1
|
Pan H, Su J, Bai M, Chen M, He Z, Rong N, Lin X, Wang H, Wu H. Two Caffeoyl-CoA O-methyltransferase-like enzyme are involved in the biosynthesis of polymethoxyflavones in Citrus reticulata 'Chachiensis'. Int J Biol Macromol 2025; 310:143277. [PMID: 40288725 DOI: 10.1016/j.ijbiomac.2025.143277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/10/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
Polymethoxyflavones (PMFs) are abundant in citrus plants and exhibit remarkable biological activities in the inhibition of the occurrence and development of various tumours. O-methyltransferase (OMTs)-mediated methylation plays a crucial role in the biosynthesis of PMFs. However, the OMTs catalyzing the methylation of hydroxyflavonoids in citrus have not been fully identified. In this study, we identified two novel CCoAOMT-like enzymes in Citrus reticulata 'Chachiensis', designated CrcCCoAOMT7-1 and CrcCCoAOMT7-2. The transient overexpression and virus-induced gene silencing experiments further confirmed the essential role of CrcCCoAOMT7-1/7-2 in the regulation of PMF synthesis in citrus. Furthermore, in vitro functional analysis showed that CrcCCoAOMT7-1 preferentially catalyzes flavones, while CrcCCoAOMT7-2 exhibits a preference for flavanones and quercetin (flavonol). The two enzymes methylate the 3'-, 4'-, 3-, 6-, 8-OH sites and the 3'-, 4'-, 6-, 7-, 8-OH sites with hydroxyflavonoids, respectively, covering nearly all methylation sites during the biosynthesis of PMFs. Functional diversification of CCoAOMTs expended our understanding of PMFs biosynthesis modes in citrus. This study enriches the PMF biosynthetic pathway in citrus and lays the foundation for the selection and breeding of high-quality Citrus reticulata 'Chachiensis' mandarins, as well as the synthesis of natural anticancer PMFs through genetic engineering.
Collapse
Affiliation(s)
- Huimin Pan
- Centre for Medicinal Plant Research, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jianmu Su
- Centre for Medicinal Plant Research, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Mei Bai
- Centre for Medicinal Plant Research, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Meizhuang Chen
- Centre for Medicinal Plant Research, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhuoyuan He
- Centre for Medicinal Plant Research, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Ning Rong
- Centre for Medicinal Plant Research, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xitong Lin
- Centre for Medicinal Plant Research, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Haiyang Wang
- Yazhouwan National Laboratory, Sanya 572024, China
| | - Hong Wu
- Centre for Medicinal Plant Research, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Tan H, Fu J, Chen C, Xiao LQ, Zhang JZ, Zhu TT, Ni R, Du NH, Ta H, Hao Y, Ren DM, Wang HL, Lou HX, Cheng AX. Unraveling the hydroxylation and methylation mechanism in polymethoxylated flavones biosynthesis in Dracocephalum moldavica. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109571. [PMID: 39919496 DOI: 10.1016/j.plaphy.2025.109571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 01/16/2025] [Accepted: 01/26/2025] [Indexed: 02/09/2025]
Abstract
Dracocephalum moldavica, which belongs to the Lamiaceae family, is an important medicinal plant rich in polymethoxylated flavones (PMFs). PMFs have multi-methoxy groups on the central flavone skeleton. Hydroxylation and methylation are important modifications in the biosynthesis of PMFs, but the corresponding mechanism and related enzymes have not yet been elucidated in D. moldavica. In this study, we analyzed the transcriptome database of D. moldavica and identified three flavonoid hydroxylases (DmFH1/2/3) and four flavonoid O-methyltransferases (DmOMT1/2/3/4) related to the biosynthesis of PMFs. DmFH1 was characterized as a novel F6/8/3'H and has broad substrate specificity for flavones and flavanones. It catalyzes the formation of 7-methylscutellarein and isoscutellarein, which are the key intermediates in PMF biosynthesis. DmOMT4 and DmOMT1 sequentially catalyze the two-step methylation of scutellarein to generate circimaritin, while DmOMT3 has high specificity for 4'-OH of flavonoids. Notably, it catalyzes the conversion of circimaritin into salvigenin, which is an important polymethoxylated flavone. In addition, through heterologous expression of DmFH1 and DmOMT1 in Nicotiana benthamiana, diversified polyhydroxylated and polymethylated metabolites, including 7-methylscutellarein and circimaritin were achieved. Our work uncovers the key hydroxylation and the complex metabolic network of methylation processes in the biosynthesis of PMFs in D. moldavica, and the screened candidate genes can be exploited in synthetic biology research on PMFs.
Collapse
Affiliation(s)
- Hui Tan
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jie Fu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Chao Chen
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Lu-Qing Xiao
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jiao-Zhen Zhang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ting-Ting Zhu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Rong Ni
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ni-Hong Du
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - He Ta
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yue Hao
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Dong-Mei Ren
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hai-Long Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Helmholtz Institute of Biotechnology, Shandong University, Qingdao, 266237, China
| | - Hong-Xiang Lou
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Ai-Xia Cheng
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
3
|
Liao B, Liu X, Li Y, Ge Y, Liang X, Liao Z, Zhao C, Cao J, Wang H, Li S, Wang Y, Wang D, Ge Z, Wu X, Sun C. Functional Characterization of a Highly Efficient UDP-Glucosyltransferase CitUGT72AZ4 Involved in the Biosynthesis of Flavonoid Glycosides in Citrus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5450-5464. [PMID: 39964809 DOI: 10.1021/acs.jafc.4c07454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Citrus is an important dietary source of flavonoid glycosides, and UDP-glycosyltransferases (UGTs) are the key enzymes responsible for their glycosylation. In this study, a genome-wide analysis of the CitUGT gene family was conducted to identify CitUGTs that contribute to flavonoid 4'-O-glucosides biosynthesis. Our analysis identified 136 CitUGTs in the Citrus clementina genome, classifying them into 18 phylogenetic groups (A-R) and 25 families. This classification was strongly supported by consistent gene structures and motif patterns. Moreover, we identified a CitUGT gene (Ciclev10025462m, designated CitUGT72AZ4) that encodes flavonoid 4'-O-glucosyltransferase for the first time in citrus. This enzyme preferentially glycosylated the 4'-OH group of multiple flavonoids, exhibiting higher catalytic efficiency toward quercetin and three flavones in vitro. Virus-induced gene silencing of CitUGT72AZ4 significantly decreased the accumulation of flavonoid 4'-O-glucosides. These results indicated that CitUGT72AZ4 participated in the biosynthesis of flavonoid 4'-O-glucoside in citrus. Overall, our findings provide valuable insights into the CitUGT gene family and contribute to its functional characterization.
Collapse
Affiliation(s)
- Bin Liao
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xiaojuan Liu
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yujia Li
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yongfu Ge
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xiao Liang
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Zhenkun Liao
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Chenning Zhao
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Jinping Cao
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Huixin Wang
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Shaojia Li
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yue Wang
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Dengliang Wang
- Institute of Fruit Tree Research, Quzhou Academy of Agriculture and Forestry Acience, Quzhou 324000, China
| | - Zhiwei Ge
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xiaodan Wu
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Chongde Sun
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| |
Collapse
|
4
|
Wang J, Wang X, Ma Y, Gao R, Wang Y, An Z, Tian Y, Wan H, Wei D, Wang F, Zheng B, Duan B, Xiang L, Dong G, Sun W, Xu Z. Lonicera caerulea genome reveals molecular mechanisms of freezing tolerance and anthocyanin biosynthesis. J Adv Res 2024:S2090-1232(24)00615-5. [PMID: 39732333 DOI: 10.1016/j.jare.2024.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024] Open
Abstract
INTRODUCTION Lonicera caerulea L. (blue honeysuckle) is a noteworthy fleshy-fruited tree and a prominent medicinal plant, which possesses notable characteristics such as exceptional resilience to winter conditions and early maturation, and the richest source of functional anthocyanins, particularly cyanidin-3-glucoside. The molecular mechanisms responsible for its freezing tolerance and anthocyanin biosynthesis remain largely unknown. OBJECTIVES Here, a chromosome-scale genome of L. caerulea was presented, aiming to examine the genetic foundations that underlie these characteristics of blue honeysuckle. METHODS The PacBio HiFi reads and Hi-C data were used to construct high-quality genome of blue honeysuckle. Comparative genomic and transcriptomic analyses were conducted to elucidate the molecular mechanisms of freezing tolerance and anthocyanin biosynthesis. RESULTS Comparative genomics analysis between L. caerulea and L. japonica revealed that the dynamic changes of duplicated genes contributed to their phytochemical reconstruction and environmental adaptation. Moreover, the ABA and ICE-CBF-COR signaling pathways were closely correlated to the freezing tolerance of L. caerulea. Genome-wide identification and biochemical function indicated that three anthocyanin 3',5'-O-methyltransferases (LcOMT2, LcOMT14, and LcOMT20) and two 3'-O-glycosyltransferases (LcUGT78X1 and LcUGT95P1) were responsible for anthocyanin biosynthesis. In addition, LcUGT78X1 was regarded as the potent glycosyltransferase for the accumulation of cyanidin-3-glucoside in L. caerulea. CONCLUSION This research elucidates the crucial roles of the ABA and ICE-CBF-COR signaling pathways in enhancing freezing tolerance, while also identifying highly efficient anthocyanin biosynthetic enzymes in L. caerulea. These findings advance the understanding of environmental adaptation and phytochemical production in Lonicera species.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xiaotong Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yuwei Ma
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ranran Gao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yongmiao Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Zhoujie An
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ya Tian
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Huihua Wan
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dianwen Wei
- Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences, Harbin 150040, China
| | - Feng Wang
- Heilongjiang Fengran Agricultural Group, Harbin 150040, China
| | - Baojiang Zheng
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali 671003, China
| | - Li Xiang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | | | - Wei Sun
- College of Life Science, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Zhichao Xu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
5
|
Li C, Li H, Liang Y, Miao R, Liu Z, Chen S, Zhang D, Wang C, Wu J, Zhou X, Li M. Identification of GiOMT gene family in Glycyrrhiza inflata bat and expression analysis under UV-B stresses. BMC Genomics 2024; 25:1204. [PMID: 39695942 DOI: 10.1186/s12864-024-11129-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/05/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND O-Methyltransferase (OMTs) is a class of conserved multifunctional enzymes that play important roles in plant developmental regulation, hormone signaling, secondary metabolite synthesis and abiotic stress response. The GiOMT gene family has been identified and analyzed in species such as citrus, alfalfa, Populus and grape, but has not been reported in Glycyrrhiza inflata Bat. RESULTS In this study, we systematically identified and analyzed the GiOMT gene family of G. inflata by bioinformatics, and analyzed their physicochemical properties, conserved motifs, conserved structural domains, gene structures, phylogenetic relationships, chromosomal localization and fragment duplications, and the expression patterns of GiOMT genes in combination with transcriptomic data and qRT-PCR. The results showed that a total of 41 GiOMTs were identified in G. inflata, which were named GiOMT1 ~ GiOMT41 based on their chromosomal locations. Protein characterization showed that 29 GiOMT proteins were hydrophilic and 12 GiOMT proteins were hydrophobic. Subcellular predicted localization revealed that most GiOMT proteins localized in the cytoplasm and chloroplasts. Phylogenetic relationships showed that the OMT genes of three species, G. inflata, Arabidopsis and alfalfa, were distributed in three taxa, while the GiOMT genes were distributed in taxa I and II. Promoters of GiOMT genes contained light responsive element and many hormone responsive elements. The expression levels of GiOMT genes under UV-B stress were varied, indicating that GiOMT gene was in response to abiotic stresses in G. inflata. CONCLUSION In this study, we investigated the genome-wide identification, structure, evolution and expression analysis of the GiOMT gene in G. inflata. The basal sequence of GiOMT genes was highly conserved throughout the evolutionary history of G. inflata. Most of the GiOMT genes were highly expressed in roots and were involved in the response to UV-B stress. The GiOMT genes may lead to the accumulation of flavonoids and enhancement of G. inflata quality and drug activity in G. inflata under UV-B radiation.
Collapse
Affiliation(s)
- Caijuan Li
- State Key Laboratory of Aridland Crop Science/College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Hao Li
- State Key Laboratory of Aridland Crop Science/College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yufan Liang
- State Key Laboratory of Aridland Crop Science/College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Rong Miao
- State Key Laboratory of Aridland Crop Science/College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ziliang Liu
- State Key Laboratory of Aridland Crop Science/College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Sijin Chen
- State Key Laboratory of Aridland Crop Science/College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Dan Zhang
- State Key Laboratory of Aridland Crop Science/College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Cuiling Wang
- State Key Laboratory of Aridland Crop Science/College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiling Wu
- State Key Laboratory of Aridland Crop Science/College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiangyan Zhou
- State Key Laboratory of Aridland Crop Science/College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Mengfei Li
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
6
|
Qasim M, Su J, Noman A, Ma T, Islam W, Hussain D, Rizwan M, Hameed MS, Khan KA, Ghramh HA, Wang L, Han X. Citrus psyllid management by collective involvement of plant resistance, natural enemies and entomopathogenic fungi. Microb Pathog 2024; 197:107047. [PMID: 39442809 DOI: 10.1016/j.micpath.2024.107047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Crops face constant threats from insect pests, which can lead to sudden disasters and global famine. One of the most dangerous pests is the Asian citrus psyllid (ACP), which poses a significant threat to citrus plantations worldwide. Effective and adaptive management strategies to combat ACP are always in demand. Plant resistance (PR) is a key element in pest management, playing crucial roles such as deterring pests through antifeedant and repellant properties, while also attracting natural enemies of these pests. One effective and innovative approach is the use of entomopathogenic fungi (EPF) to reduce pest populations. Additionally, other natural enemies play an important role in controlling certain insect pests. Given the significance of PR, EPF, and natural arthropod enemies (NAE), this review highlights the benefits of these strategies against ACP, drawing on successful examples from recent research. Furthermore, we discuss how EPF can be effectively utilized in citrus orchards, proposing strategies to ensure its efficient use and safeguard food security in the future.
Collapse
Affiliation(s)
- Muhammad Qasim
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, 832002, Xinjiang, China; State Key Laboratory of Ecological Pest Control of Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Biochemistry, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Jie Su
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Ali Noman
- Department of Botany, Government College University Faisalabad, Faisalabad, 38040, Pakistan
| | - Ting Ma
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China
| | - Dilbar Hussain
- Department of Entomology, Ayub Agriculture Research Institute, Faisalabad, 38040, Pakistan
| | - Muhammad Rizwan
- Department of Entomology, University of Agriculture, Faisalabad, Sub-campus Depalpur, Okara, 56300, Pakistan
| | - Muhammad Salman Hameed
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, 430079, China
| | - Khalid Ali Khan
- Research Center for Advanced Materials Science (RCAMS), Unit of Bee Research and Honey Production, Biology Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Hamed A Ghramh
- Research Center for Advanced Materials Science (RCAMS), Unit of Bee Research and Honey Production, Biology Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Liande Wang
- State Key Laboratory of Ecological Pest Control of Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Biochemistry, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Xiaoqiang Han
- Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi, 832002, Xinjiang, China.
| |
Collapse
|
7
|
Liang X, Wang Y, Shen W, Liao B, Liu X, Yang Z, Chen J, Zhao C, Liao Z, Cao J, Wang P, Wang P, Ke F, Xu J, Lin Q, Xi W, Wang L, Xu J, Zhao X, Sun C. Genomic and metabolomic insights into the selection and differentiation of bioactive compounds in citrus. MOLECULAR PLANT 2024; 17:1753-1772. [PMID: 39444162 DOI: 10.1016/j.molp.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/30/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
Bioactive compounds play an increasingly prominent role in breeding functional and nutritive fruit crops such as citrus. However, the genomic and metabolic bases for the selection and differentiation underlying bioactive compound variations in citrus remain poorly understood. In this study, we constructed a species-level variation atlas of genomes and metabolomes using 299 citrus accessions. A total of 19 829 significant SNPs were targeted to 653 annotated metabolites, among which multiple significant signals were identified for secondary metabolites, especially flavonoids. Significant differential accumulation of bioactive compounds in the phenylpropane pathway, mainly flavonoids and coumarins, was unveiled across ancestral citrus species during differentiation, which is likely associated with the divergent haplotype distribution and/or expression profiles of relevant genes, including p-coumaroyl coenzyme A 2'-hydroxylases, flavone synthases, cytochrome P450 enzymes, prenyltransferases, and uridine diphosphate glycosyltransferases. Moreover, we systematically evaluated the beneficial bioactivities such as the antioxidant and anticancer capacities of 219 citrus varieties, and identified robust associations between distinct bioactivities and specific metabolites. Collectively, these findings provide citrus breeding options for enrichment of beneficial flavonoids and avoidance of potential risk of coumarins. Our study will accelerate the application of genomic and metabolic engineering strategies in developing modern healthy citrus cultivars.
Collapse
Affiliation(s)
- Xiao Liang
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Yue Wang
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Wanxia Shen
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, China
| | - Bin Liao
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Xiaojuan Liu
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Zimeng Yang
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Jiebiao Chen
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Chenning Zhao
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Zhenkun Liao
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Jinping Cao
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Sanya, China
| | - Ping Wang
- Zhejiang Citrus Research Institute, Taizhou, China
| | - Peng Wang
- Zhejiang Citrus Research Institute, Taizhou, China
| | - Fuzhi Ke
- Zhejiang Citrus Research Institute, Taizhou, China
| | - Jianguo Xu
- Zhejiang Citrus Research Institute, Taizhou, China
| | - Qiong Lin
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/ Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wanpeng Xi
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Lishu Wang
- Department of Hematology and Hematopoietic Cell Transplantation, Comprehensive Cancer Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Xiaochun Zhao
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, China
| | - Chongde Sun
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Sanya, China.
| |
Collapse
|
8
|
Ning L, Xu Y, Luo L, Gong L, Liu Y, Wang Z, Wang W. Integrative analyses of metabolome and transcriptome reveal the dynamic accumulation and regulatory network in rhizomes and fruits of Polygonatum cyrtonema Hua. BMC Genomics 2024; 25:706. [PMID: 39030489 PMCID: PMC11264994 DOI: 10.1186/s12864-024-10608-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND According to Chinese ancient books, both fruits and rhizomes of Polygonatum cyrtonema Hua have medicinal and edible values. Up to now, there is no report about the metabolite profiles and regulatory network in fruits and different year-old rhizomes of P. cyrtonema. RESULTS In this study, we performed integrative analyses of metabolome and transcriptome to reveal the dynamic accumulation and regulatory network of fruits and different year-old rhizomes in P. cyrtonema. The relative content of phenolic acids, lignans and coumarins, flavonoids and alkaloids increased with growth years, while steroids and lipids decreased with it. In addition, the relative content of nucleotides and derivatives, flavonoids, organic acids, steroids and lipids in fruits were higher than rhizomes. Genes that might relate to the biosynthesis of polysaccharides, flavonoids, triterpene saponins and alkaloids biosynthesis were further analyzed by transcriptome analysis, including sacA, GMPP, PMM, CCoAOMT, CHI, ANR, CHS, DXS, GGPS, ZEP, CYP72A219 and so on, for their expressions were positively correlated with the relative content of the metabolites. Additionally, the correlation network in sugar and aromatic amino acids metabolites were constructed to further illustrate the biosynthesis of polysaccharides, flavonoids and alkaloids in P. cyrtonema, and some transcription factors (TFs) were screened, such as C2C2, MYB, bZIP, GRAS and NAC. CONCLUSIONS This study can deepen our understanding of the accumulation patterns and molecular mechanism of the main compounds in P. cyrtonema, and provide reference for the standardize production of P. cyrtonema.
Collapse
Affiliation(s)
- Luyun Ning
- TCM and Ethnomedicine Innovation and Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yuanshu Xu
- TCM and Ethnomedicine Innovation and Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Lu Luo
- TCM and Ethnomedicine Innovation and Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Limin Gong
- TCM and Ethnomedicine Innovation and Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yeman Liu
- TCM and Ethnomedicine Innovation and Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhi Wang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Wei Wang
- TCM and Ethnomedicine Innovation and Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.
| |
Collapse
|
9
|
Zhao C, Wang Z, Liao Z, Liu X, Li Y, Zhou C, Sun C, Wang Y, Cao J, Sun C. Integrated Metabolomic-Transcriptomic Analyses of Flavonoid Accumulation in Citrus Fruit under Exogenous Melatonin Treatment. Int J Mol Sci 2024; 25:6632. [PMID: 38928338 PMCID: PMC11204001 DOI: 10.3390/ijms25126632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The flavonoids in citrus fruits are crucial physiological regulators and natural bioactive products of high pharmaceutical value. Melatonin is a pleiotropic hormone that can regulate plant morphogenesis and stress resistance and alter the accumulation of flavonoids in these processes. However, the direct effect of melatonin on citrus flavonoids remains unclear. In this study, nontargeted metabolomics and transcriptomics were utilized to reveal how exogenous melatonin affects flavonoid biosynthesis in "Bingtangcheng" citrus fruits. The melatonin treatment at 0.1 mmol L-1 significantly increased the contents of seven polymethoxylated flavones (PMFs) and up-regulated a series of flavonoid pathway genes, including 4CL (4-coumaroyl CoA ligase), FNS (flavone synthase), and FHs (flavonoid hydroxylases). Meanwhile, CHS (chalcone synthase) was down-regulated, causing a decrease in the content of most flavonoid glycosides. Pearson correlation analysis obtained 21 transcription factors co-expressed with differentially accumulated flavonoids, among which the AP2/EREBP members were the most numerous. Additionally, circadian rhythm and photosynthesis pathways were enriched in the DEG (differentially expressed gene) analysis, suggesting that melatonin might also mediate changes in the flavonoid biosynthesis pathway by affecting the fruit's circadian rhythm. These results provide valuable information for further exploration of the molecular mechanisms through which melatonin regulates citrus fruit metabolism.
Collapse
Affiliation(s)
- Chenning Zhao
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China; (C.Z.); (Z.W.); (Z.L.); (Y.L.); (C.Z.); (Y.W.); (J.C.)
| | - Zhendong Wang
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China; (C.Z.); (Z.W.); (Z.L.); (Y.L.); (C.Z.); (Y.W.); (J.C.)
| | - Zhenkun Liao
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China; (C.Z.); (Z.W.); (Z.L.); (Y.L.); (C.Z.); (Y.W.); (J.C.)
| | - Xiaojuan Liu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China;
| | - Yujia Li
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China; (C.Z.); (Z.W.); (Z.L.); (Y.L.); (C.Z.); (Y.W.); (J.C.)
| | - Chenwen Zhou
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China; (C.Z.); (Z.W.); (Z.L.); (Y.L.); (C.Z.); (Y.W.); (J.C.)
| | - Cui Sun
- Hainan Institute, Zhejiang University, Sanya 572000, China;
| | - Yue Wang
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China; (C.Z.); (Z.W.); (Z.L.); (Y.L.); (C.Z.); (Y.W.); (J.C.)
| | - Jinping Cao
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China; (C.Z.); (Z.W.); (Z.L.); (Y.L.); (C.Z.); (Y.W.); (J.C.)
- Hainan Institute, Zhejiang University, Sanya 572000, China;
| | - Chongde Sun
- Laboratory of Fruit Quality Biology, Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, China; (C.Z.); (Z.W.); (Z.L.); (Y.L.); (C.Z.); (Y.W.); (J.C.)
- Hainan Institute, Zhejiang University, Sanya 572000, China;
| |
Collapse
|
10
|
Wen J, Wang Y, Lu X, Pan H, Jin D, Wen J, Jin C, Sahu SK, Su J, Luo X, Jin X, Zhao J, Wu H, Liu EH, Liu H. An integrated multi-omics approach reveals polymethoxylated flavonoid biosynthesis in Citrus reticulata cv. Chachiensis. Nat Commun 2024; 15:3991. [PMID: 38734724 PMCID: PMC11088696 DOI: 10.1038/s41467-024-48235-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Citrus reticulata cv. Chachiensis (CRC) is an important medicinal plant, its dried mature peels named "Guangchenpi", has been used as a traditional Chinese medicine to treat cough, indigestion, and lung diseases for several hundred years. However, the biosynthesis of the crucial natural products polymethoxylated flavonoids (PMFs) in CRC remains unclear. Here, we report a chromosome-scale genome assembly of CRC with the size of 314.96 Mb and a contig N50 of 16.22 Mb. Using multi-omics resources, we discover a putative caffeic acid O-methyltransferase (CcOMT1) that can transfer a methyl group to the 3-hydroxyl of natsudaidain to form 3,5,6,7,8,3',4'-heptamethoxyflavone (HPMF). Based on transient overexpression and virus-induced gene silencing experiments, we propose that CcOMT1 is a candidate enzyme in HPMF biosynthesis. In addition, a potential gene regulatory network associated with PMF biosynthesis is identified. This study provides insights into PMF biosynthesis and may assist future research on mining genes for the biosynthesis of plant-based medicines.
Collapse
Affiliation(s)
- Jiawen Wen
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yayu Wang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Xu Lu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Huimin Pan
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Dian Jin
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing, 210009, China
| | - Jialing Wen
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Canzhi Jin
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jianmu Su
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xinyue Luo
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaohuan Jin
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Jiao Zhao
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Hong Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - E-Hu Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China.
| |
Collapse
|
11
|
Peng Z, Song L, Chen M, Liu Z, Yuan Z, Wen H, Zhang H, Huang Y, Peng Z, Yang H, Li G, Zhang H, Hu Z, Li W, Wang X, Larkin RM, Deng X, Xu Q, Chen J, Xu J. Neofunctionalization of an OMT cluster dominates polymethoxyflavone biosynthesis associated with the domestication of citrus. Proc Natl Acad Sci U S A 2024; 121:e2321615121. [PMID: 38530892 PMCID: PMC10998556 DOI: 10.1073/pnas.2321615121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
Polymethoxyflavones (PMFs) are a class of abundant specialized metabolites with remarkable anticancer properties in citrus. Multiple methoxy groups in PMFs are derived from methylation modification catalyzed by a series of hydroxylases and O-methyltransferases (OMTs). However, the specific OMTs that catalyze the systematic O-methylation of hydroxyflavones remain largely unknown. Here, we report that PMFs are highly accumulated in wild mandarins and mandarin-derived accessions, while undetectable in early-diverging citrus species and related species. Our results demonstrated that three homologous genes, CreOMT3, CreOMT4, and CreOMT5, are crucial for PMF biosynthesis in citrus, and their encoded methyltransferases exhibit multisite O-methylation activities for hydroxyflavones, producing seven PMFs in vitro and in vivo. Comparative genomic and syntenic analyses indicated that the tandem CreOMT3, CreOMT4, and CreOMT5 may be duplicated from CreOMT6 and contributes to the genetic basis of PMF biosynthesis in the mandarin group through neofunctionalization. We also demonstrated that N17 in CreOMT4 is an essential amino acid residue for C3-, C5-, C6-, and C3'-O-methylation activity and provided a rationale for the functional deficiency of OMT6 to produce PMFs in early-diverging citrus and some domesticated citrus species. A 1,041-bp deletion in the CreOMT4 promoter, which is found in most modern cultivated mandarins, has reduced the PMF content relative to that in wild and early-admixture mandarins. This study provides a framework for reconstructing PMF biosynthetic pathways, which may facilitate the breeding of citrus fruits with enhanced health benefits.
Collapse
Affiliation(s)
- Zhaoxin Peng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan430070, People’s Republic of China
| | - Lizhi Song
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Minghua Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Zeyang Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Ziyu Yuan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Huan Wen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Haipeng Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
- College of Horticulture, Henan Agricultural University, Zhengzhou450046, People’s Republic of China
| | - Yue Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Zhaowen Peng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Hongbin Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Gu Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Huixian Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Zhehui Hu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Wenyun Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
- Guizhou Fruit Institute, Guizhou Academy of Agricultural Sciences, Guiyang550006, People’s Republic of China
| | - Xia Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan430070, People’s Republic of China
| | - Robert M. Larkin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan430070, People’s Republic of China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan430070, People’s Republic of China
| | - Jiajing Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan430070, People’s Republic of China
| | - Juan Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan430070, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan430070, People’s Republic of China
| |
Collapse
|
12
|
Xiong J, Liu Y, Wu P, Bian Z, Li B, Zhang Y, Zhu B. Identification and virus-induced gene silencing (VIGS) analysis of methyltransferase affecting tomato (Solanum lycopersicum) fruit ripening. PLANTA 2024; 259:109. [PMID: 38558186 DOI: 10.1007/s00425-024-04384-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/09/2024] [Indexed: 04/04/2024]
Abstract
MAIN CONCLUSION Six methyltransferase genes affecting tomato fruit ripening were identified through genome-wide screening, VIGS assay, and expression pattern analysis. The data provide the basis for understanding new mechanisms of methyltransferases. Fruit ripening is a critical stage for the formation of edible quality and seed maturation, which is finely modulated by kinds of factors, including genetic regulators, hormones, external signals, etc. Methyltransferases (MTases), important genetic regulators, play vital roles in plant development through epigenetic regulation, post-translational modification, or other mechanisms. However, the regulatory functions of numerous MTases except DNA methylation in fruit ripening remain limited so far. Here, six MTases, which act on different types of substrates, were identified to affect tomato fruit ripening. First, 35 MTase genes with relatively high expression at breaker (Br) stage of tomato fruit were screened from the tomato MTase gene database encompassing 421 genes totally. Thereafter, six MTase genes were identified as potential regulators of fruit ripening via virus-induced gene silencing (VIGS), including four genes with a positive regulatory role and two genes with a negative regulatory role, respectively. The expression of these six MTase genes exhibited diverse patterns during the fruit ripening process, and responded to various external ripening-related factors, including ethylene, 1-methylcyclopropene (1-MCP), temperature, and light exposure. These results help to further elaborate the biological mechanisms of MTase genes in tomato fruit ripening and enrich the understanding of the regulatory mechanisms of fruit ripening involving MTases, despite of DNA MTases.
Collapse
Affiliation(s)
- Jiaxin Xiong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Ye Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Peiwen Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Zheng Bian
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Bowen Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Yifan Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Benzhong Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
13
|
Zhao W, Wu J, Tian M, Xu S, Hu S, Wei Z, Lin G, Tang L, Wang R, Feng B, Wang B, Lyu H, Paetz C, Feng X, Xue JY, Li P, Chen Y. Characterization of O-methyltransferases in the biosynthesis of phenylphenalenone phytoalexins based on the telomere-to-telomere gapless genome of Musella lasiocarpa. HORTICULTURE RESEARCH 2024; 11:uhae042. [PMID: 39493361 PMCID: PMC11528125 DOI: 10.1093/hr/uhae042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/02/2024] [Indexed: 11/05/2024]
Abstract
Phenylphenalenones (PhPNs), phytoalexins in wild bananas (Musaceae), are known to act against various pathogens. However, the abundance of PhPNs in many Musaceae plants of economic importance is low. Knowledge of the biosynthesis of PhPNs and the application of biosynthetic approaches to improve their yield is vital for fighting banana diseases. However, the processes of PhPN biosynthesis, especially those involved in methylation modification, remain unclear. Musella lasiocarpa is a herbaceous plant belonging to Musaceae, and due to the abundant PhPNs, their biosynthesis in M. lasiocarpa has been the subject of much attention. In this study, we assembled a telomere-to-telomere gapless genome of M. lasiocarpa as the reference, and further integrated transcriptomic and metabolomic data to mine the candidate genes involved in PhPN biosynthesis. To elucidate the diversity of PhPNs in M. lasiocarpa, three screened O-methyltransferases (Ml01G0494, Ml04G2958, and Ml08G0855) by phylogenetic and expressional clues were subjected to in vitro enzymatic assays. The results show that the three were all novel O-methyltransferases involved in the biosynthesis of PhPN phytoalexins, among which Ml08G0855 was proved to function as a multifunctional enzyme targeting multiple hydroxyl groups in PhPN structure. Moreover, we tested the antifungal activity of PhPNs against Fusarium oxysporum and found that the methylated modification of PhPNs enhanced their antifungal activity. These findings provide valuable genetic resources in banana breeding and lay a foundation for improving disease resistance through molecular breeding.
Collapse
Affiliation(s)
- Wanli Zhao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014 Nanjing, China
| | - Junzhi Wu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014 Nanjing, China
- Nanjing University of Chinese Medicine, 210023 Nanjing, China
| | - Mei Tian
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014 Nanjing, China
| | - Shu Xu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014 Nanjing, China
| | - Shuaiya Hu
- College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, 210095 Nanjing, China
| | - Zhiyan Wei
- College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, 210095 Nanjing, China
| | - Guyin Lin
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014 Nanjing, China
| | - Liang Tang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014 Nanjing, China
| | - Ruiyang Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014 Nanjing, China
| | - Boya Feng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014 Nanjing, China
| | - Bi Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014 Nanjing, China
| | - Hui Lyu
- NMR/Biosynthesis Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Christian Paetz
- NMR/Biosynthesis Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Xu Feng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014 Nanjing, China
| | - Jia-Yu Xue
- College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, 210095 Nanjing, China
| | - Pirui Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014 Nanjing, China
| | - Yu Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014 Nanjing, China
| |
Collapse
|
14
|
Yu C, Liu G, Qin J, Wan X, Guo A, Wei H, Chen Y, Lian B, Zhong F, Zhang J. Genomic and transcriptomic studies on flavonoid biosynthesis in Lagerstroemia indica. BMC PLANT BIOLOGY 2024; 24:171. [PMID: 38443839 PMCID: PMC10913235 DOI: 10.1186/s12870-024-04776-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Lagerstroemia indica is a widely cultivated ornamental woody shrub/tree of the family Lythraceae that is used as a traditional medicinal plant in East Asia and Egypt. However, unlike other ornamental woody plants, its genome is not well-investigated, which hindered the discovery of the key genes that regulate important traits and the synthesis of bioactive compounds. RESULTS In this study, the genomic sequences of L. indica were determined using several next-generation sequencing technologies. Altogether, 324.01 Mb sequences were assembled and 98.21% (318.21 Mb) of them were placed in 24 pseudo-chromosomes. The heterozygosity, repeated sequences, and GC residues occupied 1.65%, 29.17%, and 38.64% of the genome, respectively. In addition, 28,811 protein-coding gene models, 327 miRNAs, 552 tRNAs, 214 rRNAs, and 607 snRNAs were identified. The intra- and interspecies synteny and Ks analysis revealed that L. indica exhibits a hexaploidy. The co-expression profiles of the genes involved in the phenylpropanoid (PA) and flavonoid/anthocyanin (ABGs) pathways with the R2R3 MYB genes (137 members) showed that ten R2R3 MYB genes positively regulate flavonoid/anthocyanin biosynthesis. The colors of flowers with white, purple (PB), and deep purplish pink (DPB) petals were found to be determined by the levels of delphinidin-based (Dp) derivatives. However, the substrate specificities of LiDFR and LiOMT probably resulted in the different compositions of flavonoid/anthocyanin. In L. indica, two LiTTG1s (LiTTG1-1 and LiTTG1-2) were found to be the homologs of AtTTG1 (WD40). LiTTG1-1 was found to repress anthocyanin biosynthesis using the tobacco transient transfection assay. CONCLUSIONS This study showed that the ancestor L. indica experienced genome triplication approximately 38.5 million years ago and that LiTTG1-1 represses anthocyanin biosynthesis. Furthermore, several genes such as LiDFR, LiOMTs, and R2R3 LiMYBs are related to anthocyanin biosynthesis. Further studies are required to clarify the mechanisms and alleles responsible for flower color development.
Collapse
Affiliation(s)
- Chunmei Yu
- School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
- Key Lab of Landscape Plant Genetics and Breeding of Nantong, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
| | - Guoyuan Liu
- School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
- Key Lab of Landscape Plant Genetics and Breeding of Nantong, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
| | - Jin Qin
- School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
- Key Lab of Landscape Plant Genetics and Breeding of Nantong, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
| | - Xi Wan
- School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
- Key Lab of Landscape Plant Genetics and Breeding of Nantong, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
| | - Anfang Guo
- School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
- Key Lab of Landscape Plant Genetics and Breeding of Nantong, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
| | - Hui Wei
- School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
- Key Lab of Landscape Plant Genetics and Breeding of Nantong, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
| | - Yanhong Chen
- School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
- Key Lab of Landscape Plant Genetics and Breeding of Nantong, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
| | - Bolin Lian
- School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
- Key Lab of Landscape Plant Genetics and Breeding of Nantong, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
| | - Fei Zhong
- School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
- Key Lab of Landscape Plant Genetics and Breeding of Nantong, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China
| | - Jian Zhang
- School of Life Science, Nantong University, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China.
- Key Lab of Landscape Plant Genetics and Breeding of Nantong, No. 9 Seyuan Road, Nantong, Jiangsu Province, 226019, China.
| |
Collapse
|
15
|
Xu N, Qin XQ, Li DB, Hou YJ, Fang C, Zhang SW, You JY, Li HL, Qiu HY. Comparative transcriptome and metabolome profiles of the leaf and fruits of a Xianjinfeng litchi budding mutant and its mother plant. Front Genet 2024; 15:1360138. [PMID: 38463170 PMCID: PMC10920226 DOI: 10.3389/fgene.2024.1360138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/02/2024] [Indexed: 03/12/2024] Open
Abstract
Background: Litchi (Litchi chinensis) is an important sub-tropical fruit in the horticulture market in China. Breeding for improved fruit characteristics is needed for satisfying consumer demands. Budding is a sustainable method for its propagation. During our ongoing breeding program, we observed a litchi mutant with flat leaves and sharp fruit peel cracking in comparison to the curled leaves and blunt fruit peel cracking fruits of the mother plant. Methods: To understand the possible molecular pathways involved, we performed a combined metabolome and transcriptome analysis. Results: We identified 1,060 metabolites in litchi leaves and fruits, of which 106 and 101 were differentially accumulated between the leaves and fruits, respectively. The mutant leaves were richer in carbohydrates, nucleotides, and phenolic acids, while the mother plant was rich in most of the amino acids and derivatives, flavonoids, lipids and organic acids and derivatives, and vitamins. Contrastingly, mutant fruits had higher levels of amino acids and derivatives, carbohydrates and derivatives, and organic acids and derivatives. However, the mother plant's fruits contained higher levels of flavonoids, scopoletin, amines, some amino acids and derivatives, benzamidine, carbohydrates and derivatives, and some organic acids and derivatives. The number of differentially expressed genes was consistent with the metabolome profiles. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway-enriched gene expressions showed consistent profiles as of metabolome analysis. Conclusion: These results provide the groundwork for breeding litchi for fruit and leaf traits that are useful for its taste and yield.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hong-Li Li
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Hong-ye Qiu
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| |
Collapse
|
16
|
Liang X, Wang H, Xu W, Liu X, Zhao C, Chen J, Wang D, Xu S, Cao J, Sun C, Wang Y. Metabolome and Transcriptome Analysis Revealed the Basis of the Difference in Antioxidant Capacity in Different Tissues of Citrus reticulata 'Ponkan'. Antioxidants (Basel) 2024; 13:243. [PMID: 38397841 PMCID: PMC10886001 DOI: 10.3390/antiox13020243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Citrus is an important type of fruit, with antioxidant bioactivity. However, the variations in the antioxidant ability of different tissues in citrus and its metabolic and molecular basis remain unclear. Here, we assessed the antioxidant capacities of 12 tissues from Citrus reticulata 'Ponkan', finding that young leaves and root exhibited the strongest antioxidant capacity. Secondary metabolites accumulated differentially in parts of the citrus plant, of which flavonoids were enriched in stem, leaf, and flavedo; phenolic acids were enriched in the albedo, while coumarins were enriched in the root, potentially explaining the higher antioxidant capacities of these tissues. The spatially specific accumulation of metabolites was related to the expression levels of biosynthesis-related genes such as chalcone synthase (CHS), chalcone isomerase (CHI), flavone synthase (FNS), O-methyltransferase (OMT), flavonoid-3'-hydroxylase (F3'H), flavonoid-6/8-hydroxylase (F6/8H), p-coumaroyl CoA 2'-hydroxylase (C2'H), and prenyltransferase (PT), among others, in the phenylpropane pathway. Weighted gene co-expression network analysis (WGCNA) identified modules associated with flavonoids and coumarin content, among which we identified an OMT involved in coumarin O-methylation, and related transcription factors were predicted. Our study identifies key genes and metabolites influencing the antioxidant capacity of citrus, which could contribute to the enhanced understanding and utilization of bioactive citrus components.
Collapse
Affiliation(s)
- Xiao Liang
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, China; (X.L.); (H.W.); (W.X.); (X.L.); (C.Z.); (J.C.); (J.C.); (C.S.)
| | - Huixin Wang
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, China; (X.L.); (H.W.); (W.X.); (X.L.); (C.Z.); (J.C.); (J.C.); (C.S.)
| | - Wanhua Xu
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, China; (X.L.); (H.W.); (W.X.); (X.L.); (C.Z.); (J.C.); (J.C.); (C.S.)
| | - Xiaojuan Liu
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, China; (X.L.); (H.W.); (W.X.); (X.L.); (C.Z.); (J.C.); (J.C.); (C.S.)
| | - Chenning Zhao
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, China; (X.L.); (H.W.); (W.X.); (X.L.); (C.Z.); (J.C.); (J.C.); (C.S.)
| | - Jiebiao Chen
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, China; (X.L.); (H.W.); (W.X.); (X.L.); (C.Z.); (J.C.); (J.C.); (C.S.)
| | - Dengliang Wang
- Citrus Research Institute, Quzhou Academy of Agricultural Sciences, Quzhou 324000, China;
| | - Shuting Xu
- Hangzhou Agriculture Technology Extension Center, Hangzhou 310058, China;
| | - Jinping Cao
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, China; (X.L.); (H.W.); (W.X.); (X.L.); (C.Z.); (J.C.); (J.C.); (C.S.)
| | - Chongde Sun
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, China; (X.L.); (H.W.); (W.X.); (X.L.); (C.Z.); (J.C.); (J.C.); (C.S.)
| | - Yue Wang
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310058, China; (X.L.); (H.W.); (W.X.); (X.L.); (C.Z.); (J.C.); (J.C.); (C.S.)
| |
Collapse
|
17
|
Shen F, Wang T, Zhang R, Zhong B, Wu Z. Metabolism and release of characteristic components and their enzymatic mechanisms in Pericarpium Citri Reticulatae co-fermentation. Food Chem 2024; 432:137227. [PMID: 37657346 DOI: 10.1016/j.foodchem.2023.137227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/03/2023] [Accepted: 08/19/2023] [Indexed: 09/03/2023]
Abstract
A co-fermentation strategy was explored to rapidly improve the characteristic components and quality of Pericarpium Citri Reticulatae (PCR) using Monascus anka and Saccharomyces cerevisiae, and the enzymatic mechanism was investigated. The results showed that the free flavonoid content of fermented PCR was 48.12% higher than that of unfermented PCR after 12 days of co-fermentation, resulting in stronger antioxidant activity. d-Limonene, γ-terpinene, proline (Pro), arginine (Arg), and serine (Ser) contributed the most to the flavors of citrus, herb, and sweet citrus based on odor and taste activity value analysis. Metabolomics and multivariate statistics showed that 55 components were differentially metabolized during co-fermentation, and ten metabolic pathways were closely related to metabolism. Furthermore, five hydrolases participated in the release and conversion of the active ingredients. This study provides an effective processing method for PCR and is conducive to the development of new PCR functional health foods.
Collapse
Affiliation(s)
- Fei Shen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Tingyu Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; Pan Asia (Jiangmen) Institute of Biological Engineering and Health, Jiangmen 529080, China
| | - Renjie Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Bin Zhong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Zhenqiang Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Guangzhou 510006, China.
| |
Collapse
|
18
|
Zhao W, Huang L, Xu S, Wu J, Wang F, Li P, Li L, Tian M, Feng X, Chen Y. Identification of One O-Methyltransferase Gene Involved in Methylated Flavonoid Biosynthesis Related to the UV-B Irradiation Response in Euphorbia lathyris. Int J Mol Sci 2024; 25:782. [PMID: 38255854 PMCID: PMC10815478 DOI: 10.3390/ijms25020782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Flavonoids are ubiquitous polyphenolic compounds that play a vital role in plants' defense response and medicinal efficacy. UV-B radiation is a vital environmental regulator governing flavonoid biosynthesis in plants. Many plants rapidly biosynthesize flavonoids as a response to UV-B stress conditions. Here, we investigated the effects of flavonoid biosynthesis via UV-B irradiation in Euphorbia lathyris. We found that exposure of the E. lathyris callus to UV-B radiation sharply increased the level of one O-methyltransferase (ElOMT1) transcript and led to the biosynthesis of several methylated flavonoids. The methyltransferase ElOMT1 was expressed heterologously in E. coli, and we tested the catalytic activity of recombinant ElOMT1 with possible substrates, including caffeic acid, baicalin, and luteolin, in vitro. ElOMT1 could efficiently methylate when the hydroxyl groups were contained in the core nucleus of the flavonoid. This molecular characterization identifies a methyltransferase responsible for the chemical modification of the core flavonoid structure through methylation and helps reveal the mechanism of methylated flavonoid biosynthesis in Euphorbiaceae. This study identifies the O-methyltransferase that responds to UV-B irradiation and helps shed light on the mechanism of flavonoid biosynthesis in Euphorbia lathyris.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xu Feng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Mem. Sun Yat-Sen), Nanjing 210014, China; (W.Z.)
| | - Yu Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Mem. Sun Yat-Sen), Nanjing 210014, China; (W.Z.)
| |
Collapse
|
19
|
Saxena S, Pal G, Pandey A. Functional characterization of 2-oxoglutarate-dependent dioxygenase gene family in chickpea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111836. [PMID: 37619866 DOI: 10.1016/j.plantsci.2023.111836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Chickpea is an important leguminous crop plant with two cultivated types, desi and kabuli. It is nutritionally enriched in flavonoid content in addition to minerals and vitamins imparting huge health benefits to human beings. Our study elucidates the functionality of 2-oxoglutarate dependent dioxygenase (2-ODD) gene family members i.e., flavanone-3-hydroxylase (F3H), flavonol synthase (FLS) and anthocyanidin synthase (ANS) in chickpea using heterologous bacterial system and in-planta studies in Arabidopsis. This provides information about the biosynthesis of two very significant sub-classes of flavonoids- flavonols and anthocyanins. Here, we show that all the three homologs of F3H in chickpea can utilize not just naringenin but also eriodictyol as their substrate. Moreover, we show that FLS in chickpea exhibits bifunctionality having both FLS and F3H activity. Also, our study indicates the richness of desi chickpea over kabuli type through gene expression and metabolite content analyses. Overall, our study establishes the functionality of 2-ODD gene family involved in the early and late steps of flavonoid biosynthesis pathway in chickpea. It paves way for better genetic manipulation of the pathway for direct or indirect synthesis of three major subclasses of flavonoids (flavonol, anthocyanin and proanthocyanin) to develop nutritious, environmentally stable and healthy chickpea (Cicer arietinum) crop.
Collapse
Affiliation(s)
- Samiksha Saxena
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Gaurav Pal
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
20
|
Wei X, Li L, Xu L, Zeng L, Xu J. Genome-wide identification of the AOMT gene family in wax apple and functional characterization of SsAOMTs to anthocyanin methylation. FRONTIERS IN PLANT SCIENCE 2023; 14:1213642. [PMID: 37822338 PMCID: PMC10562569 DOI: 10.3389/fpls.2023.1213642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/04/2023] [Indexed: 10/13/2023]
Abstract
Introduction Anthocyanins are major pigments in the peels of red-series wax apple fruits, and two principal components of them, namely, the cyanin and the peonidin, are non-methoxylated and methoxylated anthocyanins, respectively. Anthocyanin O-methyltransferases (AOMTs) are an important group of enzymes that have the ability to catalyze anthocyanins methylation to promote the solubility, stability, and bioactivity of anthocyanins. Although AOMT genes have been studied in a variety of plants, the function of them in wax apple is generally not well understood. Methods The anthocyanin composition in peels of two wax apple cultivars was determined by High Performance Liquid Chromatography Tandem Mass Spectrometry (HPLS-MS). The genome-wide analysis of the AOMT genes was performed with bioinformatics technology, and the expression patterns of different plant tissues, cultivars, fruit ripening stages, and exogenous abscisic acid (ABA) treatments were analyzed by transcriptome sequencing analysis and real-time quantitative PCR verification. An initial functional evaluation was carried out in vitro using recombinant the Anthocyanin O-methyltransferase Gene 5 of S. samarangense (SsAOMT5) protein. Results Only two main compositions of anthocyanin were found in peels of two wax apple cultivars, and it was worth noting that Tub Ting Jiang cultivar contained non-methoxylated anthocyanin (Cy3G) only, whereas Daye cultivar contained both non-methoxylated and methoxylated (Pn3G) anthocyanins. A total of six SsAOMT genes were identified in the whole genome of wax apple, randomly distributing on three chromosomes. A phylogenic analysis of the protein sequences divided the SsAOMT gene family into three subgroups, and all SsAOMTs had highly conserved domains of AOMT family. In total, four types of stress- related and five types of hormone- related cis-elements were discovered in the promoter region of the SsAOMTs. Expression pattern analysis showed that SsAOMT5 and SsAOMT6 were expressed in all tissues to varying degrees; notably, the expression of SsAOMT5 was high in the flower and fruit and significantly higher in Daye peels than those of other cultivars in the fruit ripening period. Exogenous ABA treatment significantly increased anthocyanin accumulation, but the increase of methoxylated anthocyanin content did not reach significant level compared with those without ABA treatment, whereas the expression of SsAOMT5 upregulated under ABA treatment. We identified two homologous SsAOMT5 genes from Daye cultivar (DSsAOMT5) and Tub Ting Jiang cultivar (TSsAOMT5); the results of functional analyses to two SsAOMT5 recombinant proteins in vitro demonstrated that DSsAOMT5 showed methylation modification activity, but TSsAOMT5 did not. Conclusion In conclusion, SsAOMT5 was responsible for methylated anthocyanin accumulation in the peels of wax apple and played an important role in red coloration in wax apple peels.
Collapse
Affiliation(s)
- Xiuqing Wei
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Liang Li
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Ling Xu
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Lihui Zeng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiahui Xu
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| |
Collapse
|
21
|
Liao Z, Liu X, Zheng J, Zhao C, Wang D, Xu Y, Sun C. A multifunctional true caffeoyl coenzyme A O-methyltransferase enzyme participates in the biosynthesis of polymethoxylated flavones in citrus. PLANT PHYSIOLOGY 2023; 192:2049-2066. [PMID: 37086474 PMCID: PMC10315319 DOI: 10.1093/plphys/kiad249] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/14/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Polymethoxylated flavones (PMFs) have received extensive attention due to their abundant bioactivities. Citrus peels specifically accumulate abundant PMFs, and methylation modification is a key step in PMF biosynthesis; however, the function of reported O-methyltransferase (OMT) in citrus is insufficient to elucidate the complete methylation process of PMFs. In this study, we analyzed the accumulation pattern of PMFs in the flavedo of the sweet orange (Citrus sinensis) cultivar "Bingtangcheng" at different developmental stages. We found that accumulation of PMFs was completed at the early stage of fruit development (60-d after flowering). Furthermore, we characterized a true caffeoyl-CoA O-methyltransferase (named CsCCoAOMT1) from C. sinensis. Functional analysis in vitro showed that CsCCoAOMT1 preferred flavonoids to caffeoyl-CoA and esculetin. This enzyme efficiently methylated the 6-, 7- 8-, and 3'-OH of a wide array of flavonoids with vicinal hydroxyl groups with a strong preference for quercetin (flavonol) and flavones. The transient overexpression and virus-induced gene silencing experiments verified that CsCCoAOMT1 could promote the accumulation of PMFs in citrus. These results reveal the function of true CCoAOMTs and indicate that CsCCoAOMT1 is a highly efficient multifunctional O-methyltransferase involved in the biosynthesis of PMFs in citrus.
Collapse
Affiliation(s)
- Zhenkun Liao
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310000, China
| | - Xiaojuan Liu
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310000, China
| | - Juan Zheng
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310000, China
| | - Chenning Zhao
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310000, China
| | - Dengliang Wang
- Quzhou Academy of Agriculture and Forestry Science, Quzhou 324000, China
| | - Yang Xu
- Xiangshan Country Agricultural Economic Specialty Technology Extension Center, Ningbo 315799, China
| | - Chongde Sun
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou 310000, China
| |
Collapse
|
22
|
Zheng J, Zhao C, Liao Z, Liu X, Gong Q, Zhou C, Liu Y, Wang Y, Cao J, Liu L, Wang D, Sun C. Functional characterization of two flavone synthase II members in citrus. HORTICULTURE RESEARCH 2023; 10:uhad113. [PMID: 37577395 PMCID: PMC10419818 DOI: 10.1093/hr/uhad113] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/16/2023] [Indexed: 08/15/2023]
Abstract
Polymethoxylated flavones (PMFs), the main form of flavones in citrus, are derived from the flavone branch of the flavonoid biosynthesis pathway. Flavone synthases (FNSs) are enzymes that catalyze the synthesis of flavones from flavanones. However, the FNS in citrus has not been characterized yet. Here, we identified two type II FNSs, designated CitFNSII-1 and CitFNSII-2, based on phylogenetics and transcriptome analysis. Both recombinant CitFNSII-1 and CitFNSII-2 proteins directly converted naringenin, pinocembrin, and liquiritigenin to the corresponding flavones in yeast. In addition, transient overexpression of CitFNSII-1 and CitFNSII-2, respectively, in citrus peel significantly enhanced the accumulation of total PMFs, while virus-induced CitFNSII-1 and CitFNSII-2 genes silencing simultaneously significantly reduced the expression levels of both genes and total PMF content in citrus seedlings. CitFNSII-1 and CitFNSII-2 presented distinct expression patterns in different cultivars as well as different developmental stages. Methyl salicylate (MeSA) treatment reduced the CitFNSII-2 expression as well as the PMFs content in the peel of Citrus sinensis fruit but did not affect the CitFNSII-1 expression. These results indicated that both CitFNSII-1 and CitFNSII-2 participated in the flavone biosynthesis in citrus while the regulatory mechanism governing their expression might be specific. Our findings improved the understanding of the PMFs biosynthesis pathway in citrus and laid the foundation for further investigation on flavone synthesis regulation.
Collapse
Affiliation(s)
- Juan Zheng
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, 310000, China
| | - Chenning Zhao
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, 310000, China
| | - Zhenkun Liao
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, 310000, China
| | - Xiaojuan Liu
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, 310000, China
| | - Qin Gong
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, 310000, China
| | - Chenwen Zhou
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, 310000, China
| | - Yilong Liu
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, 310000, China
| | - Yue Wang
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, 310000, China
| | - Jinping Cao
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, 310000, China
| | - Lili Liu
- Quzhou Academy of Agriculture and Forestry Science, Quzhou, 324000, China
| | - Dengliang Wang
- Quzhou Academy of Agriculture and Forestry Science, Quzhou, 324000, China
| | - Chongde Sun
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, 310000, China
| |
Collapse
|
23
|
Zhu C, Chen J, Zhao C, Liu X, Chen Y, Liang J, Cao J, Wang Y, Sun C. Advances in extraction and purification of citrus flavonoids. FOOD FRONTIERS 2023; 4:750-781. [DOI: 10.1002/fft2.236] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024] Open
Abstract
AbstractFlavonoids are the representative active substances of citrus with various biological activities and high nutritional value. In order to evaluate and utilize citrus flavonoids, isolation and purification are necessary steps. This manuscript reviewed the research advances in the extraction and purification of citrus flavonoids. The structure classification, the plant and nutritional functions, and the biosynthesis of citrus flavonoids were summarized. The characteristics of citrus flavonoids and the selection of separation strategies were explained. The technical system of extraction and purification of citrus flavonoids was systematically described. Finally, outlook and research directions were proposed.
Collapse
Affiliation(s)
- Chang‐Qing Zhu
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Jie‐Biao Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Chen‐Ning Zhao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Xiao‐Juan Liu
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Yun‐Yi Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Jiao‐Jiao Liang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Jin‐Ping Cao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Yue Wang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| | - Chong‐De Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Fruit Science Institute, College of Agriculture and Biotechnology Zhejiang University Hangzhou China
| |
Collapse
|
24
|
Wei L, Zhao X, Gu X, Peng J, Song W, Deng B, Cao Y, Hu S. Genome-Wide Identification and Expression Analysis of Dendrocalamus farinosus CCoAOMT Gene Family and the Role of DfCCoAOMT14 Involved in Lignin Synthesis. Int J Mol Sci 2023; 24:8965. [PMID: 37240316 PMCID: PMC10219071 DOI: 10.3390/ijms24108965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/07/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
As the main component of plant cell walls, lignin can not only provide mechanical strength and physical defense for plants, but can also be an important indicator affecting the properties and quality of wood and bamboo. Dendrocalamus farinosus is an important economic bamboo species for both shoots and timber in southwest China, with the advantages of fast growth, high yield and slender fiber. Caffeoyl-coenzyme A-O-methyltransferase (CCoAOMT) is a key rate-limiting enzyme in the lignin biosynthesis pathway, but little is known about it in D. farinosus. Here, a total of 17 DfCCoAOMT genes were identified based on the D. farinosus whole genome. DfCCoAOMT1/14/15/16 were homologs of AtCCoAOMT1. DfCCoAOMT6/9/14/15/16 were highly expressed in stems of D. farinosus; this is consistent with the trend of lignin accumulation during bamboo shoot elongation, especially DfCCoAOMT14. The analysis of promoter cis-acting elements suggested that DfCCoAOMTs might be important for photosynthesis, ABA/MeJA responses, drought stress and lignin synthesis. We then confirmed that the expression levels of DfCCoAOMT2/5/6/8/9/14/15 were regulated by ABA/MeJA signaling. In addition, overexpression of DfCCoAOMT14 in transgenic plants significantly increased the lignin content, xylem thickness and drought resistance of plants. Our findings revealed that DfCCoAOMT14 can be a candidate gene that is involved in the drought response and lignin synthesis pathway in plants, which could contribute to the genetic improvement of many important traits in D. farinosus and other species.
Collapse
Affiliation(s)
- Lixian Wei
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Engineering Research Center for Biomass Resource Utilization and Modification of Sichuan Province, Mianyang 621010, China
| | - Xin Zhao
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Engineering Research Center for Biomass Resource Utilization and Modification of Sichuan Province, Mianyang 621010, China
| | - Xiaoyan Gu
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Engineering Research Center for Biomass Resource Utilization and Modification of Sichuan Province, Mianyang 621010, China
| | - Jiahui Peng
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Engineering Research Center for Biomass Resource Utilization and Modification of Sichuan Province, Mianyang 621010, China
| | - Wenjuan Song
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Engineering Research Center for Biomass Resource Utilization and Modification of Sichuan Province, Mianyang 621010, China
| | - Bin Deng
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Engineering Research Center for Biomass Resource Utilization and Modification of Sichuan Province, Mianyang 621010, China
| | - Ying Cao
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Engineering Research Center for Biomass Resource Utilization and Modification of Sichuan Province, Mianyang 621010, China
| | - Shanglian Hu
- Lab of Plant Cell Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- Engineering Research Center for Biomass Resource Utilization and Modification of Sichuan Province, Mianyang 621010, China
| |
Collapse
|
25
|
Liu X, Gong Q, Zhao C, Wang D, Ye X, Zheng G, Wang Y, Cao J, Sun C. Genome-wide analysis of cytochrome P450 genes in Citrus clementina and characterization of a CYP gene encoding flavonoid 3'-hydroxylase. HORTICULTURE RESEARCH 2023; 10:uhac283. [PMID: 36818367 PMCID: PMC9930397 DOI: 10.1093/hr/uhac283] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/07/2022] [Indexed: 06/18/2023]
Abstract
Cytochrome P450s (CYPs) are the largest family of enzymes in plant and play multifarious roles in development and defense but the available information about the CYP superfamily in citrus is very limited. Here we provide a comprehensive genome-wide analysis of the CYP superfamily in Citrus clementina genome, identifying 301 CYP genes grouped into ten clans and 49 families. The characteristics of both gene structures and motif compositions strongly supported the reliability of the phylogenetic relationship. Duplication analysis indicated that tandem duplication was the major driving force of expansion for this superfamily. Promoter analysis revealed numerous cis-acting elements related to various responsiveness. RNA-seq data elucidated their expression patterns in citrus fruit peel both during development and in response to UV-B. Furthermore, we characterize a UV-B-induced CYP gene (Ciclev10019637m, designated CitF3'H) as a flavonoid 3'-hydroxylase for the first time. CitF3'H catalyzed numerous flavonoids and favored naringenin in yeast assays. Virus-induced silencing of CitF3'H in citrus seedlings significantly reduced the levels of 3'-hydroxylated flavonoids and their derivatives. These results together with the endoplasmic reticulum-localization of CitF3'H in plant suggest that this enzyme is responsible for the biosynthesis of 3'-hydroxylated flavonoids in citrus. Taken together, our findings provide extensive information about the CYP superfamily in citrus and contribute to further functional verification.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Qin Gong
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Chenning Zhao
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Dengliang Wang
- Institute of Fruit Tree Research, Quzhou Academy of Agriculture and Forestry Acience, Quzhou, China
| | - Xianming Ye
- Research and Development Department, Zhejiang Jianong Fruit &Vegetable Co., Ltd, Quzhou, China
| | - Guixia Zheng
- Research and Development Department, Zhejiang Jianong Fruit &Vegetable Co., Ltd, Quzhou, China
| | - Yue Wang
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Jinping Cao
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Chongde Sun
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Xie L, Lu Y, Zhou Y, Hao X, Chen W. Functional Analysis of a Methyltransferase Involved in Anthocyanin Biosynthesis from Blueberries ( Vaccinium corymbosum). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16253-16262. [PMID: 36519893 DOI: 10.1021/acs.jafc.2c06743] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Anthocyanins are natural water-soluble pigments that widely exist in plants, with various biological activities, including antioxidant, anti-obesity, and anti-diabetic activities. Currently, monomeric anthocyanins are mainly obtained through natural sources, which limits their availability. In the biosynthesis of anthocyanins, anthocyanin methyltransferases are recognized to play important roles in the water solubility and structural stability of anthocyanins. Blueberries are a rich source of anthocyanins with more than 30 chemical structures. However, the enzymes that were responsible for the methylation of anthocyanidin cores in blueberries had not been reported. Here, blueberries (Vaccinium corymbosum) have been selected as the candidate for characterization of the key enzyme. Phylogenic analysis, enzymatic activity assay, homology modeling, molecular simulation, protein expression and purification assay, site-directed mutation, isothermal titration calorimetry assay, and enzyme kinetic assay were used to identify the enzymatic function and molecular mechanism of VcOMT, which was responsible for the methylation of anthocyanidin cores. VcOMT could use delphinidin as a substrate but not cyanidin, petunidin, anthocyanins, flavonols, and flavonol glycosides. Ile191 and Glu198 were both identified as important amino acid residues for the binding interactions of anthocyanidins with VcOMT.
Collapse
Affiliation(s)
- Lianghua Xie
- Department of Traditional Chinese Medicine, Sir Run Yi yang Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Yang Lu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Yiyang Zhou
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Xin Hao
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Department of Traditional Chinese Medicine, Sir Run Yi yang Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
27
|
Peng Q, Zhang Y, Zhu M, Bao F, Deng J, Li W. Polymethoxyflavones from citrus peel: advances in extraction methods, biological properties, and potential applications. Crit Rev Food Sci Nutr 2022; 64:5618-5630. [PMID: 36530054 DOI: 10.1080/10408398.2022.2156476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Citrus peel, as an effective component of citrus by-products, contains a large number of natural active components, including pectin, vitamins, dietary fiber, essential oil, phenolic compounds, flavonoids, and so on. With the development of the circular economy, citrus peel has attracted extensive concern in the food industry. The exploitation of citrus peel would assist in excavating potential properties and alleviating the environmental burden. Polymethoxyflavones (PMFs) exist almost in citrus peel, which have remarkable biological activities including antioxidant, anti-inflammatory, anti-cancer, and anti-obesity. Therefore, PMFs from citrus peel have the potential to develop as dietary supplements in the near future. Collectively, it is essential to take action to optimize the extraction conditions of PMFs and make the most of the extracts. This review mainly compiles several extraction methods and bioactivities of PMFs from citrus peel and introduces different applications including food processing, pharmaceutical industry, and plant rhizosphere to develop better utilization of citrus PMFs.
Collapse
Affiliation(s)
- Qiong Peng
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Yao Zhang
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Mingxuan Zhu
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Feng Bao
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Jing Deng
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- College of Food Science and Engineering, Nanjing University of Finance, and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, China
| | - Wen Li
- National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- College of Food Science and Engineering, Nanjing University of Finance, and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu, China
| |
Collapse
|
28
|
Xian L, Sahu SK, Huang L, Fan Y, Lin J, Su J, Bai M, Chen Y, Wang S, Ye P, Wang F, Luo Q, Bai H, Lin X, Yuan C, Geng X, Liu H, Wu H. The draft genome and multi-omics analyses reveal new insights into geo-herbalism properties of Citrus grandis 'Tomentosa'. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111489. [PMID: 36216298 DOI: 10.1016/j.plantsci.2022.111489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/29/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Citrus grandis 'Tomentosa' (CGT) (Huajuhong, HJH) is a widely used medicinal plant, which is mainly produced in Guangdong and Guangxi provinces of South China. Particularly, HJH from Huazhou (HZ) county of Guangdong province has been well-regarded as the best national product for geo-herbalism. But the reasons for geo-herbalism property in HJH from HZ county remains a mystery. Therefore, a multi-omics approach was applied to identify the nature of the geo-herbalism in CGT from three different regions. The comprehensive screening of differential metabolites revealed that the Nobiletin content was significantly different in HZ region compared to other regions, and could be employed as a key indicator to determine the geo-herbalism. Furthermore, the high-quality genome (N50 of 9.12 Mb), coupled with genomics and transcriptomics analyses indicated that CGT and Citrus grandis are closely related, with a predicted divergence time of 19.1 million years ago (MYA), and no recent WGD occurred in the CGT, and the bioactive ingredients of CGT were more abundant than that of Citrus grandis. Interestingly, Nobiletin (Polymethoxyflavones) content was identified as a potential indicator of geo-herbalism, and O-methyltransferase (OMT) genes are involved in the synthesis of Polymethoxyflavones. Further multi-omics analysis led to the identification of a novel OMT gene (CtgOMT1) whose transient overexpression displayed significantly higher Nobiletin content, suggesting that CtgOMT1 was involved in the synthesis of Nobiletin. Overall, our findings provide new data resources for geo-herbalism evaluation, germplasm conservation and insights into Nobiletin biosynthesis pathways for the medicinal plant C. grandis 'Tomentosa'.
Collapse
Affiliation(s)
- Lin Xian
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Liying Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yannan Fan
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Jianhao Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jianmu Su
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Mei Bai
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yewen Chen
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shujie Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Peng Ye
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Fang Wang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qun Luo
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Haiyi Bai
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaojing Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Caihong Yuan
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaodie Geng
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China.
| | - Hong Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
29
|
Kumar S, Molloy C, Hunt M, Deng CH, Wiedow C, Andre C, Dare A, McGhie T. GWAS provides new insights into the genetic mechanisms of phytochemicals production and red skin colour in apple. HORTICULTURE RESEARCH 2022; 9:uhac218. [PMID: 36479587 PMCID: PMC9720448 DOI: 10.1093/hr/uhac218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/19/2022] [Indexed: 06/17/2023]
Abstract
Understanding the genetic architecture of apple phytochemicals, and their interplay with conventional selection traits, is critical for the development of new apple cultivars with enhanced health benefits. Apple accessions (n = 344) used for this genome-wide association study (GWAS) represented the wide diversity of metabolic profiles in the domesticated and wild Malus genepools. Fruit samples were phenotyped for 34 metabolites, including a stable vitamin C glycoside "ascorbic acid 2-β-glucoside" (AA-2βG), and the accessions were genotyped using the Apple 20 K SNP Array. Several fruit quality traits, including red skin over-colour (OCOL), were also assessed. Wild Malus accessions showed at least 2-fold higher average content of several metabolites (e.g. ascorbic acid, chlorogenic acid, phloridzin, and trilobatin) than Malus domestica accessions. Several new genomic regions and potential candidate genes underpinning the genetic diversity of apple phytochemicals were identified. The percentage of phenotypic variance explained by the best SNP ranged between 3% and 21% for the different metabolites. Novel association signals for OCOL in the syntenic regions on chromosomes 13 and 16 suggested that whole genome duplication has played a role in the evolution of apple red skin colour. Genetic correlations between phytochemicals and sensory traits were moderate. This study will assist in the selection of Malus accessions with specific phytochemical profiles to establish innovative genomics-based breeding strategies for the development of apple cultivars with enhanced nutritional value.
Collapse
Affiliation(s)
| | - Claire Molloy
- The New Zealand Institute for Plant and Food Research Limited, Hawke’s Bay Research Centre, Havelock North 4130, New Zealand
| | - Martin Hunt
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North Research Centre, Palmerston North 4410, New Zealand
| | - Cecilia Hong Deng
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Auckland 1025, New Zealand
| | - Claudia Wiedow
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North Research Centre, Palmerston North 4410, New Zealand
| | - Christelle Andre
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Auckland 1025, New Zealand
| | - Andrew Dare
- The New Zealand Institute for Plant and Food Research Limited, Mount Albert Research Centre, Auckland 1025, New Zealand
| | - Tony McGhie
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North Research Centre, Palmerston North 4410, New Zealand
| |
Collapse
|
30
|
Fang T, Zhou S, Qian C, Yan X, Yin X, Fan X, Zhao P, Liao Y, Shi L, Chang Y, Ma XF. Integrated metabolomics and transcriptomics insights on flavonoid biosynthesis of a medicinal functional forage, Agriophyllum squarrosum (L.), based on a common garden trial covering six ecotypes. FRONTIERS IN PLANT SCIENCE 2022; 13:985572. [PMID: 36204072 PMCID: PMC9530573 DOI: 10.3389/fpls.2022.985572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Agriophyllum squarrosum (L.) Moq., well known as sandrice, is an important wild forage in sandy areas and a promising edible and medicinal resource plant with great domestication potential. Previous studies showed flavonoids are one of the most abundant medicinal ingredients in sandrice, whereby isorhamnetin and isorhamnetin-3-glycoside were the top two flavonols with multiple health benefits. However, the molecular regulatory mechanisms of flavonoids in sandrice remain largely unclear. Based on a common garden trial, in this study, an integrated transcriptomic and flavonoids-targeted metabolomic analysis was performed on the vegetative and reproductive periods of six sandrice ecotypes, whose original habitats covered a variety of environmental factor gradients. Multiple linear stepwise regression analysis unveiled that flavonoid accumulation in sandrice was positively correlated with temperature and UVB and negatively affected by precipitation and sunshine duration, respectively. Weighted co-expression network analysis (WGCNA) indicated the bHLH and MYB transcription factor (TF) families might play key roles in sandrice flavonoid biosynthesis regulation. A total of 22,778 differentially expressed genes (DEGs) were identified between ecotype DL and ecotype AEX, the two extremes in most environmental factors, whereby 85 DEGs could be related to known flavonoid biosynthesis pathway. A sandrice flavonoid biosynthesis network embracing the detected 23 flavonoids in this research was constructed. Gene families Plant flavonoid O-methyltransferase (AsPFOMT) and UDP-glucuronosyltransferase (AsUGT78D2) were identified and characterized on the transcriptional level and believed to be synthases of isorhamnetin and isorhamnetin-3-glycoside in sandrice, respectively. A trade-off between biosynthesis of rutin and isorhamnetin was found in the DL ecotype, which might be due to the metabolic flux redirection when facing environmental changes. This research provides valuable information for understanding flavonoid biosynthesis in sandrice at the molecular level and laid the foundation for precise development and utilization of this functional resource forage.
Collapse
Affiliation(s)
- Tingzhou Fang
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Shanshan Zhou
- Faculty of Environmental Science and Engineering, Shanxi Institute of Science and Technology, Jincheng, China
| | - Chaoju Qian
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xia Yan
- Key Laboratory of Eco-Hydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Marsgreen Biotech Jiangsu Co., Ltd., Haian, China
| | - Xiaoyue Yin
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Xingke Fan
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Pengshu Zhao
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yuqiu Liao
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Liang Shi
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yuxiao Chang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiao-Fei Ma
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions, Department of Ecology and Agriculture Research, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
- Marsgreen Biotech Jiangsu Co., Ltd., Haian, China
| |
Collapse
|
31
|
Zhou T, Sun J, Zhai Y, Gao C, Ruhsam M, Wang X. Transcriptome profiles of yellowish-white and fuchsia colored flowers in the Rheum palmatum complex reveal genes related to color polymorphism. PLANT MOLECULAR BIOLOGY 2022; 110:187-197. [PMID: 35943640 DOI: 10.1007/s11103-022-01299-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Flower color variation is ubiquitous in many plant species, and several studies have been conducted to elucidate the underlying molecular mechanism. There are two flower color variants (yellowish-white and fuchsia) in the Rheum palmatum complex, however, few studies have investigated this phenomenon. Here, we used transcriptome sequencing of the two color variants to shed light on the molecular and biochemical basis for these color morphs. Comparison of the two transcriptomes identified 9641 differentially expressed unigenes (DEGs), including 6477 up-regulated and 3163 down-regulated genes. Functional analyses indicated that several DEGs were related to the anthocyanin biosynthesis pathway, and the expression profiles of these DEGs were coincident with the qRT-PCR validation results, indicating that expression levels of structural genes have a profound effect on the color variation in the R. palmatum complex. Our results suggested that the interaction of transcription factors (MYB, bHLH and WRKY) also regulated the anthocyanin biosynthesis in the R. palmatum complex. Estimation of selection pressures using the dN/dS ratio showed that 1106 pairs of orthologous genes have undergone positive selection. Of these positively selected genes, 21 were involved in the anthocyanin biosynthetic pathway, indicating that they may encode the proteins for structural alteration and affect flower color in the R. palmatum complex.
Collapse
Affiliation(s)
- Tao Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jiangyan Sun
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yunyan Zhai
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chenxi Gao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Markus Ruhsam
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, UK
| | - Xumei Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
32
|
Shen S, Tong Y, Luo Y, Huang L, Gao W. Biosynthesis, total synthesis, and pharmacological activities of aryltetralin-type lignan podophyllotoxin and its derivatives. Nat Prod Rep 2022; 39:1856-1875. [PMID: 35913409 DOI: 10.1039/d2np00028h] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: up to 2022Podophyllotoxin (PTOX, 1), a kind of aryltetralin-type lignan, was first discovered in the plant Podophyllum peltatum and its structure was clarified by W. Borsche and J. Niemann in 1932. Due to its potent anti-cancer and anti-viral activities, it is considered one of the molecules most likely to be developed into modern drugs. With the increasing market demand and insufficient storage of natural resources, it is crucial to expand the sources of PTOXs. The original extraction method from plants has gradually failed to meet the requirements, and the biosynthesis and total synthesis have become the forward-looking alternatives. As key enzymes in the biosynthetic pathway of PTOXs and their catalytic mechanisms being constantly revealed, it is possible to realize the heterogeneous biosynthesis of PTOXs in the future. Chemical and chemoenzymatic synthesis also provide schemes for strictly controlling the asymmetric configuration of the tetracyclic core. Currently, the pharmacological activities of some PTOX derivatives have been extensively studied, laying the foundation for clinical candidate drugs. This review focuses primarily on the latest research progress in the biosynthesis, total synthesis, and pharmacological activities of PTOX and its derivatives, providing a more comprehensive understanding of these widely used compounds and supporting the future search for clinical applications.
Collapse
Affiliation(s)
- Siyu Shen
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China. .,Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Yuru Tong
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yunfeng Luo
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China. .,Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| |
Collapse
|
33
|
Kang C, Jiang A, Yang H, Zheng G, Wang Y, Cao J, Sun C. Integrated Physiochemical, Hormonal, and Transcriptomic Analysis Revealed the Underlying Mechanisms for Granulation in Huyou ( Citrus changshanensis) Fruit. FRONTIERS IN PLANT SCIENCE 2022; 13:923443. [PMID: 35909750 PMCID: PMC9330425 DOI: 10.3389/fpls.2022.923443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Juice sac granulation is a common internal physiological disorder of citrus fruit. In the present study, we compared the physiochemical characteristics and transcriptome profiles of juice sacs in different granulation levels from Huyou fruit (Citrus changshanensis). The accumulation of cell wall components, including the water-soluble pectin, protopectin, cellulose, and lignin, were significantly correlated with the granulation process, resulting in the firmness increase of the juice sac. The in situ labeling of the cell wall components indicated the early accumulation of cellulose and high-methylesterified pectin in the outer layer cells, as well as the late accumulation of lignin in the inner layer cells of the juice sac. Several phytohormones, including auxins, abscisic acids, cytokinins, jasmonic acid, salicylic acid, and/or their metabolites, were positively correlated to the granulation level, indicating an active and complex phytohormones metabolism in the granulation process. Combining the trend analysis by the Mfuzz method and the module-trait correlation analysis by the Weighted Gene Co-expression Network Analysis method, a total of 2940 differentially expressed genes (DEGs) were found to be positively correlated with the granulation level. Gene Ontology (GO) enrichment indicated that the selected DEGs were mainly involved in the cell wall organization and biogenesis, cell wall macromolecule metabolic process, carbohydrate metabolic process, and polysaccharide metabolic process. Among these selected genes, those encoding β-1,4-xylosyltransferase IRX9, cellulose synthase, xyloglucan: xyloglucosyl transferase, xyloglucan galactosyltransferase MUR3, α-1,4-galacturonosyltransferase, expansin, polygalacturonase, pectinesterase, β-glucosidase, β-galactosidase, endo-1,3(4)-β-glucanase, endoglucanase and pectate lyase that required for the biosynthesis or structural modification of cell wall were identified. In addition, NAC, MYB, bHLH, and MADS were the top abundant transcription factors (TFs) families positively correlated with the granulation level, while the LOB was the top abundant TFs family negatively correlated with the granulation level.
Collapse
Affiliation(s)
- Chen Kang
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Horticultural Products Cold Chain Logistics Technology and Equipment National-Local Joint Engineering Laboratory, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Anze Jiang
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Horticultural Products Cold Chain Logistics Technology and Equipment National-Local Joint Engineering Laboratory, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Han Yang
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Horticultural Products Cold Chain Logistics Technology and Equipment National-Local Joint Engineering Laboratory, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Guixia Zheng
- Quzhou Kecheng District Chai Family Citrus Professional Cooperative, Quzhou, China
| | - Yue Wang
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Horticultural Products Cold Chain Logistics Technology and Equipment National-Local Joint Engineering Laboratory, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Jinping Cao
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Horticultural Products Cold Chain Logistics Technology and Equipment National-Local Joint Engineering Laboratory, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Chongde Sun
- Laboratory of Fruit Quality Biology, The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Horticultural Products Cold Chain Logistics Technology and Equipment National-Local Joint Engineering Laboratory, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| |
Collapse
|
34
|
Xie L, Guo Y, Ren C, Cao Y, Li J, Lin J, Grierson D, Zhao X, Zhang B, Sun C, Chen K, Li X. Unravelling the consecutive glycosylation and methylation of flavonols in peach in response to UV-B irradiation. PLANT, CELL & ENVIRONMENT 2022; 45:2158-2175. [PMID: 35357710 DOI: 10.1111/pce.14323] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Flavonol glycosides are bioactive compounds important for plant defence and human nutrition. Glycosylation and methylation play an important role in enriching the diversity of flavonols in response to the environment. Peach flowers and fruit are rich in flavonol diglycosides such as isorhamnetin 3-O-rutinoside (I3Rut), kaempferol 3-O-rutinoside and quercetin 3-O-rutinoside, and flavonol monoglycosides such as I 3-O-glucoside and Q 3-O-galactoside. UV-B irradiation of fruit significantly induced accumulation of all these flavonol glycosides. Candidate biosynthetic genes induced by UV-B were identified by genome homology searches and the in vitro catalytic activities of purified recombinant proteins determined. PpUGT78T3 and PpUGT78A2 were identified as flavonol 3-O-glucosyltransferase and 3-O-galactosyltransferase, respectively. PpUGT91AK6 was identified as flavonol 1,6-rhamnosyl trasferase catalysing the formation of flavonol rutinosides and PpFOMT1 was identified as a flavonol O-methyltransferase that methylated Q at the 3'-OH-OH to form isorhamnetin derivatives. Transient expression in Nicotiana benthamiana confirmed the specificity of PpUGT78T3 as a flavonol 3-O-glucosyltransferase, PpUGT78A2 as a 3-O-galactosyltransferase, PpUGT91AK6 as a 1,6-rhamnosyltrasferase and PpFOMT1 as an O-methyltransferase. This study provides new insights into the mechanisms of glycosylation and methylation of flavonols, especially the formation of flavonol diglycosides such as I3Rut, and will also be useful for future potential metabolic engineering of complex flavonols.
Collapse
Affiliation(s)
- Linfeng Xie
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Yan Guo
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Chuanhong Ren
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Yunlin Cao
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Jiajia Li
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Jing Lin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Donald Grierson
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Loughborough, UK
| | - Xiaoyong Zhao
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Bo Zhang
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Chongde Sun
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Kunsong Chen
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Xian Li
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
35
|
Yang Y, He Z, Bing Q, Duan X, Chen S, Zeng M, Liu X. Two Dof transcription factors promote flavonoid synthesis in kumquat fruit by activating C-glucosyltransferase. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111234. [PMID: 35351306 DOI: 10.1016/j.plantsci.2022.111234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/31/2021] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Although DNA binding with one finger (Dof) constitutes a crucial plant-specific family of transcription factors (TFs) that plays important roles in a wide range of biological processes, the molecular mechanisms underlying Dof regulation of flavonoid biosynthesis in plants remain largely unknown. Here, we characterized 28 Dof genes (FhDof1-FhDof28) from the 'Hongkong' kumquat (Fortunella hindsii) cultivar genome. Promoter analysis and transcriptome profiling revealed that four FhDofs - FhDof4, FhDof9, FhDof15, and FhDof16 - may be involved in flavonoid biosynthesis through binding to the flavonoid C-glycosyltransferase (FhCGT) promoter. We cloned homologous genes of four FhDofs, designated as FcDof4, FcDof9, FcDof15, FcDof16, and a homologous gene of FhCGT, designated as FcCGT, from the widely cultivated 'HuaPi' kumquat (F. crassifolia). Quantitative reverse transcription-polymerase chain reaction analysis revealed that FcDof4 and FcDof16 were significantly correlated with FcCGT expression during development stages in the 'HuaPi' fruit (Pearson's correlation coefficient > 0.7) and were localized to the nucleus. Results of yeast one-hybrid, electrophoretic mobility shift, and dual-luciferase assays indicated that the two FcDofs trigger FcCGT expression by specifically binding to its promoters. Moreover, transient overexpression of FcDof4 and FcDof16 enhances the transcription of structural genes in the flavonoid biosynthetic pathway and increases C-glycosylflavonoid content. Our results provide strong evidence that the TFs FcDof4 and FcDof16 promote flavonoid synthesis in kumquat fruit by activating FcCGT expression.
Collapse
Affiliation(s)
- Yuyan Yang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China
| | - Zhilin He
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Qihao Bing
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Xinyuan Duan
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Suoying Chen
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
| | - Ming Zeng
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China
| | - Xiaogang Liu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China; Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing 400715, China.
| |
Collapse
|
36
|
Ma G, Zhang L, Seoka M, Nakata A, Yahata M, Shimada T, Fujii H, Endo T, Yoshioka T, Kan T, Kato M. Characterization of a Caffeic Acid 8- O-Methyltransferase from Citrus and Its Function in Nobiletin Biosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:543-553. [PMID: 34964635 DOI: 10.1021/acs.jafc.1c06513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nobiletin (3',4',5,6,7,8-hexamethoxyflavone) is a polymethoxylated flavonoid specifically accumulated in citrus fruit with numerous beneficial effects to human health. In this study, a novel O-methyltransferase (CitOMT2) was isolated from three citrus varieties, Ponkan mandarin (Citrus reticulata Blanco), Nou 6 ("King mandarin" × "Mukaku-kishu"), and Satsuma mandarin (Citrus unshiu Marc.), and its functions were characterized in vitro. The gene expression results showed that CitOMT2 was highly expressed in the two nobiletin abundant varieties of Ponkan mandarin and Nou 6. However, the expression level of CitOMT2 was low in the flavedo of Satsuma mandarin, in which only a small amount of nobiletin was accumulated. Functional analysis suggested that CitOMT2 was a caffeic acid 8-O-methyltransferase, and it catalyzed the O-methylation of 7,8-dihydroxyflavone at 8-OH. As the methylation of flavone at 8-OH was required for nobiletin biosynthesis, the results presented in this study suggested that CitOMT2 was a key gene regulating nobiletin accumulation in citrus fruit.
Collapse
Affiliation(s)
- Gang Ma
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Lancui Zhang
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Mao Seoka
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Akari Nakata
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Masaki Yahata
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Takehiko Shimada
- NARO Institute of Fruit Tree and Tea Science, Shizuoka 424-0292, Japan
| | - Hiroshi Fujii
- NARO Institute of Fruit Tree and Tea Science, Shizuoka 424-0292, Japan
| | - Tomoko Endo
- NARO Institute of Fruit Tree and Tea Science, Shizuoka 424-0292, Japan
| | - Terutaka Yoshioka
- NARO Institute of Fruit Tree and Tea Science, Shizuoka 424-0292, Japan
| | - Toshiyuki Kan
- School of Pharmaceutical Sciences University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Masaya Kato
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| |
Collapse
|
37
|
Lu S, Zhuge Y, Hao T, Liu Z, Zhang M, Fang J. Systematic analysis reveals O-methyltransferase gene family members involved in flavonoid biosynthesis in grape. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 173:33-45. [PMID: 35093693 DOI: 10.1016/j.plaphy.2022.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/20/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
O-methyltransferases (OMTs) are an important group of enzymes involved in the methylation of various secondary metabolites, including flavonoids. However, the features and functions of OMTs have not been comprehensively studied in grape (Vitis vinifera), a rich source of methylated flavonoids. Here, 47 OMT members were identified in grape genome. They were unevenly distributed on grape chromosomes and some genes were tandem duplicated, indicating the role of duplication processes in the expansion of this gene family. Based on the phylogenetic relationship, these OMTs were clustered into CCoAOMT and COMT subclades, which were further supported by the results of conserved motif and gene structure analysis. Correlation analysis revealed that three members (VvCCoAOMT1, VvCCoAOMT4, and VvCOMT1) were potentially involved in the synthesis of most methylated flavonoids in the berry skins. Expression profiling based on RNA-seq data and qRT-PCR experiments indicated that VvCCoAOMT1 and VvCCoAOMT4 had specific and high expression in berry skins, and responded to abscisic acid and high temperature treatments; and that VvCOMT1 expression was significantly induced during berry development and UVC treatment. Cis-regulatory element analysis suggested important roles of OMTs in growth, development, and defense against stresses. We further demonstrated the transcriptional regulation of VvCCoAOMT4 by VvMYBA1, a master regulator of grape berry anthocyanin, and verified the protein localization of VvCCoAOMT4 in membrane and nucleus. These findings facilitate a better understanding of the characteristics of OMT gene family, especially of the potential members involved in the formation of O-methylated flavonoids in grape.
Collapse
Affiliation(s)
- Suwen Lu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China.
| | - Yaxian Zhuge
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Tianyi Hao
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhongjie Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Mengwei Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
38
|
Cui M, Lu A, Li J, Liu J, Fang Y, Pei T, Zhong X, Wei Y, Kong Y, Qiu W, Hu Y, Yang J, Chen X, Martin C, Zhao Q. Two types of O-methyltransferase are involved in biosynthesis of anticancer methoxylated 4'-deoxyflavones in Scutellaria baicalensis Georgi. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:129-142. [PMID: 34490975 PMCID: PMC8710825 DOI: 10.1111/pbi.13700] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 05/05/2023]
Abstract
The medicinal plant Scutellaria baicalensis Georgi is rich in specialized 4'-deoxyflavones, which are reported to have many health-promoting properties. We assayed Scutellaria flavones with different methoxyl groups on human cancer cell lines and found that polymethoxylated 4'-deoxyflavones, like skullcapflavone I and tenaxin I have stronger ability to induce apoptosis compared to unmethylated baicalein, showing that methoxylation enhances bioactivity as well as the physical properties of specialized flavones, while having no side-effects on healthy cells. We investigated the formation of methoxylated flavones and found that two O-methyltransferase (OMT) families are active in the roots of S. baicalensis. The Type II OMTs, SbPFOMT2 and SbPFOMT5, decorate one of two adjacent hydroxyl groups on flavones and are responsible for methylation on the C6, 8 and 3'-hydroxyl positions, to form oroxylin A, tenaxin II and chrysoeriol respectively. The Type I OMTs, SbFOMT3, SbFOMT5 and SbFOMT6 account mainly for C7-methoxylation of flavones, but SbFOMT5 can also methylate baicalein on its C5 and C6-hydroxyl positions. The dimethoxylated flavone, skullcapflavone I (found naturally in roots of S. baicalensis) can be produced in yeast by co-expressing SbPFOMT5 plus SbFOMT6 when the appropriately hydroxylated 4'-deoxyflavone substrates are supplied in the medium. Co-expression of SbPFOMT5 plus SbFOMT5 in yeast produced tenaxin I, also found in Scutellaria roots. This work showed that both type I and type II OMT enzymes are involved in biosynthesis of methoxylated flavones in S. baicalensis.
Collapse
Affiliation(s)
- Meng‐Ying Cui
- Shanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Botanical GardenShanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghaiChina
| | - An‐Rui Lu
- Shanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Botanical GardenShanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghaiChina
- State Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Jian‐Xu Li
- State Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Jie Liu
- Shanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Botanical GardenShanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghaiChina
| | - Yu‐Min Fang
- Shanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Botanical GardenShanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghaiChina
| | - Tian‐Lin Pei
- Shanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Botanical GardenShanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghaiChina
- State Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Xin Zhong
- Shanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Botanical GardenShanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghaiChina
| | - Yu‐Kun Wei
- Shanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Botanical GardenShanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghaiChina
| | - Yu Kong
- Shanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Botanical GardenShanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghaiChina
| | - Wen‐Qing Qiu
- Key Laboratory of Metabolism and Molecular MedicineDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Yong‐Hong Hu
- Shanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Botanical GardenShanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghaiChina
| | - Jun Yang
- Shanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Botanical GardenShanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghaiChina
- State Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Xiao‐Ya Chen
- Shanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Botanical GardenShanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghaiChina
- State Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | - Cathie Martin
- Shanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Botanical GardenShanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghaiChina
- John Innes CentreNorwichUK
| | - Qing Zhao
- Shanghai Key Laboratory of Plant Functional Genomics and ResourcesShanghai Chenshan Botanical GardenShanghai Chenshan Plant Science Research CenterChinese Academy of SciencesShanghaiChina
- State Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| |
Collapse
|
39
|
Tian S, Yang Y, Wu T, Luo C, Li X, Zhao X, Xi W, Liu X, Zeng M. Functional Characterization of a Flavone Synthase That Participates in a Kumquat Flavone Metabolon. FRONTIERS IN PLANT SCIENCE 2022; 13:826780. [PMID: 35310637 PMCID: PMC8924551 DOI: 10.3389/fpls.2022.826780] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/07/2022] [Indexed: 05/17/2023]
Abstract
Flavones predominantly accumulate as O- and C-glycosides in kumquat plants. Two catalytic mechanisms of flavone synthase II (FNSII) support the biosynthesis of glycosyl flavones, one involving flavanone 2-hydroxylase (which generates 2-hydroxyflavanones for C-glycosylation) and another involving the direct catalysis of flavanones to flavones for O-glycosylation. However, FNSII has not yet been characterized in kumquats. In this study, we identified two kumquat FNSII genes (FcFNSII-1 and FcFNSII-2), based on transcriptome and bioinformatics analysis. Data from in vivo and in vitro assays showed that FcFNSII-2 directly synthesized apigenin and acacetin from naringenin and isosakuranetin, respectively, whereas FcFNSII-1 showed no detectable catalytic activities with flavanones. In agreement, transient overexpression of FcFNSII-2 in kumquat peels significantly enhanced the transcription of structural genes of the flavonoid-biosynthesis pathway and the accumulation of several O-glycosyl flavones. Moreover, studying the subcellular localizations of FcFNSII-1 and FcFNSII-2 demonstrated that N-terminal membrane-spanning domains were necessary to ensure endoplasmic reticulum localization and anchoring. Protein-protein interaction analyses, using the split-ubiquitin yeast two-hybrid system and bimolecular fluorescence-complementation assays, revealed that FcFNSII-2 interacted with chalcone synthase 1, chalcone synthase 2, and chalcone isomerase-like proteins. The results provide strong evidence that FcFNSII-2 serves as a nucleation site for an O-glycosyl flavone metabolon that channels flavanones for O-glycosyl flavone biosynthesis in kumquat fruits. They have implications for guiding genetic engineering efforts aimed at enhancing the composition of bioactive flavonoids in kumquat fruits.
Collapse
Affiliation(s)
- Shulin Tian
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
| | - Yuyan Yang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
| | - Tao Wu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Chuan Luo
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Xin Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Xijuan Zhao
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
| | - Wanpeng Xi
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
| | - Xiaogang Liu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
- *Correspondence: Xiaogang Liu,
| | - Ming Zeng
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Chongqing, China
- Ming Zeng, ;
| |
Collapse
|
40
|
Gene-Metabolite Network Analysis Revealed Tissue-Specific Accumulation of Therapeutic Metabolites in Mallotus japonicus. Int J Mol Sci 2021; 22:ijms22168835. [PMID: 34445541 PMCID: PMC8396295 DOI: 10.3390/ijms22168835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
Mallotus japonicus is a valuable traditional medicinal plant in East Asia for applications as a gastrointestinal drug. However, the molecular components involved in the biosynthesis of bioactive metabolites have not yet been explored, primarily due to a lack of omics resources. In this study, we established metabolome and transcriptome resources for M. japonicus to capture the diverse metabolite constituents and active transcripts involved in its biosynthesis and regulation. A combination of untargeted metabolite profiling with data-dependent metabolite fragmentation and metabolite annotation through manual curation and feature-based molecular networking established an overall metabospace of M. japonicus represented by 2129 metabolite features. M. japonicus de novo transcriptome assembly showed 96.9% transcriptome completeness, representing 226,250 active transcripts across seven tissues. We identified specialized metabolites biosynthesis in a tissue-specific manner, with a strong correlation between transcripts expression and metabolite accumulations in M. japonicus. The correlation- and network-based integration of metabolome and transcriptome datasets identified candidate genes involved in the biosynthesis of key specialized metabolites of M. japonicus. We further used phylogenetic analysis to identify 13 C-glycosyltransferases and 11 methyltransferases coding candidate genes involved in the biosynthesis of medicinally important bergenin. This study provides comprehensive, high-quality multi-omics resources to further investigate biological properties of specialized metabolites biosynthesis in M. japonicus.
Collapse
|
41
|
Zhao C, Liu X, Gong Q, Cao J, Shen W, Yin X, Grierson D, Zhang B, Xu C, Li X, Chen K, Sun C. Three AP2/ERF family members modulate flavonoid synthesis by regulating type IV chalcone isomerase in citrus. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:671-688. [PMID: 33089636 PMCID: PMC8051604 DOI: 10.1111/pbi.13494] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 05/19/2023]
Abstract
Flavanones and flavones are excellent source of bioactive compounds but the molecular basis of their highly efficient production remains elusive. Chalcone isomerase (CHI) family proteins play essential roles in flavonoid biosynthesis but little are known about the transcription factors controlling their gene expression. Here, we identified a type IV CHI (designated as CitCHIL1) from citrus which enhances the accumulation of citrus flavanones and flavones (CFLs). CitCHIL1 participates in a CFL biosynthetic metabolon and assists the cyclization of naringenin chalcone to (2S)-naringenin, which leads to the efficient influx of substrates to chalcone synthase (CHS) and improves the catalytic efficiency of CHS. Overexpressing CitCHIL1 in Citrus and Arabidopsis significantly increased flavonoid content and RNA interference-induced silencing of CitCHIL1 in citrus led to a 43% reduction in CFL content. Three AP2/ERF transcription factors were identified as positive regulators of the CitCHIL1 expression. Of these, two dehydration-responsive element binding (DREB) proteins, CitERF32 and CitERF33, activated the transcription by directly binding to the CGCCGC motif in the promoter, while CitRAV1 (RAV: related to ABI3/VP1) formed a transcription complex with CitERF33 that strongly enhanced the activation efficiency and flavonoid accumulation. These results not only illustrate the specific function that CitCHIL1 executes in CFL biosynthesis but also reveal a new DREB-RAV transcriptional complex regulating flavonoid production.
Collapse
Affiliation(s)
- Chenning Zhao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Xiaojuan Liu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Qin Gong
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Jinping Cao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Wanxia Shen
- Citrus Research InstituteSouthwest University/Chinese Academy of Agricultural SciencesChongqingChina
| | - Xueren Yin
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Donald Grierson
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
- Division of Plant and Crop SciencesSchool of BiosciencesUniversity of NottinghamLoughboroughUK
| | - Bo Zhang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Changjie Xu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Xian Li
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Kunsong Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| |
Collapse
|
42
|
Alhamad DW, Elgendy SM, Al-Tel TH, Omar HA. Tangeretin as an adjuvant and chemotherapeutic sensitizer against various types of cancers: a comparative overview. J Pharm Pharmacol 2021; 73:601-610. [PMID: 33772294 DOI: 10.1093/jpp/rgab013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Cancer is a leading cause of disabling morbidities and death worldwide. Although there are various strategies for the management of cancer, the severe adverse effects negatively impact the patient's quality of life. In addition, the development of resistance limits the efficacy of many chemotherapeutics. Many natural agents are capable of reducing the adverse effects associated with chemotherapy and improving the therapeutic outcome. Tangeretin, a polymethoxy flavone, is one of the promising natural anticancer agents. KEY FINDINGS Tangeretin not only targets various malignancies but also synergizes chemotherapeutic agents and reverses cancer resistance. Hence, the application of tangeretin as an adjuvant in cancer chemotherapy would be a promising strategy. SUMMARY This work critically highlighted the proposed anticancer activity of tangeretin and discussed its potential combination with various chemotherapeutic agents. Additionally, it shed light on tangeretin chemical derivatives with improved pharmacokinetic and pharmacodynamic activity. Finally, this review described flavonoid biosynthetic pathways and how bioengineering can be employed to enhance the production yield of tangeretin. Thus, this work paves the way for the rational clinical utilization of tangeretin as a safe and effective adjuvant in chemotherapeutic protocols.
Collapse
Affiliation(s)
- Dima W Alhamad
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Sara M Elgendy
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Taleb H Al-Tel
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Hany A Omar
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
43
|
Comparative profiling and natural variation of polymethoxylated flavones in various citrus germplasms. Food Chem 2021; 354:129499. [PMID: 33752115 DOI: 10.1016/j.foodchem.2021.129499] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 11/22/2022]
Abstract
Citrus fruits are the main dietary source of polymethoxylated flavones (PMFs) with significant effects on consumer health. In this study, eleven main PMFs were evaluated in the fruit flavedo or leaves of 116 citrus accessions via UPLC-DAD-ESI-QTOF-MS/MS combined with HPLC-DAD analysis, which revealed significant species-specific and spatiotemporal characteristics. All Citrus reticulata and their natural or artificial hybrids were found to have detectable PMFs, especially in the fruit flavedo of the wild or early-cultivated mandarins at early fruit development stages. However, PMFs were not detected in citrons, pummelos, kumquats, trifoliata oranges, papedas, Chinese box oranges and 'Mangshanyegan'. The results enlightened that PMF accumulation only in mandarins and mandarin hybrids is a phenotype inherited from mandarin ancestors. This study provides a comprehensive PMF profile in various citrus germplasms and will benefit future functional citrus breeding practices aimed at designing plants rich in total or specific PMFs for health benefits.
Collapse
|
44
|
Wang Y, Liu XJ, Chen JB, Cao JP, Li X, Sun CD. Citrus flavonoids and their antioxidant evaluation. Crit Rev Food Sci Nutr 2021; 62:3833-3854. [PMID: 33435726 DOI: 10.1080/10408398.2020.1870035] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The antioxidant ability is the link and bridge connecting a variety of biological activities. Citrus flavonoids play an essential role in regulating oxidative stress and are an important source of daily intake of antioxidant supplements. Many studies have shown that citrus flavonoids promote health through antioxidation. In this review, the biosynthesis, composition and distribution of citrus flavonoids were concluded. The detection methods of antioxidant capacity of citrus flavonoids were divided into four categories: chemical, cellular, animal and clinical antioxidant capacity evaluation systems. The modeling methods, applicable scenarios, and their relative merits were compared based on these four systems. The antioxidant functions of citrus flavonoids under different evaluation systems were also discussed, especially the regulation of the Nrf2-antioxidases pathway. Some shortcomings in the current research were pointed out, and some suggestions for progress were put forward.
Collapse
Affiliation(s)
- Yue Wang
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Xiao-Juan Liu
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Jie-Biao Chen
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Jin-Ping Cao
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Xian Li
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| | - Chong-De Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, China
| |
Collapse
|
45
|
Seoka M, Ma G, Zhang L, Yahata M, Yamawaki K, Kan T, Kato M. Expression and functional analysis of the nobiletin biosynthesis-related gene CitOMT in citrus fruit. Sci Rep 2020; 10:15288. [PMID: 32943728 PMCID: PMC7498457 DOI: 10.1038/s41598-020-72277-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/13/2020] [Indexed: 11/09/2022] Open
Abstract
Nobiletin, a polymethoxy flavone (PMF), is specific to citrus and has been reported to exhibit important health-supporting properties. Nobiletin has six methoxy groups at the 3′,4′,5,6,7,8-positions, which are catalyzed by O-methyltransferases (OMTs). To date, researches on OMTs in citrus fruit are still limited. In the present study, a novel OMT gene (CitOMT) was isolated from two citrus varieties Satsuma mandarin (Citrus unshiu Marc.) and Ponkan mandarin (Citrus reticulata Blanco), and its function was characterized in vitro. The results showed that the expression of CitOMT in the flavedo of Ponkan mandarin was much higher than that of Satsuma mandarin during maturation, which was consistent with the higher accumulation of nobiletin in Ponkan mandarin. In addition, functional analysis showed that the recombinant protein of CitOMT had methylation activity to transfer a methyl group to 3′-hydroxy group of flavones in vitro. Because methylation at the 3′-position of flavones is vital for the nobiletin biosynthesis, CitOMT may be a key gene responsible for nobiletin biosynthesis in citrus fruit. The results presented in this study will provide new strategies to enhance nobiletin accumulation and improve the nutritional qualities of citrus fruit.
Collapse
Affiliation(s)
- Mao Seoka
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Gang Ma
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan.,Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Lancui Zhang
- Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Masaki Yahata
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan.,Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Kazuki Yamawaki
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan.,Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Toshiyuki Kan
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Masaya Kato
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan. .,Department of Bioresource Sciences, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan.
| |
Collapse
|
46
|
Zhang J, Wu X, Qiu J, Zhang L, Zhang Y, Qiu X, Huang Z, Xu W. Comprehensive Comparison on the Chemical Profile of Guang Chen Pi at Different Ripeness Stages Using Untargeted and Pseudotargeted Metabolomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8483-8495. [PMID: 32610017 DOI: 10.1021/acs.jafc.0c02904] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The peel of Citrus reticulata 'Chachi' (GCP), which is highly valued in China for its health-promoting effects, is usually collected at different development stages to be processed into various functional foods. In the present work, a rapid method based on ultra-high-performance liquid chromatography Q Exactive Orbitrap mass spectrometry-incorporated untargeted and pseudotargeted metabolomics analysis was developed to investigate the chemical variations in GCP at different ripeness stages. Samples that originated from an individual tree were collected at immature, near mature, and mature stages. A total of 112 compounds were identified or tentatively identified, and flavonoids malonyl glycosides and polymethoxyfolavones glycosides were reported for the first time. Untargeted metabolomics analysis indicated the distinct chemical profiles and significant changes during ripeness stages. Then, a validated pseudotargeted metabolomics method based on parallel reaction monitoring was further applied with a wide coverage of targeted compounds. The GCP samples were found differing in the content variations of flavonoid aglycones, flavonoid O-/C-glycosides, polymethoxyfolavones, limonoids, alkaloids, and phenolic acid, which are important for phenotypic variations at different development stages. The present study is expected to provide new insight on comprehensive utilization of citrus peels at different ripeness stages.
Collapse
Affiliation(s)
- Jing Zhang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
| | - Xiaofang Wu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
| | - Jiaqi Qiu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, People's Republic of China
| | - Yating Zhang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
| | - Xiaohui Qiu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, People's Republic of China
| | - Zhihai Huang
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510120, People's Republic of China
| | - Wen Xu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, People's Republic of China
| |
Collapse
|
47
|
De novo transcriptome sequencing and analysis of salt-, alkali-, and drought-responsive genes in Sophora alopecuroides. BMC Genomics 2020; 21:423. [PMID: 32576152 PMCID: PMC7310485 DOI: 10.1186/s12864-020-06823-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Background Salinity, alkalinity, and drought stress are the main abiotic stress factors affecting plant growth and development. Sophora alopecuroides L., a perennial leguminous herb in the genus Sophora, is a highly salt-tolerant sand-fixing pioneer species distributed mostly in Western Asia and northwestern China. Few studies have assessed responses to abiotic stress in S. alopecuroides. The transcriptome of the genes that confer stress-tolerance in this species has not previously been sequenced. Our objective was to sequence and analyze this transcriptome. Results Twelve cDNA libraries were constructed in triplicate from mRNA obtained from Sophora alopecuroides for the control and salt, alkali, and drought treatments. Using de novo assembly, 902,812 assembled unigenes were generated, with an average length of 294 bp. Based on similarity searches, 545,615 (60.43%) had at least one significant match in the Nr, Nt, Pfam, KOG/COG, Swiss-Prot, and GO databases. In addition, 1673 differentially expressed genes (DEGs) were obtained from the salt treatment, 8142 from the alkali treatment, and 17,479 from the drought treatment. A total of 11,936 transcription factor genes from 82 transcription factor families were functionally annotated under salt, alkali, and drought stress, these include MYB, bZIP, NAC and WRKY family members. DEGs were involved in the hormone signal transduction pathway, biosynthesis of secondary metabolites and antioxidant enzymes; this suggests that these pathways or processes may be involved in tolerance towards salt, alkali, and drought stress in S. alopecuroides. Conclusion Our study first reported transcriptome reference sequence data in Sophora alopecuroides, a non-model plant without a reference genome. We determined digital expression profile and discovered a broad survey of unigenes associated with salt, alkali, and drought stress which provide genomic resources available for Sophora alopecuroides.
Collapse
|