1
|
Hicter P, Beeckman H, Luse Belanganayi B, De Mil T, Van den Bulcke J, Kitin P, Bauters M, Lievens K, Musepena D, Mbifo Ndiapo J, Luambua NK, Laurent F, Angoboy Ilondea B, Hubau W. Asynchronous xylogenesis among and within tree species in the central Congo Basin. BMC PLANT BIOLOGY 2025; 25:317. [PMID: 40075259 PMCID: PMC11899628 DOI: 10.1186/s12870-025-06314-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/27/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND Xylogenesis is synchronous among trees in regions with a distinct growing season, leading to a forest-wide time lag between growth and carbon uptake. In contrast, little is known about interspecific or even intraspecific variability of xylogenesis in tropical forests. Yet an understanding of xylogenesis patterns is key to successfully combine bottom-up (e.g., from permanent forest inventory plots) and top-down (e.g., from eddy covariance flux towers) carbon flux estimates. METHODS Here, we monitor xylogenesis development of 18 trees belonging to 6 abundant species during 8 weeks at the onset of the rainy season from March to April 2022 in a semideciduous rainforest in the Yangambi reserve (central Democratic Republic of the Congo). For each tree, the weekly cambial state (dormant or active) was determined by epifluorescence microscopy. RESULTS We find interspecific variability in the cambial phenology, with two species showing predominant cambial dormancy and two species showing predominant cambial activity during the monitoring period. We also find intraspecific variability in two species where individuals either display cambial dormancy or cambial activity. All trees kept > 60% of their leaves throughout the dry season and the monitoring period, suggesting a weak relationship between the phenology of the cambial and foliar. Our results suggest that individual trees in Yangambi asynchronously activate their cambial growth throughout the year, regardless of leaf phenology or seasonal rainfall. CONCLUSION These results are consistent with global analysis of gross primary productivity estimates from eddy covariance flux towers, showing that tropical biomes lack a synchronous dormant period. However, a longer-term monitoring experiment, including more species, is necessary to confirm this for the Congo Basin. As Yangambi is equipped with facilities for microscopic wood analysis, a network of inventory plots and a flux tower, further research in this site will reveal how xylogenesis patterns drive annual variability in carbon fluxes and how ground-based and top-down measurements can be combined for robust upscaling analysis of Congo basin carbon budgets.
Collapse
Affiliation(s)
- Pauline Hicter
- Wood Biology Service, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080, Tervuren, Belgium.
- UGent-Woodlab-Laboratory of Wood technology, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | - Hans Beeckman
- Wood Biology Service, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080, Tervuren, Belgium
| | - Basile Luse Belanganayi
- UGent-Woodlab-Laboratory of Wood technology, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Forest Is Life, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5300, Gembloux, Belgium
| | - Tom De Mil
- Forest Is Life, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Passage Des Déportés 2, 5300, Gembloux, Belgium
| | - Jan Van den Bulcke
- UGent-Woodlab-Laboratory of Wood technology, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Peter Kitin
- Forest Products Laboratory, USDA Forest Service, One Gifford Pinchot Drive, Madison, WI, 53726, USA
| | - Marijn Bauters
- Ghent University, 9000, Ghent, Belgium
- Department of Environment, Q-ForestLab, Ghent University, 9000, Ghent, Belgium
| | - Kévin Lievens
- Wood Biology Service, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080, Tervuren, Belgium
| | - Donatien Musepena
- Centre de Recherche de Yangambi, Institut National Pour L'Etude Et La Recherche Agronomiques, Yangambi, Democratic Republic of the Congo
| | - José Mbifo Ndiapo
- Centre de Recherche de Yangambi, Institut National Pour L'Etude Et La Recherche Agronomiques, Yangambi, Democratic Republic of the Congo
| | - Nestor K Luambua
- UGent-Woodlab-Laboratory of Wood technology, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Faculty of Renewable Natural Resources Management, University of Kisangani, Kisangani, Democratic Republic of Congo
| | - Félix Laurent
- Wood Biology Service, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080, Tervuren, Belgium
- UGent-Woodlab-Laboratory of Wood technology, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Bhély Angoboy Ilondea
- Laboratoire de Biologie du Bois, Section de La Foresterie, Institut National Pour L'Etude Et La Recherche Agronomique, Yangambi, Democratic Republic of Congo
- Université Pédagogique Nationale, République Démocratique du Congo, B.P, 8815, Kinshasa-Ngaliema, Democratic Republic of Congo
| | - Wannes Hubau
- Wood Biology Service, Royal Museum for Central Africa, Leuvensesteenweg 13, 3080, Tervuren, Belgium
- UGent-Woodlab-Laboratory of Wood technology, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
2
|
Liu C, Peltoniemi M, Alekseychik P, Mäkelä A, Hölttä T. A Coupled Model of Hydraulic Eco-Physiology and Cambial Growth - Accounting for Biophysical Limitations and Phenology Improves Stem Diameter Prediction at High Temporal Resolution. PLANT, CELL & ENVIRONMENT 2025; 48:1344-1365. [PMID: 39449245 PMCID: PMC11695789 DOI: 10.1111/pce.15239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
Traditional photosynthesis-driven growth models have considerable uncertainties in predicting tree growth under changing climates, partially because sink activities are directly affected by the environment but not adequately addressed in growth modelling. Therefore, we developed a semi-mechanistic model coupling stomatal optimality, temperature control of enzymatic activities and phenology of cambial growth. Parameterized using Bayesian inference and measured data on Picea abies and Pinus sylvestris in peatland and mineral soils in Finland, the coupled model simulates transpiration and assimilation rates and stem radial dimension (SRD) simultaneously at 30 min resolution. The results suggest that both the sink and phenological formulations with environmental effects are indispensable for capturing SRD dynamics across hourly to seasonal scales. Simulated using the model, growth was more sensitive than assimilation to temperature and soil water, suggesting carbon gain is not driving growth at the current temporal scale. Also, leaf-specific production was occasionally positively correlated with growth duration but not with growth onset timing or annual cambial area increment. Thus, as it is hardly explained by carbon gain, phenology itself should be included in sink-driven growth models of the trees in the boreal zone and possibly other environments where sink activities and photosynthesis are both restrained by harsh conditions.
Collapse
Affiliation(s)
- Che Liu
- Department of Forest Sciences, Faculty of Agriculture and ForestryUniversity of HelsinkiHelsinkiFinland
- Institute for Atmospheric and Earth System Research (INAR)University of HelsinkiHelsinkiFinland
| | | | | | - Annikki Mäkelä
- Department of Forest Sciences, Faculty of Agriculture and ForestryUniversity of HelsinkiHelsinkiFinland
- Institute for Atmospheric and Earth System Research (INAR)University of HelsinkiHelsinkiFinland
| | - Teemu Hölttä
- Department of Forest Sciences, Faculty of Agriculture and ForestryUniversity of HelsinkiHelsinkiFinland
- Institute for Atmospheric and Earth System Research (INAR)University of HelsinkiHelsinkiFinland
| |
Collapse
|
3
|
Höfler M, Liu X, Greb T, Alim K. Mechanical forces instruct division plane orientation of cambium stem cells during radial growth in Arabidopsis thaliana. Curr Biol 2024; 34:5518-5531.e4. [PMID: 39571578 DOI: 10.1016/j.cub.2024.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/27/2024] [Accepted: 10/16/2024] [Indexed: 12/06/2024]
Abstract
Robust regulation of cell division is central to the formation of complex multi-cellular organisms and is a hallmark of stem cell activity. In plants, due to the absence of cell migration, the correct placement of newly produced cell walls during cell division is of eminent importance for generating functional tissues and organs. In particular, during the radial growth of plant shoots and roots, precise regulation and organization of cell divisions in the cambium are essential to produce adjacent xylem and phloem tissues in a strictly bidirectional manner. Although several intercellular signaling cascades have been identified to instruct tissue organization during radial growth, the role of mechanical forces in guiding cambium stem cell activity has been frequently proposed but, so far, not been functionally investigated on the cellular level. Here, we coupled anatomical analyses with a cell-based vertex model to analyze the role of mechanical stress in radial plant growth at the cell and tissue scale. Simulations based on segmented cellular outlines of radially growing Arabidopsis hypocotyls revealed a distinct stress pattern with circumferential stresses in cambium stem cells, which coincided with the orientation of cortical microtubules. Integrating stress patterns as a cue instructing cell division orientation was sufficient for the emergence of typical cambium-derived cell files and agreed with experimental results for stress-related tissue organization in confining mechanical environments. Our work thus underlines the significance of mechanical forces in tissue organization through self-emerging stress patterns during the growth of plant organs.
Collapse
Affiliation(s)
- Mathias Höfler
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Protein Assemblies (CPA), 85748 Garching b. München, Munich, Germany
| | - Xiaomin Liu
- Heidelberg University, Centre for Organismal Studies (COS), 69120 Heidelberg, Germany
| | - Thomas Greb
- Heidelberg University, Centre for Organismal Studies (COS), 69120 Heidelberg, Germany
| | - Karen Alim
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Protein Assemblies (CPA), 85748 Garching b. München, Munich, Germany.
| |
Collapse
|
4
|
Eswaran G, Zhang X, Rutten JP, Han J, Iida H, López Ortiz J, Mäkilä R, Wybouw B, Planterose Jiménez B, Vainio L, Porcher A, Leal Gavarron M, Zhang J, Blomster T, Wang X, Dolan D, Smetana O, Brady SM, Kucukoglu Topcu M, Ten Tusscher K, Etchells JP, Mähönen AP. Identification of cambium stem cell factors and their positioning mechanism. Science 2024; 386:646-653. [PMID: 39509505 DOI: 10.1126/science.adj8752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 04/26/2024] [Accepted: 09/23/2024] [Indexed: 11/15/2024]
Abstract
Wood constitutes the largest reservoir of terrestrial biomass. Composed of xylem, it arises from one side of the vascular cambium, a bifacial stem cell niche that also produces phloem on the opposing side. It is currently unknown which molecular factors endow cambium stem cell identity. Here we show that TRACHEARY ELEMENT DIFFERENTIATION INHIBITORY FACTOR (TDIF) ligand-activated PHLOEM INTERCALATED WITH XYLEM (PXY) receptors promote the expression of CAMBIUM-EXPRESSED AINTEGUMENTA-LIKE (CAIL) transcription factors to define cambium stem cell identity in the Arabidopsis root. By sequestrating the phloem-originated TDIF, xylem-expressed PXY confines the TDIF signaling front, resulting in the activation of CAIL expression and stem cell identity in only a narrow domain. Our findings show how signals emanating from cells on opposing sides ensure robust yet dynamically adjustable positioning of a bifacial stem cell layer.
Collapse
Affiliation(s)
- Gugan Eswaran
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Xixi Zhang
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Jacob Pieter Rutten
- Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH Utrecht, Netherlands
| | - Jingyi Han
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Hiroyuki Iida
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Jennifer López Ortiz
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Riikka Mäkilä
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Brecht Wybouw
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | | | - Leo Vainio
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Alexis Porcher
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Marina Leal Gavarron
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Jing Zhang
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Tiina Blomster
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Xin Wang
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - David Dolan
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Ondřej Smetana
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Siobhán M Brady
- Department of Plant Biology, University of California, Davis, Davis, CA 95616, USA
| | - Melis Kucukoglu Topcu
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Kirsten Ten Tusscher
- Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH Utrecht, Netherlands
- Experimental and Computational Plant Development, Utrecht University, 3584 CH Utrecht, Netherlands
| | - J Peter Etchells
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Ari Pekka Mähönen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
5
|
Zhao B, Song W, Chen Z, Zhang Q, Liu D, Bai Y, Li Z, Dong H, Gao X, Li X, Wang X. A process-based model of climate-driven xylogenesis and tree-ring formation in broad-leaved trees (BTR). TREE PHYSIOLOGY 2024; 44:tpae127. [PMID: 39331735 DOI: 10.1093/treephys/tpae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/23/2024] [Accepted: 09/25/2024] [Indexed: 09/29/2024]
Abstract
The process-based xylem formation model is an important tool for understanding the radial growth process of trees and its influencing factors. While numerous xylogenesis models for conifers have been developed, there is a lack of models available for non-coniferous trees. In this study, we present a process-based model designed for xylem formation and ring growth in broad-leaved trees, which we call the Broad-leaved Tree-Ring (BTR) model. Climate factors, including daylength, air temperature, soil moisture and vapor pressure deficit, drive daily xylem cell production (fibers and vessels) and growth (enlargement, wall deposition). The model calculates the total cell area in the simulated zone to determine the annual ring width. The results demonstrate that the BTR model can basically simulate inter-annual variation in ring width and intra-annual changes in vessel and fiber cell formation in Fraxinus mandshurica (ring-porous) and Betula platyphylla (diffuse-porous). The BTR model is a potential tool for understanding how different trees form wood and how climate change influences this process.
Collapse
Affiliation(s)
- Binqing Zhao
- Center for Ecological Research and Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, School of Ecology, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Wenqi Song
- Center for Ecological Research and Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, School of Ecology, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Zecheng Chen
- Center for Ecological Research and Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, School of Ecology, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Qingzhu Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Ecology, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Di Liu
- Center for Ecological Research and Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, School of Ecology, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Yuxin Bai
- Center for Ecological Research and Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, School of Ecology, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Zongshan Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Hanjun Dong
- Center for Ecological Research and Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, School of Ecology, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Xiaohui Gao
- Center for Ecological Research and Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, School of Ecology, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Xingxing Li
- Shijiazhuang Landscape Greening Engineering Project Construction Center, 435-2 Huaizhong Road, Yuhua District, Shijiazhuang 050000, China
| | - Xiaochun Wang
- Center for Ecological Research and Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, School of Ecology, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| |
Collapse
|
6
|
Wybouw B, Zhang X, Mähönen AP. Vascular cambium stem cells: past, present and future. THE NEW PHYTOLOGIST 2024; 243:851-865. [PMID: 38890801 DOI: 10.1111/nph.19897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
Secondary xylem and phloem originate from a lateral meristem called the vascular cambium that consists of one to several layers of meristematic cells. Recent lineage tracing studies have shown that only one of the cambial cells in each radial cell file functions as the stem cell, capable of producing both secondary xylem and phloem. Here, we first review how phytohormones and signalling peptides regulate vascular cambium formation and activity. We then propose how the stem cell concept, familiar from apical meristems, could be applied to cambium studies. Finally, we discuss how this concept could set the basis for future research.
Collapse
Affiliation(s)
- Brecht Wybouw
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Xixi Zhang
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Ari Pekka Mähönen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| |
Collapse
|
7
|
Favre P, van Schaik E, Schorderet M, Yerly F, Reinhardt D. Regulation of tissue growth in plants - A mathematical modeling study on shade avoidance response in Arabidopsis hypocotyls. FRONTIERS IN PLANT SCIENCE 2024; 15:1285655. [PMID: 38486850 PMCID: PMC10938469 DOI: 10.3389/fpls.2024.1285655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/05/2024] [Indexed: 03/17/2024]
Abstract
Introduction Plant growth is a plastic phenomenon controlled both by endogenous genetic programs and by environmental cues. The embryonic stem, the hypocotyl, is an ideal model system for the quantitative study of growth due to its relatively simple geometry and cellular organization, and to its essentially unidirectional growth pattern. The hypocotyl of Arabidopsis thaliana has been studied particularly well at the molecular-genetic level and at the cellular level, and it is the model of choice for analysis of the shade avoidance syndrome (SAS), a growth reaction that allows plants to compete with neighboring plants for light. During SAS, hypocotyl growth is controlled primarily by the growth hormone auxin, which stimulates cell expansion without the involvement of cell division. Methods We assessed hypocotyl growth at cellular resolution in Arabidopsis mutants defective in auxin transport and biosynthesis and we designed a mathematical auxin transport model based on known polar and non-polar auxin transporters (ABCB1, ABCB19, and PINs) and on factors that control auxin homeostasis in the hypocotyl. In addition, we introduced into the model biophysical properties of the cell types based on precise cell wall measurements. Results and Discussion Our model can generate the observed cellular growth patterns based on auxin distribution along the hypocotyl resulting from production in the cotyledons, transport along the hypocotyl, and general turnover of auxin. These principles, which resemble the features of mathematical models of animal morphogen gradients, allow to generate robust shallow auxin gradients as they are expected to exist in tissues that exhibit quantitative auxin-driven tissue growth, as opposed to the sharp auxin maxima generated by patterning mechanisms in plant development.
Collapse
Affiliation(s)
- Patrick Favre
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Evert van Schaik
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Florence Yerly
- Haute école d’ingénierie et d’architecture Fribourg, Haute Ecole Spécialisée de Suisse Occidentale (HES-SO), University of Applied Sciences and Arts of Western Switzerland, Fribourg, Switzerland
| | - Didier Reinhardt
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
8
|
Azarova DS, Omelyanchuk NA, Mironova VV, Zemlyanskaya EV, Lavrekha VV. DyCeModel: a tool for 1D simulation for distribution of plant hormones controlling tissue patterning. Vavilovskii Zhurnal Genet Selektsii 2023; 27:890-897. [PMID: 38213710 PMCID: PMC10777285 DOI: 10.18699/vjgb-23-103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 01/13/2024] Open
Abstract
To study the mechanisms of growth and development, it is necessary to analyze the dynamics of the tissue patterning regulators in time and space and to take into account their effect on the cellular dynamics within a tissue. Plant hormones are the main regulators of the cell dynamics in plant tissues; they form gradients and maxima and control molecular processes in a concentration-dependent manner. Here, we present DyCeModel, a software tool implemented in MATLAB for one-dimensional simulation of tissue with a dynamic cellular ensemble, where changes in hormone (or other active substance) concentration in the cells are described by ordinary differential equations (ODEs). We applied DyCeModel to simulate cell dynamics in plant meristems with different cellular structures and demonstrated that DyCeModel helps to identify the relationships between hormone concentration and cellular behaviors. The tool visualizes the simulation progress and presents a video obtained during the calculation. Importantly, the tool is capable of automatically adjusting the parameters by fitting the distribution of the substance concentrations predicted in the model to experimental data taken from the microscopic images. Noteworthy, DyCeModel makes it possible to build models for distinct types of plant meristems with the same ODEs, recruiting specific input characteristics for each meristem. We demonstrate the tool's efficiency by simulation of the effect of auxin and cytokinin distributions on tissue patterning in two types of Arabidopsis thaliana stem cell niches: the root and shoot apical meristems. The resulting models represent a promising framework for further study of the role of hormone-controlled gene regulatory networks in cell dynamics.
Collapse
Affiliation(s)
- D S Azarova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N A Omelyanchuk
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - V V Mironova
- Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, the Netherlands
| | - E V Zemlyanskaya
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - V V Lavrekha
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
9
|
Belousova DA, Shishov VV, Arzac A, Popkova MI, Babushkina EA, Huang JG, Yang B, Vaganov EA. VS-Cambium-Developer: A New Predictive Model of Cambium Functioning under the Influence of Environmental Factors. PLANTS (BASEL, SWITZERLAND) 2023; 12:3594. [PMID: 37896057 PMCID: PMC10609909 DOI: 10.3390/plants12203594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023]
Abstract
Climate changes influence seasonal tree-ring formation. The result is a specific cell structure dependent on internal processes and external environmental factors. One way to investigate and analyze these relationships is to apply diverse simulation models of tree-ring growth. Here, we have proposed a new version of the VS-Cambium-Developer model (VS-CD model), which simulates the cambial activity process in conifers. The VS-CD model does not require the manual year-to-year calibration of parameters over a long-term cell production reconstruction or forecast. Instead, it estimates cell production and simulates the dynamics of radial cell development within the growing seasons. Thus, a new software based on R programming technology, able to efficiently adapt to the VS model online platform, has been developed. The model was tested on indirect observations of the cambium functioning in Larix sibirica trees from southern Siberia, namely on the measured annual cell production from 1963 to 2011. The VS-CD model proves to simulate cell production accurately. The results highlighted the efficiency of the presented model and contributed to filling the gap in the simulations of cambial activity, which is critical to predicting the potential impacts of changing environmental conditions on tree growth.
Collapse
Affiliation(s)
- Daria A. Belousova
- Research Department, Siberian Federal University, 660041 Krasnoyarsk, Russia;
| | - Vladimir V. Shishov
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia;
| | - Alberto Arzac
- Institute of Ecology and Geography, Siberian Federal University, 660041 Krasnoyarsk, Russia; (A.A.); (E.A.V.)
| | | | - Elena A. Babushkina
- Khakass Technical Institute, Siberian Federal University, 655017 Abakan, Russia;
| | - Jian-Guo Huang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Bao Yang
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China;
| | - Eugene A. Vaganov
- Institute of Ecology and Geography, Siberian Federal University, 660041 Krasnoyarsk, Russia; (A.A.); (E.A.V.)
| |
Collapse
|
10
|
Wood structure explained by complex spatial source-sink interactions. Nat Commun 2022; 13:7824. [PMID: 36535928 PMCID: PMC9763502 DOI: 10.1038/s41467-022-35451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/04/2022] [Indexed: 12/23/2022] Open
Abstract
Wood is a remarkable material with great cultural, economic, and biogeochemical importance. However, our understanding of its formation is poor. Key properties that have not been explained include the anatomy of growth rings (with consistent transitions from low-density earlywood to high density latewood), strong temperature-dependence of latewood density (used for historical temperature reconstructions), the regulation of cell size, and overall growth-temperature relationships in conifer and ring-porous tree species. We have developed a theoretical framework based on observations on Pinus sylvestris L. in northern Sweden. The observed anatomical properties emerge from our framework as a consequence of interactions in time and space between the production of new cells, the dynamics of developmental zone widths, and the distribution of carbohydrates across the developing wood. Here we find that the diffusion of carbohydrates is critical to determining final ring anatomy, potentially overturning current understanding of how wood formation responds to environmental variability and transforming our interpretation of tree rings as proxies of past climates.
Collapse
|
11
|
Wood Formation under Changing Environment: Omics Approaches to Elucidate the Mechanisms Driving the Early-to-Latewood Transition in Conifers. FORESTS 2022. [DOI: 10.3390/f13040608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The global change scenarios highlight the urgency of clarifying the mechanisms driving the determination of wood traits in forest trees. Coniferous xylem is characterized by the alternation between earlywood (EW) and latewood (LW), on which proportions the wood density depend, one of the most important mechanical xylem qualities. However, the molecular mechanisms triggering the transition between the production of cells with the typical features of EW to the LW are still far from being completely elucidated. The increasing availability of omics resources for conifers, e.g., genomes and transcriptomes, would lay the basis for the comprehension of wood formation dynamics, boosting both breeding and gene-editing approaches. This review is intended to introduce the importance of wood formation dynamics and xylem traits of conifers in a changing environment. Then, an up-to-date overview of the omics resources available for conifers was reported, focusing on both genomes and transcriptomes. Later, an analysis of wood formation studies using omics approaches was conducted, with the aim of elucidating the main metabolic pathways involved in EW and LW determination. Finally, the future perspectives and the urgent needs on this research topic were highlighted.
Collapse
|
12
|
Eckes-Shephard AH, Ljungqvist FC, Drew DM, Rathgeber CBK, Friend AD. Wood Formation Modeling - A Research Review and Future Perspectives. FRONTIERS IN PLANT SCIENCE 2022; 13:837648. [PMID: 35401628 PMCID: PMC8984029 DOI: 10.3389/fpls.2022.837648] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/24/2022] [Indexed: 05/29/2023]
Abstract
Wood formation has received considerable attention across various research fields as a key process to model. Historical and contemporary models of wood formation from various disciplines have encapsulated hypotheses such as the influence of external (e.g., climatic) or internal (e.g., hormonal) factors on the successive stages of wood cell differentiation. This review covers 17 wood formation models from three different disciplines, the earliest from 1968 and the latest from 2020. The described processes, as well as their external and internal drivers and their level of complexity, are discussed. This work is the first systematic cataloging, characterization, and process-focused review of wood formation models. Remaining open questions concerning wood formation processes are identified, and relate to: (1) the extent of hormonal influence on the final tree ring structure; (2) the mechanism underlying the transition from earlywood to latewood in extratropical regions; and (3) the extent to which carbon plays a role as "active" driver or "passive" substrate for growth. We conclude by arguing that wood formation models remain to be fully exploited, with the potential to contribute to studies concerning individual tree carbon sequestration-storage dynamics and regional to global carbon sequestration dynamics in terrestrial vegetation models.
Collapse
Affiliation(s)
| | - Fredrik Charpentier Ljungqvist
- Department of History, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
- Swedish Collegium for Advanced Study, Uppsala, Sweden
| | - David M. Drew
- Department of Forest and Wood Science, Stellenbosch University, Stellenbosch, South Africa
| | - Cyrille B. K. Rathgeber
- Université de Lorraine, AgroParisTech, INRAE, SILVA, Nancy, France
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Andrew D. Friend
- Department of Geography, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
13
|
Cytokinin Perception in Ancient Plants beyond Angiospermae. Int J Mol Sci 2021; 22:ijms222313077. [PMID: 34884882 PMCID: PMC8657898 DOI: 10.3390/ijms222313077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
Cytokinins (CKs) control many plant developmental processes and responses to environmental cues. Although the CK signaling is well understood, we are only beginning to decipher its evolution. Here, we investigated the CK perception apparatus in early-divergent plant species such as bryophyte Physcomitrium patens, lycophyte Selaginella moellendorffii, and gymnosperm Picea abies. Of the eight CHASE-domain containing histidine kinases (CHKs) examined, two CHKs, PpCHK3 and PpCHK4, did not bind CKs. All other CHK receptors showed high-affinity CK binding (KD of nM range), with a strong preference for isopentenyladenine over other CK nucleobases in the moss and for trans-zeatin over cis-zeatin in the gymnosperm. The pH dependences of CK binding for these six CHKs showed a wide range, which may indicate different subcellular localization of these receptors at either the plasma- or endoplasmic reticulum membrane. Thus, the properties of the whole CK perception apparatuses in early-divergent lineages were demonstrated. Data show that during land plant evolution there was a diversification of the ligand specificity of various CHKs, in particular, the rise in preference for trans-zeatin over cis-zeatin, which indicates a steadily increasing specialization of receptors to various CKs. Finally, this distinct preference of individual receptors to different CK versions culminated in vascular plants, especially angiosperms.
Collapse
|
14
|
Abstract
More than 60% of tree phytomass is concentrated in stem wood, which is the result of periodic activity of the cambium. Nevertheless, there are few attempts to quantitatively describe cambium dynamics. In this study, we develop a state-of-the-art band model of cambium development, based on the kinetic heterogeneity of the cambial zone and the connectivity of the cell structure. The model describes seasonal cambium development based on an exponential function under climate forcing which can be effectively used to estimate the seasonal cell production for individual trees. It was shown that the model is able to simulate different cell production for fast-, middle- and slow-growing trees under the same climate forcing. Based on actual measurements of cell production for two contrasted trees, the model effectively reconstructed long-term cell production variability (up to 75% of explained variance) of both tree-ring characteristics over the period 1937−2012. The new model significantly simplifies the assessment of seasonal cell production for individual trees of a studied forest stand and allows the entire range of individual absolute variability in the ring formation of any tree in the stand to be quantified, which can lead to a better understanding of the anatomy of xylem formation, a key component of the carbon cycle.
Collapse
|
15
|
Hormonal Regulation and Crosstalk of Auxin/Cytokinin Signaling Pathways in Potatoes In Vitro and in Relation to Vegetation or Tuberization Stages. Int J Mol Sci 2021; 22:ijms22158207. [PMID: 34360972 PMCID: PMC8347663 DOI: 10.3390/ijms22158207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
Auxins and cytokinins create versatile regulatory network controlling virtually all aspects of plant growth and development. These hormonal systems act in close contact, synergistically or antagonistically, determining plant phenotype, resistance and productivity. However, the current knowledge about molecular interactions of these systems is still scarce. Our study with potato plants aimed at deciphering potential interactions between auxin and cytokinin signaling pathways at the level of respective gene expression. Potato plants grown on sterile medium with 1.5% (vegetation) or 5% (tuberization) sucrose were treated for 1 h with auxin or cytokinin. Effects of these two hormones on expression profiles of genes belonging to main signaling pathways of auxin and cytokinin were quantified by RT-qPCR. As a result, several signaling genes were found to respond to auxin and/or cytokinin by up- or down-regulation. The observed effects were largely organ-specific and depended on sucrose content. Auxin strongly reduced cytokinin perception apparatus while reciprocal cytokinin effect was ambiguous and sucrose-dependent. In many cases, functional clustering of genes of the same family was observed. Promoters in some clusters are enriched with canonic hormone-response cis-elements supporting their direct sensitivity to hormones. Collectively, our data shed new light on the crosstalk between auxin- and cytokinin signaling pathways.
Collapse
|
16
|
Effects of Intra-Seasonal Drought on Kinetics of Tracheid Differentiation and Seasonal Growth Dynamics of Norway Spruce along an Elevational Gradient. FORESTS 2021. [DOI: 10.3390/f12030274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Research Highlights: Our results provide novel perspectives on the effectiveness and collapse of compensatory mechanisms of tracheid development of Norway spruce during intra-seasonal drought and the environmental control of intra-annual density fluctuations. Background and Objectives: This study aimed to compare and integrate complementary methods for investigating intra-annual wood formation dynamics to gain a better understanding of the endogenous and environmental control of tree-ring development and the impact of anticipated climatic changes on forest growth and productivity. Materials and Methods: We performed an integrated analysis of xylogenesis observations, quantitative wood anatomy, and point-dendrometer measurements of Norway spruce (Picea abies (L.) Karst.) trees growing along an elevational gradient in South-western Germany during a growing season with an anomalous dry June followed by an extraordinary humid July. Results: Strong endogenous control of tree-ring formation was suggested at the highest elevation where the decreasing rates of tracheid enlargement and wall thickening during drought were effectively compensated by increased cell differentiation duration. A shift to environmental control of tree-ring formation during drought was indicated at the lowest elevation, where we detected absence of compensatory mechanisms, eventually stimulating the formation of an intra-annual density fluctuation. Transient drought stress in June also led to bimodal patterns and decreasing daily rates of stem radial displacement, radial xylem growth, and woody biomass production. Comparing xylogenesis data with dendrometer measurements showed ambivalent results and it appears that, with decreasing daily rates of radial xylem growth, the signal-to-noise ratio in dendrometer time series between growth and fluctuations of tree water status becomes increasingly detrimental. Conclusions: Our study provides new perspectives into the complex interplay between rates and durations of tracheid development during dry-wet cycles, and, thereby, contributes to an improved and mechanistic understanding of the environmental control of wood formation processes, leading to the formation of intra-annual density fluctuations in tree-rings of Norway spruce.
Collapse
|