:223-239. [PMID: 35173840 PMCID: PMC8829634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/09/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To investigate the function and mechanism of miR-1179 in the tumorigenesis of hepatocellular carcinoma (HCC). METHODS The levels of miR-1179 and NUAK2 in clinical tissues or cell lines were examined using quantitative Real-time PCR (qRT-PCR). Cell Counting Kit-8 (CCK-8), EdU assay, colony formation, wound healing, Transwell assays and flow cytometry assays were conducted to examine the impact of miR-1179 on HCC cells. The protein expression of NUAK2 was detected using Western blotting assay. Bioinformatics analysis and luciferase reporter assays were conducted to reveal the association of miR-1179 with NUAK2. RESULTS MiR-1179 expression was significantly downregulated in HCC specimens and cell lines compared to normal samples and cells. The miR-1179 overexpression inhibited HCC cell migration, invasion and proliferation through targeting NUAK2. Overexpression of NUAK2 can reverse the effect of miR-1179 on hepatocellular carcinoma cells. CONCLUSION miR-1179 suppresses HCC developmen through targeting NUAK2. Which can be used as a potent HCC diagnostic marker.
Collapse
Affiliation(s)
- Dejun Wang
- Department of Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University Nanjing, Jiangsu Province, China
| | - Xue Song
- Department of Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University Nanjing, Jiangsu Province, China
| | - Nan Zhang
- Department of Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University Nanjing, Jiangsu Province, China
| | - Yesong Guo
- Department of Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University Nanjing, Jiangsu Province, China
| |
Collapse
|
17
|
Liu X, Cheng Y, Wang Y, Zhang Y. Circular RNA circVAPA contributes to non-small-cell lung cancer progression via miR-342-3p-dependent regulation of ZEB2. World J Surg Oncol 2021; 19:335. [PMID: 34839824 PMCID: PMC8628473 DOI: 10.1186/s12957-021-02447-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Accumulating evidence demonstrated that circular RNAs (circRNAs) play pivotal regulatory roles in the pathology of cancers. Disclosing the roles and molecular mechanisms of circRNAs in tumorigenesis and development is essential to identify novel diagnostic and therapeutic targets. In this study, we explored the role of circVAPA in non-small-cell lung cancer (NSCLC) progression and its associated mechanism. METHODS The expression level of RNA was analyzed by real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferation was assessed by MTT assay and colony-forming assay. Cell apoptosis was analyzed by flow cytometry. Cell migration and invasion were assessed by transwell assays. Dual-luciferase reporter, RNA pull-down, and RNA immunoprecipitation (RIP) assays were used to test the intermolecular interactions. The role of circVAPA was assessed in vivo. And xenograft tumor tissues were analyzed by immunohistochemistry (IHC) staining. RESULTS CircVAPA expression was upregulated in NSCLC tissues and cell lines, and a high level of circVAPA was associated with a poor prognosis of NSCLC patients. CircVAPA silencing suppressed the proliferation, migration, and invasion and induced the apoptosis of NSCLC cells. CircVAPA served as a molecular sponge for microRNA-342-3p (miR-342-3p). miR-342-3p interference largely reversed circVAPA knockdown-mediated anti-tumor effects in NSCLC cells. Zinc finger E-box-binding homeobox 2 (ZEB2) was a target of miR-342-3p, and miR-342-3p overexpression suppressed the malignant behaviors of NSCLC cells largely by downregulating ZEB2. CircVAPA silence repressed xenograft tumor growth in vivo, and IHC assay confirmed that circVAPA silence restrained the proliferation and metastasis but induced the apoptosis of NSCLC cells in vivo. CONCLUSION CircVAPA contributes to the progression of NSCLC by binding to miR-342-3p to upregulate ZEB2. CircVAPA/miR-342-3p/ZEB2 axis might be a novel potential target for NSCLC treatment.
Collapse
Affiliation(s)
- Xiaoyang Liu
- Department of Respiratory and Critical Care Medicine, Beijing Jishuitan Hospital, No. 31 Xinjiekoudong Street, Xicheng District, Beijing, 100035, China.
| | - Yang Cheng
- Department of Respiratory and Critical Care Medicine, Beijing Jishuitan Hospital, No. 31 Xinjiekoudong Street, Xicheng District, Beijing, 100035, China
| | - Yan Wang
- Department of Respiratory and Critical Care Medicine, Beijing Jishuitan Hospital, No. 31 Xinjiekoudong Street, Xicheng District, Beijing, 100035, China
| | - Yinhong Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Jishuitan Hospital, No. 31 Xinjiekoudong Street, Xicheng District, Beijing, 100035, China
| |
Collapse
|
18
|
Xia H, Zhao H, Yang W, Luo X, Wei J, Xia H. MiR-195-5p represses inflammation, apoptosis, oxidative stress, and endoplasmic reticulum stress in sepsis-induced myocardial injury by targeting activating transcription factor 6. Cell Biol Int 2021; 46:243-254. [PMID: 34816499 DOI: 10.1002/cbin.11726] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/25/2021] [Accepted: 11/13/2021] [Indexed: 12/15/2022]
Abstract
Myocardial injury (MI) is a common complication of sepsis. MicroRNAs (miRNAs) have been suggested as potential biomarkers of MI; however, their mechanisms in sepsis-induced MI remain unclear. A sepsis rat model was constructed by use of cecal ligation and puncture (CLP). The levels of miR-195-5p and activating transcription factor 6 (ATF6) expression were determined by quantitative reverse-transcription polymerase chain reaction, and cytokine levels were detected by ELISA. The levels of oxidative stress (OS)-related indicators and endoplasmic reticulum stress (ERS)-related proteins were examined, and the regulatory effect of miR-195-5p on ATF6 was determined by using the luciferase reporter assay. Our results showed that miR-195-5p expression was downregulated and ATF6 expression was upregulated in lipopolysaccharide-induced cardiomyocytes and mice with CLP-induced sepsis. We also found that miR-195-5p could markedly attenuate the inflammation, apoptosis, OS, and ERS associated with sepsis-induced MI. Additionally, we verified that miR-195-5p could relieve sepsis-induced MI by targeting ATF6. This study identified potential targets for treating MI after sepsis.
Collapse
Affiliation(s)
- Hongxia Xia
- Department of Emergency, East Campus, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hui Zhao
- Department of Interventional Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weize Yang
- Department of Emergency, East Campus, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaomin Luo
- Department of Emergency, East Campus, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jie Wei
- Department of Emergency, East Campus, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hao Xia
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
19
|
Mat Lazim N, Che Lah CI, Wan Juhari WK, Sulong S, Zilfalil BA, Abdullah B. The Role of Genetic Pathways in the Development of Chemoradiation Resistance in Nasopharyngeal Carcinoma (NPC) Patients. Genes (Basel) 2021; 12:1835. [PMID: 34828441 PMCID: PMC8619242 DOI: 10.3390/genes12111835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/15/2022] Open
Abstract
Management of nasopharyngeal carcinoma (NPC) remains elusive despite new developments and advancement that has been made in the current management approaches. A patient's survival and prognosis remain dismal especially for a late-stage disease. This is highly attribute to the chemoradiation resistance. Arrays of genes and molecular mechanisms underlie the development of chemoradiation resistance in NPC. Imperatively, unravelling the true pathogenesis of chemoradiation resistance is crucial as these significant proteins and genes can be modulated to produce an effective therapeutic target. It is pivotal to identify the chemoradiation resistance at the very beginning in order to combat the chemoradiation resistance efficiently. Intense research in the genetic ecosphere is critical, as the discovery and development of novel therapeutic targets can be used for screening, diagnosis, and treating the chemoradiation resistance aggressively. This will escalate the management trajectory of NPC patients. This article highlights the significance of genetic and molecular factors that play critical roles in the chemoradiation resistance and how these factors may be modified for next-generation targeted therapy products.
Collapse
Affiliation(s)
- Norhafiza Mat Lazim
- Department of Otorhinolaryngology-Head & Neck Surgery, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (C.I.C.L.); (B.A.)
| | - Che Ismail Che Lah
- Department of Otorhinolaryngology-Head & Neck Surgery, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (C.I.C.L.); (B.A.)
| | - Wan Khairunnisa Wan Juhari
- Department of Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
- Malaysian Node of the Human Variome Project, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Sarina Sulong
- Human Genome Centre, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Bin Alwi Zilfalil
- Malaysian Node of the Human Variome Project, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
- Human Genome Centre, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Baharudin Abdullah
- Department of Otorhinolaryngology-Head & Neck Surgery, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (C.I.C.L.); (B.A.)
| |
Collapse
|
20
|
Gu H, Xu Z, Zhang J, Wei Y, Cheng L, Wang J. circ_0038718 promotes colon cancer cell malignant progression via the miR-195-5p/Axin2 signaling axis and also effect Wnt/β-catenin signal pathway. BMC Genomics 2021; 22:768. [PMID: 34706645 PMCID: PMC8555003 DOI: 10.1186/s12864-021-07880-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/18/2021] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Colon cancer (CC) is one of the most common cancers whose progression is regulated by a number of factors, including circular RNAs (circRNAs). Nonetheless, circ_0038718 is a novel circRNA, and its regulatory mechanism in CC remains unclear. METHODS Real-time quantitative PCR (qRT-PCR) was performed to detect the expression of circ_0038718, miR-195-5p and Axin2. Western blot was conducted to determine the protein expression of Axin2 and the key proteins on Wnt/β-catenin signaling pathway. Oligo (dT) 18 primers and RNase R were employed to identify the circular features of circ_0038718, and the location of circ_0038718 in cells was detected via nucleocytoplasmic separation. Dual-luciferase reporter assay and RNA binding protein immunoprecipitation experiment were carried out to investigate the molecular mechanism of circ_0038718/miR-195-5p/Axin2. Additionally, MTT assay was conducted to assess cell proliferation; Transwell assay was performed to evaluate cell migration and invasion, respectively. The effect of circ_0038718 on CC tumor growth was tested through tumor formation in nude mice. RESULTS circ_0038718 was highly expressed in CC and could sponge miR-195-5p in cytoplasm. Silencing circ_0038718 suppressed the proliferative, migratory and invasive abilities of CC cells, while the promoting effect of high circ_0038718 expression on CC cells was reversed upon miR-195-5p over-expression. Axin2 was a downstream target of miR-195-5p and could regulate the Wnt/β-catenin signaling pathway. Axin2 expression was modulated by circ_0038718/miR-195-5p. Knockdown of Axin2 could also attenuate the promoting effect of high circ_0038718 expression on CC cell malignant progression, thus inhibiting tumor growth. CONCLUSION circ_0038718 is able to facilitate CC cell malignant progression via the miR-195-5p/Axin2 axis, which will provide a new idea for finding a novel targeted treatment of CC.
Collapse
Affiliation(s)
- Haitao Gu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Chongqing Medical University, 288 Tianwen Dadao Road, Nanan District, Chongqing, 401336, China
| | - Zhiquan Xu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Chongqing Medical University, 288 Tianwen Dadao Road, Nanan District, Chongqing, 401336, China
| | - Jianbo Zhang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Chongqing Medical University, 288 Tianwen Dadao Road, Nanan District, Chongqing, 401336, China
| | - Yanbing Wei
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, 200231, China
| | - Ling Cheng
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, 200231, China
| | - Jijian Wang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Chongqing Medical University, 288 Tianwen Dadao Road, Nanan District, Chongqing, 401336, China.
| |
Collapse
|
21
|
Xu R, Liu T, Zuo L, Guo D, Ye G, Jiang J, Yu X, Zhang S, Hou C. The high expression of miR-31 in lung adenocarcinoma inhibits the malignancy of lung adenocarcinoma tumor stem cells. Biochem Biophys Rep 2021; 28:101122. [PMID: 34485716 PMCID: PMC8408630 DOI: 10.1016/j.bbrep.2021.101122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022] Open
Abstract
Therapies for lung adenocarcinoma (LUAD) are mainly limited by drug resistance, metastasis or recurrence related to cancer stem cells (CSCs) with high proliferation and self-renewing. This research validated that miR-31 was over-expressed in LUAD by the analysis of generous clinical samples data. And the results of clinical data analysis showed that high expression of miR-31 was more common in patients with worse prognosis. The genes differentially expressed in LUAD tissues compared with normal tissues and A549CD133+ cells (LUAD CSCs) compared with A549 cells were separately screened from Gene Expression Profiling Interactive Analysis and GEO datasets. The target genes that may play a role in the regulation of lung adenocarcinoma was screened by comparison between the differential genes and the target genes of miR-31. The functional enrichment analysis of GO Biological Processes showed that the expression of target genes related to cell proliferation was increased, while the expression of target genes related to cell invasion and metastasis was decreased in LUAD tissues and A549CD133+ cells. The results suggested that miR-31 may have a significant inhibitory effect on the differentiation, invasion, metastasis and adhesion of LUAD CSCs, which was verified in vivo and in vitro experiments. Knock down of miR-31 accelerated xenograft tumor growth and liver metastasis in vivo. Likewise, the carcinogenicity, invasion and metastasis of A549CD133+ CSCs were promoted after miR-31 knockdown. The study validated that miR-31 was up regulated in LUAD and its expression may affect the survival time of patients with lung adenocarcinoma, which indicated that miR-31 may have potential value for diagnosis and prognosis of LUAD. However, the inhibitory effect of miR-31 on tumorigenesis, invasion and metastasis of lung adenocarcinoma CSCs suggested its complexity in the regulation of lung adenocarcinoma, which may be related to its extensive regulation of various target genes.
Collapse
Affiliation(s)
- Ran Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Tianhua Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ling Zuo
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Dongqing Guo
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Guancheng Ye
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing Jiang
- School of the Humanities, Beijing University of Chinese Medicine, Beijing, China
| | - Xue Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shujing Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chunying Hou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Corresponding author.
| |
Collapse
|
22
|
Lamsisi M, Wakrim L, Bouziyane A, Benhessou M, Oudghiri M, Laraqui A, Elkarroumi M, Ennachit M, El Mzibri M, Ennaji MM. The Biological Significance of Long noncoding RNAs Dysregulation and their Mechanism of Regulating Signaling Pathways in Cervical Cancer. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2021; 10:75-101. [PMID: 34703793 PMCID: PMC8496250 DOI: 10.22088/ijmcm.bums.10.2.75] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 08/01/2021] [Indexed: 12/19/2022]
Abstract
Despite the remarkable decrease in cervical cancer incidence due to the availability of the HPV vaccine and implementation of screening programs for early detection in developed countries, this cancer remains a major health problem globally, especially in developing countries where most of the cases and mortality occur. Therefore, more understanding of molecular mechanisms of cervical cancer development might lead to the discovery of more effective diagnosis and treatment options. Research on long noncoding RNAs (lncRNAs) demonstrates the important roles of these molecules in many physiological processes and diseases, especially cancer. In the present review, we discussed the significance of lncRNAs altered expression in cervical cancer, highlighting their roles in regulating highly conserved signaling pathways, such as mitogen-activated protein kinase (MAPK), Wnt/β-catenin, Notch, and phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathways and their association with the progression of cervical cancer in order to bring more insight and understanding of this disease and their potential implications in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Maryame Lamsisi
- Team of Virology, Oncology and Medical Biotechnologies, Laboratory of Virology, Microbiology, Quality, and Biotechnologies/ ETB. Faculty of Science and Techniques Mohammedia, Hassan II University of Casablanca, Morocco.
| | - Lahcen Wakrim
- Laboratory of Virology, Pasteur Institute of Morocco. Casablanca, Morocco.
| | - Amal Bouziyane
- Team of Virology, Oncology and Medical Biotechnologies, Laboratory of Virology, Microbiology, Quality, and Biotechnologies/ ETB. Faculty of Science and Techniques Mohammedia, Hassan II University of Casablanca, Morocco.
- University Mohammed VI of Health Science, Casablanca, Morocco.
| | - Mustapha Benhessou
- Team of Virology, Oncology and Medical Biotechnologies, Laboratory of Virology, Microbiology, Quality, and Biotechnologies/ ETB. Faculty of Science and Techniques Mohammedia, Hassan II University of Casablanca, Morocco.
- School of Medicine and Pharmacy, University Hassan II of Casablanca, Morocco.
| | - Mounia Oudghiri
- Immunology and Biodiversity laboratory, Faculty of Sciences Ain chock, Hassan II University of Casablanca, Morocco.
| | - Abdelilah Laraqui
- Research and Biosafety Laboratory, Mohammed V Military Hospital, University Mohammed V of Rabat, Morocco.
| | - Mohamed Elkarroumi
- School of Medicine and Pharmacy, University Hassan II of Casablanca, Morocco.
| | - Mohammed Ennachit
- School of Medicine and Pharmacy, University Hassan II of Casablanca, Morocco.
| | | | - Moulay Mustapha Ennaji
- Corresponding author: Faculty of Science and Techniques Mohammedia, University Hassan II of Casablanca, Morocco. E-mail:
| |
Collapse
|
23
|
Bouziyane A, Lamsisi M, Benaguida H, Benhessou M, El Kerroumi M, Ennaji MM. Diagnostic Value of MicroRNA 21 in Endometrial Cancer and Benign Lesions and its Differential Expression in Relation to Clinicopathological Parameters. Microrna 2021; 10:146-152. [PMID: 34086554 DOI: 10.2174/2211536610666210604122816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/16/2021] [Accepted: 04/14/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Endometrial cancer is one of the most common malignancies among women worldwide. Although this cancer is often diagnosed at early stages, the need for biomarkers of diagnosis remains a necessity to overcome conventional invasive procedures of diagnosis. OBJECTIVE In our study, we aim to investigate the diagnostic value of microRNA-21 in endometrial cancer and its relation to clinicopathological features. METHODS We used RT-qPCR to measure the expression of microRNA-21 in 71 tumor tissues, 53 adjacent tissues, and 54 benign lesions. RESULTS Our results show that microRNA-21 is a potential biomarker for endometrial cancer with an area under the receiver operating characteristic curve of 0.925 (95% CI = 0.863 - 0.964, P<0.0001). The sensitivity was 84.51% (95% CI = 74.0 - 92.0) and specificity was 86.79% (95% CI = 74.7 - 94.5). For discrimination between benign lesions and controls the AUC was 0,881 with a sensitivity of 100% (95% CI = 93.4 - 100.0) and specificity of 66.04 % (95% CI = 51.7 - 78.5), and for discriminating benign lesions from tumors the AUC was 0,750 with a sensitivity of 54.93% (95% CI = 42.7 - 66.8) and specificity of 90.74% (95% CI = 79.7 - 96.9). We also found that tumors with elevated microRNA-21 expression are of advanced FIGO stage, high histological grades, and have cervical invasion, myometrial invasion and distant metastasis. CONCLUSION Our findings support the important role of miR-21 as a biomarker for the diagnosis of endometrial cancer. Further studies on minimally invasive/noninvasive samples such as serum, blood, and urine are necessary to provide a better alternative to current diagnosis methods.
Collapse
Affiliation(s)
- Amal Bouziyane
- Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Maryame Lamsisi
- Laboratory of Virology, Microbiology, Quality, and Biotechnologies/ ETB. Faculty of Science and Techniques Mohammedia - Hassan II University of Casablanca, Morocco
| | - Hicham Benaguida
- Mohammed VI Center for cancer treatment, University Hospital Ibn Rochd, Casablanca, Morocco
| | - Mustapha Benhessou
- Mohammed VI Center for cancer treatment, University Hospital Ibn Rochd, Casablanca, Morocco
| | - Mohamed El Kerroumi
- Mohammed VI Center for cancer treatment, University Hospital Ibn Rochd, Casablanca, Morocco
| | - Moulay Mustapha Ennaji
- Laboratory of Virology, Microbiology, Quality, and Biotechnologies/ ETB. Faculty of Science and Techniques Mohammedia - Hassan II University of Casablanca, Morocco
| |
Collapse
|
24
|
Wang F, Wang F, Zhang S, Xu X. MicroRNA-325 inhibits the proliferation and induces the apoptosis of T cell acute lymphoblastic leukemia cells in a BAG2-dependent manner. Exp Ther Med 2021; 21:631. [PMID: 33936287 PMCID: PMC8082601 DOI: 10.3892/etm.2021.10063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/18/2021] [Indexed: 12/18/2022] Open
Abstract
The inhibitory effect of microRNA (miR)-325 in multiple different types of cancer cell has been identified; however, its biological function in T cell acute lymphoblastic leukemia (T-ALL) remains unknown. Moreover, Bcl-2-associated athanogene (BAG)2 is highly expressed in a various types of tumors and is regarded as an anti-apoptotic gene. In the present study, the roles of miR-325 and BAG2 in a T-ALL cell line (Jurkat cells) were investigated. BAG2 and miR-325 expression levels in clinical blood samples from healthy donors and pediatric patients with T-ALL, as well as in T-ALL cell lines was detected using western blot analysis and/or reverse transcription-quantitative PCR. Dual-luciferase reporter gene assays and TargetScan were used to evaluate the interaction between BAG2 and miR-325. Small interfering RNA technology was applied to knockdown BAG2 expression in Jurkat cells. The effects of miR-325 mimic and BAG2 downregulation on the proliferation and apoptosis were assessed by an MTT assay, flow cytometry and western blot analysis. The results revealed that the expression of miR-325 was downregulated in blood samples from pediatric patients and in T-ALL cell lines, and its expression was lowest in Jurkat cells. The expression levels of BAG2 exhibited the opposite results. The knockdown of BAG2 markedly induced the apoptosis and inhibited the proliferation of Jurkat cells. In addition, the overexpression of miR-325 significantly inhibited the growth and promoted the apoptosis of Jurkat cells, with these effects being eliminated by BAG2 overexpression. In conclusion, the findings of the present study demonstrated that miR-325 directly targets the BAG2 gene and that the introduction of miR-325 can accelerate apoptosis and suppress the proliferation of Jurkat cells by silencing BAG2 expression.
Collapse
Affiliation(s)
- Fengyu Wang
- Department of Pediatrics, Zibo Central Hospital, Zibo, Shandong 255036, P.R. China
| | - Fengli Wang
- Department of Radiology, Zibo Central Hospital, Zibo, Shandong 255036, P.R. China
| | - Shengyu Zhang
- Department of Rehabilitation, Zibo Central Hospital, Zibo, Shandong 255036, P.R. China
| | - Xiaogang Xu
- Department of Oncology, Chongqing University Three Gorges Hospital, Chongqing 404100, P.R. China
| |
Collapse
|
25
|
Liao HY, Da CM, Wu ZL, Zhang HH. Ski: Double roles in cancers. Clin Biochem 2020; 87:1-12. [PMID: 33188772 DOI: 10.1016/j.clinbiochem.2020.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 02/07/2023]
Abstract
The Ski (Sloan-Kettering Institute) is an evolutionarily conserved protein that plays a dual role as an oncoprotein and tumor suppressor gene in the development of human cancer. The Ski oncogene was first identified as a transforming protein of the avian Sloan-Kettering retrovirus in 1986. Since its discovery, Ski has been identified as a carcinogenic regulator in a variety of malignant tumors. Later, it was reported that Ski regulates the occurrence and development of some cancers by acting as an oncogene. Ski mediates the proliferation, differentiation, metastasis, and invasion of numerous cancer cells through various mechanisms. Several studies have shown that Ski expression is correlated with the clinical characteristics of cancer patients and is a promising biomarker and therapeutic target for cancer. In this review, we summarize the mechanisms and potential clinical implications of Ski in dimorphism, cancer occurrence, and progression in various types of cancer.
Collapse
Affiliation(s)
- Hai-Yang Liao
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Chao-Ming Da
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Zuo-Long Wu
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Hai-Hong Zhang
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China.
| |
Collapse
|
26
|
Kong Q, Fan Q, Ma X, Li J, Ma R. CircRNA circUGGT2 Contributes to Hepatocellular Carcinoma Development via Regulation of the miR-526b-5p/RAB1A Axis. Cancer Manag Res 2020; 12:10229-10241. [PMID: 33116877 PMCID: PMC7571581 DOI: 10.2147/cmar.s263985] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/25/2020] [Indexed: 12/22/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a common malignant tumor in the world. Circular RNA hsa_circ_0008274 (circUGGT2) is reported to be upregulated in HCC tissues. Notwithstanding, the role and regulatory mechanism of circUGGT2 in HCC are indistinct. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was implemented to examine the levels of circUGGT2, microRNA (miR)-526b-5p, and ras-related protein Rab-1A (RAB1A) mRNA in HCC tissues and cells. Cell proliferation and colony formation were assessed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) or colony formation assays. The levels of cyclin D1, proliferating cell nuclear antigen (PCNA), and RAB1A were detected with Western blotting. Cell cycle progression, migration, and invasion were evaluated by using flow cytometry or transwell assays. The relationship between circUGGT2 or RAB1A and miR-526b-5p was verified via dual-luciferase reporter and/or RNA pull-down assays. Xenograft assay was executed to confirm the role of circUGGT2 in vivo. Results We observed that circUGGT2 and RAB1A were upregulated while miR-526b-5p was downregulated in HCC tissues and cells. CircUGGT2 silencing suppressed tumor growth in vivo and curbed proliferation, colony formation, cell cycle progression, migration, and invasion of HCC cells in vitro. Mechanically, circUGGT2 regulated RAB1A expression via competitively binding to miR-526b-5p. Also, the inhibitory influence of circUGGT2 silencing on the malignancy of HCC cells was overturned by miR-526b-5p inhibitor. Furthermore, RAB1A overexpression reversed the suppressive influence of miR-526b-5p mimic on the malignancy of HCC cells. Conclusion CircUGGT2 silencing inhibited HCC development via modulating the miR-526b-5p/RAB1A axis, providing a possible target for HCC treatment.
Collapse
Affiliation(s)
- Qingling Kong
- Office of Hospital Infection Control, People's Hospital of Rizhao, Rizhao 276826, People's Republic of China
| | - Qing Fan
- Department of Hemodialysis, People's Hospital of Rizhao, Rizhao 276826, People's Republic of China
| | - Xianbin Ma
- Department of Clinical Laboratory, People's Hospital of Rizhao, Rizhao 276826, People's Republic of China
| | - Jian Li
- Department of Interventional Radiology, People's Hospital of Rizhao, Rizhao 276826, People's Republic of China
| | - Rong Ma
- Department of General Medicine, People's Hospital of Rizhao, Rizhao 276826, People's Republic of China
| |
Collapse
|
27
|
Ding S, Zhang G, Gao Y, Chen S, Cao C. Circular RNA hsa_circ_0005909 modulates osteosarcoma progression via the miR-936/HMGB1 axis. Cancer Cell Int 2020; 20:305. [PMID: 32684842 PMCID: PMC7359231 DOI: 10.1186/s12935-020-01399-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023] Open
Abstract
Background Osteosarcoma (OS) is the most common bone malignant tumor in children, youth, and adolescents. Circular RNA hsa_circ_0005909 (circ_0005909) is involved in the progression of OS. Nevertheless, there are few reports on the role and mechanism of circ_0005909 in OS. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was executed to examine the expression of circ_0005909, miR-936, and High Mobility Group Box 1 (HMGB1) mRNA in OS tissues and cells. Cell viability, colony formation, migration, and invasion were evaluated by Cell Counting Kit-8 (CCK-8), cell colony formation, or transwell assays. Cell epithelial-mesenchymal transition (EMT) and HMGB1 protein levels were assessed through western blot analysis. The role of circ_0005909 on tumor growth in vivo was verified by xenograft assay. The relationship between circ_0005909 or HMGB1 and miR-936 was confirmed with the dual-luciferase reporter or RNA pull-down assays. Results Circ_0005909 level was upregulated in OS tissues and cells. OS patients with high circ_0005909 expression had a lower survival rate. Circ_0005909 inhibition reduced tumor growth in vivo and constrained cell viability, colony formation, migration, invasion, and EMT of OS cells in vitro. Furthermore, circ_0005909 served as a sponge for miR-936 and the repressive impacts of circ_0005909 silencing on malignant behaviors of OS cells were abolished by miR-936 inhibitors. Also, HMGB1 acted as a target for miR-936 and was modulated by circ_0005909 via miR-936. Additionally, HMGB1 overexpression restored the inhibitory influence on the malignant behaviors of OS cells mediated by circ_0005909 inhibition. Conclusions Circ_0005909 inhibition impeded the progression of OS via downregulating HMGB1 via sponging miR-936.
Collapse
Affiliation(s)
- Shuai Ding
- Department of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No. 7, Weiwu Road, Jinshui District, Zhengzhou, 450003 Henan China
| | - Guangquan Zhang
- Department of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No. 7, Weiwu Road, Jinshui District, Zhengzhou, 450003 Henan China
| | - Yanzheng Gao
- Department of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No. 7, Weiwu Road, Jinshui District, Zhengzhou, 450003 Henan China
| | - Shulian Chen
- Department of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No. 7, Weiwu Road, Jinshui District, Zhengzhou, 450003 Henan China
| | - Chen Cao
- Department of Spine and Spinal Cord, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No. 7, Weiwu Road, Jinshui District, Zhengzhou, 450003 Henan China
| |
Collapse
|
28
|
Sun D, Chen L, Lv H, Gao Y, Liu X, Zhang X. Circ_0058124 Upregulates MAPK1 Expression to Promote Proliferation, Metastasis and Metabolic Abilities in Thyroid Cancer Through Sponging miR-940. Onco Targets Ther 2020; 13:1569-1581. [PMID: 32110054 PMCID: PMC7037104 DOI: 10.2147/ott.s237307] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/10/2020] [Indexed: 01/07/2023] Open
Abstract
Background Thyroid cancer (TC) is an endocrine disease, and its progression is regulated by many factors, including circular RNAs (circRNAs). However, as a new circRNA, the role of circ_0058124 in TC is worth further exploration. Methods The expression levels of circ_0058124, microRNA-940 (miR-940) and mitogen-activated protein kinase 1 (MAPK1) were assessed by quantitative polymerase chain reaction (q-PCR). The circular characteristic of circ_0058124 was identified by oligo (dT)18 primers, Ribonuclease R (RNase R) and Actinomycin D (ActD), and its localization was determined by nuclear-cytoplasmic separation assay. Also, cell proliferation was detected by colony formation assay, and cell migration and invasion were assessed by transwell assay. Further, Seahorse XF Extracellular Flux Analyzer was used to measure the oxygen consumption rate (OCR) of cells. Besides, dual-luciferase reporter, RNA immunoprecipitation (RIP) and RNA pull-down assays were used to identify the mechanism of circ_0058124. Western blot (WB) analysis was used to test the MAPK1 protein level. In addition, mice xenograft models were constructed to test the effect of circ_0058124 on TC tumor growth in vivo. Results Circ_0058124 was highly expressed in TC and is a stable cyclic transcript, mainly located in the cytoplasm. Circ_0058124 knockdown suppressed proliferation, migration, invasion and metabolic abilities in TC cells. MiR-940 could be absorbed by circ_0058124, and the inhibition effect of its overexpression on TC progression could be reversed by overexpressed-circ_0058124. MAPK1 was a target of miR-940, and the suppression effect of its silencing on TC progression could be inverted by miR-940 inhibitor. Besides, MAPK1 expression was regulated by circ_0058124 and miR-940. Interference of circ_0058124 also reduced TC tumor growth in vivo. Conclusion Circ_0058124 might play a carcinogenic role in TC progression by regulating the miR-940/MAPK1 axis, which might provide a new idea for the treatment of TC.
Collapse
Affiliation(s)
- Dezhong Sun
- Department of Otolaryngology, Linyi People's Hospital, Linyi, Shandong, People's Republic of China
| | - Li Chen
- Department of Anesthesiology Operation, Linyi People's Hospital, Linyi, Shandong, People's Republic of China
| | - Huaiqing Lv
- Department of Otolaryngology, Linyi People's Hospital, Linyi, Shandong, People's Republic of China
| | - Yongli Gao
- Department of Medicine Oncology, Linyi People's Hospital, Linyi, Shandong, People's Republic of China
| | - Xuelai Liu
- Department of Neurosurgery, Linyi Hospital of Traditional Chinese Medicine, Linyi, Shandong, People's Republic of China
| | - Xiaoyan Zhang
- Department of Medicine Oncology, Linyi People's Hospital, Linyi, Shandong, People's Republic of China
| |
Collapse
|
29
|
He R, Wang J, Ye K, Du J, Chen J, Liu W. Reduced miR-203 predicts metastasis and poor survival in esophageal carcinoma. Aging (Albany NY) 2019; 11:12114-12130. [PMID: 31844033 PMCID: PMC6949080 DOI: 10.18632/aging.102543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/19/2019] [Indexed: 12/27/2022]
Abstract
We analyzed data from two non-coding RNA profiling arrays made available by the Gene Expression Omnibus (GEO) and found 17 miRNAs with remarkable differential expression between malignant and normal esophageal tissue. Correlation analysis between expression of these 17 miRNAs and patients’ clinicopathological characteristics showed that miR-203 was down-regulated in esophageal carcinoma (EC) tissues and was significantly associated with lymph node metastasis and poor overall survival. Overexpression of miR-203 significantly attenuated cellular proliferation, migration and invasion by EC cells in culture. Additionally, gene expression profiles and bioinformatics analysis revealed KIF5C to be a direct target of miR-203, and KIF5C overexpression partially counteracted the tumor inhibitory effects of miR-203 on EC cells. We also observed that miR-203, reduced KIFC5 protein levels, promoted cytoplasmic accumulation of Axin2, and reversed the invasive phenotype of EC cells. Taken together, these data demonstrate that miR-203 is a tumor suppressor in EC cells and its expression level could potentially be used as a prognostic indicator for EC patient outcomes.
Collapse
Affiliation(s)
- Rongqi He
- First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, P.R. China
| | - Jintian Wang
- Department of Oncology Surgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, P.R. China
| | - Kai Ye
- Department of Oncology Surgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, P.R. China
| | - Jiabin Du
- Department of Oncology Surgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, P.R. China
| | - Junxing Chen
- Department of Oncology Surgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, P.R. China
| | - Weinan Liu
- Department of Oncology Surgery, Second Affiliated Hospital of Fujian Medical University, Quanzhou, P.R. China
| |
Collapse
|
30
|
Wei J, Zhang L, Zhao Z, Zhao Y, Fu Q, Yang Y. MicroRNA‐379 inhibits laryngeal carcinoma cell proliferation and invasion through directly targeting TCF‐4. Kaohsiung J Med Sci 2019; 35:731-738. [PMID: 31436384 DOI: 10.1002/kjm2.12109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 06/26/2019] [Indexed: 02/02/2023] Open
Affiliation(s)
- Jin‐Long Wei
- Otorhinolaryngology Head and Neck SurgeryThe Second Affiliated Hospital of Qiqihar Medical University Qiqihar Heilongjiang China
| | - Liang Zhang
- Otorhinolaryngology Head and Neck SurgeryThe Second Affiliated Hospital of Qiqihar Medical University Qiqihar Heilongjiang China
| | - Zhi‐Ming Zhao
- Otorhinolaryngology Head and Neck SurgeryThe Second Affiliated Hospital of Qiqihar Medical University Qiqihar Heilongjiang China
| | - Yu‐Zhu Zhao
- Otorhinolaryngology Head and Neck SurgeryThe Second Affiliated Hospital of Qiqihar Medical University Qiqihar Heilongjiang China
| | - Qiang Fu
- Otorhinolaryngology Head and Neck SurgeryThe Second Affiliated Hospital of Qiqihar Medical University Qiqihar Heilongjiang China
| | - Yan Yang
- Otorhinolaryngology Head and Neck SurgeryThe Second Affiliated Hospital of Qiqihar Medical University Qiqihar Heilongjiang China
| |
Collapse
|
31
|
Song T, Hou X, Lin B. MicroRNA-758 inhibits cervical cancer cell proliferation and metastasis by targeting HMGB3 through the WNT/β-catenin signaling pathway. Oncol Lett 2019; 18:1786-1792. [PMID: 31423246 DOI: 10.3892/ol.2019.10470] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 02/19/2019] [Indexed: 01/28/2023] Open
Abstract
Cervical cancer (CC) remains a highly prevalent cancer and cause of mortality amongst women worldwide. miR-758 has been demonstrated to be associated with tumorigenesis by controlling the expression of oncogenic or tumor suppressor genes. However, the function and mechanisms of miR-758 in CC have not been well illustrated. The present study aimed to dissect the effect of miR-758 on the proliferation, migration and invasion of CC cells and determine the potential underlying molecular mechanism of these effects. qPCR results revealed that the expression of miR-758 was significantly decreased in CC tissues and cell lines compared with that in normal tissues and normal cells. Results of CCK-8, colony formation and Transwell assays revealed that miR-758 overexpression markedly decreased cell viability, proliferation, invasion and migration. However, miR-758 inhibitors significantly increased viability, proliferation, invasion and migration. In the mechanism study, we demonstrated that high mobility group box 3 (HMGB3) was a direct target of miR-758, and HMGB3 overexpression rescued the viability, proliferation, invasion and migration of HeLa cells reduced by an miR-758 mimic. It was demonstrated that HMGB3 regulated the WNT/β-catenin signaling pathway under miR-758 regulation. In summary, these observations suggested that miR-758 is a tumor suppressor gene that can inhibit the metastatic phenotype of CC cells by negatively regulating HMGB3, which may present a path to novel therapeutic stratagems for CC therapy.
Collapse
Affiliation(s)
- Tao Song
- Department of Gynecology, Weifang Maternity and Child Care Hospital, Weifang, Shandong 261042, P.R. China
| | - Xinghua Hou
- Department of Women Health Care, Weifang Maternity and Child Care Hospital, Weifang, Shandong 261042, P.R. China
| | - Bing Lin
- Department of Gynecology, Weifang Maternity and Child Care Hospital, Weifang, Shandong 261042, P.R. China
| |
Collapse
|
32
|
Chen QY, Des Marais T, Costa M. Deregulation of SATB2 in carcinogenesis with emphasis on miRNA-mediated control. Carcinogenesis 2019; 40:393-402. [PMID: 30916759 PMCID: PMC6514447 DOI: 10.1093/carcin/bgz020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/26/2018] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
Abstract
The special AT-rich DNA binding protein (SATB2) is a nuclear matrix-associated protein and an important transcription factor for biological development, gene regulation and chromatin remodeling. Aberrant regulation of SATB2 has been found to highly correlate with various types of cancers including lung, colon, prostate, breast, gastric and liver. Recent studies have revealed that a subset of small non-coding RNAs, termed microRNAs (miRNAs), are important regulators of SATB2 function. As post-transcriptional regulators, miRNAs have been found to have fundament importance maintaining normal cellular development. Evidence suggests that multiple miRNAs, including miR-31, miR-34, miR-182, miR-211, miR-599, are capable of regulating SATB2 in cancers of the lung, liver, colon and breast. This review examines the molecular functions of SATB2 and miRNAs in the text of cancer development and potential strategies for cancer therapy with a focus on systemic miRNA delivery.
Collapse
Affiliation(s)
- Qiao Yi Chen
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Thomas Des Marais
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
33
|
Hesari A, Azizian M, Darabi H, Nesaei A, Hosseini SA, Salarinia R, Motaghi AA, Ghasemi F. Expression of circulating miR-17, miR-25, and miR-133 in breast cancer patients. J Cell Biochem 2019; 120:7109-7114. [PMID: 30485486 DOI: 10.1002/jcb.27984] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/08/2018] [Indexed: 01/24/2023]
Abstract
One of the most lethal cancers among women is breast cancer. MicroRNAs (miRNAs) can be of great importance in the early detection of breast cancer. This study aimed to investigate some miRNAs in the serum of patients with breast cancer compared with the control group. Total RNA was extracted from the serum of patients with breast cancer and healthy volunteers. The expression levels of miRNAs and the genes were assessed using real-time reverse transcriptase-polymerase chain reaction with specific primers. Our data showed that miR-25 and miR-133 were downregulated, and miR-17 was upregulated in patients with breast cancer. Upregulation of miR-17 is related to the poor survival time and increased cell proliferation. The reduced expression of miR-133 and miR-25 is significantly associated with clinical stage, metastasis, and survival time of patients with breast cancer. Expressions of miRNAs miR-17, miR-25, and miR-133 are altered in patients with clinical stage, metastasis, poor survival time.
Collapse
Affiliation(s)
- AmirReza Hesari
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mitra Azizian
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Hassan Darabi
- Department of Medical Genetics, Medical Genetics Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Nesaei
- Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Seyede Atefe Hosseini
- Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Sciences, Bojnurd, Iran
| | - Reza Salarinia
- Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Sciences, Bojnurd, Iran
| | - Amir Ali Motaghi
- Student Research Committee, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Faezeh Ghasemi
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.,Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
34
|
|
35
|
Zhang Z, Dai DQ. MicroRNA-596 acts as a tumor suppressor in gastric cancer and is upregulated by promotor demethylation. World J Gastroenterol 2019; 25:1224-1237. [PMID: 30886505 PMCID: PMC6421237 DOI: 10.3748/wjg.v25.i10.1224] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In the present study, we investigated a suppressive role of microRNA-596 (miR-596) in gastric cancer (GC). Moreover, the downregulation of miR-596 in GC cell lines was associated with an increase of miR-596 promoter methylation. We also established that miR-596 controls the expression of peroxiredoxin 1 (PRDX1), which has never been reported before, suggesting that this interaction could play an important role in GC progression.
AIM To study the potential role and possible regulatory mechanism of miR-596 in GC.
METHODS The expression levels of miR-596 and PRDX1 in gastric cancer tissues and cell lines were detected by quantitative real-time PCR (qRT-PCR). Western blot and luciferase reporter assay were used to detect the effect of miR-596 on PRDX1 expression. Then, the proliferation, metastasis, and invasion of GC cell lines transfected with miR-596 mimics were analyzed, respectively, by Cell Counting Kit-8 proliferation assay, wound healing assay, and transwell invasion assay. Meanwhile, the methylation status of the promoter CpG islands of miR-596 in GC cell lines was detected by methylation-specific PCR (MSP).
RESULTS Expression of miR-596 was decreased and PRDX1 was upregulated in GC tissues and cell lines. Overexpression of miR-596 decreased the expression of PRDX1 and luciferase reporter assays detected the direct binding of miR-596 to the 3'-untranslated region (UTR) of PRDX1 transcripts. Furthermore, we found that overexpression of miR-596 remarkably suppressed cell proliferation, migration, and invasion in GC cells. We further analyzed miR-596 promoter methylation by MSP and qRT-PCR, and found the downregulation of miR-596 was associated with promoter methylation status in GC cell lines. Moreover, DNA demethylation and reactivation of miR-596 after treatment with 5-Aza-2’-deoxycytidine inhibited the proliferative ability of GC cells.
CONCLUSION MiR-596 has a tumor suppressive role in GC and is downregulated partly due to promoter hypermethylation. Furthermore, PRDX1 is one of the putative target genes of miR-596.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Gastroenterological Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning Province, China
| | - Dong-Qiu Dai
- Department of Gastroenterological Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning Province, China
| |
Collapse
|
36
|
Chen H, Ji M, Zong JF, Ko JMY, Dai W, Lung ML. Conventional and Novel Diagnostic Biomarkers and Approaches for Detection of Nasopharyngeal Carcinoma. NASOPHARYNGEAL CARCINOMA 2019:129-153. [DOI: 10.1016/b978-0-12-814936-2.00007-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
37
|
Lin T, Zhou S, Gao H, Li Y, Sun L. MicroRNA-325 Is a Potential Biomarker and Tumor Regulator in Human Bladder Cancer. Technol Cancer Res Treat 2018; 17:1533033818790536. [PMID: 30176759 PMCID: PMC6122231 DOI: 10.1177/1533033818790536] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose: We evaluated whether human microRNA-325 may be a potential biomarker and tumor
regulator in bladder cancer. Methods: Human microRNA-325 expression was probed by quantitative real-time polymerase chain
reaction in both in vitro bladder cancer cell lines and in
vivo bladder carcinoma tissues retrieved from patients with cancer. The
prognostic potential of human microRNA-325 in predicting postoperative overall survival
of patients with bladder cancer was estimated. Endogenous human microRNA-325 was
overexpressed by lentiviral transduction in bladder cancer cell lines, T24 and 5637
cells. The tumor regulatory effects of human microRNA-325 upregulation on T24 and 5637
cells were evaluated both in vitro and in vivo. Results: Human microRNA-325 was aberrantly downregulated in both bladder cell lines and human
bladder carcinomas. Lowly expressed human microRNA-325 in bladder carcinoma was closely
associated with poor postoperative overall survival of patients with cancer. In T24 and
5637 cells, virally transduced cells had markedly upregulated human microRNA-325
expressions. Biochemical assays demonstrated that human microRNA-325 upregulation in
bladder cancer had tumor-suppressive functions by decreasing cancer proliferation,
cisplatin chemoresistance, and cancer migration in vitro and hindering
transplantation growth in vivo and cell cycle transition. Conclusion: Human microRNA-325 is lowly expressed and may serve as a potential prognostic biomarker
in human bladder cancer. After further validation, human microRNA-325 may be a novel
therapeutic target for suppressing carcinoma in patients with bladder cancer.
Collapse
Affiliation(s)
- Tao Lin
- 1 Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China.,2 Department of Urology, Liaocheng People's Hospital, Liaocheng, China
| | - Shiming Zhou
- 2 Department of Urology, Liaocheng People's Hospital, Liaocheng, China
| | - Hui Gao
- 2 Department of Urology, Liaocheng People's Hospital, Liaocheng, China
| | - Yuqiao Li
- 2 Department of Urology, Liaocheng People's Hospital, Liaocheng, China
| | - Lijiang Sun
- 1 Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
38
|
Klinge CM. Non-Coding RNAs in Breast Cancer: Intracellular and Intercellular Communication. Noncoding RNA 2018; 4:E40. [PMID: 30545127 PMCID: PMC6316884 DOI: 10.3390/ncrna4040040] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 02/07/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are regulators of intracellular and intercellular signaling in breast cancer. ncRNAs modulate intracellular signaling to control diverse cellular processes, including levels and activity of estrogen receptor α (ERα), proliferation, invasion, migration, apoptosis, and stemness. In addition, ncRNAs can be packaged into exosomes to provide intercellular communication by the transmission of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) to cells locally or systemically. This review provides an overview of the biogenesis and roles of ncRNAs: small nucleolar RNA (snRNA), circular RNAs (circRNAs), PIWI-interacting RNAs (piRNAs), miRNAs, and lncRNAs in breast cancer. Since more is known about the miRNAs and lncRNAs that are expressed in breast tumors, their established targets as oncogenic drivers and tumor suppressors will be reviewed. The focus is on miRNAs and lncRNAs identified in breast tumors, since a number of ncRNAs identified in breast cancer cells are not dysregulated in breast tumors. The identity and putative function of selected lncRNAs increased: nuclear paraspeckle assembly transcript 1 (NEAT1), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), steroid receptor RNA activator 1 (SRA1), colon cancer associated transcript 2 (CCAT2), colorectal neoplasia differentially expressed (CRNDE), myocardial infarction associated transcript (MIAT), and long intergenic non-protein coding RNA, Regulator of Reprogramming (LINC-ROR); and decreased levels of maternally-expressed 3 (MEG3) in breast tumors have been observed as well. miRNAs and lncRNAs are considered targets of therapeutic intervention in breast cancer, but further work is needed to bring the promise of regulating their activities to clinical use.
Collapse
Affiliation(s)
- Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
39
|
Wang N, Guo H, Dong Z, Chen Q, Zhang X, Shen W, Bao Y, Wang X. Establishment and validation of a 7-microRNA prognostic signature for non-small cell lung cancer. Cancer Manag Res 2018; 10:3463-3471. [PMID: 30254489 PMCID: PMC6140736 DOI: 10.2147/cmar.s170481] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Purpose A series of microRNAs (miRNAs) have been identified as associated with the survival of patients with non-small-cell lung cancer (NSCLC). The aim of the present study was to explore whether combination of these experimentally validated individual miRNA biomarkers could be used to further increase their prognostic power in NSCLC. Patients and methods Based on previously validated NSCLC prognostic miRNAs, gene signatures that could discriminate high-risk subgroups with poor clinical outcome in four NSCLC miRNA expression datasets (GSE13937, GSE16025, The Cancer Genome Atlas Lung Adenocarcinoma, and TCGA lung squamous cell carcinoma) were developed using the SurvMicro tool. The potential of the miRNA signature established was validated by quantitative real-time PCR analysis of clinical NSCLC samples, and its prognostic power evaluated using the survivalROC method. Results We developed two miRNA signatures with prognostic significance for NSCLC, comprising 12- and 7-miRNAs. The 7-miRNA signature (miR-148b, miR-365, miR-32, miR-375, miR-21, miR-125b, and miR-155) was a subset of a 12-miRNA set that retained prognostic power across NSCLC cohorts. Compared with previously established miRNA signatures, our 7-miRNA signature has similar potential, while comprising fewer miRNA components. The prognostic ability of the 7-miRNA signature was validated experimentally in an independent NSCLC cohort using real-time PCR (HR=3.4847, 95% CI=1.3693–8.8680, P=0.0092), and this signature, combined with tumor pathological stage, had superior prognostic ability compared with tumor stage alone. Conclusion Our data indicate that the established 7-miRNA signature is simple, robust, and may have greater clinical prognostic utility for patients with NSCLC.
Collapse
Affiliation(s)
- Nan Wang
- Medical Department, Huzhou Hospital of Traditional Chinese Medicine, Huzhou, People's Republic of China
| | - Huihui Guo
- First Affiliated Hospital, Huzhou Teachers College, The First People's Hospital of Huzhou, Huzhou, People's Republic of China,
| | - Zhaohuo Dong
- Medical Department, Huzhou Hospital of Traditional Chinese Medicine, Huzhou, People's Republic of China
| | - Qiuqiang Chen
- First Affiliated Hospital, Huzhou Teachers College, The First People's Hospital of Huzhou, Huzhou, People's Republic of China,
| | - Xilin Zhang
- First Affiliated Hospital, Huzhou Teachers College, The First People's Hospital of Huzhou, Huzhou, People's Republic of China,
| | - Weiyun Shen
- First Affiliated Hospital, Huzhou Teachers College, The First People's Hospital of Huzhou, Huzhou, People's Republic of China,
| | - Ying Bao
- First Affiliated Hospital, Huzhou Teachers College, The First People's Hospital of Huzhou, Huzhou, People's Republic of China,
| | - Xiang Wang
- First Affiliated Hospital, Huzhou Teachers College, The First People's Hospital of Huzhou, Huzhou, People's Republic of China,
| |
Collapse
|
40
|
Wang RH, He LY, Zhou SH. The role of gene sculptor microRNAs in human precancerous lesions. Onco Targets Ther 2018; 11:5667-5675. [PMID: 30254459 PMCID: PMC6141127 DOI: 10.2147/ott.s171241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs. These noncoding RNAs regulate the expression of target genes and inhibit the translation of target proteins at the post-transcriptional level. miRNAs also play an important role in human health, from the development and differentiation of cells to the occurrence and progression of disorders such as cancer, cardiovascular diseases, and neurodegenerative diseases. Precancerous lesions are lesions prior to invasive carcinomas, and carcinogenesis is a very complicated process, which is multistage and the result of multigene synergy. miRNAs exert effects as both oncogenes and tumor suppressor genes by regulating target genes involved in signaling pathways. Hence, precancerous lesions are accompanied by relevant miRNA changes. Based on the morphology of miRNAs in vivo and the specificity of miRNA, various novel miRNA analysis methods have been developed, including reverse transcription quantitative PCR, enzyme analysis, molecular beacons, and deep sequencing. For example, in the laryngeal epithelial precancerous lesions, the data demonstrate that the expression of miR-10a-5p is downregulated and miR-484 is the most abundant miRNA in hepatic precancerous lesions. In this review, we discuss the functional roles of miRNAs in human precancerous lesions.
Collapse
Affiliation(s)
- Ran-Hong Wang
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou City, People's Republic of China, .,Department of Otolaryngology, The Third Hospital of Hangzhou City, Hangzhou City, People's Republic of China
| | - Lan-Ying He
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou City, People's Republic of China,
| | - Shui-Hong Zhou
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou City, People's Republic of China,
| |
Collapse
|
41
|
Guo D, Guo J, Li X, Guan F. Enhanced motility and proliferation by miR-10b/FUT8/p-AKT axis in breast cancer cells. Oncol Lett 2018; 16:2097-2104. [PMID: 30008906 PMCID: PMC6036446 DOI: 10.3892/ol.2018.8891] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 11/07/2017] [Indexed: 12/30/2022] Open
Abstract
Upregulation of microRNA (miR)-10b has been confirmed in multiple types of cancer, however, the role of miR-10b in glycosylation remains unclear. Protein core-fucosylation is an important N-linked glycosylation modification and serves important roles in cancer progression. In a previous study, a glycogene array was applied to profile the alterations of glycogene expression in miR-10b-overexpressed MCF10A cells. Notably, fucosyltranferase 8 (FUT8), which is responsible for the addition of core-fucose to N-glycan, was significantly upregulated by miR-10b. In the present study, increased motility and proliferation were observed in miR-10b-overexpressed MCF10A cells. To assess the mechanism involved, the role of FUT8 in MCF10A cells was studied and it was confirmed that miR-10b promotes motility and proliferation by regulating FUT8 and activating the protein kinase B (AKT) signaling pathway. Consistent with the aforementioned result, decreased motility and proliferation were detected when miR-10b expression was inhibited in MDA-MB-231 cells, transforming growth factor-β-induced and Twist-overexpressed MCF10A cells. To conclude, the findings from the present study indicate that miR-10b promotes motility and proliferation by increasing FUT8 and activating AKT in breast cancer cells.
Collapse
Affiliation(s)
- Dong Guo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Jia Guo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Xiang Li
- Wuxi Medical School, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Feng Guan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| |
Collapse
|
42
|
Wang Y, Zhao S, Zhu L, Zhang Q, Ren Y. MiR-19a negatively regulated the expression of PTEN and promoted the growth of ovarian cancer cells. Gene 2018; 670:166-173. [PMID: 29783075 DOI: 10.1016/j.gene.2018.05.063] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 05/12/2018] [Accepted: 05/16/2018] [Indexed: 12/12/2022]
Abstract
Ovarian cancer is the most lethal malignancy of the women genital tract. Exploring novel factors involved in the development of ovarian cancer and characterizing the molecular mechanisms by which regulate the tumorigenesis of ovarian cancer are quite necessary. Here, we found that miR-19a was highly expressed in ovarian cancer tissues and cell lines. Overexpression of miR-19a promoted the viability of ovarian cancer cells, while down-regulation of miR-19a inhibited the growth of ovarian cancer cells. To further understand the underlying molecular mechanism of miR-19a in regulating ovarian cancer cell growth, the downstream targets of miR-19a were predicted. The bioinformatics analysis showed that the tumor suppressor PTEN was found as one of the targeting candidates of miR-19a. MiR-19a bound the 3'-UTR of PTEN and highly expressed miR-19a decreased both the mRNA and protein levels of PTEN in ovarian cancer cells. Overexpression of PTEN suppressed the promoting effect of miR-19a on regulating the growth of ovarian cancer cells. Notably, the expression of miR-19a and PTEN was inversely correlated in ovarian cancer tissues. These results demonstrated the potential oncogenic role of miR-19a in ovarian cancer, which suggested that miR-19a might be a promising target in the diagnosis and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yuhong Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Xinxiang City 453100, China.
| | - Shuzhen Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Xinxiang City 453100, China
| | - Lihong Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Xinxiang City 453100, China
| | - Quanle Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Xinxiang City 453100, China
| | - Yanfang Ren
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Xinxiang City 453100, China
| |
Collapse
|
43
|
Ma Y, Chen Y, Lin J, Liu Y, Luo K, Cao Y, Wang T, Jin H, Su Z, Wu H, Chen X, Cheng J. Circulating miR-31 as an effective biomarker for detection and prognosis of human cancer: a meta-analysis. Oncotarget 2018; 8:28660-28671. [PMID: 28404921 PMCID: PMC5438681 DOI: 10.18632/oncotarget.15638] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/29/2017] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Circulating miR-31 was found to be associated with cancers detection and prognosis. The present meta-analysis aimed to explore the effect of circulating miR-31 on cancer detection and prognosis. METHOD The studies were accessed using multiple databases. RevMan5.3, Meta-DiSc 1.4, and STATA14.0 were used to estimate the pooled effects, heterogeneity among studies, and publication bias. RESULTS A total of 14 studies with 1397 cancer patients and 1039 controls were included. For the 12 prognostic tests, the adjusted pooled-AUC was 0.79 (95% CI: 0.73-0.86) as the pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odd ratio (DOR) from 10 tests was 0.79 (95% CI: 0.76-0.82), 0.79 (95% CI: 0.76-0.82), 3.81 (95% CI: 2.90-5.01), 0.26 (95% CI: 0.20-0.35), and 16.81 (95% CI: 9.67-29.25), respectively. For the 5 prognosis analyses, the pooled HR (hazard ratio) of overall survival (OS) was 1.55 (95% CI 1.30-1.86) for high versus low circulating miR-31 expression. However, high expression of circulating miR-31 did not significantly increase the risk of poor differentiation (pooled OR=1.39, 95% CI: 0.56-3.47) and LNM (pooled OR=3.46, 95% CI: 0.96-12.42) in lung cancer. CONCLUSION Circulating miR-31 is an effective biomarker and could be used as a component of miRs signature for cancer detection and prognosis surveillance.
Collapse
Affiliation(s)
- Yingjun Ma
- Respiratory Medicine, Guangming District People's Hospital of Shenzhen, Shenzhen, P.R. China
| | - Yunfang Chen
- Pain Department, The Eight Affiliated Hospital, Sun Yat-sen University, ShenZhen, P.R. China
| | - Jinbo Lin
- Medical oncology, Longgang District Central Hospital of Shenzhen, Shenzhen, P.R. China
| | - Yi Liu
- Center for Chronic Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, P.R. China
| | - Kai Luo
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, P.R. China
| | - Yong Cao
- Center for Chronic Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, P.R. China
| | - Tieqiang Wang
- Center for Chronic Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, P.R. China
| | - Hongwei Jin
- Center for Chronic Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, P.R. China
| | - Zhan Su
- Center for Chronic Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, P.R. China
| | - Haolin Wu
- Center for Chronic Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, P.R. China
| | - Xiaoliang Chen
- Center for Chronic Disease Control and Prevention, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, P.R. China
| | - Jinquan Cheng
- Molecular Biology Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, P.R. China
| |
Collapse
|
44
|
Shi X, Xiao X, Yuan N, Zhang S, Yuan F, Wang X. MicroRNA-379 Suppresses Cervical Cancer Cell Proliferation and Invasion by Directly Targeting V-crk Avian Sarcoma Virus CT10 Oncogene Homolog-Like (CRKL). Oncol Res 2018; 26:987-996. [PMID: 29295725 PMCID: PMC7844644 DOI: 10.3727/096504017x15140534417184] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cervical cancer is the fourth most common malignancy among females worldwide. MicroRNA-379 (miR-379) is aberrantly expressed in multiple human cancer types. However, the expression pattern, roles, and detailed regulatory mechanisms of miR-379 in cervical cancer remain unknown. In this study, we found that miR-379 expression was downregulated in cervical cancer tissues and cell lines. Low miR-379 expression was correlated with International Federation of Gynecology and Obstetrics (FIGO) stage, lymph node metastasis, and distant metastasis. Additionally, miR-379 overexpression suppressed the proliferation and invasion of cervical cancer cells. Furthermore, V-crk avian sarcoma virus CT10 oncogene homolog-like (CRKL) was identified as a direct target of miR-379 in cervical cancer. CRKL was upregulated in cancer tissues and negatively correlated with miR-379 expression. Moreover, restored CRKL expression rescued the inhibitory effects of miR-379 overexpression on cell proliferation and invasion. In conclusion, miR-379 may serve as a tumor suppressor in cervical cancer by directly targeting CRKL. Restoring miR-379 expression may be an effective strategy for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Xi Shi
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, P.R. China
| | - Xiao Xiao
- Reproductive Center, Wuxi Maternal and Child Health-Care Hospital, Wuxi, P.R. China
| | - Na Yuan
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, P.R. China
| | - Shili Zhang
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, P.R. China
| | - Fukang Yuan
- Department of Vascular Surgery, XuZhou Central Hospital, Xuzhou, P.R. China
| | - Xiaohong Wang
- Department of Obstetrics and Gynecology, Chinese PLA 101 Hospital, Wuxi, P.R. China
| |
Collapse
|
45
|
Grimaldi A, Zarone MR, Irace C, Zappavigna S, Lombardi A, Kawasaki H, Caraglia M, Misso G. Non-coding RNAs as a new dawn in tumor diagnosis. Semin Cell Dev Biol 2017; 78:37-50. [PMID: 28765094 DOI: 10.1016/j.semcdb.2017.07.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 12/12/2022]
Abstract
The current knowledge about non-coding RNAs (ncRNAs) as important regulators of gene expression in both physiological and pathological conditions, has been the main engine for the design of innovative platforms to finalize the pharmacological application of ncRNAs as either therapeutic tools or as molecular biomarkers in cancer. Biochemical alterations of cancer cells are, in fact, largely supported by ncRNA disregulation in the tumor site, which, in turn, reflects the cancer-associated specific modification of circulating ncRNA expression pattern. The aim of this review is to describe the state of the art of pre-clinical and clinical studies that analyze the involvement of miRNAs and lncRNAs in cancer-related processes, such as proliferation, invasion and metastases, giving emphasis to their functional role. A central node of our work has been also the examination of advantages and criticisms correlated with the clinical use of ncRNAs, taking into account the pressing need to refine the profiling methods aimed at identify novel diagnostic and prognostic markers and the request to optimize the delivery of such nucleic acids for a therapeutic use in an imminent future.
Collapse
Affiliation(s)
- Anna Grimaldi
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Mayra Rachele Zarone
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Carlo Irace
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Silvia Zappavigna
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Angela Lombardi
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy
| | - Hiromichi Kawasaki
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy; Wakunaga Pharmaceutical Co. LTD, 4-5-36 Miyahara, Yodogawa-ku, Osaka 532-0003 Japan
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy.
| | - Gabriella Misso
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7, 80138 Naples, Italy.
| |
Collapse
|
46
|
Zhang Y, Lin J, Huang W, Cao Y, Liu Y, Wang T, Zhong W, Wang D, Mao R, Chen X. The effect of circulating miR-223 on surveillance of different cancers: a meta-analysis. Onco Targets Ther 2017; 10:3193-3201. [PMID: 28721069 PMCID: PMC5499933 DOI: 10.2147/ott.s137837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
PURPOSE Abnormal expression of miR-223 in cancerous tissue has confirmed it as an important player in tumorigenesis of cancers, such as hepatocellular carcinoma, colorectal carcinoma, osteosarcoma, gastric cancer, and chronic lymphocytic leukemia. The present meta-analysis aimed to explore the association between circulating miR-223 and prognosis of cancers. METHODS The studies were accessed by an electronic search of multiple databases. RevMan5.3 and STATA14.0 were used to estimate the heterogeneity among studies, pooled effects, and publication bias. RESULTS Ten studies with data of 1,002 patients with cancer were included in this meta-analysis. The risk of metastasis from stages 3 to 4 of TNM did not decrease when high versus low circulating expression of miR-223 were compared (pooled odds ratio =0.50, 95% CI: 0.24-1.03). In case of prognosis, the overall survival time was not significantly longer with high circulating miR-223 expression (pooled hazard ratio [HR] =0.64, 95% CI: 0.38-1.11) in all cancer types. However, the overall survival time of chronic lymphocytic leukemia (pooled HR =0.19, 95% CI: 0.07-0.54) increased in subgroup analysis. Moreover, the treatment-free survival of chronic lymphocytic leukemia was significantly increased with high circulating miR-223 expression (pooled HR =0.38, 95% CI: 0.23-0.64). CONCLUSION Circulating miR-223 was not an effective biomarker in prognosis surveillance in all cancers but in chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- Yunfeng Zhang
- Surgical Operating Room, Longgang District People's Hospital of Shenzhen
| | - Jinbo Lin
- Medical Oncology, Longgang District Central Hospital of Shenzhen
| | - Wenjie Huang
- Medical Oncology, Guangming District Central Hospital of Shenzhen
| | - Yong Cao
- Chronic Disease Control and Prevention Center, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, China
| | - Yi Liu
- Chronic Disease Control and Prevention Center, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, China
| | - Tieqiang Wang
- Chronic Disease Control and Prevention Center, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, China
| | - Weiyi Zhong
- Chronic Disease Control and Prevention Center, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, China
| | - Dongli Wang
- Chronic Disease Control and Prevention Center, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, China
| | - Rongrong Mao
- Chronic Disease Control and Prevention Center, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, China
| | - Xiaoliang Chen
- Chronic Disease Control and Prevention Center, Shenzhen Guangming District Center for Disease Control and Prevention, Shenzhen, China
| |
Collapse
|
47
|
Zheng Y, Wang Z, Zhou Z. miRNAs: novel regulators of autoimmunity-mediated pancreatic β-cell destruction in type 1 diabetes. Cell Mol Immunol 2017; 14:488-496. [PMID: 28317889 DOI: 10.1038/cmi.2017.7] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNAs) are a series of conserved, short, non-coding RNAs that modulate gene expression in a posttranscriptional manner. miRNAs are involved in almost every physiological and pathological process. Type 1 diabetes (T1D) is an autoimmune disease that is the result of selective destruction of pancreatic β-cells driven by the immune system. miRNAs are also important participants in T1D pathogenesis. Herein, we review the most recent data on the potential involvement of miRNAs in T1D. Specifically, we focus on two aspects: the roles of miRNAs in maintaining immune homeostasis and regulating β-cell survival and/or functions in T1D. We also discuss circulating miRNAs as potent biomarkers for the diagnosis and prediction of T1D and investigate potential therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Ying Zheng
- Center for Medical Research, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zhen Wang
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Central South University, Changsha, Hunan 410011, China
| | - Zhiguang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.,Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
48
|
Yang F, Li Y, Xu L, Zhu Y, Gao H, Zhen L, Fang L. miR-17 as a diagnostic biomarker regulates cell proliferation in breast cancer. Onco Targets Ther 2017; 10:543-550. [PMID: 28203087 PMCID: PMC5293507 DOI: 10.2147/ott.s127723] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background MicroRNAs (miRNAs) have been shown to be involved in the initiation and progression of cancers in the literature. In this study, we aimed to evaluate the clinicopathological role of miR-17 in breast cancer. Materials and methods The expression of miR-17 was measured in 132 breast cancer tissues and paired adjacent normal tissues by using real-time quantitative polymerase chain reaction. The association between miR-17 expression levels and clinicopathological parameters was also analyzed. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and flow cytometry assays were used to investigate the role of miR-17 in the regulation of breast cancer cells. Results The expression of miR-17 was remarkably increased in breast cancer tissues and cell lines. Clinical association analysis revealed that a high expression of miR-17 was prominently associated with poor survival time in breast cancer. Overexpression of miR-17 promoted cell proliferation and induced tumor growth. Conclusion Our findings clarified that the upregulation of miR-17 played a vital role in breast cancer progression and suggested that miR-17 could be used as a prognostic biomarker for breast cancer.
Collapse
Affiliation(s)
- Fangliang Yang
- Department of Thyroid and Breast Surgery, Changzhou No 2 People's Hospital Affiliated to Nanjing Medical University, Changzhou; Department of Thyroid and Breast Surgery, Shanghai No 10 People's Hospital, Clinical College of Nanjing Medical University, Shanghai, People's Republic of China
| | - Yuan Li
- Department of Thyroid and Breast Surgery, Changzhou No 2 People's Hospital Affiliated to Nanjing Medical University, Changzhou
| | - Lingyun Xu
- Department of Thyroid and Breast Surgery, Changzhou No 2 People's Hospital Affiliated to Nanjing Medical University, Changzhou
| | - Yulan Zhu
- Department of Thyroid and Breast Surgery, Changzhou No 2 People's Hospital Affiliated to Nanjing Medical University, Changzhou
| | - Haiyan Gao
- Department of Thyroid and Breast Surgery, Changzhou No 2 People's Hospital Affiliated to Nanjing Medical University, Changzhou
| | - Lin Zhen
- Department of Thyroid and Breast Surgery, Changzhou No 2 People's Hospital Affiliated to Nanjing Medical University, Changzhou
| | - Lin Fang
- Department of Thyroid and Breast Surgery, Shanghai No 10 People's Hospital, Clinical College of Nanjing Medical University, Shanghai, People's Republic of China
| |
Collapse
|
49
|
Fkih M'hamed I, Privat M, Trimeche M, Penault-Llorca F, Bignon YJ, Kenani A. miR-10b, miR-26a, miR-146a And miR-153 Expression in Triple Negative Vs Non Triple Negative Breast Cancer: Potential Biomarkers. Pathol Oncol Res 2017; 23:815-827. [PMID: 28101798 DOI: 10.1007/s12253-017-0188-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 01/02/2017] [Indexed: 12/31/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs composed of 18-25 nucleotides that can post-transcriptionally regulate gene expression and have key regulatory roles in cancer, acting as both oncogenes and tumor suppressors. About 1000 genes in humans encode miRNAs, which account for approximately 3% of the human genome, and up to 30% of human protein coding genes may be regulated by miRNAs. The objective of this article is to evaluate the expression profile of four miRNAs previously implicated in triple negative breast cancer: miR-10b, miR-26a, miR-146a and miR-153, and to determine their possible interaction in triple negative and non triple negative breast cancer based on clinical outcome and the expression of BRCA1. 24 triple-negative and 13 non triple negative breast cancer cases, were studied by q-RT-PCR and immunohistochemistry to determine the expression of the four studied miRNAs and the BRCA1 protein, respectively. We observed that the BRCA1 protein was absent in 62.5% of the triple negative cases. Besides, the miR-146a and miR-26a were over expressed in triple negative breast cancer. These two miRNAs, miR-10b and miR-153 were significantly associated to lymph node metastases occurrence in triple negative breast carcinoma. All the analyzed microRNAs were not associated with the expression of BRCA1 in our conditions. Our work provides evidence that miR-146a, miR-26a, miR-10b and miR-153 could be defined as biomarkers in triple negative breast cancer to predict lymph node metastases (LNM).
Collapse
Affiliation(s)
- Insaf Fkih M'hamed
- Departement of oncogenetics, Centre Jean Perrin, BP 392, 63011, Clermont-Ferrand, France.,EA4677 ERTICA, University of Auvergne, Clermont-Ferrand, France.,Laboratory of Biochemistry Research unit UR 12ES08 Cell Signaling and Disease, Faculty of Medicine of Monastir, University of Monastir, 5019, Monastir, Tunisia
| | - Maud Privat
- Departement of oncogenetics, Centre Jean Perrin, BP 392, 63011, Clermont-Ferrand, France.,EA4677 ERTICA, University of Auvergne, Clermont-Ferrand, France
| | - Mounir Trimeche
- Department of Pathology, Farhat Hached Hospital, 4000, Sousse, Tunisia
| | | | - Yves-Jean Bignon
- Departement of oncogenetics, Centre Jean Perrin, BP 392, 63011, Clermont-Ferrand, France.,EA4677 ERTICA, University of Auvergne, Clermont-Ferrand, France
| | - Abderraouf Kenani
- Laboratory of Biochemistry Research unit UR 12ES08 Cell Signaling and Disease, Faculty of Medicine of Monastir, University of Monastir, 5019, Monastir, Tunisia.
| |
Collapse
|
50
|
Upregulation of MiR-196a promotes cell proliferation by downregulating p27 kip1 in laryngeal cancer. Biol Res 2016; 49:40. [PMID: 27678369 PMCID: PMC5039793 DOI: 10.1186/s40659-016-0100-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/22/2016] [Indexed: 12/21/2022] Open
Abstract
Background Accumulating evidence has confirmed that miR-196a plays a critical role in tumorigenesis and tumor progression in a variety of cancers. It has been demonstrated that miR-196a is highly up-regulated in laryngeal cancer by miRNA profiling analysis. However, the functional mechanism of miR-196a in laryngeal cancer remains unclear. This study aims to explore the mechanism of miR-196a in laryngeal cancer. Methods In the present study, we conducted qPCR analysis of miR-196a expression in human laryngeal cancer and showed that miR-196a was overexpressed in tumor-derived samples and laryngeal cancer cell lines compared with matched normal controls. Further functional analysis of miR-196a demonstrated that the inhibition of miR-196a could inhibit laryngeal cell-cycle progression and proliferation in vitro. Luciferase reporter assay and western blot confirmed that miR-196a directly targeted p27kip1. Moreover, in order to investigate whether miR-196a regulated cell growth in laryngeal cancer cells by targeting p27kip1, rescue studies were performed in laryngeal cancer cells. Results Results showed that overexpression of p27kip1 rescue decreased cell proliferation caused by miR-196a inhibitors. A negative relation between miR-196a and p27kip1 expression in laryngeal cancer tissues were also noted by further analyses. Conclusions The present study showed that miR-196a was upregulated in laryngeal cancer and promoted cell proliferation by downregulating p27kip1 in laryngeal cancer. However, further studies are needed to verify this finding.
Collapse
|