1
|
Luglio DG, Farrell KR, Gordon T. A pilot study of the cardiopulmonary effects in healthy volunteers after exposure to high levels of PM 2.5 in a New York City subway station. Part Fibre Toxicol 2024; 21:42. [PMID: 39379984 PMCID: PMC11460011 DOI: 10.1186/s12989-024-00594-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/07/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Subway systems are becoming increasingly common worldwide transporting large populations in major cities. PM2.5 concentrations have been demonstrated to be exceptionally high when underground, however. Studies on the impact of subway PM exposure on cardiopulmonary health in the United States are limited. METHODS Healthy volunteers in New York City were exposed to a 2-h visit on the 9th Street Station platform on the Port Authority Trans-Hudson train system. Blood pressure, heart rate variability (HRV), spirometry, and forced impulse oscillometry were measured, and urine, blood spot, and nasal swab biosamples were collected for cytokine analysis at the end of the 2-h exposure period. These endpoints were compared against individual control measurements collected after 2-h in a "clean" control space. In addition to paired comparisons, mixed effects models with subject as a random effect were employed to investigate the effect of the PM2.5 concentrations and visit type (i.e., subway vs. control). RESULTS Mean PM2.5 concentrations on the platform and during the control visit were 293.6 ± 65.7 (SD) and 4.6 ± 1.9 µg/m3, respectively. There was no change in any of the health metrics, but there was a non-significant trend for SDNN to be lower after subway exposure compared to control exposure. Total symptomatic scores did increase post-subway exposure compared to reported values prior to exposure or after the control visit. No significant changes in cytokine concentrations in any specimen type were observed. Mixed-effects models mostly corroborated these paired comparisons. CONCLUSIONS Acute exposures to PM on a subway platform do not cause measurable cardiopulmonary effects apart from reductions in HRV and increases in symptoms in healthy volunteers. These findings match other studies that found little to no changes in lung function and blood pressure after exposure in underground subway stations. Future work should still target potentially more vulnerable populations, such as individuals with asthma or those who spend increased time underground on the subway such as transit workers.
Collapse
Affiliation(s)
- David G Luglio
- Department of Environmental Health Sciences, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Kayla Rae Farrell
- Division of Environmental Medicine, Grossman School of Medicine, New York University, New York, NY, USA
| | - Terry Gordon
- Division of Environmental Medicine, Grossman School of Medicine, New York University, New York, NY, USA.
| |
Collapse
|
2
|
Pedde M, Adar SD. Invited Perspective: Changing Places-How Moving Histories Can Help Map the Health Impacts of People's Environmental Exposures. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:91303. [PMID: 39348289 PMCID: PMC11441637 DOI: 10.1289/ehp16145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Affiliation(s)
- Meredith Pedde
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Sara D Adar
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Qiu T, Fang Q, Zeng X, Zhang X, Fan X, Zang T, Cao Y, Tu Y, Li Y, Bai J, Huang J, Liu Y. Short-term exposures to PM 2.5, PM 2.5 chemical components, and antenatal depression: Exploring the mediating roles of gut microbiota and fecal short-chain fatty acids. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116398. [PMID: 38677066 DOI: 10.1016/j.ecoenv.2024.116398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND PM2.5 and its chemical components increase health risks and are associated with depression and gut microbiota. However, there is still limited evidence on whether gut microbiota and short-chain fatty acids (SCFAs) mediate the association between PM2.5, PM2.5 chemical components, and antenatal depression. The purpose of this study was to investigate the mediating role of maternal gut microbiota in correlations between short-term exposure to PM2.5, short-term exposure to PM2.5 chemical components, and antenatal depression. METHODS Demographic information and stool samples were collected from 75 pregnant women in their third trimester. Their exposure to PM2.5 and PM2.5 chemical components was measured. Participants were divided into the non-antenatal depression group or the antenatal depression group according to the cut-off of 10 points on the Edinburgh Postnatal Depression Scale (EPDS). The gut microbiota were analyzed using the 16 S rRNA-V3/V4 gene sequence, and the concentration of PM2.5 and its chemical components was calculated using the Tracking Air Pollution in China (TAP) database. Gas chromatography-mass spectrometry was used to analyze SCFAs in stool samples. In order to assess the mediating effects of gut microbiota and SCFAs, mediation models were utilized. RESULTS There were significant differences between gut microbial composition and SCFAs concentrations between the non-antenatal depression group and the antenatal depression group. PM2.5 and its chemical components were positively associated with EPDS scores and negatively associated with genera Enterococcus and Enterobacter. Genera Candidatus_Soleaferrea (β = -7.21, 95%CI -11.00 to -3.43, q = 0.01) and Enterococcus (β = -2.37, 95%CI -3.87 to -0.87, q = 0.02) were negatively associated with EPDS scores, indicating their potential protective effects against antenatal depression. There was no significant association between SCFAs and EPDS scores. The mediating role of Enterococcus between different lagged periods of PM2.5, PM2.5 chemical component exposure, and antenatal depression was revealed. For instance, Enterococcus explained 29.23% (95%CI 2.16-87.13%, p = 0.04) of associations between PM2.5 exposure level at the day of sampling (lag 0) and EPDS scores. CONCLUSION Our study highlights that Enterococcus may mediate the associations between PM2.5, PM2.5 chemical components, and antenatal depression. The mediating mechanism through which the gut microbiota influences PM2.5-induced depression in pregnant women still needs to be further studied.
Collapse
Affiliation(s)
- Tianlai Qiu
- Center for Women's and Children's Health Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Qingbo Fang
- Center for Women's and Children's Health Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Xueer Zeng
- Center for Women's and Children's Health Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China; Zhongnan Hospital of Wuhan University, Wuhan 430062, China
| | - Xu Zhang
- Center for Women's and Children's Health Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Xiaoxiao Fan
- Center for Women's and Children's Health Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Tianzi Zang
- Center for Women's and Children's Health Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Yanan Cao
- Center for Women's and Children's Health Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Yiming Tu
- Center for Women's and Children's Health Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Yanting Li
- Center for Women's and Children's Health Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Jinbing Bai
- Emory University Nell Hodgson Woodruff School of Nursing, 1520 Clifton Road, Atlanta, GA 30322, USA
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing 100191, China.
| | - Yanqun Liu
- Center for Women's and Children's Health Research, Wuhan University School of Nursing, Wuhan University, 169 Donghu Road, Wuhan 430071, China.
| |
Collapse
|
4
|
Orach J, Hemshekhar M, Rider CF, Spicer V, Lee AH, Yuen ACY, Mookherjee N, Carlsten C. Concentration-dependent alterations in the human plasma proteome following controlled exposure to diesel exhaust. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123087. [PMID: 38061431 DOI: 10.1016/j.envpol.2023.123087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
Traffic-related air pollution (TRAP) exposure is associated with systemic health effects, which can be studied using blood-based markers. Although we have previously shown that high TRAP concentrations alter the plasma proteome, the concentration-response relationship between blood proteins and TRAP is unexplored in controlled human exposure studies. We aimed to identify concentration-dependent plasma markers of diesel exhaust (DE), a model of TRAP. Fifteen healthy non-smokers were enrolled into a double-blinded, crossover study where they were exposed to filtered air (FA) and DE at 20, 50 and 150 μg/m3 PM2.5 for 4h, separated by ≥ 4-week washouts. We collected blood at 24h post-exposure and used label-free mass spectrometry to quantify proteins in plasma. Proteins exhibiting a concentration-response, as determined by linear mixed effects models (LMEMs), were assessed for pathway enrichment using WebGestalt. Top candidates, identified by sparse partial least squares discriminant analysis and LMEMs, were confirmed using enzyme-linked immunoassays. Thereafter, we assessed correlations between proteins that showed a DE concentration-response and acute inflammatory endpoints, forced expiratory volume in 1 s (FEV1) and methacholine provocation concentration causing a 20% drop in FEV1 (PC20). DE exposure was associated with concentration-dependent alterations in 45 proteins, which were enriched in complement pathways. Of the 9 proteins selected for confirmatory immunoassays, based on complementary bioinformatic approaches to narrow targets and availability of high-quality assays, complement factor I (CFI) exhibited a significant concentration-dependent decrease (-0.02 μg/mL per μg/m3 of PM2.5, p = 0.04). Comparing to FA at discrete concentrations, CFI trended downward at 50 (-2.14 ± 1.18, p = 0.08) and significantly decreased at 150 μg/m3 PM2.5 (-2.93 ± 1.18, p = 0.02). CFI levels were correlated with FEV1, PC20 and nasal interleukin (IL)-6 and IL-1β. This study details concentration-dependent alterations in the plasma proteome following DE exposure at concentrations relevant to occupational and community settings. CFI shows a robust concentration-response and association with established measures of airway function and inflammation.
Collapse
Affiliation(s)
- Juma Orach
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, British Columbia, Vancouver, V5Z1W9, Canada
| | - Mahadevappa Hemshekhar
- Manitoba Center for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Manitoba, Winnipeg, R3E 3P4, Canada
| | - Christopher Francis Rider
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, British Columbia, Vancouver, V5Z1W9, Canada
| | - Victor Spicer
- Manitoba Center for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Manitoba, Winnipeg, R3E 3P4, Canada
| | - Amy H Lee
- Molecular Biology and Biochemistry, Department of Molecular Biology and Biochemistry, Simon Fraser University, British Columbia, Burnaby, V5A 1S6, Canada
| | - Agnes Che Yan Yuen
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, British Columbia, Vancouver, V5Z1W9, Canada
| | - Neeloffer Mookherjee
- Manitoba Center for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Manitoba, Winnipeg, R3E 3P4, Canada; Department of Immunology, University of Manitoba, Manitoba, Winnipeg, R3E 0T5, Canada
| | - Chris Carlsten
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, Vancouver Coastal Health Research Institute, The University of British Columbia, British Columbia, Vancouver, V5Z1W9, Canada.
| |
Collapse
|
5
|
Kitro A, Panumasvivat J, Pisutsan P, Matsee W. Air pollution crisis in Southeast Asia and its impact on international travellers. J Travel Med 2024; 31:taad077. [PMID: 37279955 DOI: 10.1093/jtm/taad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023]
Abstract
Air pollution levels in Southeast Asia have increased, affecting the health of tourists. While short-term effects are reversible, prolonged exposure poses significant risks, particularly for those with pre-existing conditions. Effective communication and awareness are crucial to minimize harm, and urgent action is needed for traveller well-being and global health.
Collapse
Affiliation(s)
- Amornphat Kitro
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jinjuta Panumasvivat
- Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Occupational and Environmental Medicine Unit, Department of Community Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Phimphan Pisutsan
- Thai Travel Clinic, Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Travel Medicine Research Unit, Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Wasin Matsee
- Thai Travel Clinic, Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Travel Medicine Research Unit, Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
6
|
Vilcassim R, Thurston GD. Gaps and future directions in research on health effects of air pollution. EBioMedicine 2023; 93:104668. [PMID: 37357089 PMCID: PMC10363432 DOI: 10.1016/j.ebiom.2023.104668] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/03/2023] [Accepted: 06/06/2023] [Indexed: 06/27/2023] Open
Abstract
Despite progress in many countries, air pollution, and especially fine particulate matter air pollution (PM2.5) remains a global health threat: over 6 million premature cardiovascular and respiratory deaths/yr. have been attributed to household and outdoor air pollution. In this viewpoint, we identify present gaps in air pollution monitoring and regulation, and how they could be strengthened in future mitigation policies to more optimally reduce health impacts. We conclude that there is a need to move beyond simply regulating PM2.5 particulate matter mass concentrations at central site stations. A greater emphasis is needed on: new portable and affordable technologies to measure personal exposures to particle mass; the consideration of a submicron (PM1) mass air quality standard; and further evaluations of effects by particle composition and source. We emphasize the need to enable further studies on exposure-health relationships in underserved populations that are disproportionately impacted by air pollution, but not sufficiently represented in current studies.
Collapse
Affiliation(s)
- Ruzmyn Vilcassim
- Department of Environmental Health Sciences, The University of Alabama at Birmingham, School of Public Health, USA.
| | - George D Thurston
- Departments of Medicine and Population Health, New York University School of Medicine, USA
| |
Collapse
|
7
|
Zhu C, Xue Y, Li Y, Yao Z, Li Y. Assessment of particulate matter inhalation during the trip process with the considerations of exercise load. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161277. [PMID: 36587677 DOI: 10.1016/j.scitotenv.2022.161277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
A Particulate Matter (PM) inhalation model considering exercise load is established to evaluate the impact of PM on residents' travel health. The study chooses PM detectors to collect PM concentrations at the various transportation space, including walking, bicycle, bus, taxi, and subway. A multiple linear regression model revised by road greening is utilized to study the influence factors that have a potential impact on the PM concentration. The air inhalation model with the consideration of exercise load can be acquired by connecting the heart rate (HR) and individual characteristics. The PM2.5 and PM10 inhalation for a complete trip of traveler can be estimated using the proposed model based on air inhalation per time unit, travel time, and PM concentration. The analysis results using the experimental data in Xi'an indicate that PM concentrations in taxi carriage, bus carriage, and subway carriage are significantly different from those obtained from environmental monitoring stations. However, the difference is not significant in the locations of sidewalk, non-motorized lane, taxi station, bus station, subway concourse, and subway platform. PM concentration and humidity in background environment have a positive influence on the increase of PM concentration in transportation environment, while temperature and wind speed are negative. The mean values of air inhalation per time unit for male and female using each mode are in the range of 9.6-26.8 L/min and 9.8-27.8 L/min, respectively. Exposure time in non-motorized transportation has a large effect on PM inhalation of travelers, walking connections and waiting in motorized transportation are the main contributing states to PM inhalation of travelers. The results of the study can be used to predict travelers' PM inhalation in completed trips, and provide recommendations for travelers to choose a healthier mode.
Collapse
Affiliation(s)
- Caihua Zhu
- College of Transportation Engineering, Chang'an University, Middle section of south 2nd Ring Road, Xi'an, Shaanxi Province 710064, China.
| | - Yubing Xue
- College of Transportation Engineering, Chang'an University, Middle section of south 2nd Ring Road, Xi'an, Shaanxi Province 710064, China
| | - Yuran Li
- College of Transportation Engineering, Chang'an University, Middle section of south 2nd Ring Road, Xi'an, Shaanxi Province 710064, China
| | - Zhenxing Yao
- College of Transportation Engineering, Chang'an University, Middle section of south 2nd Ring Road, Xi'an, Shaanxi Province 710064, China.
| | - Yan Li
- College of Transportation Engineering, Chang'an University, Middle section of south 2nd Ring Road, Xi'an, Shaanxi Province 710064, China.
| |
Collapse
|
8
|
Bogalecka M, Grobelna A. Air Pollution and Its Potential Consequences for Tourism and Career Development from Students' Perspective: A Case Study of the Gdańsk Agglomeration in Poland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2651. [PMID: 36768013 PMCID: PMC9915923 DOI: 10.3390/ijerph20032651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
The purpose of this study is to present the state and variability of air pollution and its potential consequences for the intensity of tourism traffic based on the example of the Gdańsk agglomeration as a very popular tourist destination of Northern Poland. Specifically, the study seeks to answer the question how a future, qualified tourism workforce, such as tourism and hospitality (T&H) students from higher educational institutions (HEIs) located in the investigated area, perceive the problem of air pollution and whether their perception may have a potential impact on their attitudes and career aspirations towards working in the T&H industry after graduation. In this study, both a desk-research method and a questionnaire were used. The main results reveal that although the intensified tourist traffic does not coincide with high concentrations of pollutants and a poor quality of air, it cannot be clearly stated that tourists choose a destination being guided by the condition of ambient air pollution. The findings also show that T&H students are strongly aware of the air pollution problems and its negative consequences for the perceived attractiveness of a tourist destination and its labour market. To the best of the authors' knowledge, this study is among the first to analyse the relationships between air pollution and students' perceptions of its consequences for tourism and for career development in the tourism industry, which is highly dependent on the environmental quality.
Collapse
Affiliation(s)
- Magdalena Bogalecka
- Department of Industrial Products Quality and Chemistry, Gdynia Maritime University, 81-87 Morska Str., 81-225 Gdynia, Poland
| | - Aleksandra Grobelna
- Department of Marketing and Quantitative Methods, Gdynia Maritime University, 81-87 Morska Str., 81-225 Gdynia, Poland
| |
Collapse
|
9
|
Mookherjee N, Ryu MH, Hemshekhar M, Orach J, Spicer V, Carlsten C. Defining the effects of traffic-related air pollution on the human plasma proteome using an aptamer proteomic array: A dose-dependent increase in atherosclerosis-related proteins. ENVIRONMENTAL RESEARCH 2022; 209:112803. [PMID: 35120890 DOI: 10.1016/j.envres.2022.112803] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Traffic-related air pollution (TRAP) is a critical risk factor and major contributor to respiratory and cardiovascular disease (CVD). The effects of TRAP beyond the lungs can be related to changes in circulatory proteins. However, such TRAP-mediated changes have not been defined in an unbiased manner using a controlled human model. OBJECTIVE To detail global protein changes (the proteome) in plasma following exposure to inhaled diesel exhaust (DE), a paradigm of TRAP, using controlled human exposures. METHODS In one protocol, ex-smokers and never-smokers were exposed to filtered air (FA) and DE (300 μg PM2.5/m3), on order-randomized days, for 2 h. In a second protocol, independent never-smoking participants were exposed to lower concentrations of DE (20, 50 or 150 μg PM2.5/m3) and FA, for 4 h, on order-randomized days. Each exposure was separated by 4 weeks of washout. Plasma samples obtained 24 h post-exposure from ex-smokers (n = 6) were first probed using Slow off-rate modified aptamer proteomic array. Plasma from never-smokers (n = 11) was used for independent assessment of proteins selected from the proteomics study by immunoblotting. RESULTS Proteomics analyses revealed that DE significantly altered 342 proteins in plasma of ex-smokers (n = 6). The top 20 proteins therein were primarily associated with inflammation and CVD. Plasma from never-smokers (n = 11) was used for independent assessment of 6 proteins, amongst the top 10 proteins increased by DE in the proteomics study, for immunoblotting. The abundance of all six proteins (fractalkine, apolipoproteins (APOB and APOM), IL18R1, MIP-3 and MMP-12) was significantly increased by DE in plasma of these never-smokers. DE-mediated increase was shown to be concentration-dependent for fractalkine, APOB and MMP-12, all biomarkers of atherosclerosis, which correlated with plasma levels of IL-6, a subclinical marker of CVD, in independent participants. CONCLUSION This investigation details changes in the human plasma proteome due to TRAP. We identify specific atherosclerosis-related proteins that increase concentration-dependently across a range of TRAP levels applicable worldwide.
Collapse
Affiliation(s)
- Neeloffer Mookherjee
- Manitoba Center for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada; Department of Immunology, University of Manitoba, Winnipeg, MB, Canada; The Canadian Respiratory Research Network, Ottawa, ON, Canada
| | - Min Hyung Ryu
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada; The Canadian Respiratory Research Network, Ottawa, ON, Canada
| | - Mahadevappa Hemshekhar
- Manitoba Center for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Juma Orach
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Victor Spicer
- Manitoba Center for Proteomics and Systems Biology, Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Christopher Carlsten
- Air Pollution Exposure Laboratory, Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada; The Canadian Respiratory Research Network, Ottawa, ON, Canada.
| |
Collapse
|
10
|
Qu S, Deng S, Yang T, Yang Y, Zhang Y, Zheng Z, Chen L, Li Y. Shengmai Yin alleviated plaque vulnerability and ischemic myocardial damage in diesel exhaust particle-aggravated atherosclerosis with myocardial ischemia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113379. [PMID: 35278994 DOI: 10.1016/j.ecoenv.2022.113379] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/17/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Exposure to diesel exhaust particles (DEP) increases the risk of ischemic heart disease, especially heart attacks and ischemic/thrombotic strokes. Shengmai Yin (SMY) is a traditional Chinese medicine used to treat coronary heart disease. The aim of this study was to determine the protective role of SMY and the mechanism by which SMY affects DEP-induced cardiovascular injury. This study is expected to provide the basis for the development of an adaptive signature of SMY in the prevention of atherosclerotic cardiovascular disease and premature death from global air pollution exposure. We developed animal models of myocardial ischemia and atherosclerosis (AS) in response to DEP exposure. After SMY treatment, serum lipids returned to normal. Aortic plaque area and MMP9 expression were significantly reduced and collagen fiber expression increased after SMY treatment compared to DEP exposure alone. Thus, the risk of plaque formation and vulnerability is reduced. In addition, SMY improved left ventricular structure, morphology, function, blood flow, infarct area, myocardial damage, and ROS accumulation to varying degrees in ApoE-/- mice. These results indicate that the use of SMY is effective, to varying degrees, for the treatment of dyslipidemia, atherosclerosis, myocardial ischemia, and oxidative stress in ApoE-/- mice. SMY has a potential protective effect in DEP-aggravated AS in people with myocardial ischemia.
Collapse
Affiliation(s)
- Shuiqing Qu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuoqiu Deng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ting Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanmin Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhongyuan Zheng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lina Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Yujie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
11
|
Jacob D, Stowe S, Babarinde I, Sharma A, Christopher A, Vilcassim MJR. The Impact of COVID-19 Related Changes on Air Quality in Birmingham, Alabama, United States. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3168. [PMID: 35328857 PMCID: PMC8951610 DOI: 10.3390/ijerph19063168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 11/17/2022]
Abstract
Air pollution is responsible for a wide range of health effects in exposed populations. Variations in local air pollution can affect local population health outcomes. The strict regulations imposed during the peak of the COVID-19 pandemic ('lockdowns') resulted in a unique situation where human mobility was limited significantly, resulting in improved air quality in several major cities. The main goal of this study was to investigate if lockdowns during the COVID-19 pandemic significantly impacted air quality in Birmingham, Alabama-a city with a history of high air pollution levels-with a focus on PM2.5 (Particulate Matter with an aerodynamic diameter ≤2.5 µm) and NO2 (Nitrogen dioxide). Daily air pollutant and traffic data were obtained for the Birmingham Metropolitan Area for the period January to October 2020, and previous years. Mean PM2.5 and NO2 concentrations and traffic volumes during the official city/state lockdown period (24 March to 30 April 2020) were compared to pre- and post-lockdown means. The mean PM2.5 and NO2 concentrations during the lockdown did not significantly differ from that of the pre- or post-lockdown periods. However, NO2 significantly decreased even after the lockdown order was removed, with the mean decreasing significantly compared to pre-lockdown and lockdown periods. Both PM2.5 and NO2 annual means in 2020 were significantly lower than the annual means in 2019, indicating the occurrence of significant changes over the longer term that were not limited by defined lockdown periods. Traffic significantly increased after the lockdown order was removed but did not correlate with the two pollutants studied. Therefore, we conclude that the Stay at Home/lockdown regulations and other COVID-19 restrictions had an impact on the air quality of Birmingham Alabama; although these lockdown impacts varied for each pollutant and were not limited only by the official lockdown dates/periods.
Collapse
Affiliation(s)
- Diya Jacob
- School of Health Professions, The University of Alabama at Birmingham, Birmingham, AL 35233, USA; (D.J.); (A.C.)
| | - Samuel Stowe
- Department of Environmental Health Sciences, School of Public Health, The University of Alabama at Birmingham, Birmingham, AL 35233, USA; (S.S.); (I.B.); (A.S.)
| | - Iyinoluwa Babarinde
- Department of Environmental Health Sciences, School of Public Health, The University of Alabama at Birmingham, Birmingham, AL 35233, USA; (S.S.); (I.B.); (A.S.)
| | - Aakruti Sharma
- Department of Environmental Health Sciences, School of Public Health, The University of Alabama at Birmingham, Birmingham, AL 35233, USA; (S.S.); (I.B.); (A.S.)
| | - Abigail Christopher
- School of Health Professions, The University of Alabama at Birmingham, Birmingham, AL 35233, USA; (D.J.); (A.C.)
| | - M. J. Ruzmyn Vilcassim
- Department of Environmental Health Sciences, School of Public Health, The University of Alabama at Birmingham, Birmingham, AL 35233, USA; (S.S.); (I.B.); (A.S.)
| |
Collapse
|
12
|
Edwards L, Wilkinson P, Rutter G, Milojevic A. Health effects in people relocating between environments of differing ambient air pollution concentrations: A literature review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118314. [PMID: 34653586 DOI: 10.1016/j.envpol.2021.118314] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/11/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
People who relocate to a new environment may experience health effects from a change in ambient air pollution. We undertook a literature review of studies of such relocations and health effects and report the results as a narrative analysis. Fifteen articles of heterogeneous designs met the inclusion criteria. Four short-term (relocation duration less than six months) and three long-term (relocation duration six months or greater) studies reported evidence of the effect of relocation on physiological outcome, biomarkers or symptoms. All had potential weaknesses of design or analysis but, as a whole, their results are broadly consistent in suggesting short-term adverse effects of air pollutants or their reversibility. One long-term study provided evidence that changes in air pollution exposure during adolescence have a measurable effect on lung function growth. Four cohort studies were also identified that used relocation to strengthen evidence of air-pollution-exposure relationships by using a design that incorporates effective randomization of exposure or the use of relocation to improve exposure classification. However, three studies of relocation during pregnancy provided limited evidence to conclude an effect of relocation-related change in exposure on pregnancy outcome. Overall, most relocation studies are consistent with short- or long-term adverse effects of air pollution on biological function or mortality, but many studies of change in exposure have design weaknesses that limit the robustness of interpretation. We outline principles for improved design and analysis to help strengthen future studies for the insights they can provide from their quasi-experimental designs, including on the nature and timing of functional changes of relocation-related changes in exposure to ambient air pollution.
Collapse
Affiliation(s)
- Leslie Edwards
- London School of Hygiene and Tropical Medicine, London, England, United Kingdom.
| | - Paul Wilkinson
- London School of Hygiene and Tropical Medicine, London, England, United Kingdom
| | | | - Ai Milojevic
- London School of Hygiene and Tropical Medicine, London, England, United Kingdom
| |
Collapse
|
13
|
da Silveira Fleck A, Sadoine ML, Buteau S, Suarthana E, Debia M, Smargiassi A. Environmental and Occupational Short-Term Exposure to Airborne Particles and FEV 1 and FVC in Healthy Adults: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010571. [PMID: 34682321 PMCID: PMC8536058 DOI: 10.3390/ijerph182010571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 11/29/2022]
Abstract
Background: No study has compared the respiratory effects of environmental and occupational particulate exposure in healthy adults. Methods: We estimated, by a systematic review and meta-analysis, the associations between short term exposures to fine particles (PM2.5 and PM4) and certain parameters of lung function (FEV1 and FVC) in healthy adults. Results: In total, 33 and 14 studies were included in the qualitative synthesis and meta-analyses, respectively. In environmental studies, a 10 µg/m3 increase in PM2.5 was associated with an FEV1 reduction of 7.63 mL (95% CI: −10.62 to −4.63 mL). In occupational studies, an increase of 10 µg/m3 in PM4 was associated with an FEV1 reduction of 0.87 mL (95% CI: −1.36 to −0.37 mL). Similar results were observed with FVC. Conclusions: Both occupational and environmental short-term exposures to fine particles are associated with reductions in FEV1 and FVC in healthy adults.
Collapse
Affiliation(s)
- Alan da Silveira Fleck
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, 2375 Chem. de la Côte-Sainte-Catherine, Montreal, QC H3T 1A8, Canada; (A.d.S.F.); (M.L.S.); (M.D.)
- Centre for Public Health Research (CReSP), 7101 Av du Parc, Montreal, QC H3N 1X9, Canada
| | - Margaux L. Sadoine
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, 2375 Chem. de la Côte-Sainte-Catherine, Montreal, QC H3T 1A8, Canada; (A.d.S.F.); (M.L.S.); (M.D.)
- Centre for Public Health Research (CReSP), 7101 Av du Parc, Montreal, QC H3N 1X9, Canada
| | - Stéphane Buteau
- Institut National de Sante Publique du Québec (INSPQ), 190 Boul Crémazie E, Montreal, QC H2P 1E2, Canada;
| | - Eva Suarthana
- Research Institute of the McGill University Health Center, 2155 Rue Guy, Montreal, QC H3H 2L9, Canada;
- Centre de Recherche de l’Hôpital du Sacré-Coeur de Montréal (CRHSCM), 5400 Boul Gouin O, Montreal, QC H4J 1C5, Canada
| | - Maximilien Debia
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, 2375 Chem. de la Côte-Sainte-Catherine, Montreal, QC H3T 1A8, Canada; (A.d.S.F.); (M.L.S.); (M.D.)
- Centre for Public Health Research (CReSP), 7101 Av du Parc, Montreal, QC H3N 1X9, Canada
| | - Audrey Smargiassi
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, 2375 Chem. de la Côte-Sainte-Catherine, Montreal, QC H3T 1A8, Canada; (A.d.S.F.); (M.L.S.); (M.D.)
- Centre for Public Health Research (CReSP), 7101 Av du Parc, Montreal, QC H3N 1X9, Canada
- Institut National de Sante Publique du Québec (INSPQ), 190 Boul Crémazie E, Montreal, QC H2P 1E2, Canada;
- Correspondence:
| |
Collapse
|
14
|
Rofaiel DP, Hession P, Flaherty GT. Analysis of web-based travel health advice provided to international travellers with chronic medical and psychiatric illnesses. Int J Med Inform 2021; 154:104566. [PMID: 34520934 DOI: 10.1016/j.ijmedinf.2021.104566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVES The internet is an important source of travel health information. Individuals living with chronic illnesses consult patient organisation websites for illness-related information. We analysed the scope of online travel health information available to patients with pre-existing medical conditions. STUDY DESIGN A descriptive content analysis of patient organisation websites was conducted. METHODS The Google® search engine was interrogated using search terms related to the principal chronic diseases from the Global Burden of Disease Study. Data relating to 41 travel health variables were extracted from each eligible website. An aggregate quality score was derived for each organisation based on the presence of specific website information. Visitor usage and search analytics for each organisation's website were also described. RESULTS We examined 145 official organisation websites relating to 10 major chronic illnesses. The largest number of websites was retrieved for patients with cancer (n = 36). Only 21 (16.5%) websites provided information on fitness-to-travel considerations. COPD websites had the highest average quality score (17.68%), followed by diabetes (14.91%) and dementia (13.28%). Mental health illness websites had the lowest score of 1.33%. There was a trend towards increased emphasis on pre-travel preparation and medications. Insect bite avoidance, malaria, animal bites, jet lag, and repatriation were addressed to the least extent. CONCLUSIONS Our analysis exposes significant deficits in the coverage of travel health topics. Patient organisations should provide accessible pre-travel health advice to website users. Future research should elucidate the influence of web-based pre-travel health information on the behaviour of travellers with chronic disease.
Collapse
Affiliation(s)
- David P Rofaiel
- School of Medicine, National University of Ireland Galway, Galway, Ireland; National Institute for Prevention and Cardiovascular Health, Galway, Ireland
| | - Paul Hession
- School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Gerard T Flaherty
- School of Medicine, National University of Ireland Galway, Galway, Ireland; National Institute for Prevention and Cardiovascular Health, Galway, Ireland; School of Medicine, International Medical University, Kuala Lumpur, Malaysia.
| |
Collapse
|
15
|
Vilcassim MJR, Callahan AE, Zierold KM. Travelling to polluted cities: a systematic review on the harm of air pollution on international travellers' health. J Travel Med 2021; 28:6210993. [PMID: 33823002 DOI: 10.1093/jtm/taab055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 01/22/2023]
Abstract
RATIONALE FOR REVIEW In 2019, approximately, 1.4 billion people travelled internationally. Many individuals travel to megacities where air pollution concentrations can vary significantly. Short-term exposure to air pollutants can cause morbidity and mortality related to cardiovascular and respiratory disease, with the literature clearly reporting a strong association between short-term exposure to particulate matter ≤2.5 μm and ozone with adverse health outcomes in resident populations. However, limited research has been conducted on the health impacts of short-term exposure to air pollution in individuals who travel internationally. The objective of this systematic review was to review the evidence for the respiratory and cardiovascular health impacts from exposure to air pollution during international travel to polluted cities in adults aged ≥18 years old. KEY FINDINGS We searched PubMed, Scopus and EMBASE for studies related to air pollution and the health impacts on international travellers. Of the initially identified 115 articles that fit the search criteria, 6 articles were selected for the final review. All six studies found indications of adverse health impacts of air pollution exposure on international travellers, with most of the changes being reversible upon return to their home country/city. However, none of these studies contained large populations nor investigated vulnerable populations, such as children, elderly or those with pre-existing conditions. CONCLUSIONS More research is warranted to clearly understand the impacts of air pollution related changes on travellers' health, especially on vulnerable groups who may be at higher risk of adverse impacts during travel to polluted cities.
Collapse
Affiliation(s)
- M J Ruzmyn Vilcassim
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amy E Callahan
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kristina M Zierold
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Societal lockdowns in response to the COVID-19 pandemic have led to unprecedented disruption to daily life across the globe. A collateral effect of these lockdowns may be a change to transmission dynamics of a wide range of infectious diseases that are all highly dependent on rates of contact between humans. With timing, duration and intensity of lockdowns varying country-to-country, the wave of lockdowns in 2020 present a unique opportunity to observe how changes in human contact rates, disease control and surveillance affect dengue virus transmission in a global natural experiment. We explore the theoretical basis for the impact of lockdowns on dengue transmission and surveillance then summarise the current evidence base from country reports. RECENT FINDINGS We find considerable variation in the intensity of dengue epidemics reported so far in 2020 with some countries experiencing historic low levels of transmission while others are seeing record outbreaks. Despite many studies warning of the risks of lockdown for dengue transmission, few empirically quantify the impact and issues such as the specific timing of the lockdowns and multi-annual cycles of dengue are not accounted for. In the few studies where such issues have been accounted for, the impact of lockdowns on dengue appears to be limited. SUMMARY Studying the impact of lockdowns on dengue transmission is important both in how we deal with the immediate COVID-19 and dengue crisis, but also over the coming years in the post-pandemic recovery period. It is clear lockdowns have had very different impacts in different settings. Further analyses might ultimately allow this unique natural experiment to provide insights into how to better control dengue that will ultimately lead to better long-term control.
Collapse
Affiliation(s)
- Oliver Brady
- Department of Disease Control, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - Annelies Wilder-Smith
- Department of Disease Control, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| |
Collapse
|
17
|
Abstract
The origin of the severe acute respiratory syndrome coronavirus 2, the coronavirus that is still ravaging across the world almost a year after the first reported case, has been told in various ways—from the wildlife trade at the Wuhan wet market to the covert operations in laboratories. How does climate change fit in the narratives?
Collapse
Affiliation(s)
- Esabelle Lo Yan Yam
- College of Health and Medicine, Australian National University, Canberra ACT 2600, Australia
| |
Collapse
|
18
|
Rajagopalan S, Brauer M, Bhatnagar A, Bhatt DL, Brook JR, Huang W, Münzel T, Newby D, Siegel J, Brook RD. Personal-Level Protective Actions Against Particulate Matter Air Pollution Exposure: A Scientific Statement From the American Heart Association. Circulation 2020; 142:e411-e431. [PMID: 33150789 DOI: 10.1161/cir.0000000000000931] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Since the publication of the last American Heart Association scientific statement on air pollution and cardiovascular disease in 2010, unequivocal evidence of the causal role of fine particulate matter air pollution (PM2.5, or particulate matter ≤2.5 μm in diameter) in cardiovascular disease has emerged. There is a compelling case to provide the public with practical personalized approaches to reduce the health effects of PM2.5. Such interventions would be applicable not only to individuals in heavily polluted countries, high-risk or susceptible individuals living in cleaner environments, and microenvironments with higher pollution exposures, but also to those traveling to locations with high levels of PM2.5. The overarching motivation for this document is to summarize the current evidence supporting personal-level strategies to prevent the adverse cardiovascular effects of PM2.5, guide the use of the most proven/viable approaches, obviate the use of ineffective measures, and avoid unwarranted interventions. The significance of this statement relates not only to the global importance of PM2.5, but also to its focus on the most tested interventions and viable approaches directed at particulate matter air pollution. The writing group sought to provide expert consensus opinions on personal-level measures recognizing the current uncertainty and limited evidence base for many interventions. In doing so, the writing group acknowledges that its intent is to assist other agencies charged with protecting public health, without minimizing the personal choice considerations of an individual who may decide to use these interventions in the face of ongoing air pollution exposure.
Collapse
|
19
|
Ran J, Zhao S, Han L, Qiu Y, Cao P, Yang Z, Chong MKC, Yang L, Wang MH, He D. Effects of particulate matter exposure on the transmissibility and case fatality rate of COVID-19: A Nationwide Ecological Study in China. J Travel Med 2020; 27:5890411. [PMID: 32779721 PMCID: PMC7454763 DOI: 10.1093/jtm/taaa133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Jinjun Ran
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.,School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shi Zhao
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China.,CUHK Shenzhen Research Institute, Shenzhen, China
| | - Lefei Han
- School of Nursing, Hong Kong Polytechnic University, Hong Kong, China
| | - Yulan Qiu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peihua Cao
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zuyao Yang
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
| | - Marc K C Chong
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China.,CUHK Shenzhen Research Institute, Shenzhen, China
| | - Lin Yang
- School of Nursing, Hong Kong Polytechnic University, Hong Kong, China
| | - Maggie H Wang
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China.,CUHK Shenzhen Research Institute, Shenzhen, China
| | - Daihai He
- Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
20
|
Rabinovitch N, Jones MJ, Gladish N, Faino AV, Strand M, Morin AM, MacIsaac J, Lin DTS, Reynolds PR, Singh A, Gelfand EW, Kobor MS, Carlsten C. Methylation of cysteinyl leukotriene receptor 1 genes associates with lung function in asthmatics exposed to traffic-related air pollution. Epigenetics 2020; 16:177-185. [PMID: 32657253 DOI: 10.1080/15592294.2020.1790802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Air pollution is associated with early declines in lung function and increased levels of asthma-related cysteinyl leukotrienes (CysLT) but a biological pathway linking this rapid response has not been delineated. In this randomized controlled diesel exhaust (DE) challenge study of 16 adult asthmatics, increased exposure-attributable urinary leukotriene E4 (uLTE4, a biomarker of cysteinyl leukotriene production) was correlated (p = 0.04) with declines in forced expiratory volume in 1-second (FEV1) within 6 hours of exposure. Exposure-attributable uLTE4 increases were correlated (p = 0.02) with increased CysLT receptor 1 (CysLTR1) methylation in peripheral blood mononuclear cells which, in turn, was marginally correlated (p = 0.06) with decreased CysLTR1 expression. Decreased CysLTR1 expression was, in turn, correlated (p = 0.0007) with FEV1 declines. During the same time period, increased methylation of GPR17 (a negative regulator of CysLTR1) was observed after DE exposure (p = 0.02); this methylation increase was correlated (p = 0.001) with decreased CysLTR1 methylation which, in turn, was marginally correlated (p = 0.06) with increased CysLTR1 expression; increased CysLTR1 expression was correlated (p = 0.0007) with FEV1 increases. Collectively, these data delineate a potential mechanistic pathway linking increased DE exposure-attributable CysLT levels to lung function declines through changes in CysLTR1-related methylation and gene expression.
Collapse
Affiliation(s)
- Nathan Rabinovitch
- Department of Pediatrics P: 303-398-1992, Center for Molecular Medicine and Therapeutics, University of British Columbia/British Columbia Children's Hospital Research Institute , Vancouver, BC, Canada
| | - Meaghan J Jones
- Department of Medical Genetics P: 604-875-3194, Center for Molecular Medicine and Therapeutics, University of British Columbia/British Columbia Children's Hospital Research Institute , Vancouver, BC, Canada
| | - Nicole Gladish
- Department of Medical Genetics P: 604-875-3194, Center for Molecular Medicine and Therapeutics, University of British Columbia/British Columbia Children's Hospital Research Institute , Vancouver, BC, Canada
| | - Anna V Faino
- Biostatistics Program P: 206-667-4995, Public Health Division, Fred Hutchinson Cancer Research Center , Seattle, WA, USA
| | - Matthew Strand
- Department of Medicine P: 303-398-1862, National Jewish Health , Denver, CO, USA
| | - Alexander M Morin
- Department of Medical Genetics P: 604-875-3194, Center for Molecular Medicine and Therapeutics, University of British Columbia/British Columbia Children's Hospital Research Institute , Vancouver, BC, Canada
| | - Julie MacIsaac
- Department of Medical Genetics P: 604-875-3194, Center for Molecular Medicine and Therapeutics, University of British Columbia/British Columbia Children's Hospital Research Institute , Vancouver, BC, Canada
| | - David T S Lin
- Department of Medical Genetics P: 604-875-3194, Center for Molecular Medicine and Therapeutics, University of British Columbia/British Columbia Children's Hospital Research Institute , Vancouver, BC, Canada
| | - Paul R Reynolds
- Department of Medicine P: 303-398-1862, National Jewish Health , Denver, CO, USA
| | - Amrit Singh
- Department of Pathology and Laboratory Medicine P: 604-764-5827, University of British Columbia , Vancouver, BC, Canada
| | - Erwin W Gelfand
- Department of Pediatrics P: 303-398-1992, Center for Molecular Medicine and Therapeutics, University of British Columbia/British Columbia Children's Hospital Research Institute , Vancouver, BC, Canada
| | - Michael S Kobor
- Department of Medical Genetics P: 604-875-3194, Center for Molecular Medicine and Therapeutics, University of British Columbia/British Columbia Children's Hospital Research Institute , Vancouver, BC, Canada
| | - Christopher Carlsten
- Department of Medicine, P: 604-875-4729, University of British Columbia , Vancouver, BC, Canada
| |
Collapse
|
21
|
Nanodomains in cardiopulmonary disorders and the impact of air pollution. Biochem Soc Trans 2020; 48:799-811. [PMID: 32597478 PMCID: PMC7329344 DOI: 10.1042/bst20190250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/29/2022]
Abstract
Air pollution is a major environmental threat and each year about 7 million people reported to die as a result of air pollution. Consequently, exposure to air pollution is linked to increased morbidity and mortality world-wide. Diesel automotive engines are a major source of urban air pollution in the western societies encompassing particulate matter and diesel exhaust particles (DEP). Air pollution is envisioned as primary cause for cardiovascular dysfunction, such as ischemic heart disease, cardiac dysrhythmias, heart failure, cerebrovascular disease and stroke. Air pollution also causes lung dysfunction, such as chronic obstructive pulmonary disease (COPD), asthma, idiopathic pulmonary fibrosis (IPF), and specifically exacerbations of these diseases. DEP induces inflammation and reactive oxygen species production ultimately leading to mitochondrial dysfunction. DEP impair structural cell function and initiate the epithelial-to-mesenchymal transition, a process leading to dysfunction in endothelial as well as epithelial barrier, hamper tissue repair and eventually leading to fibrosis. Targeting cyclic adenosine monophosphate (cAMP) has been implicated to alleviate cardiopulmonary dysfunction, even more intriguingly cAMP seems to emerge as a potent regulator of mitochondrial metabolism. We propose that targeting of the mitochondrial cAMP nanodomain bear the therapeutic potential to diminish air pollutant — particularly DEP — induced decline in cardiopulmonary function.
Collapse
|
22
|
Affiliation(s)
- Cong Liu
- School of Public Health, Fudan University, Shanghai, China
| | | | - Haidong Kan
- School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Genomics of Particulate Matter Exposure Associated Cardiopulmonary Disease: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16224335. [PMID: 31703266 PMCID: PMC6887978 DOI: 10.3390/ijerph16224335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 12/25/2022]
Abstract
Particulate matter (PM) exposure is associated with the development of cardiopulmonary disease. Our group has studied the adverse health effects of World Trade Center particulate matter (WTC-PM) exposure on firefighters. To fully understand the complex interplay between exposure, organism, and resultant disease phenotype, it is vital to analyze the underlying role of genomics in mediating this relationship. A PubMed search was performed focused on environmental exposure, genomics, and cardiopulmonary disease. We included original research published within 10 years, on epigenetic modifications and specific genetic or allelic variants. The initial search resulted in 95 studies. We excluded manuscripts that focused on work-related chemicals, heavy metals and tobacco smoke as primary sources of exposure, as well as reviews, prenatal research, and secondary research studies. Seven full-text articles met pre-determined inclusion criteria, and were reviewed. The effects of air pollution were evaluated in terms of methylation (n = 3), oxidative stress (n = 2), and genetic variants (n = 2). There is evidence to suggest that genomics plays a meditating role in the formation of adverse cardiopulmonary symptoms and diseases that surface after exposure events. Genomic modifications and variations affect the association between environmental exposure and cardiopulmonary disease, but additional research is needed to further define this relationship.
Collapse
|